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This work investigates the development and use of a wireless wearable system for the

assessment of gait. The system proposed consists of a sensor module that is attached to the

foot. The sensor proposed is an inertial measurement unit, often abbreviated as IMU - a

9-axis System in Package (SiP) including a 3-axis accelerometer, a 3-axis gyroscope, and a

3-axis magnetometer, as well as a fusion engine for signal processing. While the focus of

this work is on evaluating gait metrics, the performance of the proposed IMU in evaluating

orientation (perhaps for joint angle measurement) is quantified. In doing this work, we try

to address the issue of cost. While inertial-based wearable(s) are typically cheaper than

optical-based measurement systems, they are still relatively expensive ranging from $3500-

$11000 depending on the number of modules and manufacturer. Examples include MTw

Awinda Research Bundle (XSENS) and Blue Trident IMU (VICON). In this work, I use an

off-the-shelf commercial IMU unit that costs $10, a wireless IoT chip that costs $10, and a

Li-Ion battery that costs $7 for a total of $27 for one wireless sensor module.
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Chapter 1

INTRODUCTION

1.1. Objectives and Motivation

MEMS inertial sensor technology has seen ubiquitous uses in engineering, aviation, sports

and fitness monitoring, robotics, and perhaps in other industrial sectors. Advancements in

wireless communication technology have afforded the emergence of wireless wearable(s) where

inertial sensors have seen extensive usage. Usage of inertial sensors have not extended as com-

monly in the medical field, however, despite the high interest of the engineering community

in inertial-enabled medical diagnostics [2]. Not only can these sensors be more easily adopted

in clinical diagnosis and treatment procedures than their current counterparts, but they can

also monitor gait continuously outside clinics [2]. The roadblocks that seemingly prevent

standardized usage of inertial sensors in clinical settings include wear-ability, practicality,

and medical context-lacking presentation of sensor outputs that may not be understandable

by the persons operating the equipment [2]. However, wear-ability is being addressed by

the fast introduction of increasingly smaller sensors, the advent of flexible and 3D-printed

electronics, and recent advancements in battery technology. As a proof of concept, this work

aims to develop a low-cost wearable system that addresses the issue of sensor placement

through use of a neural model and the evaluation of gait metrics in a Kalman-based frame-

work. Some background on motion capture techniques is presented first to establish the

context of this work.

1.2. Motion Capture Techniques

Optical, marker-based measurement systems are the gold standard for motion capture.

Current solutions offer sub-millimeter accuracy, robust operation, and high-frequency out-
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puts reaching 1 KHz. However, these systems are expensive, costing in the tens or even

hundreds of thousands depending on the number of cameras, specifications, and manufac-

turer. Optical systems are generally not portable, in need of constant calibration, confined

to the field of view of the cameras, and need an unobstructed line of view to capture the

motion of markers. Inertial-based motion capture relies on sensor fusion of an array of sen-

sors to estimate motion, accelerometers and gyroscopes making the basic building blocks for

such systems. Inertial-based motion capture systems offer a cheaper alternative to optical

systems as well as practicality through portability, ease of use, and small profile. However,

inertial-based systems suffer from drifting measurements, sensitivity to high-frequency mo-

tion, and still rely on magnetic measurements to reference the heading angular direction,

which depends on the detection of the faint magnetic field of the Earth.

1.3. Inertial Motion Capture

As mentioned above, inertial-based motion capture relies on the fusion of multiple sources

of sensory information to evaluate the best motion estimate. Accelerometers output linear

accelerations in the sensor frame of reference while gyroscopes output angular velocities.

Theoretically speaking, integrating angular velocities over time should yield angular posi-

tion while twice integration of linear accelerations should yield linear position. In practice,

however, a plethora of problems plague the estimation task: accelerometers suffer from noisy

measurements, gyroscopes suffer from fast-drifting measurements, and lastly, a good refer-

ence for the heading requires a magnetic compass, which causes the largest source of error

in the estimation problem. Rotating linear accelerations from the sensor frame to an iner-

tial frame of reference to integrate for velocity and position requires accurate estimation of

the angular position of the sensor, which in turn requires integrating the drifting gyroscope

measurements. A digital compass or a magnetometer is also needed if the application re-

quires an accurate heading estimate. Magnetometers produce an angular position estimate

based on the magnetic field of the earth, which varies depending on geographical location.

Metallic structures, electric lines, monitors, phones, and a myriad of other magnetic field-

2



inducing sources corrupt measurement of the Earth’s magnetic field intensity needed for the

estimation problem. Outdoor applications utilize GNS (Global Navigation System) satellite

signals to aid in heading corrections, but it remains very problematic to infer an accurate

estimate of the sensor’s yaw in indoor applications.

1.3.1. Accelerometers

Given that the accelerometer measures linear accelerations in all three sensitive axes of

the sensor, including the acceleration of Earth’s gravity, then if the gravitational acceleration

g is estimated from the IMU (Inertial Measurement Unit) signals, the rotated gravity vector

measured in the sensor body frame of reference can provide an estimate of the tilt of the

sensor. However, since the gravity vector is parallel with one of the axes in the inertial (local

frame for this application), the accelerometer is unable to give complete information about

the rotation of the sensor. Specifically, the rotation obtained does not produce a unique

solution for the heading - the angular rotation about the gravity vector. Noise is the main

source of error for accelerometers. The sensor’s output is either in gravities (multiples of g

- Earth’s gravitational acceleration) or m
s2

.

1.3.2. Gyroscopes

Gyroscopes measure the angular velocities undergone by the rotating sensor in the three

sensitive axes, from which angular position can be evaluated by integrating the gyroscopic

signals over time. Gyroscopes suffer from a time-varying bias, which is the dominant source

of error, as well as noise. The output is usually expressed in deg
s

but some sensors may report

the output in rad
s

.

1.3.3. Magnetometers

Magnetometers measure the magnetic field intensity along the three directions of the sen-

sor’s sensitive axes. Using the magnetic field intensities they output, magnetometers provide

complete orientation information of the IMU sensor. Magnetometers suffer from sensitiv-
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ity to local magnetic fields that distort the Earth’s magnetic field measurement needed to

extract information about the sensor orientation. This distortion manifests in a simple con-

stant 1×3 measurement offset, termed as the hard-iron bias, and a more complex 3×3 scale

matrix affecting the orthogonality of the 1× 3 measurement, termed the soft-iron bias. The

output is usually expressed in Gauss G or Tesla T.

1.4. Outline

1. This work investigates developing a prototype based on MEMS inertial technology for

the assessment of gait. A wireless wearable for the foot is considered to capture motion

that can be used to evaluate important gait metrics: speed, cadence, and stride length.

2. The Kalman framework is utilized for the estimation problems. An Extended Kalman

Filter is used for orientation estimation of the sensor module.

3. For gait speed evaluation, estimating the linear velocity of the foot-attached sensor

module is a challenging task. The drifting angular measurements used to rotate the

linear acceleration vector into the local reference frame (inertial frame for this applica-

tion) will quickly corrupt the linear velocity estimates. To mitigate this issue, ZUPT(s)

(Zero-Velocity Updates) are used to aid in this task. ZUPT(s) are incorporated in an

error-state Kalman filter that estimates the position error, velocity error, and orienta-

tion error, which are then used to correct motion states. ZUPT(s) are applied when

the foot lays flat on the ground where it is assumed that the foot velocity vector is

the zero vector. Linear acceleration peaks provide the time it takes to complete a full

step. Using this time period with the corrected linear velocity estimates, it becomes

possible to obtain the best estimates for gait speed, the stride length, and cadence in

the local inertial frame.

4. For arbitrary placement on the foot, a regression neural network models the sensor

orientation with respect to the foot. The input to the model is a 1× 9 vector of linear

accelerations, angular velocities, and magnetic field measurements from the sensor

while the output is the sensor orientation.
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Chapter 2

LITERATURE REVIEW

2.1. Estimation

2.1.1. Introduction

Inertial-based motion estimation has been explored extensively in the engineering liter-

ature [19] [27] [21]. Many different filtering, smoothing, and optimization-based algorithms

have been developed to solve the problem of kinematic estimation for inertial-based sen-

sors [8]. While accelerometers suffer from noise, their measurements do not drift, making

them suitable to be used as a reference. On the other hand, gyroscopic measurements are

highly accurate but suffer from drift. Kalman filters can be used to correct orientation esti-

mates by using accelerometer tilt estimates as a reference against those estimated from the

gyroscopes.

