
Southern Methodist University Southern Methodist University 

SMU Scholar SMU Scholar 

Historical Working Papers Cox School of Business 

1-1-1983 

Teaching Software System Design: An Experiential Approach Teaching Software System Design: An Experiential Approach 

Thomas E. Perkins 
Southern Methodist University 

Follow this and additional works at: https://scholar.smu.edu/business_workingpapers 

 Part of the Business Commons 

This document is brought to you for free and open access by the Cox School of Business at SMU Scholar. It has 
been accepted for inclusion in Historical Working Papers by an authorized administrator of SMU Scholar. For more 
information, please visit http://digitalrepository.smu.edu. 

https://scholar.smu.edu/?utm_source=scholar.smu.edu%2Fbusiness_workingpapers%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/business_workingpapers?utm_source=scholar.smu.edu%2Fbusiness_workingpapers%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/business?utm_source=scholar.smu.edu%2Fbusiness_workingpapers%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/business_workingpapers?utm_source=scholar.smu.edu%2Fbusiness_workingpapers%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=scholar.smu.edu%2Fbusiness_workingpapers%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/


HAssarch and Develop t 
.~ . ' . .. , "'"' n 0 men 
· · · ·.'. u . JJ USJ ness A~ 0 0 

Southern Meth~dist Ua~lnlstration 
D 4 n~versity allas, Texas 75275 

TEACHING SOFTWARE SYSTEM DESIGN: 
AN EXPERIENTIAL APPROACH 

Working Paper 83-100*. 

by 

Thomas E. Perkins 

Thomas E. Perkins 
Assistant Professor 

Management Science and Computers 
Edwin L. Cox School of Business 
Southern Methodist University 

Dallas, TX 75275 

This work was supported by the National Science Foundation under 
grant SER-7900607. 

*This paper represents a draft of work in progress by the author 
and is being sent to you for information and review. Responsibility 
for the contents rests solely with the author. This working paper 
may not be reproduced or distributed without the written consent 
of the author. Please address all correspondence to Thomas E. 
Perkins. 



TEACHING SOFTWARE SYSTEM DESIGN: 

AN EXPERIENTIAL APPROACH 

Thomas E. Perkins 

Southern Methodist University 

1. INTRODUCTION 

Softwa re developers are often faced with complex and difficult challenges. Issues they address 

involve starting with an ill-defined problem, abstracting the underlying processes and data 

relationships, representing the problem stucture in a manner that can be readily tra nsformed into a 

progra mming language, designing and coding the system, testing the code produced, educa ting user 

personnel, planning for system conversion, and on and on. No single academic discipline adequately 

prepares the student for the vagaries of such an experience: software development may require a 

combination of skills derived from psychology, management science, operations research, 

orga nizational behavior, electrical engineering, mathematics, and compute r science. Softwa re 

development involves much more than programming. In fact, programming represents only a small 

part of the typical development effort [Boehm,1976]. 

Approaches to teaching software development in university environments tend to emphasize the 

progra mming aspects of the software project: ranging from providing realism in the classroom 

[Freema n, 1978] to structuring the development process [Kant, 1981]. The course describedin this 

paper , however, views the software development project as a joint, participa tive effort involving both 

the users of the system as well as the developers. Students learn to apply software design techniques 

by dealing with real people with real software needs in real organizational settings . The focus of this 

pa per is on the design portion of the project; a subsequent paper will address our· expe riences in 

actua lly i rnplementing t hese des igns . 

1 



Teaching Design 

2. COURSE DESCRIPTION 

Software engineering is taught at SMU in a two-semester sequence. The fall semester course, 

Software Engineering Principles, is open only to students with a senior standing. The course lecture 

material provides an overview of the development project, discusses project management, and then 

focuses on the "creative" phases of the software life cycle- requirements engineering and systems 

design. In conjunction with the lecture material, students work in teams on separate "real-life" 

projects for the school administration and for local businesses and industry. The teams' goals are the 

preliminary design of the system's software architecture: each group is also required to prepare a 

system implementation plan for the next semester. 

The spring semester course is called Software Engineering Laboratory. As the name implies, less 

emphasis is placed on lectures. This semester deals primarily with the experiences of the project 

teams as they wrestle with the "implementation" portion of the project. However, supplementary 

lecture material is presented to cover topics such as detailed design representation, coding 

techniques, software testing, customer education, and conversion considerations. The projects which 

are implemented during the spring are chosen from those designed during the fall semester. The 

spring semester course is open to both all levels of undergraduates. Usually seniors serve as project 

managers and team leaders, while other undergraduates take on team responsibilites commensurate 

with t heir experience and initiative. 

2 



------------------------------------------------------------------------------------ -

Teaching Design 

3. LECTURE TOPICS 

The course sequence was initially conceived of as a capstone "projects" course, with a few project 

management topics added. However, it soon became clear that, even though the students had an 

excellent background in programming techniques and an understanding of data structures, they were 

lacking some fundamental skills needed to translate a poorly defined problem into a professional 

piece of software. As a result, an appreciable portion of the lecture material is spent on "front-end" 

problems of the development effort: communicating with users with limited knowledge ofcomputers, 

defining precisely what the problem is or what the user wants, representing the problem so that it can 

be communicated to both the user and other members of the project team, separating political 

problems from technical problems, and designing for a changing environment. An outline of the 

course modules is included in Appendix A. 

Project Preliminaries 

The lecture topics begin with a brief "history" of software development, tracking it from machine 

language programming of the early 50's to the multi-billion dollar a year industry it is today. The 

software crisis [Jensen and Tonies, l979;Mills, 1977] is examined, as well as some of the pressures 

brought to bear on the developers of software systems in industry. The software life cycle is presented 

as one view of the evolution of a software system. Although this concept has come under criticism 

recently [Gladden, 1982;Jackson and McCracken, 1982], it still serves as an excellent framework 

within which to address the interdisciplinary nature of software development work. It can also be 

useful to assure harried students that software projects do eventually "end". 

