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Microscale propulsion impacts a diverse array of fields, with simplistic microrobots 

allowing for novel innovations in microscale surgery and drug delivery. Propulsion at the 

microscale is constrained by physics, with time-reversal and geometric symmetries limiting 

available propulsion mechanisms. However, certain fluid environments and surface coatings allow 

for the propulsion of microparticles through externally applied magnetic fields. Presented here is 

a detailed analysis of microparticles propelling using spontaneous symmetry breaking, flagella 

surface coatings, and multi-modal actuation mechanisms. Spontaneous symmetry breaking in 

nonlinearly viscoelastic fluids is presented for the first time in literature, with two equal and 

opposite propulsion states existing along a microparticles rotation axis. Flagellated microparticles 

suspended in Newtonian fluids are demonstrated to have diverse behavior in response to rotating 

magnetic field frequency and direction. Finally, catalytic Janus particles were developed which 

could exhibit catalytic propulsion and swimming propulsion interchangeably. The continued 

exploration of these propulsion mechanisms will be used to further circumvent restrictions on 

propulsion, helping to revise notions of microrobotic design and control, drug delivery, microscale 

pumping, and locomotion of microorganisms. 
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CHAPTER 1 

INTRODUCTION 

Microrobotics began in 1959 when Dr. Richard Feynman gave his speech ‘There’s Plenty 

of Room at the Bottom’1. In this short talk he described how technology would one day become 

so advanced that patients would literally be able to ‘swallow the surgeon.’ It did not take the 

entertainment industry to latch onto this idea and present such fantastical technologies in films 

such as ‘The Fantastic Voyage,’ ‘Innerspace,’ ‘Big Hero 6,’ and a myriad of others. Over the half-

century since that speech, multiple researchers around the globe have made progress in developing 

microscale robots for applications such as minimally invasive surgery and targeted drug delivery. 

Several microrobots were developed using direct laser writing (DLW) methods2,3 and were 

demonstrated to perform cargo transport applications4-12. Other helical based microrobots were 

assembled through templating organic geometries13-15 and polymers16,17, while countless other 

microrobots have been developed to achieve meaningful propulsion utilizing catalytic 

propulsion18,19, nonreciprocal actuation of magnetic microparticle aggregates20,21, and acoustic 

actuation22.  

While all of these microrobotic platforms are interesting, they all utilize complex 

fabrication techniques to create specialized geometries in order to achieve swimming propulsion 

in low Reynolds number environments.  At such small scales, the hydrodynamics are described by 

the viscosity-dominated Stokes equations23, and propulsion mechanisms are often limited by their 

geometric symmetries and the physical laws governing Stokesian hydrodynamics. For example, in 

Newtonian fluids force- and torque-free biological swimmers have been analyzed in terms of time-
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reversal symmetry of Stokes flow, with the resulting Scallop theorem24 requiring that kinematic 

reversibility be broken by non-reciprocal strokes to achieve propulsion25,26. The same principle 

applies to microrobotic propulsion, where kinematic reversibility must be broken either through 

non-reciprocal flexible response to reciprocal actuation, or by non-reciprocal actuation, such as 

steady rotation via magnetic fields – the type focused on throughout the remainder of this thesis.  

For these, the analysis of hydrodynamic mobility matrices reveals that geometries more symmetric 

than a flat triangle do not couple torque to linear translation27,28 and hence cannot be propelled by 

rotation; furthermore, symmetry analyses of the entire dynamical system, including actuating 

fields and moments, have shown that there is no average propulsion of rotated microrobot 

populations that are symmetric under combined charge conjugation and parity29.  

Due to three-dimensional symmetry, spherical microparticles cannot convert torques 

produced by externally applied rotating magnetic fields into translational motion. Microparticles 

are unique, however, in that they are already utilized in a great deal of medical applications 

including hyperthermia, magnetic resonance imaging, and enhanced drug delivery. Additionally, 

microparticles are easy to fabricate and can be functionalized with a variety of chemical surface 

coatings that can be used to either attach drug delivery agents or improve diffusivity through 

specific fluids. The development of simple and efficient propulsion mechanisms for microparticles 

will further improve their utility in existing medical applications and can be transitioned quickly 

for use in new procedures. This thesis will experimentally demonstrate several propulsion 

mechanisms that have been developed at Southern Methodist University by myself and 

collaborators to enable microparticle propulsion with rotating magnetic fields; many of which were 

achieved for the first time. These techniques include: 1) a novel spontaneous symmetry breaking 

propulsion mechanism from microparticles in nonlinearly viscoelastic fluids, 2) the guided 
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propulsion of microparticles with heterogeneous flagellated surface coatings, and 3) the multi-

modal propulsion of catalytic Janus particles that possess both platinum and flagella surface coated 

hemispheres. The spontaneous symmetry breaking method is demonstrated for the first time in 

literature, where microparticles propel using hoop stresses generated from first and second normal 

stress differences in nonlinearly viscoelastic fluids30,31. Flagellated microparticles rely on the 

chemical functionalization of bacterial flagella which explicitly break the geometry of the 

microparticles; instead of a single flagellum as in other microswimmers, surface coatings are 

heterogenic and randomly distributed32. Finally, catalytic Janus particles are hemispherically 

coated with platinum and bacterial flagella to enable both catalytic propulsion and swimming 

propulsion; the first Janus particles developed which can perform two distinct motion modes33. All 

three microparticle based millirobots have enormous potential for in vivo operation and in a few 

years will be used to improve existing medical technologies and procedures. The following 

chapters will provide a brief introduction to each propulsion method, their experimental results, a 

brief discussion summarizing the contents, and a methods section associated with each chapter. 

Several experimental procedures and set ups are used interchangeably between each chapter and 

will be referred to as needed. A conclusion at the end of the thesis will summarize the major results 

from each propulsion mechanism and a future work section will be used to examine the next steps 

of this research. All of the research presented here has been published, presented at conferences, 

or is currently under consideration by reputable scientific journals.  
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CHAPTER 2 

SYMMETRY BREAKING PROPULSION OF MAGNETIC MICROSPHERES IN 

NONLINEARLY VISCOELASTIC FLUIDS 

2.1 Introductory Remarks 

In non-Newtonian fluids, time-reversal symmetry is explicitly broken and kinematic 

reversibility does not hold, allowing reciprocal strokes to achieve propulsion34-36; however, 

geometrical symmetry analyses still apply.  Of particular importance here is fore-and-aft symmetry 

relative to the direction of propulsion. It is usually thought that propulsion is not possible in a fore-

aft symmetric system; for if there is a single state with propulsive velocity, upon fore-aft reflection 

the velocity [U, Fig. 2.1 (a)] must be simultaneously reversed [to U’, Fig. 2.1 (a)] and equal to the 

original, and hence be zero37.  For example, experiments achieving propulsion by reciprocal 

actuation of dumbbells in nonlinearly viscoelastic fluids38 instead explicitly break fore-aft 

symmetry by employing either dumbbells with two different sized beads, or a boundary nearby 

symmetric dumbbells. In a theoretical analysis of axisymmetric swimmers rotated along their axis 

of symmetry in nonlinearly viscoelastic fluids, fore-aft symmetry led to the conclusion that the 

simplest shapes capable of propulsion are “snowmen” constructed of two differently-sized 

spheres39. The same symmetry considerations suggest that it is not possible for a steadily rotating 

sphere to be propelled along its rotation axis.   

Symmetry analysis in nonlinear low Reynolds regimes neglect the possibility of 

spontaneous symmetry breaking, in which a pair of translating states exists with equal and opposite 

propulsion velocities, rather than a single state with zero velocity. Here, we report the spontaneous 

symmetry breaking propulsion of rotating spherical magnetic microparticles within two different 

non-Newtonian fluids: a low concentration polyacrylamide solution and a synthetic mucus 
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solution.  Application of a static magnetic field can select between the two states, enabling control 

of the propulsion direction. We propose a physical mechanism for symmetry breaking that arises 

from nonlinear viscoelastic effects in rotating flows, similar to the rod-climbing effect, which 

pushes the sphere along its rotation axis.  The mechanism is corroborated by comparison to existing 

theoretical analyses of rotating and translating spheres in generic third-order fluids40. Thus, for the 

first time we demonstrate that spontaneous symmetry breaking can be used to propel and control 

rigid spherical magnetic microparticles without requiring magnetic gradients, geometry-altering 

surface coatings, or catalytic propulsion. Our results will enable improved applications of 

microparticles, especially biomedical, as well as insights into locomotion of living and artificial 

microswimmers in complex fluids. This work was performed in collaboration with Dr. Henry C. 

Fu of the University of Utah and Dr. James N. Wilking of Montana State University.  

 

Fig. 2.1. Propulsion characteristics of microparticles. (a) Reflection about the symmetry plane leaves the geometry 

and rotation unchanged but reverses the propulsion velocity U to U’.  If there is only one state, U = U’ = 0, but 

spontaneous symmetry breaking results in two propulsive states with equal and opposite velocities U and U’.  

Propulsion velocity vs. rotational magnetic field frequency for 10 μm diameter microparticles in (b) 4% mucin 

and (c) 0.25% polyacrylamide. Control experiments using 10 μm diameter microparticles were performed in two 

Newtonian fluids: 15% NaCl and 0.2% methylcellulose; both were plotted in both (b) and (c) to compare with the 

propelling microparticles. The coefficient of determination (𝑟2) values for the linear fit in 4% mucin solution and 

0.25% polyacrylamide solution were 0.9650 and 0.9449, respectively, indicating a strong linear correlation of 

velocity and frequency.  In contrast, the 𝑟2 values for the linear fits to controls in 15% NaCl and 0.2% 

Methylcellulose solution were 0.3773 and 0.2036, respectively, indicating little correlation with frequency. Error 

bars represent standard error.  
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2.2 Results 

Spherical magnetic microparticles were observed to translate while exposed to uniform 

rotating magnetic fields in both a 4% mucin solution and a 0.25% polyacrylamide solution. Motion 

both perpendicular (transverse) to and along the field’s rotation axis were observed within both 

non-Newtonian fluids.  We attribute the transverse motion to the well-understood rolling motion 

along the boundary caused by the particles rotation41,42, since the transverse velocity weakened as 

the distance from the boundary increased, reversed upon reversal of the rotation direction, and had 

a linear relationship with frequency nearby the boundary (Fig. S1-S3).  On the other hand, the 

motion along the rotation axis was surprising since it is symmetry-prohibited [Fig 2.1 (a)]. In the 

rest of this chapter we focus on this symmetry-prohibited motion, hereafter referred to as 

propulsion. All experiments reported were conducted far from the substrate surface (> 100 µm) to 

minimize boundary effects (Fig. S1) unless otherwise stated. 

 When the magnetic field rotated in a plane, the propulsion direction was seemingly 

randomly oriented either along or opposite the rotation axis (perpendicular to the plane) and 

independent of the rotation direction.  However, we found that imposing a symmetry-breaking 

static magnetic field (2 mT)  along the rotation axis fixed the direction of propulsion and we used 

this to investigate the dependence of propulsion velocity on rotational frequency [Fig. 2.1 (b-c)]. 

Both 4% mucin and 0.25% polyacrylamide are viscoelastic and shear thinning at the applied shear 

rates36,43-45 and possessed significant first and second normal stress effects  (2.4 Methods, Fig. 2.5).  

Polyacrylamide solutions are known to have first and second normal stress differences46,47, and we 

were able to measure normal stress differences in 10% mucin solutions (see 2.4 Methods, Fig. 2.5 

and Appendix Section 10). In both fluids there was a nearly linear relationship between propulsion 

velocity and frequency. Note that the propulsion decreased to almost zero as the rotational 
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frequency approached zero, implying that static magnetic field gradients are not responsible for 

propulsion; see Appendix Section 8 for further experiments that rule out this possibility. In control 

experiments using the Newtonian fluids 0.2% methylcellulose48 and 15% NaCl,  we observed 

small, nearly vanishing, propulsion velocities that were not correlated with frequency. Since this 

small propulsion velocity was observed even without any actuation (at near zero frequency) we 

attribute it to an internal flow within the sample chambers. Propulsion was ubiquitous among 

rotated microparticles; it was observed for beads of several different diameters (2, 4, 8 µm) in 

mucin solutions of various concentrations (2%, 3%, 4%) and in the polyacrylamide solution (see 

Appendix Section 9).  Propulsion was observed for >90% of beads in mucin solution, and >60% 

of beads in polyacrylamide solution. 

The observed propulsion was repeatable and could be controlled under both open-loop and 

closed-loop feedback control schemes (see 2.4 Methods for details, see Appendix).  Figure 2.2 (a) 

shows an open-loop trajectory in which the microparticle was directed to create a square shape. 

Transverse rolling slightly skewed the trajectory in Fig. 2.2 (a) and was influenced by the 

microparticles’ rotation direction (Appendix Section 2). During these experiments the 

microparticles sometimes encountered localized regions of hindered propulsion, as seen in Fig. 2.2 

(b), where the microparticle could not perform the desired trajectory during the first downward 

segment; further examples can be seen in Fig. S1 (b) where propulsion velocity varies with location 

in the mucus medium. We suspect that these localized regions correspond to elevated 

concentrations of mucin glycoprotein entanglements as they were far less common in the 

homogeneous polyacrylamide solution. Given enough time, microparticles usually navigated 

around these regions and completed their intended trajectories. Closed-loop feedback control was 

used to navigate microparticles along trajectories, such as those in Fig. 2.2 (c-g), where the target 
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points and desired trajectories are shown as magenta dots and dashed lines, respectively. 

Microparticles usually generated trajectories relative to the intended paths with small levels of 

 

Fig. 2.2. Path planning of microparticles in nonlinearly viscoelastic fluids. (a) Open-loop control of a microparticle 

performing a square trajectory in 4% mucin. (b) Open-loop control of a microparticle in 4% mucin, which 

encounters a region of relatively high fluid resistance, disrupting its initial downward motion. Selected trajectories 

of a microparticle under closed-loop feedback control in 0.25% polyacrylamide (c-d) and 4% mucin (e-g), where 

magenta dots represent the intended targets and dashed lines represent shortest path. The times associated with 

each trajectory are (a) 80 seconds, (b) 95 seconds, (c) 156 seconds, (d) 145 seconds, (e) 94 seconds, (f) 60 seconds, 

and (g) 43 seconds. (h) Left: a simple 3D trajectory that was achieved using open-loop control. At the points 

indicated by the arrows, the microparticle translated downwards in the negative z-direction (black arrow) and then 

upwards in the positive z-direction (magenta arrow); the circular purple arrow signifies rotation direction from 

behind the heading vector, while the black circle and ‘X’ represent out of the page and into the page respectively. 

Right: the estimated 3D trajectory of the microparticles path and superpositions along the different planes; the 

total time of the trajectory was 114 seconds. Microparticles were rotated at (a-c, e-g) 19 Hz, (d) 40 Hz, and (h) 15 

Hz.  
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error (Fig. S8). Finally, open-loop control in 3D was achieved [Fig 2.2 (h), details in Appendix 

Section 4] during which the microparticle was directed to propel along the positive x-direction, 

along the negative z-direction (into the page), along the negative y-direction, along the positive z-

direction (out of the page), and then finally along the positive x-direction again.  Although simple, 

this trajectory shows that 3D control is feasible using these microparticles and trackable by 

correlating the pixel area of the microparticle to its z-position above or below the focal plane [Fig. 

S9 (a-c)]. Appendix Section 4 details 3D propulsion of a microparticle within 0.25% 

polyacrylamide. Notably, since propulsion generally continued as microparticles translated 

through the fluids, rather than being limited to specific regions, these demonstrations of control 

rule out interactions with specific heterogeneities as the origin of the propulsion49.   

In the above experiments, application of a magnetic field controlled propulsion to occur in 

the direction of the static magnetic field, so we next investigated the dependence of propulsion on 

the static magnetic field. We gradually changed the applied static magnetic field from -5 mT to 5 

mT in 1 mT increments while rotational frequency remained constant, and observed the average 

propulsion velocity of 10 µm diameter microparticles at each increment [Fig. 2.3 (a), details in 2.4 

Methods]. As the static magnetic field approached 0 mT, the average propulsion velocity switched 

direction, from negative to positive, while remaining nearly constant for larger positive and 

negative fields. To further understand this phenomenon, the static magnetic field was varied at 

smaller 0.2 mT increments [Fig. 2.3 (b)], revealing that the switching field strength depends on 

the increment size; for smaller increments the average propulsion direction did not switch until the 

static field reached 0.8 mT for this particular microparticle in 4% mucin. Furthermore, upon 

tracking the velocity of individual microparticles in 4% mucin [Fig. 2.3 (c)], we found that each 

particle switches propulsion direction at drastically different static fields with only a slight variance 
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of the switching field observed between individual trials [Fig. S4 (a)]. When performing the same 

 
Fig. 2.3. Effect of static magnetic field on propulsion. Velocity vs. static magnetic field for 10 μm diameter 

microparticles for: (a) static field swept at 1 mT increments between the range of -5 and 5 mT, with the 

microparticles rotated at 15 Hz. Four microparticles were examined and each had at least 3 trials in each fluid. (b) 

Static magnetic field swept in 0.2 mT increments and 1 mT increments for the same microparticle in 4% mucin. 

(c-d) Static magnetic field swept in 0.2 mT increments for 4 different particles for 4% mucin and 0.25% 

polyacrylamide, respectively. (e-f) Propulsion hysteresis in response to static magnetic field sweep at 0.2 mT 

increments for a single microparticle in 4% mucin and 0.25% polyacrylamide, respectively. The frequency for (f) 

was 40 Hz with the rotating magnetic field amplitude set to |𝐵𝑟| = 0.175𝑓, where 𝑓 is the frequency in Hz. In all 

scenarios, velocities of microparticles remained relatively constant at larger positive and negative fields, but the 

field at which velocity switched direction depended on static magnetic field history, increment size, and specific 

particle characteristics. Dashed lines in graphs represent zero propulsion velocity while lines between points in 

(a)-(f) were added to act as a guide to the eyes. Error bars represent standard error.  
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experiments in 0.25% polyacrylamide (15 Hz), the variation between individual microparticles 

was lost [Fig. 2.3 (d)] and instead all microparticles switched directions close to 0 mT. Thus, we 

consistently observe the existence of propulsion  and switching of propulsion direction as the static 

field is swept, although there is strong variability in the propulsion velocity and switching 

frequency for different static field histories and increment sizes (see Appendix Section 2), which 

could be due to factors such as interparticle variation and medium heterogeneity (see Appendix 

Section 9).  In the remainder of the chapter we focus on understanding the robust existence of 

propulsion and whether the static magnetic field is necessary for propulsion to occur. 

To elaborate on how a static field might be able to control the propulsion direction of a 

rotating microparticle, first consider that in a Newtonian fluid standard analytic solutions indicate 

that a sphere rotated by an external torque will not translate50, consistent with the results in Fig. 