2.1.2. Kalman Filtering

The accepted basis for orientation, velocity, and position estimation in navigation systems

for aviation is the Kalman filter [12]. Inertial-based, indoor motion estimation is very similar

to motion estimation for aircraft navigation, but simplified by the fact that geographical

location (longitude and latitude) can be assumed constant and hence do not enter into the

mathematical model. The Kalman filter is a statistical estimator that is able to adapt to

the noise inherent in the operation of inertial sensors. It does so by explicit modeling of

the noise in the filter process model, generally assumed to be a linear stochastic function of

white Gaussian noise of zero-mean and a finite covariance.
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The Kalman filter can be completely described using second-order statistics - the mean,

describing the state, and covariance, describing the uncertainty in the state. The Kalman

filter relies on a process model describing the evolution of the state over time to find a

prediction of the state at the next time step, and sensor measurements that can infer in-

formation about the states. The predicted state estimate is compared with the available

measurements to produce a better final state estimate depending on knowledge of the noise

present in the system, both in the process model and the sensor measurements. Formulas

for the time-propagation of the state mean and state covariance that minimize uncertainty

in the system can be found explicitly by solving a simple weighted least-squares problem [5].

The assumption of Gaussian noise is appropriate due to the central-limit theorem, stating

that the convolution of many small sources of error will approximate a Gaussian distribu-

tion, making the Kalman filter an optimal choice for estimation problems. However, the

Kalman filter in its simplest form is a linear filter. Here, a constant gain, called the Kalman

gain, can be solved for once and then used in the filter implementation. The problem of

kinematic estimation is highly non-linear, however, making the use of nonlinear variations

of the Kalman filter a necessity.

2.1.2.1. Extended Kalman Filter

In this work, the Extended Kalman filter; commonly called the EKF - an extension to

the original Kalman filter, is used. The EKF [5] linearizes the nonlinear process model and

measurement function at every time step, evaluates a new Kalman gain, and produces a state

estimate. Simply put, the EKF evaluates a linear Kalman filter at every time step. The EKF

is the most commonly used form of the Kalman filter. It is relatively easy to implement,

offers intuitive addition of new states to the process model, and is well-understood. However,

it requires evaluation of state and error Jacobians for linearization; the derivation of which

can be a tedious and difficult task if the state vector is large.
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2.2. IMU-Foot Auto-Calibration

Auto-calibration refers to the evaluation of the proper spatial transformation to apply to

the sensor module’s estimated orientation that would align the arbitrarily-placed module to

the foot it is attached to. Use of current MEMS, inertial-based, wearable systems requires

proper manual placement calibration of the sensor module on the foot, which in turn requires

expert knowledge and is prone to human error. Misplacing sensor modules on body segments

can result in large errors [31]. For practical use by non-specialists, inertial-based assessment

systems should be cordless, placement-insensitive (auto-calibrating), and be able to adapt

to small motion artifacts, basically, a plug and play system. However, current commercial

systems require manual alignment or functional calibration through static poses [3] or other

difficult to perform methods [1]. Other error-contributing factors are less intuitive and

difficult to model, such as loose garments and clothing material [33].

Neural models offer the ability to learn complex mappings between inputs (sensor measure-

ments) and outputs (kinematics) given a reliable source for outputs. Supervised learning

has the ability to generalize the performance of neural models given enough data. Using a

multi-layer perceptron (MLP) architecture to regress the sensor placement is the solution

proposed for this problem. Utilizing a reliable source for orientation outputs, the supervised

learning problem can be formulated and solved for the needed model, which could then be

deployed online, allowing for arbitrary placement of the sensor module on the foot in the

final application. In [33], the authors used a multi-layer perceptron (MLP) network to learn

sensor-displacement patterns in loose garments using 3 hours of motion data collected from

12 subjects. This work proved the ability of deep supervised learning to generalize perfor-

mance when hard-to-model errors are present (loose garments). However, despite improved

performance compared with regular estimation, orientation errors are still relatively large

(10◦ - 14◦). Better accuracy can be achieved assuming rigid fitting of the sensor modules on

the body segments. In [25], the authors used deep learning architectures to auto-classify and

auto-calibrate the sensor modules placed arbitrarily on body segments. The average accu-

racy for the auto-classification of segments based on inertial measurements was 98.57% while
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the mean orientation error for auto-calibration was 15.21◦. However, for auto-calibration,

the authors assumed 360◦ variability for two rotational degrees of freedom of each sensor

attached to a segment. While this approach offers large leeway in sensor placement, it comes

at the expense of accuracy. While the focus of [33] and [25] was on the ability of common

deep learning architectures to generalize model performance, this work attempts to create a

solution that only models angular variability in the axis normal to the foot to help increase

accuracy, a requirement for specialty uses [2], that is easy to use, and robust to small human

error and motion artifacts (from clothing), all while considering the nature of gait and its

metrics in the design.
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Chapter 3

EXPERIMENTAL SETUP AND METHODS

3.1. Setup

This chapter investigates the methods used to quantify the quality and accuracy of the

sensor module in measuring the orientation and the aforementioned gait metrics. It also

aims to make clear the techniques used to evaluate these quantities for both the optical

measurement system, which is used as the source for ground-truth measurements, and also

for the sensor module.

3.1.1. Sensor Module

The sensor module shown in figure 3.1 consists of an IoT (Internet of Things) device that

comprises a 120Mhz low-power micro-controller (Particle Photon), a 1000mAh Lithium-ion

battery, and an inertial measurement unit (BNO080), packaged in a compact 3D-printed

enclosure. The inertial sensor is attached vertically to one of the walls of the enclosure to

maximize the utilized volume and ensure a compact size of the assembly. The IoT device

reads measurements from the sensor at a variable-rate (up to 0.4Khz) using an I2C (Inter-

Integrated Circuit) serial interface, serializes the data into a fixed-size message, then sends

the message over a TCP WiFi connection to a MATLAB TCP interface for data processing.

Figure 3.1: Sensor Module
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3.1.2. Optical Measurement System

A 16-camera VICON optical system is mounted 1 foot below the lab ceiling and setup

to maximize capture of the working lab volume. It uses what is referred to as optical retro-

reflective markers to identify the rigid-body for which we have interest in finding inertial

information: position, orientation, etc. Those markers are tracked by the infrared cameras

mounted on the lab walls. The accuracy of the VICON optical system is assessed as part

of the work done in [28] and is found to offer sub millimeter accuracy in estimating position

of rigid-body objects. However, it is worth noting that during subject activity, potential

movement of the markers on body segments due to skin motion lowers the accuracy of

measurements for the actual segment. Data rate for the cameras is up to 330Hz and their

resolution is 2.2 Mega-Pixel. The VICON system is used as the source for ground-truth

measurements (reference measurements) to be used for comparison against those of the

sensor module. Information collected from the cameras is then used by the VICON software

to evaluate the position and orientation for the tracked foot-attached sensor module. Velocity

is evaluated by finding the gradient of the position vector.
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3.1.3. Data Acquisition

Here we investigate the methods used to acquire data from both the sensor module and

the optical system. The infrared cameras are setup to track the retro-reflective markers at

100hz. Tracker is a software developed by the VICON manufacturer to track rigid-body

objects (the foot-attached sensor module in this application). Three retro-reflective markers

are placed non-concurrently on a plane surface to construct a body coordinate system. The

global coordinate system (to which the cameras are measuring with respect to) is also setup

in the software using a hand-held wand. The wand allows for setting up the origin and other

parameters needed for the global coordinate system.

3.2. Experimental Procedure

1. The cameras are calibrated using a standard procedure where a wand is moved in the

control volume captured by the cameras. The Tracker software then evaluates whether

or not the errors introduced by camera placement is acceptable.