The course then describes the activities within each life-cycle phase in more detail, often using a 

scenario approach in which class members with previous experience or part-time programming jobs 

describe what happens in a development effort. The purpose of this module is two-fold: it gives the 

3 



-~------~~--~- -----~~ ~ - --····------- ~- ~ 

Teaching Design 

student a relevant overview of processes really involved in a development effort, and it sets the stage 

for the discussion of project planning, scheduling, and monitoring which follows. 

The next module introduces the Work Breakdown Structure (WBS) [Boehm,l981] as a means for 

organizing and estimating a development effort. The approach taken here is that although each 

software project is different, there are repeating patterns of activity common to all projects. The 

students are given a list of"standard" activities (Appendix B); later, they will be asked to tailor these 

activitiy descriptions and add others as they develop a WBS for their own projects. This module also 

introduces students to PERT and CPM as scheduling tools. Gantt charts are used to represent the 

schedule, as well as a tool for smoothing resource utilization. 

Since most of the student projects will start with no written description, students are given a 

series of lecture on interview techniques. One lecture deals with the advantages of interviewing in a 

"top-down" order in an organization: managers first, then supervisors, then clerical personnel. Other 

lectures emphasize techniques of the individual interview. An exercise which has proven fruitful is to 

assign one of the more outspoken teams the goal of obtaining a piece of information about a system, 

and have the instructor to play the role of a recalcitrant and somewhat grumpy user. After the 

interview, other class members are asked to analyze the interview and to suggest question sequences 

which might have been used. Students are also asked to represent graphically the information which 

was presented verbally during the interview. The class then discusses the different interpretations of 

what was said, which invariably occur. 

Defining the Problem 

An initial step in the evolution of a software system is for the development team and the 

customer/user to reach closure on what the problem really is. This phase is often called 

"require ments engineering" [Boehm, 1976]. However, an equally important aspect of the project 

occurs during this phase: a relationship between the system developers and the users is established 

which will carry forward through the remainder of the project. The dual nature of the requirements 

4 



Teaching Design 

engineering phase is addressed in the course lecture material by presenting a development 

methodology which: 1) encourages a high degree of user participation and involvement in the 

definition and design efforts, 2) represents the evolving system in graphical form which the user can 

understand, 3) invites user changes and creativity early in the design process rather than after the 

design is complete, and 4) attempts to establish a sense of user "ownership" of the system. (The 

underlying question of "Whose system is it?" appears to impact not only the relationship between the 

designers and the users but also the actual structure of the resulting system. If the designers "own" 

the system, users may wind up with an accounts receivable system which looks suspiciously like a 

compiler. ln this course setting, many students have the idea that the new system "belongs to" the 

designers and programmers only until the coding is complete, and are somewhat surprised when the 

users are reluctant to accept the coded system and finish the testing themselves.) 

Problem definition is stressed as one of the most important portions of the project. Students are 

introduced to structured analysis [DeMarco, 1978;Gane and Sarsen, 1979], a technique for 

examining information flow throughout the problem. The lectures also stress the importance of 

identifying and representing the structure of information at various points in the problem. 

Techniques for representing information structure include Jackson Structure Charts [Jackson, 1975], 

W arnier-Orr Diagrams [Warnier, 197 4;0rr, 1977], andY ourdon-Constantine Diagrams [Y ourdon and 

Constantine, 1978]. In a series of class exercises, students are given a verbal description of an 

information system and copies of the reports it is to produce. Then they are asked to depict the 

problem structure graphically, showing both information flows (data flow diagrams) and information 

structures (data structure charts). 

The data dictionary is presented as a necessary and integral tool for any development project. 

Students are introduced to structured walkthroughs [Freedman and Weinberg,1982l and design 

reviews [Inmon and Freidman, 1982] as a vehicle for presenting the designers' perception of the 

prohlcm definition to the user and as a means for encouraging user participation and dialogue . The 

lectures emphasize the necessity for user feedback and input, as well as the need for representing the 

5 



Teaching Design 

problem as it is percieved by the user, not as it is perceived by the designer. 

System Design 

The students are introduced to two methodologies used to map the problem representation into a 

software architecture: data flow design approaches [Yourdon and Constantine, 1978;Pressman, 1982] 

and data structure design approaches [Jackson,1975;Warnier,1974;Peters,1982]. A number of small 

problems are used to demonstrate each technique, and to point out the types of problems and 

development environments in which each technique has been sucessfully applied. 

The issue of program modularity is discussed extensively. Students with part-time jobs (who 

usually work as maintenance programmers) are asked to describe to the rest ofthe class the types of 

problems they have encountered whe'n attempting to modify a portion of a complex software system. 

Such discussions usually include lamentations about the lack of adequate documentation, the fact 

that many such modifications are made in stressful situations (often in the wee hours of the morning), 

the problems of having to "re-think" another individual's code, their lack of appreciation for "clever" 

programming tricks, how sensitive highly-coupled monolithic coding is to the simplest change, and 

on and on. We next focus on issues of coupling and cohesion [Stevens, Myers, and Constantine, 1974) 

using small examples of "pathological" coding for discussion. The focus on modularity issues 

concludes with an introduction to Halstead's Software Science measures [Halstead, 1977] and 

McCabe's complexity metric [McCabe, 1976]. The students are asked to analyze a piece of code and 

calculate values for each of these software metrics. 

Throughout the discussions on software design, emphasis is continually placed on the desirability 

representing the design graphically, in a simple form which can be understood by both users and 

other members of the design team. Too many software projects have been disrupted by disagreements 

about "what was said when"- many of these misunderstandings could have been avoided by drawing 

a simple picture of what was meant. Since communication between team members and the user group 

will probably be one oflhe major problems experienced by the students in their project, the students 

6 



Teaching Design 

are encouraged to use understandable graphical representations as a focal point for discussions about 

the system. 