2.1 (b-c). When the magnetic field rotates in a plane, the magnetic dipole of the sphere also rotates 

in the same plane and the sphere rotates along the same axis as the field. If there is also a static 

field along the rotation axis, the magnetic dipole tilts towards the static field and continues to rotate 

with the field, but now there is an additional rotation of the sphere along the axis of the magnetic 

dipole (see Appendix Section 5).  Despite the more complicated rotational dynamics, the 

microparticle in a Newtonian fluid will not translate.  Remarkably, we have observed the consistent 

translation of such spheres in synthetic mucus and polyacrylamide.  The more complex rotation 

and the static field explicitly break the fore-aft symmetry, but due to the robust observation of 

propulsion combined with variability in switching of propulsion direction we hypothesized that 

there is an underlying spontaneous symmetry-breaking translation for a force-free sphere rotated 

by an external torque in a nonlinearly viscoelastic fluid.  Such symmetry-breaking leads to pairs 

of translational states with equal and opposite velocities in the rotation direction, consistent with 
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our observations above. The behavior observed with a symmetry-breaking static field can be 

thought of as selecting one symmetry-broken state over the other. To test if we could instead 

observe spontaneously (not explicitly) broken symmetry, we swept the static magnetic field from 

2 mT to -2 mT and then back to 2 mT in 0.2 mT increments. As seen in Fig. 2.3 (e), the propulsion 

velocity in 4% mucin has a hysteretic response to the field strength, switching direction at around 

-1.2 mT (from positive to negative) and then switching back at  around 0.8 mT (from negative to 

positive).  The experiment in 0.25% polyacrylamide showed much sharper changes between 

propulsion states [Fig. 2.3 (f)] but at 0 mT two separate propulsion states could still be achieved, 

although only at a higher rotational frequency (40 Hz). In the Appendix [Fig. S4 (b), S5] we show 

that the switching points depend on magnetic field increment and frequency.  Thus, in both fluids, 

at an applied static field of 0 mT, we could observe both directions of propulsion for both fluids 

(on the downward and upward sweeps), corresponding to truly spontaneously symmetry-broken 

propulsive states. We were consistently able to demonstrate symmetry broken propulsive states in 

microparticles that showed propulsion.  In mucin solution, all particles tested showed hysteresis 

when subjected to negative and positive sweeps of the magnetic field. In polyacrylamide solution, 

all 4 particles tested showed hysteresis (see Appendix Section 2, Fig. S6), although we note that 

the strength of hysteretic effects was dependent on frequency; when actuated at 15 Hz very little 

hysteresis was observed and microparticles switched propulsion direction at close to zero static 

field for both positive and negative sweeps. 

The hysteretic behavior of propulsive velocity is reminiscent of those seen in other 

spontaneously symmetry breaking phenomena, such as ferromagnetism, but ferromagnetic 

behavior cannot explain our observations, since the coercive fields of 68 mT51 required to 

magnetize and demagnetize our beads are much larger than the magnitudes of combined rotational 
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and static fields used in our experiments (3.11–15.87 mT). Instead, we propose that the symmetry 

breaking mechanism is caused by nonlinear viscoelastic stresses that arise in rotating flows, similar 

to those responsible for the “rod-climbing” effect.  Around a vertical rotating rod in a polymeric 

fluid, nonlinear first normal stress differences cause excess circumferential hoop stresses along the 

circular streamlines, while second normal stress differences cause excess radial stress; both can 

squeeze the fluid upwards around the rod47. We note that both polyacrylamide and mucin solutions 

display first and second normal stress differences that lead to rod-climbing-like effects (see 2.4 

Methods, Fig. 2.5, and Appendix Section 10). For a rotating and translating sphere, fluid material 

also advects past the sphere, so that fluid elements at the back of the sphere have spent more time 

circling the sphere than those at the front; thus, the back of the sphere has larger nonlinear 

viscoelastic stresses than the front, producing a net squeezing force that propels the sphere forward.  

A force-free symmetry-breaking translational state occurs when this propulsive force balances the 

drag force from translation.  

To theoretically test this idea, we analyze the force on a sphere rotating with angular 

frequency Ω and translating with velocity U using a retarded motion expansion in a generic third-

order non-Newtonian fluid47 (detailed in Appendix Section 6).  The force F along the rotation axis 

was calculated as a perturbation expansion in the Deborah number De = λΩ, where λ is a timescale 

for fluid relaxation, 

 𝐹 = 𝐹(0) + De𝐹(1) + De2𝐹(2) + ⋯        (2.1)  

The zeroth order velocity field is that of a rotating and translating sphere in a Newtonian fluid, and 

the zeroth order force F(0) is given by Stokes’ law for the drag of a translating sphere, 𝐹(0) =

 −6𝜋𝜇𝑎𝑈, where a is the microparticle diameter and μ is the fluid viscosity. The first correction 
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to the force arises at order De2, and contains terms proportional to Ω2U and to U3. The former term, 

𝐹𝑡ℎ𝑟𝑢𝑠𝑡
(2)

= 𝐶Ω2𝑈, where C is a constant that depends on the parameters of the constitutive law, 

corresponds to the symmetry-breaking propulsive thrust since it couples rotation and translation 

in a way that is independent of rotation direction27.  If C > 0, then there is a nonlinear thrust in the 

same direction as translation which could stabilize a translating symmetry-broken state, i.e., a 

rotating non-translating sphere could become unstable to translation; while if C < 0, then nonlinear 

effects stabilize the zero-velocity state. Due to the instability of the non-translating state, upon 

rotating an initially stationary sphere any small perturbation would lead to the symmetry-broken 

translating state. The sign of the force contribution depends on the parameters specifying the third 

order fluid, which are known for common fluid models. As detailed in the Appendix Section 6, we 

have found that the force contribution is positive for many model constitutive laws, implying that 

nonlinear fluid response can lead to symmetry-breaking propulsion in many types of non-

Newtonian fluids. The form of F(2)
thrust suggests that there may be a critical rotation rate at which 

it balances the drag F(0), and symmetry-breaking propulsion becomes possible. Finally, we note 

that although in a second-order fluid, rod climbing is directly related to the first and second normal 

stress coefficients that specify the constitutive law47, our propulsive force is a higher order effect 

that can only be consistently described using all the parameters that specify a third order fluid, 

implying that nonlinearities beyond the normal stress differences impact symmetry breaking 

propulsion. 

To support this proposed symmetry breaking mechanism, we used microscale particle 

image velocimetry (µPIV) to visualize the flow fields of microparticles within 4% mucin.  These 

experiments were performed using a different experimental set up, but with operating parameters 

identical with the previous experiments (see 2.4 Methods). Figure 2.4 (a-i) shows instantaneous 
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snapshots of the PIV velocity flow fields in the x-y plane and their indicated component velocities 

for: (a-c) a microparticle that could not propel, (d-f) a microparticle propelling, and (g-i) a 

microparticle propelling along the positive z-direction. In Fig. 2.4 (a) the propulsion velocity flow 

fields to the left and right of the microparticle cancel each other out, while the transverse velocities 

in (b) are unidirectional; this results in (c) having no net propulsion along the propulsion axis. In 

 

Fig. 2.4. PIV in x-y plane of microparticles in 4% mucin. The (a) propulsion direction, (b) transverse direction, 

and (c) total velocity flow field for a microparticle not propelling. The (d) propulsion direction, (e) transverse 

direction, and (f) total velocity flow field for a microparticle that is propelling. The (g) radial, (h) azimuthal, and 

(i) total velocity flow field for a microparticle propelling away from the substrate (positive z-direction). Inward 

radial flow is consistent with secondary flows generated by hoop stresses. All PIV experiments were performed 

close to the boundary (< 100 µm, see 2.4 Methods). Cyan arrows represent propulsion direction and magenta 

arrow represents rotation direction. Magenta circle is the microparticle. Color bars to the right represents 

percentage of velocity magnitude with respect to the maximum velocity magnitude. 
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Fig. 2.4 (d) the velocity flow fields do not cancel each other out, and the transverse velocity in (e) 

to the left of the microparticle is no longer unidirectional; this results in (f) having a net propulsion 

velocity. When examining a microparticle propelling in the positive z-direction, we found that in 

addition to a persistent azimuthal component [Fig. 2.4 (h)], there is a radial component [Fig. 2.4 

(g)] that converges towards the microparticle, resulting in the velocity flow field shown in Fig. 2.4 

(i). Notably, in contrast to the flow around a rotating sphere in a Newtonian fluid, which is purely 

azimuthal50, the significant inward radial flow is consistent with the secondary flows expected 

from our hypothesized propulsion mechanism involving rod-climbing-like effects.  Supporting our 

proposed flow mechanism, we found that the observed radial flow closely agreed with the 

secondary flow predicted by the theoretical perturbation expansion described above (see Appendix 

Section 11 for details). Similar µPIV experiments for 0.25% polyacrylamide were also performed 

and can be found in Section 12 of the Appendix. 

2.3 Discussion 

Microrobots with geometry and actuation that obey fore-aft symmetry are often thought to 

be incapable of propulsion, but we have demonstrated that a spherical magnetic microparticle 

steadily rotated by a magnetic field spontaneously breaks symmetry to develop a pair of states with 

propulsion in opposite directions along the rotation axis. We proposed a mechanism for the 

symmetry breaking by which rod-climbing-like effects due to nonlinear viscoelasticity around the 

rotating sphere provide a propulsive force by squeezing at the rear of the sphere. A theoretical 

analysis shows that such propulsive forces develop quite generically in a range of fluids with 

nonlinear constitutive laws, and flow visualization reveals inward radial flows consistent with this 

mechanism. The two symmetry-broken states, and hence direction of propulsion, can be selected 

between by application of a static magnetic field along the rotation axis, enabling guided 3D 
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propulsion. This type of propulsion may be ubiquitous in nonlinear fluids; we demonstrated it in 

two different fluids that have normal stress differences which can lead to rod-climbing-like effects. 

We have also observed that microswimmers composed of two beads with similar diameters can 

propel through mucus solutions35, thus we expect many other symmetric geometries to behave 

similarly. 

In this chapter we focused on the existence and mechanism for symmetry breaking 

propulsion; further work is needed to completely understand the conditions (geometry, rotation 

frequency, fluid properties) required for symmetry breaking to occur, the size dependence and 

effect of boundaries on propulsion velocities, as well as how fluid properties and actuation history 

control the hysteresis and selection of propulsion direction. In addition, while the static magnetic 

field selects the propulsion direction, the precise mechanism by which the accompanying dipole 

tilting and dynamic rotation leads to selection remains poorly understood. The propulsive force we 

identified here may be related to recently observed reductions in drag on sedimenting and rotating 

spheres in nonlinear viscoelastic fluids52 and the mechanism we described has some similarities to 

elastic instabilities in Couette-Taylor flows53; the analogy might shed light on criteria for the 

instability of the zero propulsion state of our microparticles to symmetry breaking states. Our 

perturbative analysis cannot find the symmetry-broken state, since that would require the second 

order nonlinear contribution to cancel the zeroth order drag, which violates the assumptions of the 

perturbative expansion; additional theoretical work which explicitly identifies symmetry-broken 

states in specific nonlinear fluids could also shed light on these questions, but would likely require 

direct numerical simulation.  

For applications and broader impacts, the microparticles demonstrated here provide a novel 

avenue to improve existing medical applications.  Spherical microbeads – easily fabricated and 
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functionalized54-62 – are already being utilized for tasks including hyperthermia63,64, delivery of 

therapeutics65, magnetic resonance imaging66,67, and the formation of efficient microswimmers68. 

As mucus is ubiquitous throughout the human body43 and hinders the transport of medically loaded 

micro- and nanoparticles43,69-73, the controllable propulsion of spherical microparticles through 

mucus solutions opens the door to enhanced efficacy in biomedical applications. The mechanism 

of nonlinear symmetry breaking may provide insight into microscale pumping and the locomotion 

of microorganisms, which, along with artificial microswimmers, experience altered and sometimes 

improved motility in complex fluids74-79. Hoop stresses such as we consider have been suggested 

to stabilize the trajectories of rotating bacteria80. In general, our work demonstrates that 

nonlinearities that do not explicitly break a symmetry may nonetheless enable microscale 

propulsion via symmetry breaking. Thus, it may be profitable to consider propulsion in other 

systems where it is seemingly disallowed by symmetry. Such symmetry-breaking propulsion has 

been predicted in autophoretic propulsion of chemically reactive particles81, and in purely 

mechanical systems outside the zero-Reynolds number limit, for heaving flat plates via inertial 

effects82. In microscale systems, we speculate that there may be other nonlinearities that may lead 

to spontaneously symmetry-breaking propulsion not only for artificial microrobots but also living 

microorganisms. 

2.4 Methods 

Fabrication and Characterization of Nonlinearly Viscoelastic Fluids 

Human mucus can range in mucin glycoprotein concentration between 2-5%; we chose 4% 

as a baseline value43. Synthetic mucus was synthesized using mucin from porcine stomach (Sigma 

Aldrich, ME2378), by adding mucin to 150 mL of deionized water to produce a 4% mucin w/v 

synthetic mucus formulation. A stir bar and hot plate set to 60C was used to agitate the mixture 
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for 30 minutes. The mucus was then transferred to three 50 ml centrifuge tubes and centrifuged 

for 10 minutes at 1200 relative centrifugal force (rcf) to remove any large aggregates (> 5 µm) of 

undissolved mucus particulates from the sample. The supernatant was then transferred to fresh 

tubes and stored at 4C until used in experiments. Scanning electron microscopy (SEM) was used 

to visualize the heterogeneous mesh fibers and the porous voids that make up mucins overall 

structure [Fig. 2.5 (a)]. Using a TA Instruments Discovery Hybrid Rheometer (DHR-3) the mucus 

samples were characterized using stress sweeps, which were performed using a 40 mm parallel 

plate under an incremental shear rate from 1 to 100 (1/s) with 30 seconds of averaging time used 

at each data point, with 5 points collected per decade. The averaged results for different mucin 

concentrations (at least 3 trials each) and 0.25% polyacrylamide are reported in Fig. 2.5 (b) where 

all samples possessed a clear and consistent shear thinning effect. As the concentration of mucin 

increased, the overall viscosity increased monotonically and the resulting viscosity curves were in 

good  agreement with previous experimental studies reported in literature45. Additionally, it was 

found that the centrifugation step only moderately affected the overall rheological behavior of the 

mucus, as can be seen in Fig. 2.5 (c) which compares centrifuged and uncentrifuged 4% mucin 

formulations. Interestingly, mucin concentration was also demonstrated to positively effect 

microparticle propulsion as concentration increased (see Appendix Section 9). Oscillation 

experiments performed on the DHR-3, using a 40 mm parallel plate with a frequency of 10 Hz, for 

4% mucin revealed that at low oscillation strains the storage and loss moduli (Pa) had similar 

magnitudes [Fig. 2.5 (d)]. As the oscillation strain increased the storage modulus decayed sharply, 

resulting in the mucus behaving more like a liquid once the loss modulus was dominant; this is 

consistent with the documented viscoelastic behavior of biological mucus43. Biological human 

mucus was not used in experiments because it had inconsistent rheological properties (which vary 
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between humans) and was difficult to store for long periods of time. While this synthetic mucus 

 

Fig. 2.5. Rheological characterizations of synthetic mucus and polyacrylamide. (a) Scanning electron microscopy 

(SEM) image of synthetic mucus. (b) Viscosity vs. shear rate curves for different concentrations of mucin and 

0.25% polyacrylamide. (c) Comparison of centrifuged and uncentrifuged 4% mucin formulations. (d) Evolution 

of storage modulus (Pa) and loss modulus (Pa) with increasing oscillation strain for 4% mucin; frequency was 

fixed at 10 Hz during this experiment. (e) First (Ψ1) and second (Ψ2) normal stress coefficients for 10% mucin 

with theoretical inertial correction (see Appendix Section 10). Error bars represent standard deviation.  
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formulation lacks many components typically found in human mucus (lipids, salts, DNA, proteins, 

etc.), literature suggests that mucus viscoelastic behavior is completely dominated by mucin 

glycoprotein concentration, whereas the other components only marginally contribute to these 

properties43. The saline solution used in control experiments was created by mixing deionized 

water and NaCl (Sigma Aldrich, S5886) into a 15% w/v ratio. Polyacrylamide solutions were 

fabricated by mixing polyacrylamide (Sigma Aldrich, 92560) with deionized water in a 0.25% w/v 

ratio. The polyacrylamide mixture was agitated overnight using a magnetic stir bar and heated at 

a temperature of 30°C. The 0.25% polyacrylamide was analyzed rheologically with a cone-and-

plate geometry (40 mm diameter, 4 angle) using the same experimental procedure described 

previously for mucus; the results were similar to those reported in literature45. Methylcellulose 

(Sigma Aldrich, M0512) at a 0.2% concentration was synthesized using directions provided by 

Sigma Aldrich. It is known that polyacrylamide solutions develop first and second normal stress 

differences under applied shear46,47.  We also measured the first and second normal stress 

differences developed by high concentration mucin solutions under shear from the axial forces 

measured by an TA Instruments AR-G2 rheometer using cone-and-plate (60 mm diameter, 2 

angle) and parallel plate (60 mm diameter) geometries83,84 (see Appendix Section 10 for details).  