2. Once the camera calibration procedure is done, the wand is placed somewhere at the

center of the lab to designate the origin of the global coordinate system. Positions and

orientations will be referenced to this coordinate system.

3. The foot-attached module is fitted with optical markers on its surface to be tracked by

the infrared cameras.

4. The sensor module body coordinate system constructed from the optical markers is

aligned with the global coordinate system in the Tracker software. This implies that

the information measured by both the optical system and the sensor module share

reference coordinate systems that are aligned to one another.

5. A MATLAB script is run on the central computer to capture position and attitude data

from both the optical system (via a streaming MATLAB library developed by VICON)

and from the sensor module using the WiFi TCP link. Data for both acquisition

systems is sent at a rate of 100Hz.
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3.3. Data

Table 3.1 below summarizes the quantities supplied by the sensor and the optical mea-

surement system. It also lists the quantities we are interested in estimating. a is the linear

acceleration vector, ω is the angular velocity vector, m is the magnetic intensity vector of

the Earth, v is the linear velocity vector, p is the linear position vector, and q is the orien-

tation quaternion. Gait speed is evaluated from the estimated linear velocity v, cadence is

evaluated from the acceleration signal a, stride length is evaluated from both v and a.

Parameters

Sensor Module Measured Quantities a, ω, m

Sensor Module Estimated Quantities q, v, p

Optical System Measured Quantities q, p

Table 3.1: Measured and Estimated Quantities
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Chapter 4

Filter Modeling and Kinematics

4.1. Coordinate Frames

This section introduces the coordinate systems used to define the kinematic models for

the estimation problem, as well as the inertial frame for the sensor module. Since the wear-

able module developed is an indoor application and will not be used across large distances

around the globe, there is no need to use a global inertial frame; meaning, the geographical

location defined by latitude, longitude, and altitude does not need to enter the transfor-

mation equations between the module body frame and the inertial frame (defined locally

and termed the local frame). Figure 4.2 shows the sensor body frame when the module is

mounted on the foot.

(a) Local Frame (b) Accelerometer Axes (c) Magnetometer Axes

Figure 4.1: Sensor Coordinate Frames

4.1.1. World Frame: Local Frame

The IMU (inertial measurement unit) used in this work aligns the sensor measurements

using an ENU or East-North-Up body frame. Since no geographical jumps are likely to
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Figure 4.2: Foot Direction Aligns with the xa Axis

happen during use of the wearable module, a stationary local inertial frame is used that

discards variation in geographical location in the model. The application also neglects the

effect of Earth’s rotation about its own axis since it is very small. The ENU convention is

used for the local frame in this work to avoid transforming the sensor measurements into a

different body frame. The local frame in figure 4.1a defines a right-handed coordinate system

with east as the x-axis, north as the y-axis, and upward as the z axis.

4.1.2. Magnetometer Sensor Frame

The magnetometer measures the magnetic field intensity of the magnetic field of the

Earth. This field vector penetrates different points on the Earth’s surface at a specific

inclination and declination angles. The inclination angle defines the angle the magnetic field

vector makes with the horizontal plane and the declination angle defines the angle between

geographic north (in the local frame) and magnetic north. The inclination angle is 61◦ and

the declination angle 3◦ in Dallas, Texas, USA, as found from the International Geomagnetic

Reference Field (IGRF), from which the magnetic field vector can be evaluated. In figure

4.3, the green line represents the Earth’s magnetic field intensity vector, XmGeo represents

the direction of geographic north, Xm represents the direction of magnetic north, D denotes

the declination angle and I the inclination angle.
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Figure 4.3: Inclination and Declination Angle in ENU Local Frame

4.1.3. IMU Sensor Frame

Technically speaking, an IMU houses only an accelerometer and a gyroscope. The magne-

tometer or digital compass is usually a separate chip. However, the term ”IMU” is sometimes

used to reference all three sensors on a PCB. The distinction has been made to make clear

that the sensitive axes of the accelerometer and gyroscope (IMU) are usually aligned, while

the sensitive axes of the latter and the magnetometer are not.

4.1.4. Sensor Body Frame

Due to the single chip design of the BNO080 [7], outputs of the sensor are all reported

with respect to the sensor body frame b.

4.2. Sensor Models

This section defines the sensor models that will later be used in formulating different esti-

mation problems. Each sensor will be characterized based on three aspects: the main sources

of error, how the output measurements contribute to the different kinematic estimation prob-

lems or the role of each sensor, and lastly, a description of the nature of measurements.
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4.2.1. Accelerometer

Figure 4.4: Linear Acceleration in the Sensor Body Frame b and Local Frame n

Linear acceleration is modeled as a sum of a stochastic noise process and the actual phys-

ical measurement as represented in the sensor body frame b [22]. Assuming Rb
n represents

the rotation from the local frame n to the sensor body frame b, the model is expressed as:

ab = Rb
n(an − gn) + ae

where ab is the sensor body acceleration, an is the acceleration as expressed in the local

frame, gn is the gravitational acceleration in vector form, Rb
n is the transformation matrix

that rotates from the local frame to the sensor body frame, and ae is a stochastic process

model for the accelerometer error [8]. A common model for the error is called the Random

Walk model, which consists of a white Gaussian noise component and a random time-varying

bias. Figure 4.4 describes the frames involved as well as the variables of interest; namely,

the measured sensor-body acceleration ab and the rotation described by Rb
n, which can be

partially estimated from the latter.

4.2.2. Gyroscope

Gyro measurements are modeled as the sum of a stochastic noise process component

and the actual rotational rate of the sensor. The output measurements are expressed in the

sensor body frame b as reflected in figure 4.5. It is worthwhile to note that the gyroscope also

measures the angular velocity of the earth rotation about its own axis, but it is very small
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Figure 4.5: Angular Velocity in the Sensor Body Frame b

and negligible compared to the sensor rotation for this application justifying discarding it in

calculations [8]. Accordingly, the Coriolis and centrifugal accelerations in the accelerometer

model are also discarded and do not enter an - the acceleration in the local frame n. The

model is expressed as:

ω = ωb + ωe

The angular velocity output measured by the sensor is ω, ωb is the true angular velocity,

and ωe is a stochastic process model for the gyroscopic error. The gyroscopic error is also

often assumed to follow the Random Walk model [8], with a white noise component and a

time-varying bias that is either given in datasheets or estimated.

4.2.3. Magnetometer

Similar to the accelerometer, the magnetic vector is modeled as a sum of the physical

magnetic intensity measurement and a stochastic noise process term. The error in the

magnetometer consists of two components: the first being the hard-iron bias or offset, and

the second is what’s called the soft-iron bias, which is much harder to quantify and is a matrix

that multiplies the true magnetic field vector. Temperature, active magnetic fields, and other

factors contribute to soft-iron bias. The soft-iron bias distorts the orthogonality of the sensor

measurement. Many solutions have been proposed in the literature to quantify the soft-iron

bias. However, the vast majority of the methods achieve static calibration, which is not

very useful if the sensors experience a drastic change in the magnetic environment. Ref. [13]

formulates the magnetic calibration task as the solution to a maximum-likelihood problem,
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Ref. [10] exploits the in-variance of the dot product of the gravitational and magnetic fields

vectors under rotation and uses a set of measurements to minimize an objective function

and solve for the hard-iron and soft-iron biases. Ref. [29] also formulates the problem as a

maximum likelihood estimator that operates in the sensor frame, decoupling the calibration

problem from the attitude estimation problem. Finally, Ref. [30] collects a set of magnetic

field measurements and fits them to an ellipsoid, the parameters of which give the biases.

However, this fitting method may apply a rotation to the soft-iron bias matrix [10] that we

have no knowledge of.

In this work, magnetometer calibration was done by first collecting a few tens of thousands of

measurements around the laboratory and then determining an offset and a simple diagonal

scale matrix without applying any transformations to the magnetic field measurements.