4. THE USERS 

Prior to the start of each semester, the instructor identifies a number of potential projects by 

contacting local businesses and administrative offices in the university. Key individuals are 

identified who are familiar with the details of the problem. The instructor meets with these 

individuals to assess the problem and the environment in which the students will be working. Each 

user group is cautioned that the project should be a small, "back-burner" type of problem which falls 

into the nice-to-have, rather than the need-to-have category, since there is always a possibility that 

the student group may not be able to handle the project. Users are encouraged to look at the project as 

two sub-projects, one for design and another for implemenation. (Sometimes in-house programmers 

have been able to complete animplementation when a student team couldn't be assembled for the 

second semester.) Each user group is appraised that the development methodology will require a 

significant commitment of time and involvement on the part of the key individuals. Even with all 

these constraints placed on the projects, practically every potential user group contacted was 

enthusiastic about supporting the course. 

The benefits the user organization derives from the project are l) a possibility of a completed 

piece of inexpensive software, 2) an opportunity to evaluate students for possible employment later, 

3) exposure of in-house personnel to state-of-the-art development techniques, and 4) a sense of 

ha ving contributed to software engineering education . 

5. THE STUDENT PROJECTS 

The student projects are conducted along the lines of a real life software development project , a s 

Lhou gh lhe students were programmers and analysts in a MIS department assigned to work on a usf!r 

7 



Teaching Design 

problem. In general, the students try to follow a slightly modified version of the software 

development life cycle. In order to make the project a public, rather than private, process [Weinberg, 

1971], the instructor places heavy emphasis on on-going communication with users through simple 

graphical representations of the project at each step along the way. 

Problem Assessment 

The first phase of the student project is a "problem assessment phase" . Here, the students and 

the users attempt to define just what the problem is, come up with a preliminary analysis of the 

structure of the problem, and agree to a graphical representation the problem. The definition of the 

problem necessitates a period of intense interaction with the users, usually in the form of individual 

interviews. The interviews are conducted at both managerial and supervisory levels, as the team 

attempts to determine who are the key personnel and if the problem being addressed has political 

overtones. All notes taken during the interview become part of the project documentation. The 

results of the interview are discussed in class; other class members are asked to critique the interview 

and to offer suggestions of interviewing strategies the team might follow. 

During this phase, the team begins develop a graphical representation of its understanding of the 

problem in the form of a Leighton diagram [Scott,l978], a HIPO Visual Table of Contents 

[HIPO;Stoy,l976], or a Structured Analysis Level I Data Flow diagram fDeMarco,l9781. The team 

can choose the type of representation it wants- the criteria is that it must b~ simple, non-technical, 

and not intimidating to the user. The graphical problem representation is presented to the user ip a 

design review. In this meeting, the users are asked to point out any parts of the problem which they 

perceive to have a different structure than that developed by the designers. Although the users are 

given no formal training in any of the above techniques, by the end of the design review they often 

converse freely about the partitioning of the problem and parts of it which the students left out. We 

belif~vc lhat this early dialogue is essential in constructing a system which will rcnect both the usn 's 

needs and his perception of the problem structure, and which will also be adaptable as these needs 

8 



Teaching Design 

change in the future . 

Rapid Prototyping 

While dealing with the abstract nature of the problem assessment phase, the project teams and 

the users also focus on a tangible portion of the system about which both groups can converse- the 

system output. The students are encouraged to prepare layouts of all system reports and screens 

mentioned by the users . These layouts and screens are presented to the user in the form of a "mock­

up", using values which would appear on the report if it had been generated by the operational 

system. Hard-copy reports are printed on a line printer; the students use a simple display program to 

present samples of interactive screens on a CRT terminal. 

This simple form of "rapid proto typing" gives the teams and the users something tangible to 

discuss, yet the reports aren't "cast in concrete". In fact, the students are instructed to encourage the 

users to change the reports by using stock questions such as "Is this the report you requested?" 

"Would you like this report better if it were rearranged?" "Would other information be useful to you 

on this report?" Encouraging change. at this point in the system serves two purposes. First, the 

prototypes are very easy to change - much easier to change than coded modules. Secondly, the process 

of making changes (and thereby participating in the development effort) seems to instill a sense of 

"ownership" of the system in the user group. To overcome the students' natural defensiveness when 

the users don't find their reports just letter perfect, the instructor and several students with work 

experience demonstrate in the classroom several scenarios of user changes a t different points in lhe 

system development cycle. 

9 



Teaching Design 

Project Planning 

Once the student teams and the users have developed a basic understanding of the problem to be 

solved, the teams undergo a period of high-level project planning. Each team develops a Work 

Breakdown Structure (WBS) hierarchy of the activities foreseen for its project. This list of high-level 

milestones is developed by tailoring a standard software development WBS hierarchy (Appendix Bl 

Students are asked to estimate the duration of each activity, as well as the resourses required: 

student team involvement, user involvement, number of compilations, meeting areas, etc. The 

milestones are somewhat broad at this point, usually covering a duration of one week. During the 

project, more detailed activities are developed for a two-week planning horizon. The purpose of the 

initial planning exercise is to start the students thinking of the project as a whole, and not just 

concentrate on those activites to be performed next. 

The teams are then asked to schedule their project activities and represent these schedules 

graphically, using PERT, CPM, or Gantt charts. The schedules are then formally presented to the 

users. Although most experienced users take the optimistic schedules with a grain of salt., the 

schedule charts (displayed in the computer science department student lounge) tend to give the 

projects a high visibility. 