The measured first and second normal stress coefficients for 10% mucin solution are shown in Fig 

2.5 (e), with a positive first normal stress coefficient and smaller negative second normal stress 

coefficient. Such normal stress differences are known to lead to rod-climbing effects. We also 

measured first and second normal stress differences in 2.5% polyacrylamide with results 

comparable to literature (Appendix Section 10). Note that the strain rate expected nearby a rotating 

sphere is equal to the angular velocity of the sphere; for our experiments this varies between 0-120 

s-1. 
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Control System Setup 

 Avidin-coated 10.6 µm ferromagnetic particles (Spherotech, SVFM-100-4) were 

suspended inside synthetic mucus or polyacrylamide solutions and were used for the majority of 

the experiments. Other microparticles utilized included 2 µm (SVFM-20-5), 4 µm (SVFM-40-5), 

and 8 µm (SVFM-80-4) diameters. Samples were prepared such that 0.5-1 µl of the ferromagnetic 

particle suspension of the selected diameter was added to 1.5 ml of either mucus or polyacrylamide 

solution. The sample was then vortexed slightly and placed on a permanent magnet for 15 seconds 

to magnetize the particles. Afterwards, 40 µl of the sample was added to a polydimethylsiloxane 

(PDMS) chamber, approximately 2 mm in diameter and 1 mm in height, that was situated on a 

number 1.5 glass coverslip (25 × 30 mm2). An 18 × 18 mm2 coverslip was then placed on top of 

the chamber to seal it, minimizing both evaporation and internal flows. The chamber was then 

loaded into an approximate Helmholtz coil system mounted to a Leica DM IRB inverted 

microscope (Type 090-132.701); a full description of the approximate Helmholtz coil system and 

it’s magnetic field profiles can be found in Appendix Section 7. The Helmholtz coils do not 

produce any significant magnetic field gradients and Appendix Section 8 demonstrates that only 

rotating magnetic fields can propel a microparticle. A 63× objective was used to visualize 

microparticle motion within the sample chamber. A complementary metal oxide semiconductor 

(CMOS) camera (Point Grey, FL3-U3-13Y3M-C) was used to record experiments at 30 frames 

per second (fps) with a pixel resolution of 512 × 640 (0.152 µm/pixel). A customized LabVIEW 

program was developed to control signal outputs to interfaced digital acquisition (National 

Instruments, DAQ) control boards which then directed those signals to the attached power supplies 

(KEPCO, BOP-20-5M). There was one power supply per coil pair within the approximate 

Helmholtz coil system. The magnetic fields generated by this system are mostly uniform and no 
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meaningful magnetic field gradients are produced. A magnetic field was generated that is 

described by,  

𝐵⃗ =  [
−𝐵𝑠 cos 𝜃 + 𝐵𝑟 sin 𝜃 cos𝜔𝑡
𝐵𝑠 sin 𝜃 + 𝐵𝑟 cos 𝜃 cos𝜔𝑡

𝐵𝑟 sin𝜔𝑡
],        (2.2) 

𝑛⃗ =  [− cos 𝜃 sin 𝜃 0],         (2.3) 

where Bs is the static magnetic field amplitude, Br is the rotational magnetic field amplitude,  is 

the rotational frequency (rad/s), t is the time (seconds), and θ is the heading angle of the propulsion 

direction. In experiments, Br was adjusted to be proportional to the applied frequency (|𝐵𝑟| =

0.5𝑓, where 𝑓 is the frequency in Hz) in order to prevent the magnetic microparticle rotation from 

desynchronizing with the rotation frequency of the  magnetic fields27.  The propulsion direction is 

defined to be along the rotation axis and corresponds to the heading vector (𝑛⃗ ). When looking from 

behind the heading vector (𝑛⃗ ), rotation can be defined as counterclockwise with positive  and 

clockwise with negative .  In a Newtonian fluid, when there is no static field (Bs = 0) and the 

rotational frequency is below a critical step-out frequency, a spherical microparticle with a 

permanent dipole moment rotates about the heading vector (𝑛⃗ ) at the same rotational frequency as 

the field, and its dipole moment is in the plane perpendicular to 𝑛⃗  28. When there is an additional 

static field, the moment is tilted at a constant angle out of the plane perpendicular to 𝑛⃗ , and the 

moment and microparticle rotate about 𝑛⃗  at the same frequency as the field, which makes the 

moment co-rotate with the field. This rotation is combined with an additional rotation of the 

particle about the moment direction (see Section 5 of the Appendix for details). 
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Experiment Details 

 The first set of experiments involved rotating microparticles suspended within fluids under 

incrementally increasing rotational frequencies. The rotation axis (𝑛⃗ ) and propulsion direction 

were set to be along the positive x-direction, with the z-direction (height) oriented to be 

perpendicular to the coverslip. The transverse velocity was found to be a function of distance [Fig. 

S1 (b)-S2] from the substrate of the sample chamber and rotation direction (Fig. S3) of the rotating 

magnetic field; this motion corresponds to well-understood rolling motion along the nearest 

boundary41,42.  As mentioned previously, in this paper we focus on propulsion along the rotation 

axis (𝑛⃗ ) which is related to the fore-aft symmetry. For the experiments in Fig. 2.1, the static field 

(Bs, Eq. 3) was set to 2 mT, the heading angle (θ) was set to 0, while the frequency (𝜔), was 

incremented from +1 to +18 Hz at 1 Hz increments (𝜔 = 2𝜋𝑓, where 𝑓 is the frequency in Hz)   

counterclockwise when viewed from behind the heading vector. The time between each increment 

during the experiments was variable, but the video frames captured by the CMOS camera during 

the experiments could be precisely correlated to each increment, allowing for the accurate 

extraction of velocity data. All experiments described involve particles >100 µm from boundaries 

and at least three trials were conducted per microparticle with at least six microparticles examined 

per fluid; the results of all microparticles were then averaged together. Velocities were calculated 

by dividing the displacement of a particle between frames by the sampling time (1/30 s). While 

the velocities plotted in Figure 2.1 represent the average of the data, it is important to note that 

microparticles moved faster or slower depending on uncontrollable factors (location in mucin, 

diameter variations, etc.) and leads to some differences in velocities for Figure 2.3. This same 

experimental procedure will also used in experiments shown in Chapter 3 and 4. 
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To test open-loop directional control of microparticles, the rotational frequency was fixed 

as a constant (counterclockwise when viewed behind the heading vector, see Fig. 2.2), Bs was set 

to 2 mT, and θ was incremented by 90 at user-specified time intervals. The proportional controller 

for 2D closed loop control used the same parameters for frequency and Bs, but θ was governed by, 

𝜃̇ = 𝑘Φ,           (2.4)  

Φ = 𝜑 − 𝜃,           (2.5)  

where 𝜃̇ is the time derivative of the heading angle, k is the gain parameter, Φ is the difference 

between the direction of the desired position relative to the microparticle (φ) and the heading angle 

of the microparticle (θ). For all experiments, in order to ensure a fast response from the controller, 

k was set to 5. More advanced proportional–integral–derivative (PID) controllers and 3D closed 

loop controllers will be explored in future work.  

For experiments involving static magnetic field incrementation, rotational frequency was 

fixed at 15 Hz (or 94.25 rad/s unless specified otherwise), the rotation direction of the magnetic 

field was selected to be counterclockwise when viewed from behind the rotation vector, and θ was 

set to 0 to ensure propulsion along the x-direction. The static magnetic field, Bs, was swept 

between -5 to 5 mT in 0.2 mT and 1 mT increments; again, the times between these increments 

were variable but the individual frames of the recorded videos could be matched to the 

experimental parameters being incremented. Hysteresis experiments were performed at the same 

incrementation, but between 2 mT to -2 mT and then back to 2 mT. All microparticles were 

examined over a minimum of at least 3 trials.  

The PIV data was collected using a Nikon Eclipse TI inverted microscope with a 100× 

total internal reflection (TIRF) objective. An electron-multiplying charge-coupled device 
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(EMCCD) camera (iXon 897, Andor Technology) was used to collect video captures at 60 fps. 

The experimental parameters were the same as the directional control experiments such that Bs = 

2 mT and the frequency was 15 Hz under counterclockwise rotation (when viewed from behind 

the rotation vector). Tracer particles with 200 nm diameter (Thermo Scientific, Fluoro-Max, G200) 

were mixed in a ~0.2 mg/ml concentration with the mucus medium and dispersed through 

vortexing. Due to experimental limitations, most of these experiments were performed close to the 

boundaries of the sample chamber, which led to both exaggerated transverse rolling translation 

(Fig. S3) and reduced propulsion velocity [Fig. S1 (b), Fig. S2]. The videos and extracted velocity 

flow fields were analyzed using both LaVision DaVis PIV software and MATLAB. Individual 

videos were converted into a series of still images where each image represents a single frame in 

the video. First, a PIV time series operation was performed to create velocity vectors for each 

individual frame. The velocity vectors from the individual frames were averaged over frames over 

the time periods of the videos up to a selected time (usually 20 seconds). Flows for the selected 

times of the experiments are presented in Fig. 2.4 and in Appendix Section 12; numerical 

information for all PIV experiments is tabulated in Appendix Section 13. Magnetic fields used 

to rotate the microparticles for these experiments were generated by a MagnebotiX magnetic field 

generator (MFG-100-i), which could produce rotating magnetic fields and static magnetic fields 

comparable to the approximate Helmholtz coil system discussed.  
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CHAPTER 3 

HETEROGENEOUSLY FLAGELLATED MICROSWIMMER BEHAVIOR IN VISCOUS 

FLUIDS 

3.1 Introductory Remarks 

The rotation and bundling of flagellar filaments are the primary means of locomotion by 

several types of bacteria85. Flagellin subunits, which make up the flagellar filaments, are naturally 

self-assembling and can polymorphically transform86,87 based on external stimuli such as pH88, 

physical stress89, and physiochemical changes within the surrounding environment90. Utilizing 

these flagella to create simple and efficient artificial microswimmers will allow for environmental 

adaptation and sensing. Without the onboard motors commonly found in bacteria, flagella have to 

be chemically attached to magnetic microparticles so they can be rotated using externally applied 

magnetic fields; these fields induce a torque analogous to the ones produced by the onboard 

motors. Microparticles by themselves are incapable of propelling by pure rotation within 

Newtonian fluids as demonstrated in Chapter 2, since they lack the flexibility and chirality 

necessary for propulsion in low Reynolds number environments24,25,91. The addition of a flagellar 

surface coating explicitly breaks the symmetry of the microparticle and allows for meaningful 

propulsion when exposed to rotating magnetic fields. 

Significant research has already been done documenting the isolation and repolymerization 

of bacterial flagella92,93. In previous work, polymorphic transformations were induced to 

understand how nanoswimmers, attached with a single flagellum, propelled using different coil 

forms94. These same nanoswimmers were also templated with nickel and titanium to improve 

responsiveness to applied magnetic fields and demonstrate biocompatibility95. Bacteria-inspired 

dumbbell microswimmers were fabricated by linking a microparticle with a magnetic nanoparticle 
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using a flagellar filament96. As opposed to having a single flagellum attached to a magnetic 

microparticle, a surface coating of flagella can be more advantageous, allowing for reliable 

fabrication of microswimmers and enabling diverse motion modes. The work presented here will 

investigate the propulsion characteristics of microswimmers formed by functionalizing 2 µm 

diameter magnetic microparticles (SVFM-20-5) with a surface coating of flagellar filaments. 

These microswimmers were investigated for their responsiveness to rotational magnetic field 

actuation, their comparative performance in Newtonian solutions of different viscosity, their 

 

Fig. 3.1. Fabrication of flagellated microparicles. (a) S. typhimurium were concentrated from a 10 L culture medium 

into a single solution through repeated centrifugation and resuspension. (b) Salmonella are pelleted and resuspended 

in polymerization buffer. (c) Flagella were sheared from the bacterial bodies and bacterial bodies were pelleted 

through centrifugation. (d) Flagella were purified through centrifugation. (e) About 20% of flagella were separated 

and coated with a NHS-Biotin complex. (f) Biotinylated flagella and (h) non-biotinylated flagella were 

depolymerized into flagellin monomers. (g) Biotinylated flagella were concentrated into seeding particles. (i) 

Biotinylated seeding particles were combined with non-biotinylated flagellin monomers and repolymerized into 

long flagella with biotinylated tips. (j) Flagella were fluorescently labelled using Cy3 dye. (k) Avidin-coated iron 

oxide particles (2 μm diameter) were introduced and chemically combined with flagella to form microswimmers. 

(l-o) Microswimmers with different distributions of flagella captured by an EMCCD camera; entire surfaces of 

microparticles were usually coated with flagella, with the average length of flagella along the surfaces being 

approximately 8 μm. (p) Overview of experimental setup, with approximate Helmholtz coil systems and computer 

controlled power supplies that respond to feedback from a camera. (q) Total magnetic field strength graph and its 

relationship to frequency used during experiments (|𝐵𝑟| = 0.5𝑓). Reproduced from Rogowski, Louis William, et al. 

"Heterogeneously flagellated microswimmer behavior in viscous fluids." Biomicrofluidics (2020) with the 

permission of AIP Publishing. 
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ability to perform simple trajectories, and their unique motion modes that occurred as a function 

of applied magnetic field rotation handedness. An illustration of the fabrication process for the 

microswimmers can be seen in Fig. 3.1 (a-k), with select heterogeneously flagellated 

microswimmers shown in Fig. 3.1 (l-o). The experimental set up [Fig. 3.1 (p)] and the magnetic 

field strength vs. frequency ratio used for these experiments [Fig. 3.1 (q)] are also provided. The 

processes associated with Fig. 3.1 are elaborated further in the 3.4 Methods section at the end of 

this chapter. A full description of the magnetic field controller can be found in the Appendix and 

in the 2.4 Methods section.  

3.2 Results 

For this study microswimmers were suspended inside 30% NaCl, 0.2% methylcellulose, 

and 0.4% methylcellulose solutions and then actuated at different rotational frequencies to generate 

generalized velocity profiles for each medium. The 30% NaCl solution was used to create a 

neutrally buoyant fluid medium for the microswimmers while replicating fluid properties similar 

to water. Methylcellulose solutions are well known polymer fluids which increase in viscosity as 

concentration increases;48,97 while methylcellulose is known to exhibit non-Newtonian shear 

thinning behavior at high shear rates, under low shear rates it maintains a Newtonian plateau.48 

For the purposes of these experiments microswimmers were only examined within the Newtonian 

regime. Using documentation from Sigma Aldrich, the viscosities were estimated to be ~9 and ~19 

centipoise (cP) for 0.2% and 0.4% methylcellulose concentrations, respectively. The density of the 

methylcellulose solutions was high enough to allow microswimmers to remain suspended in bulk 

solution for prolonged periods of time without noticeable gravity-driven sedimentation. The 

viscosity of the 30% NaCl solution was assumed to be ~1 cP from literature.98 Prior to experiments, 

litmus paper was used to verify that each solution had a neutral pH (~7) to ensure flagellar 
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polymorphic changes did not occur due to pH variations and that all flagella remained normal form 

in solution. From previous work, flagella were not observed to change coil forms through shear 

stress during magnetic actuation.99 Since flagella often coated the entire microparticle surface the 

exact number of flagella (short and long) was difficult to visually determine; however, through 

visual estimation, there were usually 12-24 long flagella on each microswimmer, with each having 

an average length of ~8 μm. The governing equations used to navigate these microswimmers are 

the same as the ones used in Chapter 2 (Equations 2.2 and 2.3) and can be found in 2.4 Methods. 

For all experiments, 𝐵𝑠 was fixed at a constant value (±0.2 mT), 𝜔  was increased at 1 Hz 

increments (or 6.28 rad/s), 𝜃  was fixed at zero degrees, 𝐵⃗   was rotated in the counterclockwise 

 

Fig. 3.2. Propulsion characteristics in viscous fluids. (a) Propulsion velocity vs. frequency curves for 

microswimmers in different fluid mediums. Microswimmers were compared with non-flagellated microparticles 

under the same frequency range in (b) 30% NaCl, (c) 0.2% methylcellulose, and (d) 0.4% methylcellulose. Error 

bars represent standard error. Reproduced from Rogowski, Louis William, et al. "Heterogeneously flagellated 

microswimmer behavior in viscous fluids." Biomicrofluidics (2020) with the permission of AIP Publishing. 
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direction, and both 𝐵𝑟 and ‖𝐵⃗ ‖ increased linearly with increasing 𝜔 (|𝐵𝑟| = 0.5𝑓, where 𝑓 is the 

frequency in Hz); a graph of the relationship for ‖𝐵⃗ ‖ to 𝜔 can be seen in Fig. 3.1 (q). The results 

of these rotation experiments produced the velocity vs. frequency curves found in Fig. 3.2. 

The propulsion velocity of microswimmers suspended in 30% NaCl increased linearly with 

frequency. Microswimmers tested inside the 0.2% methylcellulose solution experienced a 

consistent propulsion velocity lag at frequencies below 5 Hz, causing velocity to plateau; beyond 

5 Hz, however, the velocity of the microswimmers increased linearly with frequency. The 0.4% 

microswimmers had a linear relationship along the examined frequency range, but their overall 

velocity was greatly reduced in comparison with the other two fluids. The cause of the velocity 

lag in 0.2% methylcellulose microswimmers was speculated to be the result of the fluids increased 

viscosity and possible hindrances from polymer fibers at frequencies below 5 Hz (at this 

concentration), as it was repeatable between different microswimmers in the same fluid. After this 

critical point of 5 Hz, the slope of the 0.2% methylcellulose microswimmers velocity profile 

suggests that if frequencies were to continue to increase, they would overtake the propulsion 

velocities of microswimmers in 30% NaCl fluid. The most likely reason for this improved 

performance is the increased interaction with polymer fibers at higher rotational frequencies in 

0.2% methylcellulose, as similar performance increases are documented in other low concentration 

polymer fluids by both microorganisms and artificial microswimmers.74-76,100-102 To ensure 

microswimmer propulsion was the result of flagellar coatings, velocity vs. frequency curves for 

non-flagellated microparticles were also produced. Microswimmers and microparticles rotated in 

each medium can be seen in Fig. 3.2 (b-d) for 30% NaCl, 0.2% methylcellulose, and 0.4% 

methylcellulose, respectively. Microparticles displayed no linear velocity relationship with 

increasing frequency for any of the fluids; with the near constant residual velocity observed being 
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the result of drift produced by external disturbances. From this, it can be concluded that only 

microswimmers (microparticles with flagellar coatings) could actively propel inside each fluid 

medium.   

To complement the results of the microswimmer velocity profiles, a two-dimensional mean 

squared displacement analysis was performed to analyze the behavior of microswimmers under 

rotating and non-rotating cases. The mean square displacement (MSD) was calculated using,  

< 𝑟𝜏
2 > =

1

𝑁−𝜏
∑ [𝑟(𝑡𝑖 + 𝜏) − 𝑟(𝑡𝑖)]

2𝑁−𝜏
𝑖=1        (3.1) 

where < 𝑟𝜏
2 > is the MSD, 𝑁 is the number of time steps for a given trajectory, 𝜏 is the lag 

time, 𝑟 is the position vector, and 𝑡𝑖 is the 𝑖𝑡ℎ time increment.103 For both the rotating and non-

rotating cases the MSD profiles were modeled using,    

< 𝑟𝜏
2 > ∝ 4𝐷𝜏𝛼          (3.2) 

where 𝐷 is generalized diffusion and 𝛼 is the anomalous diffusion exponent; fittings were 

produced from the ensemble averaged MSD data over multiple rotating microswimmers (at least 

3 microswimmers per fluid medium with at least 3 trials each) and non-rotating microswimmers 

(dozens of individual microswimmers per fluid). Microswimmers were rotated at 19 Hz, while no 

externally applied magnetic field (static or rotating) was applied during the non-rotating cases. The 

𝑁 for Equation 3.1 was at least 600 for all trials. The smallest increment of 𝜏 was 1/30th of a 

second. The lag time intervals over which the nonlinear fittings were performed for rotating and 

non-rotating cases were different; the time interval for the rotating case was between 2 and 5 

seconds, while for the non-rotating case the interval was between 1/30th of a second and 3 seconds. 

These intervals were chosen because the MSD for the rotating cases tended to become 

homogeneous within this range and the MSD for non-rotating cases tended to display unreliable 
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behavior at larger lag times. A delayed rejection adaptive Metropolis (DRAM) Markov chain 

Monte Carlo technique was utilized to estimate the coefficients of Equation 3.2 for both rotating 

and non-rotating cases (see 3.4 Methods).104 The parameters estimated using this DRAM technique 

can be found in Table 3.1 and the results of the experiments can be visually seen in Fig. 3.3 for 

both the rotating and non-rotating cases.   