The offset and the scale matrix evaluated depend on the local magnetic environment and

should be evaluated for every new location the sensor module operates in as part of an

initial calibration process. This method has proved to provide consistent heading accuracy

estimates with a predictable error. The magnetometer model is expressed as:

mb = Rb
nmn + me

where mb is the magnetic field intensity measured by the magnetometer in the sensor body

frame b, mn is the magnetic field intensity in the local frame n (Earth magnetic field), Rb
n

is as defined for the accelerometer, and me is a stochastic error process model to account for

magnetic disturbance. The error process for the magnetometer is a sum of white Gaussian

noise as well as a bias term that includes the effect of both the hard-iron and soft-iron biases.

4.2.4. Global Gravity and Magnetic Models

For the purposes of the application in this work, a constant gravitational model is suitable.

The gravity vector is assumed to act downwards towards the center of the Earth. Assuming

an ENU local frame, the gravity model is defined as:
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gn =


0

0

−g


where g is the gravitational constant. It varies slightly from 9.81m

s2
across different locations

on Earth. The simple global model considered for the magnetometer is defined in terms

of the inclination and declination angles, which depend on the way the magnetic vector

penetrates the specific location. Complex and recent magnetic models and calculators are

available [16], but they are too complex to incorporate into the process models of estimators.

Assuming an ENU local frame, the magnetic model considered is defined as:

mn = mt


cos I sinD

cos I cosD

− sin I


wheremt is the magnitude of the total field, I is the inclination angle, andD is the declination

angle. The inclination and declination angles for a specific location can be found from the

IGRF.

4.3. Orientation Estimation

The Extended Kalman Filter (EKF): the EKF is an extension to the original linear

Kalman filter. Using the Jacobian of the nonlinear model with respect to the state, the EKF

linearizes the nonlinear process model to evaluate a generic linear Kalman filter at every time

step ∆t. The convergence of the EKF is heavily dependent on the trueness of the initial

state and covariance estimates [8]. The full derivation of the orientation EKF is provided in

appendix A. The work flow in the EKF for orientation estimation proceeds in the following

manner (outlined in Table 4.1):
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1. Following selection of appropriate global gravity and magnetic field models, a first

static measurement of acceleration a1 and magnetic field m1 is collected. This mea-

surement set coupled with the Earth’s fields gn and mn are used in the TRIAD [34]

(Three Axis Attitude Determination) method to find the direction cosine matrix of

the sensor body frame relative to the absolute local frame. This results in the initial

orientation estimate, parameterized as a unit quaternion qnb1 (Table 4.1). Notation of

the aforementioned quaternion indicates a rotation from body frame b to local frame

n. In Table 4.1, P1 is the initial state covariance, Pe is the uncertainty associated with

an assumed initial error in the rotation vector resulting from qnb1 . The error assumed

with the initial measurement is 0.3 rad [8]. Gt is the continuous-time state error matrix

as defined in equation A.7.

2. In the process model, the angular velocity measurement is converted into a unit quater-

nion expq(ωbT ), where T is the sampling period of the measurement, which is then ap-

plied to the initial quaternion using the quaternion product yielding the new predicted

estimate. The state covariance Pk−1 is time-propagated as explained in appendix A

to evaluate the predicted state covariance P̂k at the current time step. The predicted

orientation estimate q̂nbk and the predicted orientation covariance estimate P̂k are the

results of this step. See Table 4.1. The discretized process noise matrix Qd and state

transition matrix φk is as defined in table A.3. Table 4.1 summarizes the steps.

3. The newly-measured acceleration and magnetic measurement zk are compared against

those evaluated from the measurement function yk (evaluated from the predicted state

q̂nbk ) to evaluate the residual rk. The state Jacobian Hk of the measurement function

yk is evaluated, which then allows the evaluation of the Kalman gain Kk. The mea-

surement noise matrix R is defined by equation A.10 and depends on the sensor noise

characteristics. The Kalman gain Kk is then used to find the corrected estimate qnbk

and the corrected state covariance Pk (see Table 4.1). Figure 4.6 shows the EKF com-

putations for orientation estimation. Table 4.1 also summarizes the equations needed

for the initialization, prediction and update steps.
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Figure 4.6: Orientation Estimation via the Extended Kalman Filter

Initialization qnb1 = fq(m1, a1)

P1 = fP (ωe) = GtPeG
>
t

Prediction q̂nbk = qnbk−1 � expq(ωT )

P̂k = φkPk−1φ
>
k + Qd

Update rk = zk − yk

qnbk = q̂nbk + Krk

Kk = P̂kHk
>(HkP̂kH

>
k + R)−1

Pk = P̂k −K(HkP̂kH
>
k + R)K>k

Table 4.1: EKF Computation Flow

4.4. Error-state Kalman Filter: Position and Velocity Estimation using ZUPT(s)

The evaluation of cadence, gait speed, and stride length requires the evaluation of linear

velocity. It is generally difficult to obtain a good linear velocity estimate from low-cost

IMU(s), as it is a function of orientation and any error of which will be integrated into the

linear velocity term, resulting in a fast error accumulation if orientation is not accurate.

To combat this issue, the concept of zero-velocity updates is used. Zero-Velocity Updates

(ZUPT(s)) refer to resetting the linear velocity term to zero when the foot is flat on the

ground during the bipedal gait cycle. The velocity reset is done in the framework of an

error-state Kalman filter based on the work of [22]. A Kalman framework is beneficial,

instead of naive integration because it allows the correlation of orientation errors in other

states in an intuitive manner, which affords corrections to be made in the update step once

the errors are observable [22] [6]. Figure 4.7 shows the computation flow in the ESKF. Table
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4.2 also summarizes the evaluations needed for every time step.
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Figure 4.7: Kinematics Estimation Using the Error-State Kalman Filter

Computation steps of the linear ESKF (error-state Kalman filter) are summarized in

Table 4.2 and described below:

1. Initializing the orientation state qnb1 based on the first accelerometer measurement a1.

The initial position p1, velocity v1, error state δx1, and error state covariance P1 are

initialized to zero as shown in the initialization section of table 4.2.

2. In the prediction step of the filter, the orientation q̂nbk , linear velocity v̂k, and linear

position p̂k predicted nominal states are evaluated based on rigid-body kinematics

using the sensor linear accelerations ab and angular velocities ω as inputs.

3. The process model for the error state is defined by f . Knowledge of the Jacobian Fx

(f with respect to δx) and the Jacobian Fi (f with respect to e) allows for evaluating

the predicted covariance P̂k of the error state δx. The process noise covariance matrix

Q is as defined in equation B.3.

4. In the update step of the filter, the pseudo linear velocity measurement zk of zero is

used to update the error state. The measurement function yk represents velocity while

Yi represents the uncertainty in the velocity measurement. The residual rk is evaluated

from the pseudo measurement and the evaluated measurement function. Evaluating

the Jacobian Hk (yk with respect to δx) then allows for the evaluation of the Kalman

gain Kk. Thereafter, the error states δxk become observable and are subsequently

injected into the nominal states as shown in the last three entries in the update section

of table 4.2 to obtain the corrected position estimate pk, the corrected velocity estimate
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vk, and the corrected quaternion estimate qnbk . Detailed computations of the ESKF

are in appendix B.

23



Error State Model δpk = δpk−1 + δvk−1∆t

δvk = δvk−1 −Rn
b [ab]×δθk−1∆t+ vi

δθk = Rn>
b δθk−1 + θi

δx =
[
δp δv δθ

]>
f =

[
δpk δvk δθk

]>
e =

[
vi θi

]>
Initialization qnb1 = fq(a1)

p1 = 01×3

v1 = 01×3

δx1 = 01×9

P1 = 09×9

Prediction q̂nbk = qnbk−1 � expq(ωT )

p̂k = pk−1 + vk−1∆t+ 1
2
(Rn

b ab + gn)∆2t

v̂k = vk−1 + (Rn
b ab + gn)∆t

P̂k = FxPk−1F
>
x + FiQF>i

yk = vk + (Rn
b ab + gn)∆t+ Yi

zk = 01×3

Update rk = zk − yk

Kk = P̂kH
>
k (HkP̂kH

>
k + Yi)

−1

δxk = Kk(zk − yk)

Pk = (I−KkHk)P̂k

pk = p̂k + δpk

vk = v̂k + δvk

qnbk = q̂nbk � expq (δθk)

Table 4.2: ESKF Computation Flow
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Chapter 5

System Auto-calibration

5.1. What is Auto-calibration?

A significant source of error in motion estimation using inertial sensors is the erroneous

placement of the sensors on body segments (feet in this application). Assuming a correct

module alignment qSI with the foot using a functional calibration procedure [17], where S

stands for segment (foot) and I stands for the IMU module, then auto-calibration refers to

including the effect of arbitrary rotation of the sensor module on a tangent surface to the

foot with respect to qSI , effectively modeling the degree of freedom that is likely to introduce

errors. The goal of auto-calibration is to find a rotation paramterization for the IMU sensor

module relative to the segment (foot), denoted by the quaternion q̂SI or rotation matrix

R̂SI . Figure 5.1 depicts the angular degree of freedom of interest; the rotation normal to a

surface tangent of the segment (foot).