Requirements Analysis 

During the planning phase, the student teams work primarily by themselves, except for the 

presentation of the schedules to the users. The next phase, however, again sees an extensive amount 

of communication between the students and the user groups. During this phase, a more detailed 

analvsis of the problem is undertaken, using the highly graphical me thodology called Structured 

Syste ms Analysis [De Marco, 1968). The students represent the flow of data through the prohlcm in 

data flow diagrams, refine the reports and screens the system is to produce, name all the data 

clements in the system, define required tile structures, a nd document organizational policy through 

10 



Teaching Design 

Structured English Process Descriptions or decision tables. As each part of the system evolves from 

an intellectual concept into a more tangible form, the component is documented in a graphical form so 

that it can be discussed with the user group. This discussions take place in both informal work 

sessions and during more formal review presentations. As the documents which comprise the system 

requirements are completed, they are filed in the Project Notebook and kept on public display. 

Software Architecture 

After the system requirements have been documented and discussed with the users, each team 

then constructs a preliminary system module architecture. This process involves mapping the data 

flow diagrams into a module hierarchy [Pressman,1982; Yourdon and Constantine, 1978] or 

developing the system structure concomitant with the information structures suggested by the 

system's data [Jackson, 1975]. The teams are free to choose the methodology they prefer- usually the 

teams go through several design iterations, often mixing methodologies to understand some part of a 

system better. During the design sessions, the teams are encouraged to represent the system 

component under consideration graphically. Once the preliminary design is complete and module 

functions have been identified, the preliminary design is presented to the users in an informal design 

review. 

Final Deliverables 

The final deli verables for the design portion of the project consist of the project notebook 

(Appendix C), a large module hierarchy chart, report and screen mockups, and a CPM chart 

showing the team's estimates and plans for next semester's effort. In lieu of a final exam, the 

students make a final, formal presentation to the user group, preferably at the user's site. Usually, 

the students put considerable effort into these presentations: they are well rehearsed, colored charts 

and ll\Crhcad foils abound, and the students often sport new suits and haircuts. The purpose oflhis 

11 



Teaching Design 

final presentationis not so much evaluatative as it is for both the students and the users to reach a 

sense of closure on the design portion of the project. In fact, the students are instructed to try to create 

an experience similar to an apparent underlying philosophy in several major motel chains- "No 

surprises!". 

6. EXPERIENCES 

The software engineering course sequence has been taught for four years at SMU, covering a wide 

variety of projects, student teams, and outside user groups. The fall class size is usually between 

twenty-five and thirty students. Currently, the class is involved in nine projects, ranging from a 

microcomputer-based weather monitoring station to a decision support system for an administrative 

office on the campus. Although each of these projects has presented a unique set of experiences (and 

problems), possibly some general observations on the course can be drawn. 

Lectures versus Projects 

During the first semester the design portion of the course was taught, the instructor tried to 

interleave the lecture material with the project effort- always trying to stay just ahead of what the 

teams would be doing next. This proved to be a frustrating experience, since each project moved at a 

different pace. Our current approach is to not assign the projects until we are at least one-third into 

the semester, using the first five or six weeks to concentrate on lectures. During the remaindet· of t he 

semester, lectures are interspersed with project discussions and reviews. This is st ill somewhat 

frustrating for the students, who usually want to begin coding as soon as the semester sta rts. A better 

approach might involve adding a course in systems analysis and design as a prerequisite. 

12 



Teaching Design 

Project Team Sizes 

An interesting phenomenon is that the accomplishments of the team seem to be more related to 

how well the team works together, rather than the number of students on the team. Teams seem to 

function well when there are not more than four students on them, particularity if the students are of 

equal ability. The prima donna approach -surrounding one strong producer with team members of 

lesser abilities, doesn't seem to work well in this environment. Neither do large teams work well -

large groups (over five individuals) tend to break into two or more factions who spend most of their 

time intellectualizing over the number of bits which can be placed on the head of an RS232 pin. Some 

of the most surprising project efforts have come from two-person teams, regardless of the size of the 

problem. 

Project Notebook 

During the teaching of this course, the project notebook (Appendix A) has become an 

indispensible tool. It serves to lift the software development effort to the level of being highly visible, 

although weare still quite a ways from a "public science"(Wienberg, 1971]. The notebook has a 

standard set of forms which allow the students to "cookbook" their way through the first stages of 

requirements definition. It also contains the data flow diagrams, the data element descriptions, the 

file descriptions, and the module narratives. The project notebooks stay on display in the computer 

science department, where they can be inspected by other teams and students. During the de:,;ign 

phase, the teams are periodically graded on how complete their project notebooks are. At the 

completion of the project, users are given a copy of the project notebook. 