Table 3.1: Coefficients for Fig. 3.3. 

 

Test 𝜔 (𝐻𝑧) 𝐷 (
𝜇𝑚2

𝑠𝛼 ) 𝛼 

30% NaCl microswimmer 19 1.16 1.98 

30% NaCl microswimmer 0 0.021 0.99 

30% NaCl microparticle 0 0.0256 0.97 

0.2% methylcellulose microswimmer 19 0.21 1.87 

0.2% methylcellulose microswimmer 0 0.0096 0.97 

0.2% methylcellulose microparticle 0 0.0127 0.93 

0.4% methylcellulose microswimmer 19 0.0418 1.86 

0.4% methylcellulose microswimmer 0 0.0033 0.99 

0.4% methylcellulose microparticle 0 0.0029 0.88 

 

The behavioral differences between rotating and non-rotating microswimmers can be seen 

in Fig. 3.3 (a-c) for (a) 30% NaCl, (b) 0.2% methylcellulose, and (c) 0.4% methylcellulose 

respectively. Microswimmers rotated at 19 Hz displayed ballistic behavior at short lag times with 

high diffusivity constants and 𝛼's much greater than 1, indicating superdiffusive behavior.105 The 

non-rotating microswimmers displayed linear behavior in each fluid medium, with low generalized 

diffusivity coefficients and 𝛼's close to 1, indicating diffusive behavior. However, as fluid viscosity 
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increased, the generalized diffusivity of the rotating microswimmers decreased by almost an order 

of magnitude; this can be seen graphically when all three microswimmers are plotted together in 

Fig. 3.3 (d), where each microswimmers MSD curve shifted downward for more viscous fluid 

mediums. The same effect can be seen in the non-rotating microswimmers in Fig. 3.3 (e) and Table 

3.1, where the diffusion coefficient decreased as viscosity increased; while the 𝛼's also varied in 

each fluid medium, they were all consistently very close to 1. Non-flagellated microparticles were 

also examined in Fig. 3.3 (f) and while their diffusivities tended to be slightly higher in 30% NaCl 

and 0.2% methylcellulose than those measured for microswimmers, experiments in 0.4% 

methylcellulose only showed a negligible difference between the diffusivities of microswimmers 

and microparticles (Table 3.1). 

 

Fig. 3.3. Mean square displacement analysis of flagellated microparticles. (a-c) Mean square displacement curves 

for microswimmers in (a) 30% NaCl, (b) 0.2% methylcellulose, and (c) 0.4% methylcellulose under both rotating 

(19 Hz) and non-rotating cases. (d) The mean square displacement of the rotating microswimmers from all three 

fluid mediums. (e) Mean square displacement of non-rotating microswimmers in each fluid medium. (f) Mean 

square displacement of non-rotating microparticles (non-flagellated) in all three mediums. The contrasting solid 

colored lines represent the fits produced from the coefficients estimated in Table 3.1; in (a-f) the green, magenta, 

and black solid lines correspond to the magenta, green, and cyan data points, respectively. Short solid black lines 

in (d-f) represent curves showing superdiffusion (𝛼 > 1) and normal diffusion (𝛼 = 1), respectively. Reproduced 

from Rogowski, Louis William, et al. "Heterogeneously flagellated microswimmer behavior in viscous fluids." 

Biomicrofluidics (2020) with the permission of AIP Publishing. 
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Directional responsiveness of microswimmers was explored to understand the viability of 

performing user selected trajectories. A proportional controller was used to change the heading 

angle (𝜃) in order to properly align the microswimmer with a desired user selected target 

destination. The proportional controller is the same as the one used in Chapter 2 to investigate the 

microparticles suspended within synthetic mucus (see 2.4 Methods). For all experiments, in order 

to reach the desired 𝜃 quickly, 𝑘 was selected to be 5, while the parameters 𝐵𝑠, 𝐵𝑟, ‖𝐵⃗ ‖, and 𝜔, 

were fixed throughout the experiments. Figure 3.5 shows the results of microswimmers performing 

the trajectories of S, M, and U, the initials of Southern Methodist University, inside a 30% NaCl 

solution (similar to the experiments in Fig. 2.2). While the microswimmers do not perform each 

trajectory perfectly, this was expected due to fluidic disturbances and the constant adjustments 

being made to 𝜃 at a sampling time of 30 frames per second (fps). However, the microswimmers 

did indeed manage to come close to most of the specified points and ultimately generated the 

 

Fig. 3.4. Trajectories of flagellated microparticles. (a-c) User selected path trajectories for S, M, and U. Magenta 

dots represent the goal position for the microswimmer, while the dashed line represent direct paths between each 

point. The timings for each trajectory were 360, 180, and 40 seconds for (a-c), respectively. The positional error 

from the target positions and the microswimmer can be seen in the graphs beneath each trajectory. Vertical 

magenta dashed lines in the error plots represent target locations from the respective trajectories. Reproduced 

from Rogowski, Louis William, et al. "Heterogeneously flagellated microswimmer behavior in viscous fluids." 

Biomicrofluidics (2020) with the permission of AIP Publishing. 
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desired shapes. The positional error of the microswimmers as they approached each of the target 

points (magenta dots) was plotted below each trajectory in Fig. 3.4. All error graphs show that 

positional error decayed as the microswimmer approached each respective target point in all three 

trajectories.  The largest error measured between a microswimmer and a target position, before 

proceeding to the next target position in the trajectory, was ~5 μm. 

The magnetic dipoles of the microparticles making up each microswimmer always orient 

themselves to align with the magnetic field vector (𝐵⃗ ) in Equation 2.2 and propel themselves along 

the direction vector (𝑛⃗ ) in Equation 2.3 (see 2.4 Methods). The dipoles were made to rotate 

clockwise and counterclockwise in the plane perpendicular to the 𝑛⃗   of each microswimmer by 

changing the sign of 𝜔 from positive to negative [see inset of Fig. 3.5 (a)]. While the performance 

of microswimmers under counterclockwise rotation was consistent (and used for all previous 

experiments) in causing microswimmers to propel linearly with frequency, clockwise rotation 

imparted notably diverse frequency responses between microswimmers. Figure 3.5 (a-d) shows 

the behavior of four microswimmers inside 30% NaCl, examined under both counterclockwise 

and clockwise rotation, where 𝜔 was increased at 1 Hz increments; the microswimmers were first 

rotated counterclockwise for multiple trials (at least 3) and then switched to clockwise rotation for 

the remaining trials (at least 3). In all four cases, counterclockwise rotation resulted in a linear 

velocity profile, while clockwise rotation created anomalous swimming behavior. In (a) and (d) of 

Fig. 3.5, clockwise rotation resulted in a reduced swimming velocity along the intended direction 

(positive x-direction), while (b) and (c) resulted in frequency induced reversals of swimming 

direction (FIRSD),106 which was repeatable between multiple examinations of these 

microswimmers. These anomalies and FIRSD effects were determined to be related to the bundling 

and unbundling of long flagella attached to the microswimmers during clockwise rotation. Normal 
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form flagella, used throughout these experiments, is naturally left handed and therefore has the 

same sense as a counterclockwise rotating magnetic field. Under a clockwise rotation, however, 

the flagella are opposite to the sense of the rotating magnetic field, leading to unbundling and 

reduced motility. For situations with multiple flagella, it has been shown that normal form flagella 

will naturally bundle together at a rate proportional to the motor frequency,107 and behave as 

though they were a single larger flagella, with a thickness equal to the summed radii of the flagella 

 

Fig. 3.5. Frequency induced reversal of swimming direction. (a-d) Individual microswimmer performance under 

both counterclockwise and clockwise rotation. The inset of (a) shows how microswimmers interact with magnetic 

fields produced from Equations 2.2 and 2.3, where 𝐵⃗  rotates around the x-axis, 𝑛⃗  is the direction vector, red and 

blue hemispheres represent magnetic dipoles, and the magenta and green arrows represent counterclockwise and 

clockwise rotation, respectively. Fluorescence imaging in the inset of (a) shows that under counterclockwise 

rotation, flagellar bundling occurs, while under clockwise rotation, the flagella unbundled; scale bars in both 

images are 10 μm. Dashed lines represent the x-intercepts, solid lines represent the fits, error bars represent 

standard error, and the lines between clockwise data points were used to guide the eye. Reproduced from 

Rogowski, Louis William, et al. "Heterogeneously flagellated microswimmer behavior in viscous fluids." 

Biomicrofluidics (2020) with the permission of AIP Publishing. 
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within the bundle108 [this bundling would explain some of the performance increases seen with the 

microswimmer in Fig. 3.5 (d) under counterclockwise rotation, while (a-c) were all otherwise 

consistent with Fig. 3.2's predictions for 30% NaCl]. While this is not the same kind of bundling 

experienced by microorganisms, since they have onboard motors for individual flagella filaments, 

the bundling of flagella attached to artificial nanoswimmers has been reported previously, with 

notable performance variations before and after bundling.99 Using a Nikon Eclipse Ti inverted 

fluorescence microscope (see 2.4 Methods) and a magnetic field controller (MagnebotiX, MFG-

100-i), microswimmers were actuated close to the substrate under both counterclockwise and 

clockwise rotation (5 Hz) to observe bundling and unbundling behavior; instantaneous snap shots 

of these experiments are shown in Fig. 3.5 (a)'s inset. From these images, it can be seen that 

flagellar bundles form under counterclockwise rotation at the front and rear of the microswimmer, 

but under clockwise rotation the previously observed bundles were no longer present. While there 

may be other factors at work, flagellar bundling and unbundling reasonably explains the diverse 

behavior observed during these experiments. 

3.3 Discussion 

The reliability of heterogeneously flagellated microswimmers inside fluids of different 

viscosities was demonstrated. Unlike other microswimmers previously developed in literature, 

which often rely on complex fabrication techniques, the presented microswimmers were 

stochastically assembled by mixing biotinylated flagella with avidin-coated microparticles. The 

assembled microswimmers were capable of performing consistently in various fluid mediums 

despite their inherent heterogeneous flagellar surface coatings. Microswimmers inside both 30% 

NaCl and different methylcellulose concentrations were demonstrated to be linearly dependent on 

applied rotational frequency, however, microswimmers in the 0.2% methylcellulose had to first 



 

39 

 

overcome an initial propulsion velocity lag, present at frequencies below 5 Hz, before being able 

to maintain a linear velocity profile; this was suspected to be the result of fluid viscosity and 

hindrances from polymer fibers at these low frequencies. Microswimmers within 0.2% 

methylcellulose were shown to outperform microswimmers within the 30% NaCl solution at 

higher rotational frequencies; this kind of performance increase has been observed previously, in 

polymer fluids of low concentration, by both microorganisms and artificial microswimmers74-76,100-

102.  

 Microswimmer propulsion was verified to be caused solely by the attachment of flagella, 

since non-flagellated microparticles displayed no velocity relationship with increasing frequency. 

Using a two-dimensional mean square displacement (MSD) analysis, both rotating (19 Hz) and 

non-rotating (0 Hz) microswimmers were observed. Rotating microswimmers had ballistic motion 

at short time scales and had significantly higher generalized diffusion coefficients than non-

rotating microswimmers. The diffusivity of the rotating microswimmers decreased proportionally 

as the viscosity of the surrounding fluid medium increased. Interestingly, during the non-rotating 

scenario, microswimmers had reduced diffusivity compared to non-flagellated microparticles, but 

this will require more dedicated research in the future to fully understand. Based on these results, 

the flagellar coatings were shown to allow for ballistic behavior under rotation but hindered the 

diffusivity of microswimmers when experiencing only purely diffusive behavior (Brownian 

motion).  

Microswimmers were demonstrated to perform selected trajectories under proportional 

feedback control, with the positional error between the microswimmer and the target locations 

decaying throughout each experiment. Differences between the desired trajectories and the actual 

trajectories performed by the microswimmers (or other positional errors), can be attributed to 
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instabilities in the fluid medium and the sampling time of the controller. Finally, microswimmers 

were shown to exhibit diverse behavior under clockwise rotating magnetic fields, with frequency 

induced reversals of swimming direction (FIRSD) occurring in some microswimmers. Flagellar 

unbundling was identified as the cause for this FIRSD behavior and was visualized using 

fluorescence microscopy. While these FIRSD effects were not always guaranteed, they did display 

remarkable repeatability between individual microswimmers. Likewise, the guarantee of a linear 

velocity relationship to frequency of microswimmers under counterclockwise rotation was also 

demonstrated.  Future work will be dedicated to further visualizing the bundling behavior of 

artificial microswimmers and comparing them with their bacterial counterparts, as well as 

continuing to modulate the surface distribution of flagella to initiate more controlled FIRSD 

effects. Additional polymorphic forms of flagellar will also be analyzed to understand the 

performance differences of microswimmers induced by the different coil forms. 

3.4 Methods 

Flagella Isolation 

The flagella were isolated from S. typhimurium (SJW 1103) and repolymerized using 

methods adapted from Asakusa’s original procedures92,93. First, S. typhimurium was cultured in 

approximately 10 liters of a modified Luria-Bertani (LB) broth recipe (1.00% yeast extract, 1.00% 

tryptone, 0.30% glucose, 0.66% dipotassium phosphate and 0.03% monopotassium phosphate in 

percent by weight). After a 12-16 hours incubation-shaking process (36C, 130 rpm). The culture 

media was centrifuged at 3500 relative centrifugal force (rcf) for 35 minutes, where the bacteria 

in suspension were pelleted to the bottom of the centrifuge tubes; this centrifugal process was then 

repeated until all the culture media was used. The pelleted bacteria were then resuspended into a 

0.01 M potassium phosphate buffer (pH 6.5, polymerization buffer) with a 150 mM of NaCl, and 
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concentrated together into a single tube with a final volume of 50 ml. This concentrated solution 

of bacteria was then vortexed for 20 minutes to shear the flagella from the bacterial bodies. The 

concentrated solution was then centrifuged for 15 minutes at 16,000 rcf, where afterwards the 

pelleted bacterial bodies were disposed of, while the supernatant containing the flagella was 

transferred to a new tube. The flagellar solution was then centrifuged at 100,000 rcf for one hour 

and the flagella were pelleted. The purified flagellar pellet was then resuspended in the 

polymerization buffer with a final volume of 1.5 ml per pellet; further purifications at 100,000 rcf 

for one hour were performed as needed. About 20% of the isolated flagella were taken and mixed 

with EZ-LinkTM NHS-Biotin (Thermo Fisher Scientific, 20217) using the standardized process 

outlined by Thermo Fisher. After 30 minutes, the biotin complex was completely bound to the 

flagella. The solution was then centrifuged at 16,000 rcf for 15 minutes to remove any excess 

biotin from the solution. Both the biotinylated and nonbiotinylated flagellar solutions were then 

placed in a water bath at 65C for 10 minutes; this step depolymerized the flagella into its 

constituent flagellin monomers. Both solutions were then centrifuged at 150,000 rcf for one hour 

to remove any excess proteins or debris. The supernatants containing the monomers were then 

transferred to new centrifuge tubes. The biotinylated monomers were then introduced into a 2 M 

sodium phosphate solution of an equal volume (750 µl each) and incubated for 30 minutes in order 

to turn the monomers into short flagella (seeding particles). The seeds were then introduced into 

the non-biotinylated monomers, in a 1:5 ratio, and uniformly mixed by vortexing for 5 minutes; 

they were then left to incubate for 48 hours at room temperature. The resulting repolymerized 

flagella were between 10-25 µm in length with one of their end points being biotinylated. The 

repolymerized flagella were then centrifuged at 100,00 rcf for one hour and resuspended using a 

0.01 M potassium phosphate (pH 7.5, conjugation buffer) with 150mM of NaCl solution for a total 
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volume of 1.5 ml. Cy3 dye (Sigma Aldrich, GEPA23001) was reconstituted in conjugation buffer 

(1.5 ml) and then mixed in a 1:1 ratio with the flagellar solution; 1 M of sodium bicarbonate was 

added (5% of the final volume) to help the dye attach to the flagella. After 2 hours, the Cy3 labeled 

flagella were centrifuged at 100,000 rcf and resuspended using the conjugation buffer to a total 

volume of 1.5 ml.  Approximately 5-20 µl of flagellar solution was then placed in a 5 ml centrifuge 

tube. Avidin coated microparticles were added to the tube in a 1-2 µl solution and gently shaken 

for 5 minutes within the flagellar solution to ensure flagellated microparticle formation. The 

avidin-biotin bonding, between the microparticle and the flagellar ends, is the strongest non-

covalent bond found in nature109. A detailed outline of this process can be found in Fig. 3.1 (a-k). 

Flagellated microparticles were visualized using fluorescence microscopy and shown in Fig. 3.1 

(l-o). The distribution of flagella along the hemisphere was highly random, but it was visually 

estimated that anywhere from 12-24 flagella were present along the surfaces of the particles with 

average lengths of about 8 µm. After the fluid medium of interest is added to bring the total volume 

of the centrifuge tube to 750 - 1000 µl, a portion of the fluid is loaded into a polydimethylsiloxane 

(PDMS) chamber 3 mm in diameter and 1 mm in height situated on a No. 1.5 glass cover slide (25 

× 30 mm2). The chamber was then sealed using a smaller No. 1.5 glass cover slide (18 × 18 mm2) 

and placed in the center of the approximate Helmholtz Coil system where it was ready for 

experimentation (see 2.4 Methods and Appendix). 

Fitting of Mean Square Displacement Data 

Fittings for mean square displacement graphs (Fig. 3.3) were calculated using a delayed 

rejection adaptive Metropolis (DRAM) Markov chain Monte Carlo algorithm.104 Markov chains 

had a length of 50,000 and only the last 10% of the chain was used to estimate the parameters 

shown in Table 3.1. A burn-in of 10,000 was used before adaptation occurred using the DRAM 
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process. No prior distributions or limits were placed on the algorithm as it calculated the 

parameters for Equation 3.2. The range of data used in the algorithm was 1/30th to 3 seconds for 

the non-rotating experiments and 2 to 5 seconds for the rotating experiments. The MSD data for 

0.2% methylcellulose microswimmer in Fig. 3.3 (e) and the 30% NaCl microparticle in Fig. 3.3 

(f) used a modified mean square displacement analysis in order to remove small internal flows; 

where the process outlined in literature110 was implemented to equate the start position with the 

end position. Aside from the two modified cases, the MSD analysis outlined by Equations 3.1 and 

3.2 were uniformly applied. 
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CHAPTER 4 

FLAGELLATED JANUS PARTICLES FOR MULTI-MODAL ACTUATION AND 

TRANSPORT 

4.1 Introductory Remarks 

Janus particles are typically composed of two materialistically different hemispheres111,112, 

allowing for diverse physical interactions and responses to stimuli from the surrounding fluid113. 