Figure 5.1: Modelled Degree of Freedom

Regression machine learning architectures have the ability to model complex parametric

models. Acceleration, gyroscopic, and magnetic signals hold complete information about

orientation, therefore, the proposed input to the regression problem is a 1× 9 vector of the

1× 3 acceleration signal, the 1× 3 gyroscopic signal, and the 1× 3 magnetic signal. The
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magnetic signal is necessary to correct for gyroscopic drift. The proposed output is the 1× 4

orientation quaternion q̂SI of the sensor module relative to the foot. Theoretically speaking,

if motion capture data defining global position and orientation trajectories of an object

(foot in this case) is available, then IMU data can be obtained by differentiation [23] [25] if

corresponding IMU data is not available. The performance metric for the modeling problem

is the RMSE (Root Mean Squared Error). A perfect neural model would result in a zero

RMSE - implying a mathematical relationship that perfectly maps the 1× 9 inputs to the

1× 4 orientation quaternions q̂SI . Such a model would provide a way to find the orientation

of the foot relative to the sensor module as described below.

5.2. Methodology

1. Attaching a sensor module to a foot, qSI is found using a functional calibration method

[17]. In this method, two static poses are used to collect gravity vector measurements

from the sensor module, one pose when the subject is standing up and the other when

the subject is lying down. Coupled with a normal vector found from the cross-product

of the previous two sets of measurements, it is now possible to evaluate qSI . In this

work, qSI is evaluated by knowledge of the orientation quaternion of the segment and

the orientation quaternion of the IMU.

2. The sensor module is then rotated about its normal axis by θ such that its new q̂SI

orientations are described by:

q̂SI = qSI � qθ

where qθ parameterises the arbitrary degree of freedom we are interested in modelling.

By manually rotating the sensor module to span 360◦ from the starting orientation

qSI , we have information mapping the IMU sensor measurements; linear accelerations,

angular velocities, and magnetic measurements to specific q̂SI . Knowledge of q̂SI and

qSI , it is now possible to evaluate qθ.

3. Having a neural model to evaluate the angular distance qθ from a correctly-aligned

sensor on the foot at qSI allows for arbitrary orientation of the sensor module on the
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foot. Multiplying the orientation quaternion of an arbitrarily-oriented sensor module

on the foot by the inverse of qθ yields the orientation quaternion as would be obtained

by a correctly-aligned sensor module.

4. IMU measurements constitute the input to the regression neural network and the

corresponding q̂SI constitute the output.

Figure 5.2: Proposed Neural Architecture

The MATLAB neural fitting tool is used to construct and train the neural network. The

data set (TotalCapture) [26] used to train the network consists of 11 walking trials of five

subjects. Data from 9 walking trials of three subjects are used to train and test the network

while both walking trials of subjects 4 and 5 are used for further validation the network

(unseen subjects). The data set contains motion capture data for all body segments but

only data for the right foot is used in this work. In total, 31068 data points sampled at 60Hz

are used for training, validation, and testing of the regression model while 7114 data points

are used for testing on unseen subjects. Every data point contains the 1× 3 global position

and the 1× 4 global orientation trajectories of the corresponding object. Synthesizing IMU

data from the global trajectories as described above, the proposed network has one input

layer of size 9, a hidden layer with 128 neurons or parameters, and an output layer of size 4.

Details about the proposed network are shown in table 5.1 below.
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Proposed Network Architecture

Input Size 9

Output Size 4

Number of Neurons 128

Training Data Percent 70%

Testing Data Percent 15%

Validation Data Percent 15%

Performance Metrics RMSE (Root Mean Square Error)

Table 5.1: Proposed Network Architecture
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Chapter 6

RESULTS AND DISCUSSIONS

6.1. Data Evaluation

To verify the ability of the sensors to produce accurate orientation estimates, the perfor-

mance of the EKF is verified against an optical measurement system. In these evaluations,

rotations are parameterized using the Euler formulation. Sensor data as well as optical data

are sampled at a 100Hz. Time-stamping for the sensor signals is evaluated such that delay

components, such as communication delay and sensor reporting delay, are taken into ac-

count. Data is then re-sampled again to exactly match the sampling frequency of the optical

system. It is worthwhile to note that the static and dynamic accuracy of the IMU sensor

used is 2◦ and 3.5◦, respectively, when the sensor is factory-calibrated [7], meaning that in

the best of scenarios, those values for the errors should generally be assumed, on average.

EKF-filtered estimates are compared with both unfiltered and optical (reference) estimates.

6.2. Orientation Estimation

In an effort to benchmark the quality of orientation estimates of the EKF, three sets of

measurements are collected, each consisting of 2000 data points recorded at 100Hz. The data

sets are collected off of a sensor module that is randomly rotated by hand. Example plots

for one data set are shown in figures 6.1, 6.2 and 6.3. It is clear from the plot figures that

the EKF-filtered estimates better track the reference estimates for all three Euler angles.

”Reference” in the legend of the figures refers to optical data. Similar results for the other

two sets are obtained.
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Figure 6.1: X-Euler Angle: EKF (blue) vs. Unfiltered (yellow) vs. Optical (orange)

Figure 6.2: Y-Euler Angle: EKF (blue) vs. Unfiltered (yellow) vs. Optical (orange)
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Figure 6.3: Z-Euler Angle: EKF (blue) vs. Unfiltered (yellow) vs. Optical (orange)

Trial no. X-Max. Error Y-Max. Error Z-Max. Error σx σy σz

Trial 1 12.8◦ 5.4◦ 16.2◦ 3.6◦ 2.3◦ 4.9◦

Trial 2 13.7◦ 5.8◦ 27◦ 7.9◦ 6.4◦ 24.6◦

Trial 3 10◦ 5.4◦ 8.8◦ 18.1◦ 6.9◦ 13.1◦

Table 6.1: EKF Orientation Errors

Large errors in the initial few estimates are a result of the initial covariance assumed

for the Kalman filter, which is evaluated based on a 0.3 radian angular error. This is done

to give the filter enough leeway to converge in case of large errors in the initial quaternion

estimate [8]. It is also worth noting that the laboratory environment contains a large amount

of metallic frames and material that severely corrupts the magnetic measurement, which in

turn corrupts orientation. Results for the two other trials along with the aforementioned are

summarized in table 6.1.
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6.3. Position and Velocity Estimation

Procedure: Optical position measurements are plotted against the position evaluated

from the sensor module to measure performance. The RMSE is the chosen metric to quantify

the performance of the filter in estimating position and velocity in the walking direction. The

premise is that if the sensor module is capable of producing accurate position estimates in

the forward direction as compared to the optical system, then it can be faithfully used for

gait evaluation. The data set used for tuning the filter consists of 50 seconds of walking data

captured at 100Hz. The data is captured from a single subject (28 year old male, 5 feet 8

inches, 180 lbs) walking back and forth in the laboratory environment. Filter noise (from

both the accelerometer and the gyroscope) as well as the ZUPT threshold are manually

tuned until good position tracking is observed. The RMSE of the ESKF estimate (shown

in figure 6.4) evaluated is ≈ 0.45m which translates to an NRMSE (normalized by peak)

of ≈ 5.8%. Figure 6.5 shows the unfiltered position evaluation for the same data set. The

unfiltered position is evaluated directly from the kinematic equations without ZUPT(s). The

RMSE for the unfiltered evaluation is ≈ 129.3m. It is clear from figure 6.5 that position

errors accumulate very quickly without ZUPT(s) in the ESKF framework.