13 



~~~-· ---~~---~----

Teaching Design 

7. CONCLUSIONS 

In general, the real life project experience works well. Considering the size and nature of the 

projects and the students' lack of experience, the resulting designs have been reasonably well 

structured, modular, and functional. The preliminary designs are usually overly ambitious. During 

the fall semester, the design teams tend to add functions to the system; during the spring semester, 

the implementation teams tend to delete functions. Seldom does the development reach the program 

product level [Brooks, 1975]; usually the students wind up implementing a bare-bones prototype of 

the version of the system which was designed. 

Support for the course and the student projects remains strong in the local academic and business 

communities. Many students have been hired ~y the organizations for which they did a project. (In 

one case, however, a user manager informed us that he was so impressed by the students he wasn't 

going to make them any offers- he was afraid that they were so high-powered that they would find his 

type of application uninteresting.) At a minimum, satisfied users are asked to send each individual 

team member a letter acknowledging his or her accomplishments; these letters quickly find their way 

to the students' resumes. Both students and recruiters have indicated that the project experience 

seems to equip students with the software development patois necessary for effective peer level 

interviews on plant visits. 

The course seems to be well accepted by the students, judging from their enthusiasm, the amount 

of effort put into the projects, and the high percentage of seniors who enroll for the optional spring 

semester course. 

Hopefully, as we learn more about the process of developing software, courses such as this can 

produce professionals who experience software development projects not as protracted periods of 

exigence, but rather as intellectual challenges to be met with energy, excitement, and enthusiasm 

14 



APPENDIX A 

SOFTWARE ENGINEERING PRINCIPLES 

COURSE OUTLINE 

Module 1: Introduction 
Software Development Evolution 
The Software Crisis 
Software Life Cycle: An Introduction 
Software Development Teams: Job Titles and Responsibilities 
Software Life Cycle: A Second Look 

Module 2: Project Organizing, Planning, and Estimating 

Work Breakdown Structures 
PERT/CPM Scheduling 
Estimating Lines of Code, Activity Durations, and Resources 
Project Monitoring Techniques 

Module 3: Com.municating with the User 

Interviewing Techniques 
Making Formal Presentations 
Structured Walkthroughs and Design Reviews 
Preparing the User Manual 

Module 4: Defining the Problem 

Hl.gh Level Problem Representation Techniques 
Layouts: Screens, Reports, and Files 
Establishing System Objecitves 

Module 5: Defining System Requirements 

Structured Systems Analysis 
Report Prototyping 
Data Dictionaries 
Structured English 
Decision Tables 

Module 6: Designing Software Architectures 

Modularity and Functionality 
Coupling and Cohesion 
Representing the Design Graphically 
Data Flow Design Techinques 
Data Structure Design Techniques 
Module Descriptions 

15 

Teaching Design 



Teaching Design 

Module 7: Signing Up 

Project Descriptions 
Project Selections 
Selection of Team Leaders 

Module 8: Working Sessions 

Module 9: Final Presentations 

16 



APPENDIXB 

WORK BREAKDOWN STRUCTURE 

FOR 

STANDARD PROJECT ACTIVITIES 

Sl- PROJECT MANAGEMENT 

Sll- Developing Project Work Breakdown Structure 
Sl2- Project Planning 
Sl3- Project Scheduling 
Sl4- Project Estimating 
Sl5- Completing Project Notebook Entries 

S2 - PROBLEM ASSESSMENT 

S21 - Meetings with user personnel to define problem 
S22- Meetings with user personnel to establish requirements 
S23- Drafting input, file, or output layouts 
S24- Team discussions of problem or requirements 
S25- Preparation of graphical problem representations 
S27- Presentation of problem representations to users 

S3- REQUIREMENTS ANALYSIS 

S31 - User interviews to understand problem details 
S32- Preparation of data flow diagrams 
S33 - Refinement of Reports, Screens, Files 
S34 - Preparation of Data Dictionary entries 
S35 - Preparation of data structure charts 
S36- Preparation of Structured English Process Descriptions 
S37 - Preparation of Decision Tables 
S38- Presentation of problem structures to users 
S39- Preparation of User Manual (rough draft) 

S4 - SOFTWARE ARCHITECTURE DESIGN 

S41- Constructing Module Hierarchy Chart 
S42- Preparing module function narratives 
S43 - Preparation of module pseudo-code 
S44- Preparation of HIPO diagrams 
S45 - Team meetings to discuss design 
S46 - Design reviews with users 

85 - CODING 

851 - Module coding 
852 - Reading module code by other than writer 
S53 - Entry of modules into computer 
S54 - Module compUations 
S55 - Structured Wa lkthroughs for code 

17 

Teaching Design 



Teaching Design 

S6 -TESTING 

S61 - Development of system test plan 
S62- Development of system test data 
S63- Development of acceptance test plan 
S64- Development of acceptance test data 
S65 - System testing 
S66 - Acceptance testing 
S67 - Reviewing test results 

S7- lMPLEMENTATION 

S71 - Development of conversion plan 
S72- Conversion Activities 
S73 - User Manuals (Final form) 
S7 4- Prototype Implementation 
S75- Model Office 
S76 - User Training 
S77- Parallel Runs 

S8- MAlNTENANCE 

S81 - Fixing design errors 
S82 - Fixing coding errors 