For these reasons Janus particles have displayed surprising versatility as enhanced minimally 

invasive drug delivery platforms18,114, made strides towards manipulating the processes of 

biological organisms115, and have successfully navigated in in vivo environments116. Most Janus 

particles rely on chemical catalyzation113,117 to propel within viscous force dominated low 

Reynolds number fluid regimes, where specific chemical concentrations are needed to guarantee 

propulsion24. Multiple catalysts exist in literature with one of the most common being platinum 

(Pt), which is used to greatly accelerate the naturally occurring decomposition reaction of 

hydrogen peroxide (𝐻2𝑂2), 

2𝐻2𝑂2

Pt
→ 2𝐻2𝑂 + 𝑂2.         (4.1) 

The propulsive force generated from 𝐻2𝑂2 decomposition is sufficient to propel Janus 

particles through bulk fluids and at boundaries117-121. Catalytic Janus particles were found to have 

their propulsion velocities inversely proportional with their diameter122 and proportional to the 

concentration of 𝐻2𝑂2 in the surrounding fluid123. The morphology of the platinum surface coating 

and the physical geometries of the Janus particles (and respective surface coatings) were also found 

to play a role in influencing propulsion direction during catalysis124,125. Other methods for 

propelling Janus particles include light actuation126, bacterial actuation127, enzyme enabled 



 

45 

 

catalysis128, hydrophobic-hydrophilic interactions129, and multi-fueled catalyzation130,131. While 

𝐻2𝑂2 is toxic in high concentrations (> 9%), the effects from short term exposure are greatly 

outweighed by the benefits catalytic Janus particles can impart in medical scenarios, and the side 

effects of exposure can be easily alleviated using intravenous medicine132-134. Even so, chemical 

actuation by itself is not always viable, particularly in regions of the body that possess viscosities 

much higher than water121,135, such as in the gastrointestinal tract136. In such high viscosity regions, 

it would be beneficial to have access to another motion mode that is more reliable and can be 

activated remotely without the presence of specific chemical agents. Rotating magnetic fields have 

been the actuation method of choice for microrobotics due to their biocompatibility and long-range 

wireless transmission. Several microswimmers have been developed including achiral magnetic 

particles137, flagellated nanoswimmers94,96,138, helical microswimmers13, and soft microrobots139 

which have been successfully propelled using rotating magnetic fields. While all these microrobots 

each have unique performance characteristics, they are all limited to a single mode of actuation. 

As previously discussed in Chapter 2, a perfectly spherical microparticle cannot self-propel using 

purely rotational magnetic fields due to their geometric symmetry preventing the necessary time 

irreversible strokes to swim in low Reynolds number environments24. However, by applying a 

simple geometric surface coating onto the surfaces of Janus particles like we did in Chapter 3, we 

can create multi-modal Janus particles that can propel using both chemical catalysts and rotating 

magnetic fields.  

Presented here are catalytic Janus particles that were chemically functionalized with 

bacterial flagella from Salmonella typhimurium (SJW 1103). The attached flagella explicitly break 

the apparent symmetry of the spherical Janus particles and allow for mobility matrices that can 

efficiently convert applied rotational torques into linear translation25,32. These multimodal 
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microrobots, dubbed flagellated Janus particles (FJPs), can be propelled using either catalytic 

propulsion from 𝐻2𝑂2 or through swimming motion induced by rotating magnetic fields. Figure 

4.1 (a) presents a generalized schematic of the FJPs while Figure 4.1 (b) shows a compressed z-

stacked image of an actual FJP observed using an Olympus confocal laser scanning microscope 

(FV3000) with a 60× objective, where several flagella are attached along its right surface. The 

distribution of flagella was found to vary heavily between Janus particles due to the stochastic 

nature of this self-assembly and the non-uniform avidin surface coating that remained after Janus 

particle fabrication (see 4.4 Methods). Despite this, propulsion was ubiquitous and easy to achieve 

for FJPs under both motion modes. This is the first time Janus particles possessing both catalytic 

and swimming propulsion mechanisms have been developed. Janus particles that were physically 

attached to live bacteria have been explored previously, however, these had to rely on either the 

random run and tumble of bacteria140 or chemotaxis127 to distribute the Janus particles. The FJPs 

presented here were fabricated to have magnetic properties and were directly controlled using 

externally applied magnetic fields from an approximate Helmholtz coil system. The subsequent 

 

Fig. 4.1. Morphology of flagellated Janus particles. (a) Schematic of flagellated Janus particle. Platinum coating 

enables catalytic propulsion, while the flagella allow for swimming propulsion. Blue and orange hemispheres 

represent the magnetic dipoles of the Janus particle. (b) Flagellated Janus particle with flagella distributed along its 

surface. Flagella are attached through an avidin-biotin chemical functionalization. 
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sections will demonstrate both the reliable velocity responses and directional control under both 

motion modes in both Newtonian and non-Newtonian fluids. A full description of the magnetic 

field controller and FJP fabrication process can be found in the 4.4 Methods section at the end of 

this chapter. 

4.2 Results 

After fabrication, both swimming and catalytic propulsion modes of FJPs were investigated 

separately to quantify their behavior. The FJPs were first suspended inside a deionized water 

solution, containing 5% 𝐻2𝑂2 and 5% Tween 20 by concentration, to examine their velocity under 

catalysis; the Tween 20 was added to prevent FJPs from sticking to the substrate surfaces of the 

sample chamber and reduce contact friction. Catalytic propulsion was limited to surface motion 

throughout these experiments due to gravity driven sedimentation from the weight of the particles. 

The 5% concentration of 𝐻2𝑂2 was chosen in order to reduce the amount of bubbles that formed 

within the sample chamber [see Equation (4.1)] and allowed for prolonged experimentation before 

serious microscopy visualization issues occurred. Once a catalytic propelling FJP was located, it 

was tracked using image processing (see 4.4 Methods) and its instantaneous velocity was 

calculated. Using the magnetic field controller [see 4.4 Methods, Fig. 4.7 (b)] the FJPs were 

directed to follow along a user-determined trajectory within the x-y plane. Due to heterogeneous 

differences during fabrication, an offset between the magnetic dipoles and the platinum coating 

created a randomized propulsion offset angle (𝛹) relative to the static field direction [see 4.4 

Methods, Fig. 4.7 (b)]. This offset angle did not noticeably affect the propulsive capabilities of the 

FJPs during experiments. The results of this analysis produced graphs like the one seen in Fig. 4.2 

(a), which shows the moving average velocity (30 point window) over a 52 second time interval 

for six different FJPs; each FJP had at minimum three independent trials. While each FJP had 
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slight variations in its velocity as time progressed due to changes in contact surface friction, the 

velocity profiles were relatively constant overall. For the six different FJPs examined under 

catalytic propulsion, Fig. 4.2 (b) shows a bar graph displaying their average velocity and standard 

deviation over a 30 second time period; the average velocity, µ, and the standard deviation, 𝜎, for 

each observed FJP can be seen in Table 4.1. While the average velocity tended to vary between 

different FJPs, either because of friction along the substrate or differences in the platinum coatings, 

they all maintained stable velocities between multiple trials and were able to propel for prolonged 

periods of time. While the velocities achieved by the FJPs under catalytic propulsion were 

relatively slow, these velocities can be improved by increasing the 𝐻2𝑂2 concentration in the 

surrounding fluid as was shown in previous work123.  

Table 4.1 Average Velocity and Standard Deviation under Catalytic Propulsion 

 

FJP 1 2 3 4 5 6 

𝜇 (
𝜇m

𝑠
) 0.98 0.69 0.92 1.00 1.19 1.22 

𝜎 (
𝜇m

𝑠
) 0.049 0.04 0.037 0.039 0.037 0.051 

 

FJPs were next suspended inside of 15-30% NaCl solution, without 𝐻2𝑂2 present in the 

medium, in order to test the efficiency of their swimming propulsion. The 15-30% NaCl gave the 

Janus particles a neutral buoyancy and allowed them to remain far from the boundaries of the 

sample chamber (≥100 µm). The same approximate Helmholtz coil system was used to generate 

rotating magnetic fields to actuate the FJPs in conjunction with a superimposed static field [see 

4.4 Methods, Fig. 6 (a)]. To understand velocity as a function of rotating magnetic field frequency 

(𝑓), the superimposed static field was fixed at a constant value during each experiment, while the 
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rotating magnetic field was increased proportionally with frequency in order to prevent step out 

(|𝐵𝑟|  =  0.175f, see 4.4 Methods)27; the frequency range selected for these experiments was 

between 5 and 50 Hz. Only the velocity along the intended propulsion direction (x-axis) was 

analyzed during these experiments; hereafter this is referred to as propulsion velocity. The 

tangential velocity was found to be significantly smaller in magnitude, constant between 

experiments, and had no correlation with frequency; we attribute this to small thermal fluctuations 

or slight internal flows in the sample chamber (like in Chapter 3). As was discussed in previous 

 

Fig. 4.2. Propulsion characterization of flagellated Janus particles. (a) The moving averaged velocity for an FJP 

undergoing catalytic propulsion within a 5% 𝐻2𝑂2 solution (window size of moving average was 30 points). (b) 

Velocities from six different FJPs [same ones examined in (a)], from at least three trials, with each being 30 seconds 

long under catalytic propulsion. (c) Velocity vs. frequency curve for FJPs (magenta), un-flagellated Janus particles 

(JP, green), and microparticles (black) that were actuated using rotational magnetic fields; the solid line represents 

a fit to the velocity data points and the dashed line represents the x-intercept. The coefficients of determination (𝑟2) 

were 0.92, 0.33, and -14.52 for FJPs, JPs, and microparticles, respectively. (d) FJPs were rotated between 40-45 

Hz under different static magnetic fields. As static magnetic field is altered, the propulsion velocity of each FJP is 

affected differently, with some being able to switch propulsion directions and others experiencing reduced 

velocities. 
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work (Chapter 3), the coil forms of the attached flagella remained normal89 in these salt 

concentrations and did not change form as shear rate increased32. The random distribution of 

flagella along the hemisphere of the FJPs caused microswimmers to swim either along or against 

the heading vector [Fig. 4.7 (a)] and was corrected in post processing data analysis such that all 

FJPs had swimming velocities with the same sign along the rotation axis. The averaged velocity 

results between six different FJPs, each with at least three trials each, is shown in Fig. 4.2 (c) and 

the solid green line represents a linear fit of the data. To confirm that propulsion was being caused 

solely by the attached flagella (same as in Chapter 3), control experiments involving magnetic 

microparticles and un-flagellated Janus particles of 4 µm diameter were performed. The magnetic 

microparticles did not exhibit any correlation with frequency but did experience a small and near 

constant velocity, which we can attribute to slight internal flow; this is in good agreement with 

literature predicated symmetry limitations24,25 and with the results presented in previous chapters.  

Examining un-flagellated Janus particles did reveal that some Janus particles could propel even 

without a flagellar surface coating being present, but these were rare occurrences; the most likely 

explanation for this is that during the fabrication process (see 4.4 Methods), small non-uniform 

platinum geometric irregularities fixed themselves onto the microparticle surfaces’, and thereby 

explicitly breaking symmetry. While this can result in a weak correlation with frequency, the 

application of a flagellar functionalization guaranteed the propulsion of FJPs under rotating 

magnetic fields and created a stronger correlation with frequency during the same experiments. 

The extra source of geometric irregularity increases the probability of propulsion among individual 

flagellated Janus particles.  

While swimming behavior was achievable for all FJPs examined, with their overall 

velocity profile being mostly linear with frequency, they all tended to develop a velocity plateau 
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at higher frequencies. This nonlinearity can be seen at after 40 Hz where the individual velocity 

points have a different slope than the rest of the data set. One reason these nonlinearities could be 

present is due to the offset of the flagellar hemisphere from the magnetic dipoles, which is 

randomly caused during the fabrication process (see 4.4 Methods). To verify this, a superimposed 

static field was iterated between -2 to 2 mT in 0.2 mT increments while the FJP was rotated 

constantly at 40 or 45 Hz. The static field altered the pitch of the FJPs dipoles about the heading 

vector [Fig. 4.7 (a)] and induced a small secondary rotation about the axis of the dipoles. As seen 

in Fig. 4.2 (d), the velocity behavior of FJPs rotating at a constant frequency changed significantly 

under different static fields. In some cases, the FJPs reversed swimming direction or achieved 

optimal propulsion at different static fields. These velocity vs. static field curves varied 

considerably between individual FJPs. The static field can be used as a parameter in the future to 

allow for the optimization of individual propulsion velocities or could enable non-homogeneous 

swimming behavior within swarms of FJPs being actuated under the same globally applied rotating 

magnetic field input. This is not the same effect that was documented in Chapter 2 [Fig. 2.3] for 

spontaneous symmetry breaking propulsion, as the propulsion velocity of the FJPs in Fig. 4.2 (d) 

dynamically changed as the static field was iterated instead of switching between one of two 

different propulsion states.   

A two-dimensional mean square displacement (MSD) analysis was performed to compare 

both catalytic and swimming propulsion modes of FJPs. The two-dimensional mean square 

displacement was calculated using,  

 < 𝑟𝜏
2 >=

1

𝑁−𝜏
∑ (𝑟(𝑡𝑖 + 𝜏) − 𝑟(𝑡𝑖))

2𝑁−𝜏
𝑖=1            (4.2) 
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where <𝑟𝜏
2> is the MSD, 𝑁 is the number of time steps for a given trajectory, 𝜏 is the lag time, 𝑟 

is the position vector, and 𝑡𝑖 is the 𝑖𝑡ℎ time increment103. For both the rotating and catalytic 

propulsion cases the MSD profiles were modeled using,    

    < 𝑟𝜏
2 > ∝  4𝐷𝜏𝛼          (4.3) 

where 𝐷 is generalized diffusion and 𝛼 is the anomalous diffusion exponent; both terms were fitted 

from positional data collected from FJPs under both swimming and catalytic propulsion, using a 

delayed rejection adaptive Metropolis (DRAM) Markov Monte Carlo technique104. These are the 

same equations used in Chapter 3 but are re-stated here for clarity purposes. The smallest lag time 

was 1/30th of a second and N was at least 300 for both propulsion modes during experiments. 

Fittings for both propulsion modes were obtained with a range of lag times between 1 and 5 

seconds using the DRAM technique, where no prior distributions were set for either 𝐷 or 𝛼, and a 

chain length of 100,000 iterations was utilized with no burn in time; the average of the last 10% 

 
Fig. 4.3. Mean square displacement for a flagellated Janus particle under both rotating and catalytic propulsion. 

Colored solid lines represent fittings to Equation 4.3 for swimming propulsion (FJPs, green), catalytic propulsion 

(FJPs, magenta), and no propulsion (microparticles, cyan), respectively. Short black lines represent example MSD 

profiles for the indicated anomalous diffusion exponents.  
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of the chain was used to estimate the two parameters for each propulsion mode. The results of the 

MSD analysis can be seen graphically in Fig. 4.3, which shows the MSD profiles for both 

swimming (45 Hz) and catalytic propulsion, as well as the results from non-propelling 

microparticles. Three FJPs were examined under rotation, six FJPs were examined under catalytic 

propulsion [same ones used in Fig. 4.2 (a-b)], and seven ferromagnetic microparticles (4 μm 

diameter) were examined under pure Brownian motion conditions with no applied magnetic fields 

to compare as a control; all particles examined had at least 3 independent trials each.  

The estimated generalized diffusion coefficient for the swimming propulsion was 0.24 

( 
𝜇𝑚2

𝑠𝛼 ) and the anomalous diffusion exponent was 1.92.  The estimated generalized diffusion 

coefficient for the catalytic propulsion was 0.06 ( 
𝜇𝑚2

𝑠𝛼 ) and the anomalous diffusion exponent was 

1.93. The estimated generalized diffusion coefficient for the zero-propulsion scenario for 

microparticles was 0.02 ( 
𝜇𝑚2

𝑠𝛼 ) and the anomalous diffusion exponent was 0.85; this slight 

subdiffusive behavior occurred from post processing used to account for slight tracking errors and 

drift141. Both motion modes had comparatively similar anomalous diffusion exponents but had 

almost an order of magnitude difference between generalized diffusion coefficients. The MSD for 

the catalytic propulsion was consistent at both short and large lag times; while the swimming 

propulsion displayed a smaller sloped MSD at short lag times and then would later separate from 

the estimated fit as lag time increased. Despite these differences, both motion modes displayed 

ballistic behavior since their anomalous diffusion coefficients were greater than 1 and is consistent 

with the results presented in the previous sections. 

FJPs were next examined to determine whether or not consistent directional control was 

possible using both propulsion modes. For this experiment only the heading angle (𝜃) was of 
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interest, with other parameters kept constant. The heading angle (𝜃) was manipulated using the 

proportional controller, 

𝜃̇  =  𝑘Φ,           (4.4) 

Φ = 𝜙 − 𝜃,           (4.5) 

with 𝜃̇ being the time derivative of 𝜃, 𝑘 is the gain, 𝜙 is the desired heading angle relative from 

the FJP's current position to the target position, and Φ is the angular difference between the desired 

heading angle (𝜙) and the actual heading angle of the particle (𝜃). This is the same controller used 

in Chapter 2 but is re-stated here for clarity purposes. The equations for this proportional controller 

are transferable between both motion modes as described by Equations 4.6, 4.7, 4.8, and 4.9 (see 

4.4 Methods). The gain, 𝑘,was chosen to be 5 throughout the experiments to ensure that 𝜃 achieved 

steady state quickly. The results of four FJPs can be seen in Fig. 4.4, with (a-b) showing the 

trajectories under rotational magnetic fields with superimposed static fields (50 Hz and 2 mT, 19 

Hz and 0.2 mT and |𝐵𝑟| = 0.5𝑓 , respectively), and (c-d) showing trajectories under catalytic 

propulsion with two different offset angles (~ 45 and ~ 0) guided by a 2 mT static field; the 

magenta points and dashed lines represent the target destinations and shortest paths, respectively. 

After the displacement error between the propelling FJPs’ centroid and the target point (magenta 

point) became small, the target point was manually iterated to the next location in the sequence 

and the FJP would attempt to reach it. FJPs under swimming propulsion were found to easily 

follow the intended trajectories repeatably and quickly. FJPs under catalytic propulsion were also 

highly consistent but were prone to experiencing significant variation due to their heterogeneous 
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propulsion offset angles (𝛹). An example of this can be seen in Fig. 4.4 (c), where the FJP, with a 

 

Fig. 4.4. Feedback control and performance of flagellated Janus particles. (a-d) Selected trajectory of a FJP under 

feedback control using (a-b) rotating magnetic fields and (c-d) chemical catalyzation. Magenta colored dots 

represent the desired destination points of the FJP, while the dashed magenta line represents the most direct path 

between points. Included with (a-d) are the error curves with magenta dashed lines separating the target points. 

The rotation frequency and static magnetic field for (a) was 50 Hz and 2 mT; |𝐵𝑟|  =  0.175𝑓. The rotation 

frequency and static magnetic field for (b) was 19 Hz and 0.2 mT; |𝐵𝑟|  =  0.5𝑓. The offset angles for (c) and (d) 

were ~ 45 and ~ 0, respectively. The window size for the moving averaged velocity was 100 points for all 

trajectories. 
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𝛹 of ~ 45, performed exaggerated parabolic trajectories as it proceeded to each target destination. 