Figure 6.4: Forward Position - Trial 1: ESKF (blue) vs. Optical (orange)
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Figure 6.5: Forward Position - Trial 1: Unfiltered (blue) vs. Optical (orange)

Next is a comparison between the estimated walking velocity, the walking velocity eval-

uated from the optical position, and the walking velocity evaluated without ZUPT(s) for

the same data set used above. Velocity is obtained from optical position by evaluating the

gradient. Figure 6.6 shows the speed-time plot. It is clear from figure 6.6 the need for esti-

mating velocity in the ESKF framework utilizing ZUPT(s). The speed RMSE of the ESKF

estimate evaluated is ≈ 0.32m
s

, which translates to an NRMSE of ≈ 12.4%. The RMSE of

the unfiltered estimate is ≈ 7.1m
s

.
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Figure 6.6: Forward Speed - Trial 1: ESKF (blue) vs. Optical (orange) vs. Unfiltered
(yellow)

Figure 6.7: Acceleration Peaks during Ground Contact - Trial 1

Discussion: The tunable parameters in the ESKF used for gait evaluation are summa-

rized in table 6.2. The accelerometer and gyroscope noise densities represent the standard

deviation of measurement noise in the corresponding sensor, which is used to form the pro-

cess noise matrix Q in the ESKF, while the noise density term for linear velocity represents
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the standard deviation (uncertainty) in the pseudo linear velocity measurement and is used

to form the R matrix in the ESKF. The ZUPT threshold for angular velocity represents the

norm below which the foot is assumed to lay flat on the ground, triggering a ZUPT in the

filter. Four trial data sets have been collected to verify the performance of the ESKF for po-

sition and velocity estimation. The Root Mean Square Error (RMSE) and Normalized Root

Mean Square Error (NRMSE) are used to evaluate performance against optical reference

measurements. The NRMSE normalizes the estimate by its peak. The results are shown

in table 6.4. The NRMSE values for the forward velocity (walking speed) estimate show

promise in using the sensor module for gait evaluation and assessment. Next we present

results for cadence and stride.

Tunable ESKF Parameters

Accelerometer Noise Density 0.030 m/s2

Gyroscope Noise Density 0.002 rad/s

Linear Velocity Noise Density 0.001 m/s

Angular Velocity Norm ZUPT threshold 0.550 rad/s

Table 6.2: Values for the ESKF Tunable Parameters

RMSE and NRMSE of Forward Position and Velocity

Trial Pos. RMSE(m) Pos. NRMSE(%) Vel. RMSE(m/s) Vel. NRMSE(%) Duration(s)

Trial 1 0.4487 5.8 0.3197 12.4 50

Trial 2 0.2961 4.8 0.3589 17.9 20

Trial 3 0.5309 7.5 0.3538 13.6 30

Trial 4 0.1832 2.55 0.3036 15.22 20

Table 6.3: RMSE and NRMSE of Forward Position and Velocity
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6.4. Gait Metrics

Evaluating the stride length, speed, and cadence requires knowledge of the time taken

to complete a full step. During walking, ground contact of the foot causes the acceleration

signals to hit a local peak [24]. By detection of those peaks seen in figure 6.7 and their

associated timestamps, we are able to evaluate the step time.

6.4.1. Gait Speed

Gait speed is evaluated as the speed average value over the time interval of one step -

the integral of the absolute velocity-time profile divided by the interval. It is expressed in

m
s

. Figure 6.6 shows the gait speed for the data set discussed above for position and velocity

- trial 1 in table 6.4. Note that gait speed is represented by the estimated forward velocity

discussed in the previous section. Table 6.4 lists the RMSE and NRMSE (normalized by the

peak) values for the four recorded trials.

6.4.2. Cadence

Cadence expresses the number of steps taken per minute. Just as gait speed, this is

also evaluated per step period. Figure 6.8 shows the cadence for the first trial. Cadence is

evaluated as the inverse value of time between two acceleration peaks - the time it takes to

complete a full step.
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Figure 6.8: Cadence - Trial 1

6.4.3. Stride

Stride length represents the distance measured between two heel-strike events of the same

foot. It is expressed in meters. Figure 6.9 shows the stride lengths for the first trial. The

RMSE of the ESKF estimate is found to be ≈ 0.4371m, which corresponds to an NRMSE

(normalized by peak) of ≈ 10.9%. The unfiltered stride length evaluation has an RMSE of

≈ 9m, which, again, highlights the value of ZUPT(s) in the ESKF framework.
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Figure 6.9: Stride Length - Trial 1

RMSE and NRMSE of Stride Length

Trial Stride Length RMSE(m) Stride Length NRMSE(%) Duration(s)

Trial 1 0.4210 10.9 50

Trial 2 0.4500 14.9 20

Trial 3 0.5030 11.3 30

Trial 4 0.4253 15.2 20

Table 6.4: RMSE and NRMSE of Stride Length

6.4.4. Discussion

In the four trials of walking data we have evaluated, position estimates yielded an average

RMSE of ≈ 0.365m and an average NRMSE of ≈ 5.2%, speed estimates yielded an average

RMSE of ≈ 0.334m
s

and an average NRMSE of ≈ 14.8%, and stride length estimates yielded

an average RMSE of ≈ 0.45m an an average NRMSE of ≈ 13%. In addition, the average
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correlation coefficient is evaluated for each of the quantities in all four trials. The average

correlation coefficient between the ESKF position estimates and reference measurements

is found to be 0.99, 0.90 for the ESKF speed estimates, and 0.90 for the ESKF stride

length estimates. This shows the viability of using IMU signals to estimate forward position,

velocity, gait speed, cadence, and the stride length. By simply attaching a sensor module to

the foot, important gait information are estimated for gait pathology.
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6.5. Auto-calibration

Here we explore the performance of a neural model that captures the effect of rotational

variability (angular offset from correct alignment) in the axis that is normal to the foot

the sensor module is attached to. A neural network architecture with one input layer, one

hidden layer, and one output layer is proposed. Having a model that accurately evaluates the

rotational distance from a correctly-aligned sensor module using IMU signals (accelerations,

angular velocities, and magnetic signals) would minimize human error when placing those

sensor modules on feet.

6.5.1. Results

Model training is halted when validation performance indicates no fitting improvement

of the model with the outputs supplied. To afford easier interpretation of errors, the Euler

angles representation is used. Note that in the data set, the RMSE of the calibrated inertial

orientation with respect to the orientation obtained from the optical system for all subjects

and walking trials is found to be X: 4.2◦, Y: 3.8◦, and Z: 2.5◦ in Euler angles form. Following

training the model, the RMSE(s) for different rotational variability ranges are summarized

in table 6.5.

RMSE in Euler Angles Form

Variability RMSE (Train, Valid, Test) RMSE (Unseen Subject Data)

0◦ X: 5.4◦ - Y: 6.7◦ - Z: 3.9◦ X: 7.1◦ - Y: 6.2◦ - Z: 14.7◦

10◦ X: 5.8◦ - Y: 7.2◦ - Z: 4.1◦ X: 7.4◦ - Y: 6.7◦ - Z: 14.6◦

45◦ X: 8.4◦ - Y: 12.3◦ - Z: 7.1◦ X: 11.1◦ - Y: 11.3◦ - Z: 14.5◦

180◦ X: 41.3◦ - Y: 25.3◦ - Z: 36◦ X: 34.7◦ - Y: 24◦ - Z: 37.7◦

Table 6.5: RMSE

Rotating the sensor module within 10◦ about the Z-axis results in an RMSE of 4.1◦,

7.1◦ when rotated within 45◦, and 36◦ when rotated within 180◦. Unseen data (subjects 4
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and 5) results in an RMSE of 14.6◦, 14.5◦, and 37.7◦ for the same variability ranges. As

expected, the RMSE values for the 10◦ and the 45◦ cases are higher for the the unseen

subjects data. A larger data set that includes more subjects would cover a wider range of

human gait motion and result in a better model that is less likely to over-fit, which would

improve testing performance on unseen data. It would also better highlight the feasibility

and practicality of using neural models to predict angular offsets. The extreme case of 180◦

produces a larger angular error of 37.7◦ on unseen subjects data, highlighting the limits of a

neural model based on a small data set.