S83- Enhancements to adapt to change in user's needs 
S84- Fine tuning for speed or efficiency 

18 



Section 1 

Section 2 

Section 3 

Section 4 

Section 5 

Section 7 

Appendix A 

Appendix B 

Teaching Design 

APPENDIXC 

PROJECT NOTEBOOK CONTENTS 

Brief Problem Narrative 
Graphical Problem Representation (Leighton, HIPO, or Data Flow) 

Project Description 
System Description 
User Statement of Objectives 
User Organization Description 
Key User Personnel 

System Input Requirements 
System Output Requirements 
System Processing Requirements 

Output Layouts 
Input Layouts 
File Layouts 
Jackson Data Structure Charts for System 1/0 

Leveled Data Flow Diagrams 
Data Element Descriptions 
Data Flow Descriptions 
Data Structure Descriptions (Structured English) 
Process Descriptions (Structured Engligh) 

Software Architecture Charts 
Module Functional Narratives 
HIPO Charts 
Module Pseudo-code 

Project Work Breakdown Structure 
Project PERT/CP ~VI Chart 
Weekly Planned Activity Repol"l 
Individual St udent Time Cards 

Contact Worksheets <Ra w notes from interviews, 
meetings, design reviews, etc.) 

19 

SE Form 1.1 
SE Form 1.2 

SE Form 2.1 
SE Form 2.2 

SE Form4.1 
SE Form4.2 
SE Form4.3 

SE Form 6.1 
SE Form 6.2 
SE Form6:3 
SE Form 6.4 
SE Form6.5 

SE Form 3.0 



Teaching Design 

REFERENCES 

Boehm, B.W.,Software Engineering Economics, Prentice-Hall, Englewood Cliffs, 
N.J., 1981. 

Boehm, B.W.,"Softwa~e Engineering," IEEETransactions on Computers, C-25:1976. 

Brooks, F.P., The Mythical Man-Month, Addison Wesley, Reading, MA, 1975. 

DeMarco, T., Structured Analysis and System Specification, Yourdon Press, New 
York, 1978. 

Freedman, D.P. and Weinberg, G.P., Handbook ofWalkthrus, Inspections, and 
Technical Reviews, 3rd edition, Little, Brown, and Company, Boston, 
MA, 1982. 

Freeman, P., "Realism, Style,and Design: Packing [t into a Constrained Course, 
Proceedings, ACM SIGCSE -SIGCUE Technical Symposium on Computer 
Science and Education, May, 1978. 

Gane,C . and Sarsen,T., Structured Systems Analysis: Tools and Techniques , 
Prentice-Hall, New York, 1979. 

Gladden, G.R.,"Stop the Life-Cycle, I Want to Get Off," ACM Software Engineering 
Notes, vol. 7, no. 2, April, 1982. 

Halstead, M.H., The Elements of Software S cience, Elsevier, New York, 1977. 

HIPO - ADesignAidandDocumenation Technique, Order Number GC 20-1851, 
IBM Corporation, White Plains, New York. 

Inmon, W.H., and Friedman, L.J., Design Review Methodology for a Data Base 
Environment, Prentice-Hall, Englewood Cliffs, N.J ., 1982. 

J ackson, M.H., Principles of Program Design, Academic Press, New York,1975. 

J ackson, M.H. and McCracken, D.D.,"Life Cycle Concept Considered Harmful", 
ACM Software Engineering Notes, vol.7, no. 2, April, 1982. 

Jensen, R. W. a nd Tonies, C.C. , S oftware Engineering, Prentice-Hall , Englewood 
Cliffs, NewJersey, 1979. 

Kant, E. , " A Semester Course in Software E ngineering," ACM Software 
Engineering N otes, vol. 6, no. 4, August, 1981. 

~1cCahe, T., " /\ Complexity :VIeasure,", IEEE Transactions on Software J•:ng ineerinL;, 
SE-2, 1976. 

Mill s, IID.,"Software Engineering", Scil-'nce 195: 120 1, 1977 . 

Orr , K. D., S trucl/lred Systems Deuelopnw nt , Y ourdon Press, New York, 1977. 

20 



Teaching Design 

Peters, L.J ., Software Design: Methods and Techniques, Yourdon Press, New York, 
1981. 

Pressman, R. S., Software Engineering: A Practitioner's Approach, McGraw-Hill, 
New York, 1982. 

Scott, L.R., "An Engineering Methodology for Presenting Software Functional 
Architecture," Proceedings of the Third International Conference on Software 
Engineering, IEEE Computer Society, New York, 1978. 

Stevens, W. P., Myers, G. T., and Constantine, L.L.,"Structured Design," IBM 
Systems Journal13: 1974. 

Stoy, J.F., "HIPO and Integrated Design," IBM Systems Journal15: 1976. 

Warnier, J.D.,The Logical Construction of Programs, Van Nostrand, New York, 
1976. 

Weinberg, G.M., The Psychology of Computer Programming, Van Nostrand 

Yourdon, E., Structured Walkthroughs, Yourdon Press, New York, 1978. 

Yourdon, E. ,and Constantine, L. L., Structured Design, Yourdon Press, New York, 
1978. 

21 

Reinhold, New 
York, 1971. 



The following papers are currently available in the Edwin L. Cox School of 
Business Working Paper Series. 

79-100 

79-101 

79-103 

80-100 

80-101 

80-102 

80-103 

80-104 

80-200 

80-300 

80-301 

80-400 

80-500 

80-600 

80-601 

80-800 

80-801 

80-900 

80-902 

"Microdata File Merging Through Large-Scale Network Technology," 
by RichardS. Barr and J. Scott Turner 

"Perceived Environmental Uncertainty: An Individual or Environ­
mental Attribute," by Peter Lorenzi, Henry P. Sims, Jr., and 
John w. Slocum, Jr. 

"A Typology for Integrating Technology, Organization and Job 
Design," by John W. Slocum, Jr., and Henry P. Sims, Jr. 

"Implementing the Portfolio (SBU) Concept," by Richard A. Bettis 
and William K. Hall 

"Assessing Organizational Change Approaches: Towards a Comparative 
Typology," by Don Hellriegel and John W. Slocum, Jr. 

"Constructing a Theory of Accounting--An Axiomatic Approach," by 
Marvin L. Carlson and James w. Lamb-

"Mentors & Managers," by Michael E. McGill 

"Budgeting Capital for R&D: An Application of Option Pricing," 
by John W. Kensinger 

"Financial Terms of Sale and Control of Marketing Channel Conflict," 
by Michael Levy and Dwight Grant 

"Toward An Optimal Customer Service Package," by Michael Levy 

"Controlling the Performance of People in Organizations," by 