An FJP with a small 𝛹 (~ 0), as seen in Fig. 4.4 (d), could perform the intended trajectory 

equivalently to the FJPs actuated under rotating magnetic fields [Fig. 4.4 (a-b)].  The FJPs under 

swimming propulsion in Fig. 4.4 (a-b) took 42 seconds (50 Hz) and 95 seconds (19 Hz), 

respectively, while under catalytic propulsion in (c-d) the trajectories took 287 seconds and 316 

seconds, respectively.  

Using the trajectories from Fig. 4.4 (a-d) the error was quantitatively measured as a 

distance from the intended target magenta points and the actual trajectory performed by the FJPs 

are displayed as a color bar (same as previous chapters).  In all four scenarios the error between 

the FJPs and each respective target location always decayed to near zero, except for one case in 

Fig. 4.4 (b) where it could not reach one of the target locations. It is important to reiterate that, 

despite the missed target point in Fig. 4.4 (b)'s trajectory, the FJP still came within a small error of 

the other target points within a reasonable amount of time. Consistent with previous work, the FJP 

with a 𝛹 ≅ 45∘ could still reach all of the target locations, although having largely curved 

trajectories [Fig. 4.4 (c)];  however, if an FJP was ever encountered that had a 𝛹 > 90, the target 

points would never be reached, as was demonstrated in previous work142. 

 Flagellated Janus particles were deployed inside 1% poly (ethylene oxide) solution (PEO, 

Sigma Aldrich, 189464-250G) to understand their behavior within a known nonlinear fluid. Unlike 

the Newtonian fluids used previously (saline solution, deionized water), non-Newtonian fluids 

have viscosities that are shear rate dependent. Using a Discovery Hybrid Rheometer (DHR-3, TA 

Instruments), a shear sweep was performed using a 40 mm 4 cone-plate geometry under an 

incremental shear rate of 1 to 1000 (1/s) over three independent trials. The rheology 

characterization of 1% PEO is shown in Fig. 4.5 (a-b) where both the viscosity vs. shear rate and 
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the shear rate vs. stress are shown, respectively. Interestingly, the viscosity vs. shear rate curve 

[Fig. 4.5 (a)] indicates that a shear thickening effect occurs after a shear rate of 100 (1/s) and with 

the stable shear rate vs. stress curve [Fig. 4.5 (b)] indicating that this behavior is genuine and not 

the result of fluid being ejected from the geometry under the high shear rates. Literature suggests 

that 1% PEO should be a shear thinning fluid, however the reported molecular weights were 

several magnitudes higher than the 100,000 molecular weight of the PEO used in these 

experiments143. The FJPs discussed previously could achieve strain rates between 31.4 to 312 (1/s) 

under respective rotational magnetic field frequencies between 5 to 50 Hz, well within the range 

of the observed non-linear behavior of the fluid. 

 FJPs were deployed within the 1% PEO solution (no 𝐻2𝑂2) and made to replicate the 

experiments shown previously in Fig. 4.2 (c-d) to understand how frequency and static magnetic 

field iteration effected their velocity profiles. The results of these swimming experiments can be 

seen in Fig. 4.5 (c-d) where there is a strong linear relationship trend present in FJPs actuated in 

1% PEO; however, the overall velocity of the FJPs was reduced [in comparison to Fig. 4.2 (c)] 

from 2 μm/s to 0.87 μm/s at 50 Hz. Examining control experiments for bare microparticles (4 µm 

diameter, no flagella) suspended in 1% PEO, we observe that there is no propulsion velocity 

relationship with frequency, with the near constant residual velocities at each frequency being the 

result of Brownian motion. These results indicate that the spontaneous symmetry breaking 

mechanism (Chapter 2) was not present in 1% PEO, despite its nonlinear fluid properties.  

However, when examining the propulsive behavior of Janus particles under a rotating magnetic 

field, without attached flagellar, there was a strong correlation between velocity and frequency. 

This correlation is highly unexpected, especially considering previously there was only a weak 

correlation with frequency present in the Newtonian saline solution. One possible explanation is 
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that the small propulsive effects from geometric surface deformities on the Janus particles may be 

being amplified by the nonlinear behavior of 1% PEO, as propulsion was ubiquitous between 

nearly all Janus particles examined. Catalytic propulsion was not observed in 1% PEO that 

contained a 5% concentration of 𝐻2𝑂2; the increased viscosity of 1% PEO was most likely to large 

for the catalytic propulsion mechanism to overcome. 

When examining the static field variation [Fig. 4.5 (d)] for FJPs rotated at a constant 

frequency (45 Hz), it is clear that FJPs maintain similar relationships with static field variation that 

were expressed previously in Fig. 4.2 (d), but with a reduced velocity overall, and clear 

heterogeneities in the curves; most likely the result of differences in the flagella spatial distribution 

for each respective particle. From these results we can conclude that not only are these FJPs useful 

 

Fig. 4.5. Propulsion in Poly (ethylene oxide) [PEO]. (a) Viscosity vs. shear rate curve and (b) the shear rate vs. stress 

curve for 1% PEO. (c) Velocity vs. frequency curve for FJPs, JPs, and microparticles actuated in 1% PEO. The 𝑟2 

values were 0.99, 0.98, and -0.92 for FJPs, JPs, and microparticles, respectively. (d) Propulsion velocity vs. static field 

for FJPs rotated at 45 Hz.  
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in Newtonian fluids but they can also achieve reasonable performance inside the shear thickening 

regime of a non-Newtonian fluid; and surprisingly, Janus particles with surface deformities can 

propel in the 1% PEO solution without the need of flagellar surface coatings.   

4.3 Discussion 

Flagellated Janus particles (FJPs) were fabricated to have hemispheres consisting of 

platinum and bacterial flagella; allowing them to be actuated using either catalytic or swimming 

propulsion. These are the first Janus particles that could be actuated using both fuel and fuel-free 

propulsion modes interchangeably. Bacterial flagella distributed along one of the FJPs 

hemispheres allowed for a non-time reversible swimming locomotion to occur when rotated by a 

magnetic field. When exposed to an 𝐻2𝑂2 solution, the platinum coating on the other hemisphere 

of the FJPs acted as a catalyst and initiated catalytic propulsion. It was demonstrated that the 

velocity of FJPs were mostly linear with rotation frequency, while their velocities under catalytic 

propulsion were nearly constant with time. Control experiments in Newtonian fluids revealed that 

bare microparticles had no correlation with frequency while Janus particles (without flagella) only 

had a weak correlation with frequency, which was most likely the result of surface deformities 

during fabrication. Under swimming locomotion, a superimposed static magnetic field could be 

used to adjust the velocity and direction of an FJP rotating at a constant frequency. A mean square 

displacement analysis was performed to show that both motion modes displayed ballistic behavior 

at short time scales, with the generalized diffusivity of the swimming propulsion being an order of 

magnitude higher than the catalytic propulsion during experiments. Using proportional feedback 

control, FJPs could be made to perform pre-selected trajectories under both motion modes. 

However, the offset angle of the propulsion vector to the applied static magnetic field could 

produce exaggerated trajectories for catalytically propelling FJPs. FJPs were suspended inside a 
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non-Newtonian poly (ethylene oxide) solution [PEO] that was measured to have shear-thickening 

properties at the actuation frequencies of the FJPs. FJPs were able to propel in PEO using 

swimming propulsion, retained a linear velocity profile, and could exhibit similar propulsive 

dependencies on static field like in the Newtonian solutions. While bare microparticles in PEO 

under the same control experiments did not display any relationship with frequency, the un-

flagellated Janus particles did display a high correlation between velocity and frequency. This is 

almost a direct contradiction between the results shown previously in saline solution but was 

achievable between all Janus particles examined. Our theory is that the slight surface deformities 

present on the Janus particles, combined with the nonlinear behavior of the poly (ethylene oxide) 

solution, are enough to allow free propulsion using rotating magnetic fields. So, in this particular 

nonlinear fluid, a flagellar surface coating may not be a necessary requirement for swimming 

propulsion. Catalytic propulsion was not achievable in 1% PEO with a 5% 𝐻2𝑂2 concentration.  

While not fully explored here, flagella are polymorphically transformable under different 

fluidic conditions, and can allow for different swimming behavior; these differences in 

performance will be examined in future work for both motion modes. FJPs could eventually be 

used as an in vivo diagnostic tools where fluidic properties are directly related to the conformation 

of the FJPs flagellar coating. Equipping other surface coatings, such as gold or silver instead of 

platinum, will allow for thermal propulsion when exposed to laser excitation, and could potentially 

be used for applications like hyperthermia. Optimizing the flagella distribution along the avidin 

coated hemisphere will also be investigated. Finally, closed loop 3D control will be explored in 

future work to expand the capabilities of FJPs for in vivo navigation and sensing. 
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4.4 Methods 

Fabrication of Janus Particles 

Figure 4.6 (a) gives a brief visual summary of the Janus particle fabrication process, from 

initial etching of the polystyrene beads, to the multilayer coatings of both platinum (Pt) and cobalt 

(Co).144 To start, a 0.5% (w/w) polystyrene bead water solution was prepared using polystyrene 

beads (Spherotech, IL) that were 5 μm in diameter. The beads were coated as a monolayer on a 

glass slide whose surface was cleaned using UV-Ozone. The UV-Ozone treatment makes the glass 

surface hydrophilic, allowing the aqueous solution to spread out evenly along the slide’s surface. 

As the water dried, the beads organized into a monolayer, with each bead touching side by side in 

a cluster through a self-assembled monolayer (SAM) effect. This can be seen in Fig. 3.6 (b), where 

the beads were not individually distributed on the surface. Reactive ion etching (RIE) was applied 

to separate the clustered polystyrene beads from each other by etching the bead surface uniformly 

[Fig. 4.6 (b)]. O2 plasma, with a relatively high pressure (250 mTorr) and low power (50 W), was 

used to gently etch the surface into a round shape;145 it took about 10 minutes to reduce a 5 μm 

polystyrene bead diameter to 2.5 μm. To fabricate Janus particles which possessed both 

characteristics of magnetism and catalytic propulsion, both Co and Pt were coated on the beads 

using an e-beam thermal evaporator (Temescal CV-8 e-beam evaporator). Multilayer Janus 

particles were prepared to create stronger magnetism effects 18; there were five coating layers total 

in the sequence of Pt 3 nm, Co 3 nm, Pt 3 nm, Co 3 nm, and Pt 3 nm.  The Pt and Co were 

evaporated at a slow rate of 0.02 nm/sec to ensure the high quality deposition. Only half of the 

surface was coated with platinum, by which the Janus particle decomposes 𝐻2𝑂2 and causes 

catalytic propulsion during experiments. The final Janus particles can be seen in Fig. 4.6 (c). The 

attached beads could be easily detached from the glass surface by gently washing them with water; 

we also gently stroked the coated surface with a paint brush to help release the particles. The 
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scanning electron microscopy (SEM) image of the multilayer Janus particles was acquired in Fig. 

4.6 (d). The final size of the Janus particles is approximately 2-6 μm. 

Flagellated Janus Particles 

 An avidin coating along the uncoated hemisphere of the Janus particles remained intact 

after the fabrication process. While the size of this area was variable, it can still be utilized to 

chemically attach biotin labeled flagella filaments along the surface of the Janus particles. 

Likewise, avidin coated microparticles can have entire surface distributions of flagella after 

chemical functionalization. Using the same technique discussed in Chapter 3 for flagella isolation, 

the Janus particles were added in a 1-2 µl solution to 5 µl of concentrated flagella and gently 

 
 

Fig. 4.6: Fabrication of Janus particles. (a) Multilayer Janus particle fabrication steps using Co/Pt layers. (b) 

Clustered polystyrene beads in a monolayer. (c) Separate multilayer Janus particles after RIE and Co/Pt capping. 

(d) SEM image of multilayer Janus particle.  
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shaken for 5 minutes to ensure Flagellated Janus Particle formation. Flagellated Janus particles 

were visualized using an Olympus confocal microscope (FV3000) and a z-stack was used to 

produce the image shown in Fig. 4.1 (b). The distribution of flagella along the hemisphere was 

highly random, but it was visually estimated that anywhere from 1 – 6 flagella were present along 

the surfaces of the particles with average lengths of about 5 µm, with the longest flagella observed 

being about 8 µm. 

Two control modes for flagellated Janus particles  

A triaxial approximate Helmholtz coil system was utilized to generate static and rotating 

magnetic fields in 3D for all experiments. While the proceeding equations are similar to those in 

the 2.2 Methods section, they are restated here for comparative and clarity purposes. The 

swimming locomotion of an FJP relied on rotating and static magnetic fields governed by,   

𝐵1
⃗⃗⃗⃗ =  [

−𝐵𝑠 cos 𝜃 + 𝐵𝑟 sin 𝜃 cos𝜔𝑡
𝐵𝑠 sin 𝜃 + 𝐵𝑟 cos 𝜃 cos𝜔𝑡

𝐵𝑟 sin𝜔𝑡
]        (4.6) 

𝑛⃗ =  [− cos 𝜃 sin 𝜃 0]         (4.7) 

where  𝐵1
⃗⃗⃗⃗  is the magnetic field vector, 𝐵𝑟 is the amplitude of the rotating magnetic field, 𝐵𝑠 is the 

amplitude of the static magnetic field, 𝜔 is the rotational frequency of the field (rad/s), 𝜃 is the 

heading angle in the x-y plane, 𝑡 is time (seconds), and 𝑛⃗  is the direction vector. Dipoles of the 

FJPs align with  𝐵1
⃗⃗⃗⃗  as it rotates in the plane perpendicular to the direction vector (𝑛⃗ ) and can rotate 

either clockwise or counterclockwise about the direction vector when viewed from behind. 

Propulsion along 𝑛⃗  indicates swimming is occurring because of the surface coated flagella. As 

seen in Fig. 4.2 (c-d), the velocity of the FJP can be directly modulated by changing either 

frequency or the superimposed static magnetic field. To ensure that the dipoles remained in 
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synchronization with the magnetic field, the amplitude of the rotating magnetic field was scaled 

with increasing frequency. This scaling was selected to be either |𝐵𝑟| = 0.175𝑓 or |𝐵𝑟| = 0.5𝑓 

depending on the what frequency range or magnetic field values are needed for the particular 

experiment. A lower scaling allowed for frequencies as high as 50 Hz, while the higher scaling 

allowed for larger magnetic fields but limited frequency to ≤ 20 Hz.  

When an FJP was undergoing chemical propulsion, the velocity profile of the FJP could 

not be controlled directly using external stimuli, but the heading direction of the FJP under catalytic 

propulsion could be controlled by static fields using a simplified version of Equation 4.6 where 

𝜔 = 0, 

𝐵2
⃗⃗⃗⃗ =  [

−𝐵𝑆 cos(𝜃)

𝐵𝑠 sin(𝜃)
𝐵𝑧

],          (4.8) 

𝑝 =  [cos(𝜃 − 𝛹) sin ( 𝜃 − 𝛹) 0] .      (4.9) 

The propulsion vector ( 𝑝 ) under catalytic propulsion usually offsets the magnetic field 

vector ( 𝐵2
⃗⃗⃗⃗ ) by an offset angle (𝛹), which is randomized during the fabrication process. For all 

experiments involving closed loop control, 𝛹 was assumed to be zero, and future work will involve 

estimating and optimizing 𝛹 for more accurate control in real time. Figure 4.7 (a-b) show 

schematics of both swimming and catalytic propulsion modes for Equations 4.6 and 4.7, and 

Equations 4.8 and 4.9, respectively.  
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The Helmholtz coil system was mounted on top of a Leica DM IRB inverted microscope 

(type 090–132.701) and a 63× objective was used to visualize the FJPs. A complementary metal 

oxide semiconductor (CMOS) camera (Point Grey, FL3-U3-13Y3M-C) recording at 30 frames per 

second (fps) was used to record experiments in real time. Programmable power supplies (KEPCO-

BOP-5M) were linked to a data acquisition board (National Instruments, DAQ) and interfaced with 

a customized LabVIEW which could adjust the desired magnetic field parameters. The LabVIEW 

program could track the centroids of observed particles using image binarization and 

morphological filters. Post-processing was carried using MATLAB where positional data of the 

FJPs were converted to velocity data by taking the positional changes of FJPs between individual 

camera frames.  The pixel distance was found to be 0.152 µm/pixel, with the camera resolution 

being 512 × 640. 

 

 

Fig. 4.7. Description of swimming and catalytic propulsion. (a) Janus particle actuated using rotational magnetic 

fields, where 𝐵1
⃗⃗⃗⃗  rotates the dipoles around the direction vector  𝑛⃗ ; attached flagellum will enable swimming 

motion along 𝑛⃗ . When viewed from behind  𝑛⃗ , the magnetic field can rotate either counterclockwise or clockwise 

depending on the sign of the frequency. (b) Janus particle actuated using a chemical catalyzation. The magnetic 

field,  𝐵2
⃗⃗⃗⃗  , orients the dipoles of the Janus particle, while the chemically induced propulsion propels the particle 

along  𝑛⃗  at offset angle Ψ, which is the offset of the platinum coating from the magnetic dipoles. The heading 

angles (𝜃) were set to 0 and 90 for (a) and (b), respectively. 
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CHAPTER 5 

CONCLUSIONS 

Microparticles are used in a myriad of medical procedures including hyperthermia, 

magnetic resonance imaging, and targeted drug delivery. In most cases microparticles cannot 

normally propel using swimming propulsion due to symmetry restrictions in low Reynolds number 

environments. Demonstrated in this thesis were several mechanisms that enable microparticle 

propulsion under rotating magnetic fields.   

Spontaneous symmetry breaking propulsion was demonstrated to occur in several 

nonlinearly viscoelastic fluids. Synthetic mucus comprised of mucin from a porcine stomach 

mimicked a biological fluid and enabled microparticles to propel under rotating magnetic fields. 

Similarly, a low concentration polyacrylamide solution demonstrated the same spontaneous 

propulsion behavior. Microparticles suspended in both fluids could propel under both open-loop, 

closed-loop, and 3D control schemes. By modulating a super imposed static magnetic field, the 

propulsion direction of the microparticles could be switched between one of two possible 

propulsive states. The switching behavior of individual microparticles was found to be highly 

consistent, while interparticle differences were noticeably dependent on the fluid. It is speculated 

that hoop stresses inside the fluid cause a net squeezing effect that propels the microparticles along 

their rotation axis, similar to a rod climbing effect; we confirm this experimentally using µPIV and 

correlate the results with theoretically predicted secondary flows. Rheological characterizations of 

both fluids indicated that first and second normal stress differences were present at the applied 

shear rates of the microparticles during rotation. While we have only identified this phenomenon 

in two fluids thus far, we believe that other fluids with nonlinear viscoelastic properties could 
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demonstrate this behavior. Likewise, the ubiquity of nonlinear fluids inside the human body makes 

this propulsion mechanism ideal for improving in vivo medical techniques.  