41



Chapter 7

CONCLUSIONS

An inertial-based, wireless wearable is developed to aid in diagnostics of gait pathology

through evaluation of gait parameters such as speed, stride, and cadence, as well as the

orientation of the sensor. The module is also capable of estimating position p with an

acceptable accuracy for a short period of time (≈ 25s). A neural model is developed to

evaluate the orientation of an arbitrarily-placed sensor module on the foot with respect to

the orientation of a correctly-aligned module. This is done in an attempt to minimize the

effect of foot mounting errors in the normal axis. Allowing a 10◦ range variability produced

≈ 14.6◦ RMSE while a 45◦ produced ≈ 14.5◦ RMSE on unseen subjects. While this shows

promise in using data-driven techniques to mitigate placement-induced errors of the sensor

module, the magnitude of the errors highlights the challenges of using inertial sensors for

accurate motion tracking. That being said, for short periods of time not exceeding 50s, the

sensor module provided speed estimates with an average NRMSE of ≈ 14.8% over 4 trials

and an average NRMSE of ≈ 13% for stride length estimates of the same trials. This suggests

that while the module could be useful in providing qualitative assessments of gait (slower

gait speed and shorter stride length in schizophrenia, rapid gait speed in mania, among

others) [20], it lacks the high accuracy and precision needed in many robotics applications.

In a larger scope of this effort, multiple subjects would be used to provide the sensor signals

needed to train the network as a larger pool of people provide better data variability and

better model generalization performance. An ESKF is developed to estimate linear velocity

v and position p of the sensor module. Using linear velocity estimates v from the ESKF

coupled with acceleration peaks, walking speed, cadence, and stride length are evaluated as

demonstrated in earlier sections.
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Appendix A

Derivation of the EKF for Orientation Estimation

A.1. Sensor Models

Accelerometer ab = Rb
n(an − gn) + ae Accelerometer Noise Density ae = N (0, σ2

aI3)

Gyroscope ω = ωb + ωe Gyroscope Noise Density ωe = N (0, σ2
ωI3)

Magnetometer mb = Rb
nmn + me Magnetometer Noise Density me = N (0, σ2

mI3)

Table A.1: Sensor Models for Orientation Estimation.

Notes regarding the sensor models:

1. For orientation estimation, the accelerometer model assumes an to be zero [8] (does

not take into account external accelerations applied to the sensor). This implies that

the accelerometer is assumed to only measure the gravitational acceleration gn. This

can be justified when the motion is of relatively constant speed.

2. ae, ωe, and me are Gaussian processes of zero mean and a non-zero covariance.

N (0, σ2
xI3) defines a 1 × 3 normal distribution of zero mean and a 3 × 3 diagonal co-

variance matrix of magnitude σ2
x. In the context of this work, σa defines the standard

deviation of the accelerometer noise, etc.

3. Perfect axial orthogonality is assumed in each of the 3-axes sensors. Therefore, the

error covariance is expressed as a diagonal matrix representing the error or uncertainty

in each axis separately.

4. Additionally, a constant uncertainty is assumed to affect all 3-axes of a given sensor,

which is not necessarily the case. Different values can be chosen for the different axes

as long as they are rotated appropriately in the estimation problem. Fixing them in

all axes makes the covariance matrix invariant under rotation.
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A.2. Global Reference Models and Process Model

Local Frame ENU - East North Up

Process Model f(qnbt ,ω,ωe) = qnbt � expq(ωbT ) = qnbt � expq[(ω − ωe)T ]

Earth Gravity Model gn = (0 0 -g)

Earth Magnetic Model mn = (cos I sinD cos I cosD − sin I)

Table A.2: Earth Field and Process Models

Notes regarding the above models:

1. The state in the continuous-time process model is the quaternion qnbt parameterizing

a rotation from body frame b to local frame n. Quaternions are defined in appendix

C. T is the sampling period of the IMU signals.

2. The local frame is represented by a right-handed coordinate system. The global field

vectors are represented with respect to this reference frame as described in table A.2

above.

A.3. Model Linearization

The process model is a function of the state qnbt , the gyroscope input ω, and the gyro-

scope error ωe. The continuous-time process noise matrix Q comprises the covariance of ωe

introduced by the gyroscope and is given as σ2
ωI3.

The linearization of the model is as follows:

f(qnbt ,ω,ωe) '
∂f

∂qnbt
qnbt +

∂f

∂ωe
ωe +

∂f

∂ω
ω = Ftq

nb
t + Gtωe + Ut (A.1)

44



Continuous-time Discrete-time

State Transition Matrix Ft φk = exp (TFt)

State Error Matrix Gt Qd = GtQG>t T

Table A.3: Discrete time Process Matrices

The continuous-time state transition matrix Ft is evaluated as:

Ft =
∂f

∂qnbt
=
∂
(
qnbt � expq(ωbT )

)
∂qnbt

=
∂
([

expq(ωbT )
]
R
qnbt

)
∂qnbt

=
[

expωbT
]
R

(A.2)

This follows directly from the process model, which can be expressed as (expq(ωbT ))Rqt,

converting the quaternion product into a matrix product, from which the state Jaocbian is

easily found to be [expq(ωbT )]R in continuous-time, with the definition of the [ ]R given in

appendix C, describing the right matrix factor in the quaternion product operation. This

derivation follows from [8]. The continuous-time state transition matrix Ft is of a form which

allows for a closed-form solution for the matrix exponential, which represents state evolution

in discrete-time φk. It is given by the following evaluations:

φk = exp (TFt) =



a −bp2 −bp3 −bp4

bp2 a bp4 −bp3

bp3 −bp4 a bp2

bp4 bp3 −bp2 a


(A.3)

Where:

p1 = cos
(nT

2

)
p2 =

1

n
ω1 sin

(nT
2

)
p3 =

1

n
ω2 sin

(nT
2

)
p4 =

1

n
ω3 sin

(nT
2

)
(A.4)
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a =
1

2
exp

(
p1 − n

)(
1 + exp (2n)

)
b =

1

2n
exp

(
p1 − n

)(
exp (2n)− 1

)
(A.5)

n =

√
−
(
p22 + p23 + p24

)
(A.6)

This follows directly from equations A.2, C.3 and C.7 in appendices A and C. The

continuous-time state error matrix is similarly expressed as [8]:

Gt =
∂f

∂ωe
=
∂
(
qnbt � expq(ωbT )

)
∂ωe

= [qnbt ]L
∂
(

expq(ωbT )
)

∂ωe
(A.7)

∂
(

expq(ωbT )
)

∂ωe
=



sω1T
2n

sω2T
2n

sω3T
2n

−Tω2
1c

2n2 − s
n

+
ω2
1s

n3 −Tω1ω2c
2n2 + ω1ω2s

n3 −Tω1ω3c
2n2 + ω1ω3s

n3

−Tω1ω2c
2n2 + ω1ω2s

n3 −Tω2
2c

2n2 − s
n

+
ω2
2s

n3 −Tω2ω3c
2n2 + ω2ω3s

n3

−Tω1ω3c
2n2 + ω1ω3s

n3 −Tω2ω3c
2n2 + ω2ω3s

n3 −Tω2
3c

2n2 − s
n

+
ω2
3s

n3


(A.8)

Where:

n =‖ ωb ‖, s = sin
(nT

2

)
, c = cos

(nT
2

)

The derivation follows from [15]. Again, the [ ]L is the left matrix factor in the

quaternion product operation, also given in appendix C. The discrete-time representation

of the state error matrix Gt is denoted by Qd and is approximated by the first-order term

Qd ' GtQG>t T [5]. The measurement function of the EKF consists of the sensor models of

the accelerometer and the magnetometer and is denoted by y. The actual sensor measure-

ments are denoted by z, the measurement function Jacobian by H, the system uncertainty

by S, the initial state covariance by P1, and the initial state (quaternion) estimate by q1:
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y =

y1

y2

 =

Rb
n(an − gn) + ae

Rb
nmn + me

 z =

za

zm

 H =

 ∂y1

∂qnb
t

∂y2

∂qnb
t

 (A.9)

A.4. Filter Computations

Here, R defines the measurement noise matrix. Since the accelerometer and magnetome-

ter are used as sources of measurements for orientation estimation, matrix R is represented

by the block diagonal matrix of the noise densities ae and me defined in table A.1.