Steven Kerr and John W. Slocum, Jr. 

"The Effects of Racial Composition on Neighborhood Succession," 
by Kerry D. Vandell 

"Strategies of Growth: Forms, Characteristics and Returns," by 
Richard D. Miller 

"Organization Roles, Cognitive Roles, and Problem-Solving Styles," 
by Richard Lee Steckroth, John W. Slocum, Jr., and Henry P. Sims, Jr. 

"New Efficient Equations to Compute the Present Value of Mortgage 
Interest Payments and Accelerated Depreciation Tax Benefits," by 
Elbert B. Greynolds, Jr. 

"Mortgage Quality and the Two-Earner Family: Issues and Estimates," 
by Kerry D. Vandell 

, 
"Comparison of the EEOCC Four-Fifths Rule and A One, Two or Three o 
Binomial Criterion," by Marion Gross Sobol and Paul Ellard 

"Bank Portfolio Management: The Role of Financial Futures," by 
Dwight M. Grant and George Hempel 

"Hedging Uncertain Foreign Exchange Positions," by Mark R. Eaker 
and Dwight M. Grant 



80-110 "Strategic Portfolio Management in the Multibusiness Firm: An 
Implementation Status Report," by Richard A. Bettis and William 
K. Hall 

80-111 "Sources of Performance Differences in Related and Unrelated 
Diversified Firms," by Richard A. Bettis 

80-112 "The Information Needs of Business With Special Application to 
Managerial Decision Making," by Paul Gray 

80-113 "Diversification Strategy, Accounting Determined Risk, and Ac­
counting Determined Return," by Richard A. Bettis and William K. 
Hall 

80-114 "Toward Analytically Precise Definitions of Market Value and 
Highest and Best Use," by Kerry D. Vandell 

80-115 "Person-Situation Interaction: An Exploration of Competing 
Models of Fit," by William F. Joyce, John W. Slocum, Jr., and 
Mary Ann Von Glinow 

80-116 "Correlates of Climate Discrepancy," by William F. Joyce and 
John Slocum 

80-117 "Alternative Perspectives on Neighborhood Decline," by Arthur 
P. Solomon and Kerry D. Vandell 

80-121 "Project Abandonment as a Put Option: Dealing with the Capital 
Investment Decision and Operating Risk Using Option Pricing 
Theory," by John W. Kensinger 

80-122 "The Interrelationships Between Banking Returns and Risks," by 
George H. Hempel 

80-123 "The Environment For Funds Management Decisions In Coming Years," 
by George H. Hempel 

81-100 "A Test of Gouldner's Norm of Reciprocity In A Commercial Marketing 
Research Setting," by Roger Kerin, Thomas Barry, and Alan Dubinsky 

81-200 "Solution Strategies and Algorithm Behavior in Large-Scale Network 
Codes," by Richard s. Barr 

81-201 "The SMU Decision Room Project," by Paul Gray, Julius Aronofsky, 
Nancy W. Berry, Olaf Helmer, Gerald R. Kane, and Thomas E. Perkins 

Al-300 "Cash Discounts To Retail Customers: An Alternative To Credit Card 

Performance," by Michael Levy and Charles Ingene 

81-400 "Merchandising Decisions: A New View of Planning and Measuring 
Performance," by Michael Levy and Charleg A. Ingene 

81-500 "A Methodology For The Formulation And Evaluation Of Energy Goals 
And Policy Alternatives For Israel," by Julius Aronofsky, Reuven 
Karni, and Harry Tankin 



81-501 "Job Redesign: Improving The Quality of Working Life," by John W. 
Slocum, Jr. 

81-600 "Managerial Uncertainty and Performance," by H. Kirk Downey and 
John W. Slocum, Jr. 

81-601 · "Compensating Balance, Rationality, and Optimality," by Chun H. 
Lam and Kenneth J. Boudreaux 

81-700 "Federal Income Taxes, Inflation and Holding Periods For Income­
Producing Property," by William B. Brueggeman, Jeffrey D. Fisher, 
and Jerrold J. Stern 

81-800 "The Chinese-U.S. Symposium On Systems Analysis," by Paul Gray 
and Burton v. Dean 

81-801 "The Sensitivity of Policy Elasticities to the Time Period Examined 

in the St. Louis Equation and Other Tests," by Frank J. Bonello and 
William R. Reichensteln · 

81-900 "Forecasting Industrial Bond Rating Changes: A Multivariate Model," 
by John W. Peavy, III 

81-110 "Improving Gap Management As A Technique For Reducing Interest Rate 
Risk," by Donald G. Simonson and George H. Hempel 

81-111 "The Visible and Invisible Hand: Source Allocation in the Industrial 
Sector," by Richard A. Bettis and C. K. Prahalad 

81-112 "The Significance of Price-Earnings Ratios on Portfolio Returns," by 
John W. Peavy, III and David A. Goodman 

81-113 "Further Evaluation of Financing Costs for Multinational Subsidiaries," 

by Catherine J. Bruno and Mark R. Eaker _ 

81-114 "Seven Key Rules For Successful Stock Market Speculation," by David 
Goodman 

81-115 "The Price-Earnings Relative As An Indicator of Investment Returns," 
by David Goodman and John W. Peavy, III 

81-116 "Strategic Management for Wholesalers: An Environmental Management 
Perspective," by William L. Cron and Valarie A. Zeithaml 

81-117 "Sequential Information Dissemination and Relative Market Efficiency," 
by Christopher B. Barry and Robert H. Jennings 

81-118 "Modeling Earnings Behavior," by Michael F. van Breda 

81-119 "The Dimensions of Self-Management," by David Goo-dman and Leland M. 
Wooton 

81-120 "The Price-Earnings Relatives - A New Twist To The Low-Multiple Strategy," 

by David A. Goodman and John W. Peavy, III. 



-- -- - -----------~--------~ ------

82-100 "Risk Considerations in Modeling Corporate Strategy," by Richard 
A. Bettis 

82-101 "Modern Financial Theory, Corporate Strategy, and Public Policy: 
Three Conundrums," by Richard A. Bettis 

82-102 "Children's Advertising: The Differential Impact of Appeal 
Strategy," by Thomas E. Barry and Richard F. Gunst 

82-103 "A Typology of Small Businesses: Hypothesis and Preliminary 