 Flagellated microparticles with heterogeneous distributions of flagella were demonstrated 

to propel in different Newtonian fluids with varying viscosities. Since Newtonian fluids do not 

have the first and second normal stress differences necessary for symmetry breaking, the 

microparticles geometry had to be broken explicitly. Flagella were isolated from Salmonella 

typhimurium and then chemically attached along the surface of microparticles using an avidin-

biotin complex. Flagellated microparticles were shown to have random distributions of flagella 

but could propel consistently under rotating magnetic fields. Flagellated microparticles were 

suspended inside saline and methylcellulose solutions, demonstrating decreased propulsion as 

viscosity increased. A mean square displacement analysis was performed to demonstrate that 

flagellated microparticles experienced ballistic behavior in all fluids under rotating magnetic fields 

and purely diffusive behavior without rotation. Flagellated microparticles could propel to user 

selected target locations under simple proportional feedback control. Finally, depending on the 

rotation direction (clockwise or counterclockwise) in relation to the coil form of the attached 

flagella, flagellated microparticles could experience frequency induced reversals of swimming 

direction (FIRSD). These FIRSD effects were prevalent in flagellated microparticles rotated under 

clockwise direction and were highly specific to individual microswimmers.  

 Flagellated Janus particles (FJPs) were next examined which could propel using either 

catalytic decomposition of hydrogen peroxide or through swimming propulsion using rotating 

magnetic fields. Unlike flagellated microparticles, flagellated Janus particles only had a small 

hemispherical distribution of flagella, while the other hemisphere had a platinum surface coating. 

Under catalytic propulsion, FJPs could propel along the surface of a substrate and propel at a 
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relatively constant velocity; although velocity could be effected by surface friction. Under the 

swimming propulsion, FJPs had a mostly linear relationship to frequency and could propel in bulk 

fluid. Under proportional feedback control, both the propulsion mechanisms could be easily 

directed to user-specified target locations, and had decaying positional error. Catalytic propulsion 

often had an offset angle from the applied magnetic field direction which caused the FJPs to 

experience parabolic trajectories; however, this did not prevent the FJPs from reaching the target 

points in a reasonable amount of time. FJPs were then introduced into a nonlinear poly (ethylene 

oxide) solution with measured shear thickening properties; while catalytic propulsion was not 

achievable, swimming propulsion could still occur, but with a reduced overall relationship to 

applied frequency. Interestingly, while bare microparticles could not propel in the poly (ethylene 

oxide) solution using spontaneous symmetry breaking, non-flagellated Janus particles were found 

to propel under rotating magnetic fields. This is surprising since un-flagellated Janus particles only 

had a weak correlation with frequency in the Newtonian fluids examined. This indicates that while 

flagella help the FJPs propel in both fluids, the flagella may not be necessary in some nonlinear 

fluids, with the non-uniform geometry of the platinum surface coating being just enough to enable 

propulsion. With these results, the FJPs are the first Janus particles developed that can exhibit two 

unique propulsion modes that can be used interchangeably.  

 The simplicity of these propulsion mechanisms makes them readily applicable for in vivo 

operation and can be mass produced easily and cheaply. The spontaneous symmetry breaking 

propulsion is the most novel of the three, since it relies on fluid properties rather than geometry, 

and has been previously unobserved in literature up to this point. The flagella surface coatings and 

catalytic propulsion on the other hand can be used in Newtonian fluids and close to boundary 

conditions, respectively. These techniques will expand fundamental medical technology, 
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mechanical engineering, and fluid dynamics research in the years to come. I personally have no 

doubt that in a few short years this technology will be implemented into life save procedures and 

expand fundamental concepts; revolutionizing both medicine and having broad societal impact in 

both the United States and throughout the world.  

Future work  

 While the propulsion mechanisms presented in this thesis are powerful tools for 

microparticle navigation in vivo, the next step will be to apply them into animal models. We have 

developed a large-scale nested Helmholtz coil system at Southern Methodist University which can 

produce magnetic fields up to 40 mT and has a working space of 12×15×8 cm3, large enough to 

house a sedated full sized rat. Animal tissues and mucus extracted from mice and rats can be used 

as further proof of concept models to demonstrate each of these propulsive modes. Applying drug 

carrying compounds (anti-cancer drugs) along the surfaces of the microparticles can be used to 

demonstrate tumor treatment either in vivo or in vitro. Finally, a coordinated swarm control 

mechanism will need to be developed to take advantage of the heterogenic propulsion capabilities 

of each microswimmer discussed. 
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APPENDIX 

Section 1: Propulsion and Transverse Velocities 

In Chapter 2 we observed the propulsion of microparticles through synthetic mucus and 

polyacrylamide. The propulsion direction is parallel to the rotation axis of the magnetic field. 

Microparticles were observed to move in both the propulsion direction and the transverse direction 

perpendicular to the rotation axis. The transverse velocity was influenced by proximity to the 

boundaries of the sample chamber (2 mm in diameter  1 mm in height) and was proportional to 

the rotational frequency of the microparticle. For simplicity, transverse velocity can be thought of 

as the microparticle rolling like a wheel on a nearby surface as it rotates. Figure S1 (a) shows the 

propulsion and transverse velocities of 10 µm diameter microparticles for different frequencies in 

both fluids, with the inset of (a) showing the propulsion and transverse directions. While the 

 

Fig. S1. Propulsion of microparticles in a sample chamber. (a) Propulsion velocity and transverse velocity vs. rotational 

frequency in 4% mucin and 0.25% polyacrylamide. The inset of (a) shows a microparticle (red and blue hemispheres 

represent dipoles) rotated under a constant frequency () along a heading direction (𝑛⃗ ); black and magenta arrows 

represent propulsion direction and transverse direction, respectively. Filled symbols represent propulsion velocity while 

open symbols represent transverse velocity for each fluid. The coefficient of determination (𝑟2) for the propulsion and 

transverse fittings (magenta and green solid lines) of 4% mucin were 0.965 and 0.24; the propulsion and transverse 

velocity fittings of 0.25% polyacrylamide (black and cyan solid lines) were 0.945 and -0.3417. Microparticles were 

rotated counterclockwise when viewed from behind the heading vector. Error bars represent standard error. (b) Propulsion 

and transverse velocity vs. distance from the substrate in 4% mucin. Transverse propulsion was significantly increased 

when the microparticle was in contact with the boundary of the sample chamber; however, transverse propulsion is 

present at all distances but highly variable at larger distances. Random variations in propulsion and transverse velocity 

at larger distances are likely due to heterogeneities within the mucus hindering microparticle translation. One particle 

was tracked at each depth in (b) over a single experiment, with the standard deviation error bars representing the 

instantaneous propulsion velocity over the course of the experiment.  
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transverse effect could become significant in the mucin solution, its effect was negligible in the 

0.25% polyacrylamide solution. All particles examined were > 100 μm from the boundaries of the 

sample chamber and six particles were averaged together per fluid with at least 3 trials each. 

Twenty microparticles had their propulsion and transverse velocities analyzed at different 

distances away from the bottom of the chamber in 4% mucin [Fig. S1 (b)]. A sharp increase in 

transverse velocity can be seen when the microparticles were in contact with the bottom of the 

chamber. Transverse velocity was significantly reduced when the microparticle was in the bulk 

fluid medium >20 µm from the boundary. Due to the heterogeneous viscoelastic nature of mucus 

and mucin glycoprotein entanglements, this rolling effect can be experienced by microparticles 

even if they are far from the surface of the sample chamber, as localized regions of mucus can act 

as deformable surfaces. The velocity along the transverse direction was considerably less than the 

propulsion velocities, especially when far from the boundaries of the chamber. Distance from the 

substrate did not appear to systematically affect the propulsion velocity of individual 

microparticles, instead we attribute variations in the propulsion velocity to heterogeneities within 

the mucus.   

For rolling motion close to the boundary, it is expected that the transverse velocity should 

increase linearly with frequency.  We therefore tested the frequency dependence of transverse 

velocity for particles near the boundary (~1 μm).  The results are shown in Fig. S2 which compares 

the transverse velocities of microparticles in both 4% mucin and 0.25% polyacrylamide; each fluid 

had at least 5 particles averaged together, each with at least 3 trials. Unlike the results shown 

previously for transverse velocities in bulk fluid [Fig. S1 (a)], microparticles near the surface 

experienced a linear increase in transverse velocity as frequency increased and at much higher 

magnitudes. We note that for these microparticles very near the boundary, we generally observed 
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much smaller propulsion velocities than in bulk fluid, but we did not further explore how boundary 

effects influence propulsion velocities.  

 

 

Fig. S2: Transverse velocity vs. frequency for microparticles close to the substrate of the sample chamber. The 𝑟2 

values were 0.9634 and 0.9973 for 4% mucin and 0.25% polyacrylamide, respectively. Frequency range was reduced 

from other experiments to prevent microparticles from rolling out of the field of view. Error bars represent standard 

error.  
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Section 2: Static Magnetic Field Manipulation of Microparticles 

As discussed in detail in the Chapter 2, the application of a static magnetic field changes 

the propulsion direction of the microparticles, however, the static field’s effect on transverse 

velocity was not significant. Figure S3 (a) shows a sample experiment of a microparticle rotated 

at 15 Hz while the static magnetic field increased from -5 to 5 mT in 1 mT increments, during 

which it initially propelled along the negative x-axis and then along the positive x-axis after the 

static field became positive. The transverse velocity caused the microparticle in this experiment to 

 

Fig. S3. Combined effect of static field and rotation direction on velocity of 10 µm diameter microparticles. (a) Static 

magnetic field increased from -5 to 5 mT at 1 mT increments along the heading direction of 0. (b) The propulsion 

velocity for microparticles and (c) the transverse velocity for microparticles during experiments like the one shown in 

(a). While the propulsion velocity is directly related to the static magnetic field, the transverse velocity was unaffected. 

(d) Same experiment as (a), but at 0 mT the rotation of the magnetic field was switched from counterclockwise to 

clockwise from behind the heading vector of 0 in the x-y plane. (e) The propulsion velocity and (f) the transverse 

velocities for the experiments like the one shown in (d). In this situation, both propulsion and transverse velocities are 

now affected, with the propulsion velocity only affected by the static magnetic field, while the transverse velocity is 

affected by the change in rotation direction of the rotating magnetic field. The dashed lines in (b), (c), (e), and (f) 

represent a propulsion velocity of 0 µm/s. Total time of experiments in (a) and (d) were 67 seconds and 46 seconds, 

respectively. Error bars represent standard error.  
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gradually move in the positive y-direction and was not affected by the change in static magnetic 

field. These results are quantified in Fig. S3 (b), which shows the propulsion velocity, and Fig. S3 

(c), which shows the transverse velocity as functions of static field; these graphs show the averaged 

results of four microparticles with each tested under at least three trials. As the static field 

increases, the average propulsion velocity changes direction at 0 mT [Fig. S3 (b)] but the transverse 

velocity remains the same. When the rotating magnetic field was switched from a 

counterclockwise direction to clockwise from behind the heading vector at 0 mT [an example 

experiment can be seen in Fig. S3 (d)], it was found that the propulsion velocity in Fig. S3 (e) 

remains similar to Fig. S3 (b), while the transverse velocity in Fig. S3 (f) now changes direction 

with the change in rotation direction. Together these results clearly show that transverse velocity 

direction is directly related to the direction of rotation. 

When the static magnetic field was increased in 0.2 mT increments, the exact static field 

at which the propulsion direction flips is revealed to be variable between different microparticles. 

While the averaged velocities were shown in Fig. 2.3 (c) of Chapter 2, the individual trials can be 

 

Fig. S4. Comparing velocity profiles under different trials and field increments. (a) Individual trials for microparticles 

investigated in Fig. 2.3 (c) of the Chapter 2. The static magnetic field flux density necessary to cause a flipping of the 

propulsion direction was dependent on the specific microparticle as well as its local environment. (b) The hysteresis 

under 1 mT incrementation for the same microparticle as in Fig. 2.3 (e). Rotational frequency was 15 Hz in both cases. 

Error bars represent standard error.  
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seen in Fig. S4 (a), with each microparticle flipping direction at different static magnetic fields. 

We attribute variations between each trial to heterogeneities present within the fluid and conclude 

that the switching field also depends on the microparticle’s environment. To complement the 0.2 

mT incrementation shown in Fig. 2.3 (e) of Chapter 2, the effect of a 1 mT increment on the same 

microparticle is shown in Fig. S4 (b) over 7 trials. For 1 mT increments, the switching fields of 

the hysteresis are at -1 mT and 1 mT, while for the 0.2 mT increments shown in Chapter 2 [Fig. 

2.3 (e)] they are -1.2 mT and 0.8 mT, respectively.  

 

Fig. S5. Hysteresis of a microparticle at different frequencies. The propulsion velocity vs. static magnetic field for a 10 

µm diameter microparticle, under 1 mT increments from 2 to -2 to 2 mT, while rotating at (a) 10 Hz and (b) 15 Hz. The 

propulsion velocity vs. static magnetic field for the same 10 µm diameter microparticle under 0.2 mT increments, while 

rotating at (c) 10 Hz and (d) 15 Hz. The crossover points (where propulsion of the microparticle flips direction) in each 

graph were (a) -1 and 1 mT, (b) -2 and 1 mT, (c) -1.2 mT and 0.6 mT, and (d) -1.2 and approximately 0 mT. Error bars 

represent standard error.  
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It was observed during experiments that the frequency at which the microparticles rotated 

affected when their propulsion direction would flip during static field incrementation. In all 

experiments performed in mucin solution presented in Chapter 2, the microparticles were rotated 

at a constant frequency of 15 Hz as the static magnetic field was incremented. Here, we describe 

comparative experiments where the frequency was reduced to 10 Hz. The propulsion velocity 

exhibited by the microparticle was lower and the behavior of the hysteresis curve from the static 

field sweep was significantly altered. Figure S5 shows the static magnetic field incrementation 

from 2 mT to -2 mT to 2 mT under both 0.2 mT and 1 mT increments for two different rotational 

 

Fig. S6. Hysteresis in 0.25% polyacrylamide. (a-b) Microparticles undergoing a static field hysteresis at 2 mT 

and 1 mT increments, respectively. (c-d) Two different microparticles undergoing a static field hysteresis at 0.2 

mT increments. All microparticles were 10 µm in diameter and rotated at 40 Hz. Error bars represent standard 

error.  
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frequencies for the same microparticle [a different microparticle then Fig. 2.3 (e) and S4 (b)], over 

at least 4 trials per frequency and increment. Thus, rotation frequency can influence the 

microparticle’s response to changing static magnetic fields. We expect that there are 

heterogeneities within the fluid medium that are also influencing the microparticles behavior, but 

these are not easily quantifiable at this time. 

Static field experiments involving microparticles within 0.25% polyacrylamide did not 

always result in a hysteresis. This appears to be a frequency dependence as microparticles actuated 

at 15 Hz could not produce a hysteretic effect, while microparticles actuated at 40 Hz [see Fig. 2.3 

(f)] could produce uniform and repeatable behavior. For five microparticles rotated at 15 Hz (4 

trials each), no hysteresis was observed, and the behavior was similar to the unidirectional static 

sweeps in Fig. 2.3 (d). At higher frequencies (40 Hz, where |𝐵𝑟| = 0.175𝑓) hysteresis effects were 

observed in 4 of 5 particles tested, and for these particles two symmetry breaking propulsion states 

occur at 0 mT. Figure S6 shows four microparticles, one under a 2 mT increment, one under a 1 

mT increment, and two under 0.2 mT increments, each with at least three trials each. In Fig. S6 (a-

b) we see there are two distinct propulsive states at 0 mT for each particle that are nearly equal and 

opposite to each other during hysteresis. In Fig. S6 (c-d) we see that the hysteresis patterns are 

different for different particles under 0.2 mT increments and were consistent between multiple 

trials; both also had two unique propulsive states for 0 mT. Thus, consistent with our observations 

in mucus solution, frequency and static field incrementation are interlinked and can influence how 

the hysteresis forms (if at all). However, even at a high frequency, some particles did not exhibit 

two symmetry breaking states; an example of this can be seen in Fig. S7, where a microparticle in 

0.25% polyacrylamide had the same propulsion direction at 0 mT static magnetic field on both the 

forward and backward sweeps.  
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Fig. S7. Attempted hysteresis of a 10 µm diameter microparticle in 0.25% polyacrylamide. This microparticle 

did not display hysteresis or pair of symmetry broken states when rotated at 40 Hz while magnetic field was 

changed in 2 mT increments. Error bars represent standard error.  
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Section 3: Performance Statistics of Selected Trajectories 

Microparticles were propelled in the trajectories presented in Chapter 2 [Fig. 2.2 (c-g)] 

using proportional feedback control described in Eq. 2.4 and Eq. 2.5 of Chapter 2. In the case of 

these experiments, we targeted two box-shaped trajectories for the microparticles in 

polyacrylamide, and the letters ‘S’,’M’’, and ‘U’ were targeted, in homage to Southern Methodist 

University, for microparticles in 4% mucin. Each of the trajectories was defined by several target 

positions which the microparticle had to reach in order to complete the trajectory. Connecting all 

of these target positions together in sequence creates the shortest path the microparticles could 

trace; these paths can be seen as magenta dashed lines in Fig. 2.2 (c-g) with the magenta colored 

dots representing the target positions. The distance between the microparticle’s centroid and the 

target positions was measured during each frame of the recorded experiment to produce the 

positional error graphs presented in Fig. S8 (a-e) for Fig. 2.2 (c-g), respectively. In all experiments 

 

Fig. S8. Feedback control trajectories and performance statistics. (a-e) Represent the error of the microparticles form the 

target positions (magenta dots) for each trajectory shown in Fig. 2.2 (c-g) of Chapter 2, respectively. The dashed magenta 

lines in (a-e) indicate the target point the microparticle was attempting to reach.  
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the error from the target points decayed and the microparticles could come reasonably close to 

each target position (< 5 μm).  
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Section 4: 3D Propulsion and Tracking 

To approximate the displacement of a microparticle translating in 3D, two different 

methods were utilized: (1) directly measuring using a microscope focusing knob and (2) measuring 

the change in pixel area of a microparticle as it changes focal planes. The first method was used to 

measure a microparticle’s distance and velocity as it translated from the bottom of the substrate 

into the bulk fluid during the µPIV experiments discussed in Chapter 2. The microscope was a 

Nikon Eclipse-Ti which could precisely track the focal plane in micrometers via a visual display 

at the front of the microscope. A microparticle, the same one that was examined in the µPIV 

experiment in Fig. 2.4 (i), was rotated for 10 seconds in the x-y plane at 15 Hz with a 2 mT static 

magnetic field using a MagnetbotiX (MFG-100-i) field controller; the distance traveled by the 

microparticle was recorded from which the velocity was calculated. The results of this experiment 

are shown in Fig. S9 (b), where the bar graphs show both the distance traveled and the average 

velocity of the microparticle. The microparticle was clearly seen to overcome gravity and achieve 

meaningful propulsion behavior in a short time frame. In more complex pathing experiments, a 

Leica (DM IRB) microscope was utilized with our approximate Helmholtz coil system and a 

CMOS camera was used to visualize the microparticles as they translated through the medium. 