R =

ae 0

0 me

 (A.10)

Initialization q1 = f(m1, a1)

P1 = f(ωe) = GtPeG
>
t

Prediction q̂nbk = qnbk−1 � expq(ωT )

P̂k = φkPk−1φ
>
k + Qd

Update rk = zk − yk

qnbk = q̂nbk + Krk

K = P̂kH
>(HP̂kH

> + R)−1

Pk = P̂k −K(HP̂kH
> + R)K>

Table A.4: EKF Computation Flow
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Appendix B

Derivation of the ESKF for Velocity Estimation

B.1. Process Model

The error-state Kalman filter utilizes two sets of equations, nominal state models assum-

ing no sources of error and perfect sensor measurements, and error state models accounting

for sensor errors, state-correlated errors, etc.

B.1.1. Continuous-time State Kinematics

Position ṗ = v Position Error δṗ = δv

Velocity v̇ = Rn
b ab + gn Velocity Error δv̇ = −Rn

b [ab]×δθ −Rn
b ae

Quaternion q̇nb = 1
2
qnb � ω Angular Error δθ̇ = −[ω]×δθ − ωe

Table B.1: ESKF Process Model

Here, ae and ωe represent sensor errors and are modelled as white Gaussian processes

ae = N (0, σ2
aI3) and ωe = N (0, σ2

ωI3) as defined in appendix A. The first term in the velocity

error correlates the orientation error of the sensor to the linear velocity error and the second

term translates the effect of the accelerometer sensor Gaussian error into the velocity term.
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B.1.2. Discrete-time state kinematics

Implementing the continuous-time state model in a computer algorithm requires integra-

tion of the three constituent differential equations over a sampling period or time interval

T resulting in a discretized state model. The Euler method, where the state derivatives are

assumed to be constant over the sampling period, is used.

Position p̂k = pk−1 + vk−1∆t+ 1
2(Rn

b ab + gn)∆2t Position Err. δp̂k = δpk−1 + δvk−1∆t

Velocity v̂k = vk−1 + (Rn
b ab + gn)∆t Velocity Err. δv̂k = δvk−1 −Rn

b [ab]×δθk−1∆t+ vi

Quaternion q̂nbk = qnbk−1 � expq(ωT ) Angular Err. δθ̂k = Rn>
b δθk−1 + θi

Table B.2: ESKF Discretized Process Model

Where vi and θi are the integrated white Gaussian noise of the accelerometer and gyroscope,

respectively. Rn
b denotes the rotation matrix from local frame n to body frame b.

B.1.3. Error-state estimation

Evaluation steps for the ESKF are as follows:

1. The process model, state, error-state, input, and error vectors are expressed respec-

tively as:

f =

[
δpk δvk δθk

]>
x =

[
p v q

]>
δx =

[
δp δv δθ

]>
u =

[
ab ω

]>
e =

[
vi θi

]>
(B.1)

2. The state transition matrix Fx is the Jacobian of the process model f with respect to

the error states while the state error matrix Fi is the Jacobian of the process model
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with respect to the error vector e:

Fx =
∂f(x, δx,u, e)

∂δx
=


I I∆t 0

0 I −Rn
b [ab]×∆t

0 0 Rn>
b

 Fi =
∂f(x, δx,u, e)

∂e
=


0 0 0

I 0 0

0 I 0


(B.2)

3. The covariance of the Gaussian process error is Q:

Q =

Vi 0

0 Θi

 Vi = N (0, σ2
a∆t

2I3) Θi = N (0, σ2
ω∆t2I3) (B.3)

Assuming uncorrelated sensor axes errors of equal magnitude in both the accelerometer

and gyroscope of the IMU. However, the error variance terms (error magnitude) can

be different for the different axes of the sensors.

4. At the start of the filter computations, the filter states and error states are initialized

according to the following values:

p =

[
0 0 0

]>
v =

[
0 0 0

]>
(B.4)

Additionally, quaternion q is initialized using the accelerometer tilt equations [6]. This

concludes initializations for the nominal state vector. The error states are all initialized

to zero:

δp =

[
0 0 0

]>
δv =

[
0 0 0

]>
δθ =

[
0 0 0

]>
(B.5)

5. P denotes the error state covariance and is propagated through time using the standard

equation of the linear Kalman filter:

P̂k = FxPk−1F
>
x + FiQF>i (B.6)
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6. The measurement function is the linear velocity given as:

yk = vk + (Rn
b ab + gn)∆t+ Yi Yi = N (0, σ2

yI3) (B.7)

where Yi represents the uncertainty in the velocity measurement. The measurement

Jacobian with respect to the error states is evaluated using the chain rule:

Hk =
∂y

∂x

∂x

∂δx
(B.8)

The first term is represented by the following matrix:

∂y

∂x
=

[
03×3 I3 ∆t

∂(Rn
b ab)

∂qnb

]
∂x

∂δx
=

I6 0

0 Qδθ

 Qδθ =
1

2
[qnb]L

[
0 I3

]
(B.9)

The first term is evaluated from Rn
b (q) defined in appendix C. The second term follows

from the work of [22]. The measurement Jacobian matrix with respect to the error

states can now be evaluated.

7. The Kalman gain Kk is evaluated using the standard equation of the linear Kalman

filter:

Kk = P̂kH
>
k (HkP̂kH

>
k + Yi)

−1 (B.10)

8. The pseudo measurement is the zero linear velocity of the IMU denoted by z:

zk = 01×3 (B.11)

9. The corrected error states and error states covariance estimates are finally updated

using the Kalman gain according to the standard gain equation:

δxk = Kk(zk − yk) Pk = (I−KkHk)P̂k (B.12)
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10. The error states are then injected into the nominal states for correction:

pk = p̂k + δpk vk = v̂k + δvk qnbk = q̂nbk � expq (δθk) (B.13)

11. Finally, the error states are reset to zero according to the formulation of [22]:

δxk = 09×1 (B.14)

52



Appendix C

Quaternion Math

C.1. Quaternion Algebra

1. Rotation can be parameterized by unit quaternions, a 4-component vector in the hy-

percomplex plane. A quaternion q is defined as:

q = q0 + qv = q0 + iq1 + jq2 + kq3 (C.1)

where q0 is a real scalar and qv is an imaginary vector. q is a fourth dimensional vector

used to parameterise rotation [8].

2. The product of two quaternions is bi-linear and can be expressed as [22]:

q� p = [q]Lp = [p]Rq (C.2)

[q]L =



q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0


(C.3)
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[p]R =



p0 −p1 −p2 −p3

p1 p0 p3 −p2

p2 −p3 p0 p1

p3 p2 −p1 p0


(C.4)

3. Rotation matrix R to rotate an arbitrary vector v can be expressed in terms of the

quaternion q as [9]:

R =


2q20 + 2q21 − 1 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 2q20 + 2q22 − 1 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q20 + 2q23 − 1

 (C.5)

4. The skew-symmetric matrix of a vector v is denoted by [v]x and is expressed as:

[v]× =


0 −vz vy

vz 0 −vx

−vy vx 0

 (C.6)

5. The quaternion exponential map, an extension of the Euler formula, is used to represent

a rotation vector of axis u and angle φ as a quaternion:

q = expq

(v

2

)
=

cos (
φ
2

)

u sin
φ
2

 (C.7)

where the magnitude of v represents the angle of rotation and the unit vector of v

represents the axis of rotation.
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