Study," by Neil C. Churchill and Virginia L. Lewis 

82-104 "Imperfect Information, Uncertainty, and Credit Rationing: A 
Comment and Extension," by Kerry D. Vandell 

82-200 "Equilibrium in a Futures Market," by Jerome Baesel and Dwight 
Grant 

82-201 "A Market Index Futures Contract and Portfolio Selection," by 
Dwight Grant 

82-202 "Selecting Optimal Portfolios with a Futures Market in a Stock 
Index," by Dwight Grant 

82-203 "Market Index Futures Contracts: Some Thoughts on Delivery 
Dates," by Dwight Grant 

82-204 "Optimal Sequential Futures Trading," by Jerome Baesel and Dwight 
Grant 

82-300 "The Hypothesized Effects of Ability in the Turnover Process,'' by 
Ellen F. Jackofsky and Lawrence H • . Peters 

82-301 "Teaching A Financial Planning Language As The Principal Computer 
Language for MBA's," by Thomas E. Perkins and Paul Gray 

82-302 "Put Budgeting Back Into Capital Budgeting," by Michael F. van Breda 

82-400 "Information Dissemination C~.nd Portfolio Choice," by Robert H. Jennings 
and Christopher B. Barry 

82-401 "Reality Shock: The Link Between Socialization and Organizational 
Commitment, " by Roger A. Dean 

82-402 "Reporting on the Annual Report," by Gail E. Farrelly and Gail B. Wright 

82-403 "A Linguistic Analysis of Accounting," by Gail E. Farrelly 

82-600 "The Relationship Between Computerization and Performance: A Strategy 
For Maximizing The Economic Benefits of Computerization," by William 
L. Cron and Marion G. Sobol 

82-601. "Optimal L.and Use Planning," by Richard B. Peiser 

82-602 "Variances and Indices," by Michael F. van Breda 



82-603 "The Pricing of Small Business Loans," by Jonathan A. Scott 

82-604 "Collateral Requirements and Small Business Loans," by Jonathan A. 
Scott 

82-605 "Validation Strategies For Multiple Regression Analysis: A Tutorial,'' 
by Marion G. Sobol 

82-700 "Credit Rationing and the Small Business Conununity," by Jonathan A. 
Scott 

82-701 "Bank Structure and Small Business Loan Markets," by William C. 
Dunkelberg and Jonathan A. Scott 

82-800 "Transportation Evaluation in Conununity Design: An Extension with 
Equilibrium Route Assignment," by Richard B. Peiser 

82-801 "An Expanded Conunercial Paper Rating Scale: Classification of 
Industrial Issuers," by John W. Peavy, III and s. Michael Edgar 

82-802 "Inflation, Risk, and Corporate Profitability: Effects on Common 
Stock Returns," by David A. Goodman and John W. Peavy, III 

82-803 "Turnover and Job Performance: An Integrated Process Model," by 
Ellen F. Jackofsky 

82-804 "An Empirical Evaluation of Statistical Matching Methodologies," by 
Richard A. Barr, William H. Stewart, and John Scott Turner 

82-805 "Residual Income Analysis: A Method of Inventory Investment Alloca­
tion and Evaluation," by Michael Levy and Charles A. Ingene 

82-806 "Analytical Review Developments in Practice: Misconceptions, Poten­
tial Applications, and Field Experience," by Wanda Wallace 

82-807 "Using Financial Planning Languages For Simulation," by Paul Gray 

82-808 "A Look At How Managers' Minds Work,'; by John W. Slocum, Jr. and 
Don Hellriegel 

82-900 " 'l'he lmpact of Price Earnings Ratio.s on Portfoli o Returns," by John 
W. Peavy, III and David A. Goodman 

82-901 "Replicating Electric .Utility Short-Term Credit Ratings," by John w. 
Peavy, III and S. Michael Edgar 

82-902 "Job Turnover Versus Company Turnover: Reassessment of the March and 
Simon Participation Model," by Ellen F . Jackofsky and Lawrence H. 
Peters 

82-903 "Investment Management By Multiple Managers: An Agency-Theoretic Ex­
p lanation," by Christopher B. Barry and Laura T~·Starks 

82-904 "The Senior Marketing Officer -An Academic Perspective," by James T. 
Rothe 



82-905 "The Impact of Cable Television on Subscriber and Nonsubscriber Be­
havior," by James T. Rothe, Michael G. Harvey, and George C. Michael 

82-110 "Reasons for Quitting: A Comparison of Part-Time and Full-Time 
Employess," by James R. Salter, Lawrence H. Peters, and Ellen F. 
Jackofsky 

82-lll "Integrating Financial Portfolio Analysis with Product Portfolio 
Models," by Vijay Mahajan and Jerry Wind 

82-112 "A Non-Uniform Influence Innovation Diffusion Model of New Product 
Acceptance," by Christopher J. Easingwood, Vijay Mahajan, and Eitan 
Muller 

82-113 "The Acceptability of Regression Analysis as Evidence in a Courtroom -
Implications for the Auditor," by Wanda A. Wallace 

82-114 "A Further Inquiry Into The Market Value and Earnings' Yield Anomalies," 
by John W. Peavy, III and David A. Goodman 

82-120 " Compensating Balances, Deficiency Fees and Lines of Credit: An Opera­
tional Model," by Chun H. Lam and Kenneth J. Boudreaux 

H2-l2l "Toward a Formal Model of Optimal Seller Behavior in the Real Estate 
Transactions Process," by Kerry Vandell 

82-1 2 ~ "Estimates of the Effect of School Desegregation Plans on Housing 
Values Over Time," by Kerry D. Vandell and Robert H. Zerbst 

82-12 3 "Compensating Balances, Defici ency Fees and Lines of Credit," by Chun 
H. Lam and Kenneth J. Boudreaux 

83-100 "Teaching Software System Design: An Experiential Approach," by Thoma s 
E. Perkins 


	Teaching Software System Design: An Experiential Approach
	83_100_000
	83_100_001
	83_100_002
	83_100_003
	83_100_004
	83_100_005
	83_100_006
	83_100_007
	83_100_008
	83_100_009
	83_100_010
	83_100_011
	83_100_012
	83_100_013
	83_100_014
	83_100_015
	83_100_016
	83_100_017
	83_100_018
	83_100_019
	83_100_020
	83_100_021
	83_100_022
	83_100_023
	83_100_024
	83_100_025
	83_100_026
	83_100_027