 

Fig. S9. 3D tracking analysis. (a) Image area of a microparticle as the microparticle translates in the negative z-direction. 

(b) Velocity and distance measured for a microparticle propelling along the positive z-direction. (c) Image area as a 2 

µm diameter microparticle translates in the negative z-direction in 0.25% polyacrylamide.   
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These microparticles were tracked in the z-direction by tracking changes to the pixel area of the 

observed microswimmer; decreases in pixel area were correlated with decreases in z-direction 

depth (into the page), and increases were correlated with increases in z-direction depth (out of the 

page). A graph showing this correlation can be seen below in Fig. S9 (a). This correlation was used 

to generate the positional data for the results shown in Fig. 2.2 (h) of Chapter 2 from pixel areas 

in the videos. Another correlation for a 2 µm diameter microparticle in 0.25% polyacrylamide can 

be seen in Fig. S9 (c).  

While not shown in Chapter 2, microparticles suspended in 0.25% polyacrylamide were 

also capable of exhibiting 3D propulsive behavior similar to the kind demonstrated in 4% mucin 

[Fig. 2.2 (h)]. From experiments it was determined that 2 μm diameter microparticles were not as 

susceptible to gravity driven sedimentation and were used here for demonstrative purposes. 

Presented in Fig. S10 is a 2 μm diameter microparticle that performed a user selected trajectory in 

three dimensions with z-position approximated using the correlation shown in Fig. S9 (c). The 

estimated 3D position with time is also presented along with projections in each plane.  

 

Fig. S10. Three-dimensional tracking of a 2 μm diameter bead in 0.25% polyacrylamide. Total time of experiment 

was 138 seconds.  
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Section 5: Rotational Dynamics of Magnetic Spheres with Static Field 

Consider a magnetic field that is rotating about the x-axis, with static component Bs and 

rotating component Br.  We work using a basis that is coincident and co-rotating with the magnetic 

field, so that the magnetic field is B = (Bs, Br, 0), and its angular velocity is ω = (ω,0,0).  For a 

spherical bead with magnetic moment of magnitude m,  𝒎 = 𝑚(𝑚̂𝑥, 𝑚̂𝑦 , 𝑚̂𝑧), the torque exerted 

on it by the field is 𝑵 = 𝜇0𝒎 × 𝑩, where 𝜇0 is the vacuum magnetic permeability.  In the zero-

Reynolds number limit, the angular velocity Ω of a sphere of radius a is proportional to the torque, 

𝜴 =
3

8𝜋𝜇𝑎3 𝑵, where  𝜇 is the viscosity of the fluid.  Combining the above, 𝜴 = 
3𝜇0

8𝜋𝜇𝑎3  𝒎 × 𝑩. 

Suppose we seek a steady solution, in which the sphere rotates with the field, i.e., Ω = ω.  Since 

by the properties of the cross product Ω is perpendicular to B, this is only possible if ω is 

perpendicular to B, i.e., if there is no static component and Bs = 0.  However, we are interested in 

the behavior when there is a static component, so we must seek a different solution.  It turns out 

that for Bs ≠ 0, there exist solutions for which the magnetic dipole m co-rotates with the field, even 

if the sphere does not.  To find these, we set the time evolution of m in the basis rotating with the 

field to be zero, 0 =  𝒎̇ = (𝛀 − 𝝎) × 𝒎, where the relative angular velocity (Ω – ω) is used since 

we are expressing m in the basis rotating with angular velocity ω.  The result is 

 

𝒎̇ = 𝑚Ω𝑠 (

𝑏𝑠(1 − 𝑚̂𝑥
2) − 𝑚̂𝑥𝑚̂𝑦

−𝑏𝑠𝑚̂𝑥𝑚̂𝑦 + (1 − 𝑚̂𝑦
2)

−𝑏𝑠𝑚̂𝑥𝑚̂𝑧 − 𝑚̂𝑦𝑚̂𝑧

) + 𝑚𝜔 (

0
𝑚̂𝑧

−𝑚̂𝑦

),  (S1) 

 

where bs = Bs/Br, and 𝛺𝑠 =
3𝑚𝐵𝑟𝜇0

8𝜋𝑎3𝜇
 is the step-out frequency of the sphere when there is no static 

field.   
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Solutions for a co-rotating dipole m are obtained by setting Eq. (S1) to zero and solving under the 

constraint  1 =  𝑚̂𝑥
2 + 𝑚̂𝑦

2 + 𝑚̂𝑧
2.  Typically, there are four solutions, only two of which have purely 

real components (𝑚̂𝑥, 𝑚̂𝑦, 𝑚̂𝑧).  One of these real solutions has  𝑚̂𝑥 pointing in the direction of the 

static component Bs, and the other has  𝑚̂𝑥 pointing in the opposite direction of Bs. 

To determine which of these solutions is observed, we evaluate their stability.  Denote the 

direction of the dipole for the solution in question 𝒎̂0, which satisfies 𝒎̇(𝒎̂0) = 0.  Since  𝒎̂0 is 

a unit vector, it has only two degrees of freedom, which we can express in terms of an infinitesimal 

rotation 𝝈, such that a perturbation 𝛿𝒎̂0 = 𝝈 × 𝒎̂0, where it is sufficient to consider 𝝈 in the two-

dimensional space perpendicular to 𝒎̂0. Then we find that 𝝈̇ × 𝒎̂0 = 𝒎̇(𝒎̂0 + 𝛿𝒎̂0), or 

expanding to first order in the perturbation, 𝝈̇ × 𝒎̂0 = −
𝜕𝒎̇

𝜕𝒎̂
(𝒎̂0 × 𝝈) .  From this we obtain 

𝝈̇ = −𝒎̂0 × (
𝜕𝒎̇

𝜕𝒎̂
(𝒎̂0 × 𝝈)) ≡ 𝑸𝝈,   (S2) 

where the last equivalence serves to define the linear operator Q.  To be explicit, in indicial notation 

 

𝑄𝑖𝑗 = −𝜖𝑖𝑘𝑙𝑚̂𝑘
𝜕𝑚̇𝑙

𝜕𝑚̂𝑛
𝜖𝑛𝑝𝑗𝑚̂𝑝,    (S3) 

where all the components are evaluated at 𝒎̂0, and 𝜖𝑖𝑗𝑘 is the Levi-Civita antisymmetric tensor. Q 

has one zero eigenvalue (corresponding to the 𝒎̂0 direction) and two other eigenvalues. The 

solution  𝒎̂0 is stable if the two other eigenvalues both have negative real parts.  We find that the 

solution with 𝑚̂𝑥 pointing in the direction of the static component Bs is stable, and the other is 

unstable. 
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Physically, the kinematics of the stable solution involves the magnetic dipole tilting 

towards the static component of the magnetic field, the sphere rotating about the x-axis such that 

the magnetic dipole rotates at the same rate as the rotating field, and the sphere additionally rotating 

about the magnetic dipole direction (which is itself changing in the lab frame). Thus, only the 

magnetic dipole undergoes steady rotation at the field angular velocity, while the sphere itself 

undergoes a more complex time-dependent rotation.  In Fig. S11, we plot the tilt angle β between 

the y-z plane and the dipole (𝑚̂𝑥 = sin 𝛽) for increasing static field, and various field rotation 

rates.  For zero static field, β = 0, but as the static field component increases so does the tilt angle.  

 

 

 

 

Fig. S11. Change in tilt angle in response to applied static magnetic field component 𝐵𝑠. Each curve is produced for the 

indicated value of rotation frequency (ω).  
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Section 6: Symmetry Breaking Propulsion Force 

The force on a simultaneously rotating and translating sphere in the zero Reynolds number 

limit in a nonlinear third-order fluid was calculated using a retarded motion expansion47 by 

Giesekus40.  For a sphere translating in the z-direction and rotating with angular velocity Ω about 

the z-axis, up to second order in Deborah number the force in the z direction takes the form: 

      𝐹 = −6𝜋𝜇𝑎𝑈 + 𝐷𝑈3 + 𝐶2𝑈,                    (S4) 

where D and C are constants that depend on the material parameters of the fluid. As discussed in 

Chapter 2, the term proportional to UΩ2 couples rotation to translation in a way that corresponds 

to a possible symmetry-breaking force. If C > 0, the nonlinear force opposes drag and is propulsive, 

while if C < 0 the nonlinear force increases drag and stabilizes the state with no translation. Thus, 

we are interested in whether C is positive or negative for various nonlinear fluids.  The results for 

various nonlinear fluids are discussed below. 

Giesekus40 calculates the force for both a dilute solution of elastic dumbbells, i.e., an 

Olroyd-B fluid, (his Eq. 72) and a dilute solution of rigid dumbbells or rods (his Eq. 74), and finds 

positive C for both. (Note that the sign of Giesekus’ force in his paper is opposite ours since his 

sphere translates and rotates in the opposite directions.) 

Table 6.2-1 of the textbook of Bird, Armstrong and Hassager47 contains a table listing the 

parameters for the constitutive laws of third-order fluids corresponding to various kinetic theory 

models, namely a dilute solution of FENE dumbbells, a dilute solution of multi-bead rods, and a 

melt of freely-joined bead-rod chains.  The table reports the coefficients b1, b2, b11, b3, b12, and 

b1:11 of the constitutive law, Eq. 6.2-1 of that textbook, which is written in terms of the rate of 

strain tensors  defined therein (denoted 𝛾(𝑛)in Bird, Armstrong and Hassager47).  In order to use 

these parameters in Giesekus’ result, one must deduce from them the values of the coefficients 
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denoted 𝛾0
(1)

, 𝛾0
(2)

, 𝛾0
(11)

, 𝛾0
(3)

, 𝛾0
(21)

, and 𝛾11
(1)

 in the constitutive law Eq. 3 (from Giesekus40)  which 

is written in terms of (different) kinematic tensors 𝑓(𝑛) defined in that paper.  We found that 

2𝑓(1) = 𝛾(1), 

2𝑓(2) − 4𝑓(1)• 𝑓(1) = 𝛾(2),    (S5) 

2𝑓(3) − 6(𝑓(1)• 𝑓(2) + 𝑓(2)• 𝑓(1)) + 8(𝑓(1)•𝑓(1)•𝑓(1)) = 𝛾(3), 

and that if 

(

 
 
 
 
 

 


0
 (1)


0
 (2)


0
 (11)


0
 (3)


0
 (21)


11
 (1)

 

)

 
 
 
 
 

= 

(

  
 

2 0 0 0 0 0
0 2 0 0 0 0
0 −4 4 0 0 0
0 0 0 2 0 0
0 0 0 −6 4 0
0 0 0 4 −8 8)

  
 

(

 
 
 

 

𝑏1

𝑏2

𝑏11

𝑏3

𝑏12

𝑏1:11

 

)

 
 
 

,  (S6) 

 

then the constitutive laws given by Bird, Armstrong and Hassager47 and Giesekus40 were identical 

up to an isotropic function that could be absorbed into the pressure. Using this conversion, we find 

the nonlinear corrections of the force due to the constitutive laws in the table.  

For the melt of freely-jointed bead-rod chains, we tested the sign of C at room temperature 

for molar volumes of polymer molecules of approximately 10-4 m3/mol 146, corresponding to 

number densities of approximately 1028 molecules/m3, a range of number of beads in each chain 

of 2 – 10, a solvent viscosity of 1 mPa, a range of time constants λk in Table 6.2-1 of Bird, 

Armstrong and Hassager47 of 0.1-100 s, and a range of ε of 0.3-0.5 as suggested in that table. In 

all cases C was positive. 

For the dilute solution of FENE dumbbells, we tested the sign of C at room temperature 

for number densities of polymer molecules in the range of 1026 – 1028 molecules/m3, a solvent 
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viscosity of 1 mPa, a range of time constants λH in Table 6.2-1 of Bird, Armstrong, and Hassager47 

0.1-100 s, and a range of b of 10-300 as suggested in that table. In all cases C was positive. 

For the dilute solution of multibead rods, we tested the sign of C at room temperature for 

number densities of polymer molecules in the range of 1026 – 1028 molecules/m3, a solvent 

viscosity of 1 mPa, a range of time constants λ(1)
N of 0.1-100 s, and a range of [1 - λ(1)

N/ λ(2)N ] of -

0.5 – 0.3082 in Table 6.2-1 of Bird, Armstrong, and Hassager47 as suggested in the that table. In 

all cases C was positive. 

To summarize, in all the cases tested, the sign of C was positive, which indicates that the 

nonlinear correction to the force around a translating and rotating sphere acts to propel it, at least 

up to the order of the retarded motion expansion analyzed. As discussed in Chapter 2, this 

perturbative analysis is only suggestive and cannot explicitly find the symmetry-broken state. An 

explicit theoretical solution demonstrating symmetry breaking would likely require numerical 

simulations of a sphere in a nonlinear fluid.   
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Section 7: Approximate Helmholtz Coils and Magnetic Field Spatial Dependence 

All experiments except those involving μPIV and fluorescence were conducted using an 

approximate Helmholtz coil system for Chapters 2-4. This system has been used extensively in 

our previous research96,147,148. The approximate Helmholtz coils themselves are composed of 

AWG 25 copper wire with approximately 600 turns each, have an outer diameter of 6.55 cm, an 

inner diameter of 4 cm, and a thickness of approximately 1.23 cm. The coils are separated from 

each other at a distance of twice their radius, differing from a traditional Helmholtz coil which has 

1 radius of separation (thus why we call them ‘approximate’). To account for this discrepancy, the 

voltages provided to the coils are increased such that a uniform magnetic field profile is present in 

the center of each coil pair. The coils are arranged in a tri-axial arrangement allowing for 

approximately uniform magnetic fields to be produced in all three dimensions. More details about 

specific experimental procedures can be found in the 2.4 Methods section of Chapter 2.  

 

 
Fig. S12. Path of the magnetometer within the working space of the approximate Helmholtz coil system. The 

probe of the magnetometer began at (-5,5) and ended at (5,-5) with each point marked by an ‘×’ representing a 

measurement location. 
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A THM1176 three axis Hall magnetometer (GWM Associates) was used to measure the 

magnetic fields at predefined locations within the approximate Helmholtz coil system. The 

working space at the center of the coil system was confined to an area of 2 cm2; within this area 

the teslameter was moved at 2 mm increments along the path designated in Fig. S12. 

Measurements along this path were taken at Z-heights of 0, 1, and 2 mm for each coil pair. During 

experiments only one pair of coils was set to produce a static field of 2 mT. The measured magnetic 

fields at each point and height are displayed as a gradient heat map in Fig. S13 for all three coil 

pairs. In each plane the magnetic fields are mostly uniform, although they are slightly higher than 

the expected 2 mT value.  The Z-coil pair [Fig. S13 (c)] appears to have high variation in magnetic 

fields as height increases along the Z-axis; this is confirmed when comparing the static field 

distributions of all three planes for each coil pair [Fig. S13 (d-f)]. However, the maximum magnetic 

 
Fig. S13. Approximate Helmholtz coil magnetic field profiles. Magnetic field profiles for (a) X coil, (b) Y coil, and (c) 

Z coil at different spacings in the XYZ plane under a constant 2 mT static field along each respective direction for (a-

c). (d-f) Static field value histograms of all three planes of measurement with estimated normal distributions (black solid 

lines). The mean static fields were (d) 2.16 mT, (e) 2.08 mT, and (f) 2.43 mT, while the standard deviations were 0.02 

mT, 0.12 mT, and 0.34 mT, respectively. The Z coils had significant variance in static field values as height varied, 

while Y coil had a slight variance. 
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gradient does not exceed 0.05 mT/mm. Furthermore, given the evidence in Chapter 2 regarding 

the hysteresis of both microparticles suspended in mucus and polyacrylamide having noticeable 

propulsive behavior at 0 mT, under purely rotating magnetic fields, we can again dismiss gradients 

along the propulsive direction as being the primary driver of microparticle propulsion. The control 

data sets in Fig. 2.1 (b-c), Fig. 3.2 (b-d), and Fig. 4.2 (c) involving saline and methylcellulose 

solutions also demonstrate that propulsion is not occurring even at high rotational frequencies. 
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Section 8: Magnetic Field Gradients are not Responsible for Propulsion 

In Chapters 2-4 we remark that since propulsion disappears as the rotational frequency 

approaches zero even though the static field remains present, gradients in the static magnetic field 

cannot be responsible for the observed propulsion. In this section we provide additional evidence 

ruling out magnetic field gradients as the cause of propulsion.  

First, the estimated force on a magnetic bead was estimated to be 8 × 10−14 N, using the 

estimated two dimensional dipole moment of [−1.899 × 10−12, 6.277 × 10−13] 𝐴.𝑚2 

produced from the maximum magnetic field values of [1.6978, 1.6733] mT measured in the x-

y plane; using Stokes’ law this force results in an estimated translational velocity of 0.0046 μm/s 

for a 10 µm diameter bead. 

Since the estimated translational velocity is order of magnitudes smaller than typically 

observed propulsion velocities (of order 1 μm/s), the gradient field cannot be responsible for the 

propulsion observed. In addition, the static magnetic field gradients could not account for the 

demonstrated controllable propulsion along different directions.  

To further assure that magnetic field gradients were not causing the translation behavior, 

microparticles of 10 μm diameter were dispersed inside a sample chamber containing a 4% mucin 

synthetic mucus medium and placed inside the approximate Helmholtz coil system. A 2 mT static 

field was applied along the X-coil pair (positive or negative) and microparticles were examined 

under both rotating (15 Hz) and non-rotating conditions for at least 20 seconds and videos were 

recorded at 30 frames per second (fps). A mean square displacement (MSD) analysis was 

performed to compare the diffusive behavior of microparticles under both conditions. The MSD 

was calculated using,  
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< 𝑟2(𝜏) > =
1

𝑁−𝜏
∑ [𝑟(𝑡𝑖 + 𝜏) − 𝑟(𝑡𝑖)]

2𝑁−𝜏
𝑖=1 ,       (S7) 

where < 𝑟2(𝜏) > is the MSD, 𝑁 is the number of time steps for a given trajectory, 𝜏 is the lag 

time, 𝑟 is the position vector, and 𝑡𝑖 is the 𝑖𝑡ℎ time increment103. For both the rotating and non-

rotating cases the MSD profiles were modeled using,    

< 𝑟2(𝜏) > ∝ 4𝐷𝜏𝛼,          (S8) 

where 𝐷 is generalized diffusion and 𝛼 is the anomalous diffusion exponent; fittings were 

produced from the ensemble averaged MSD data over multiple rotating microparticles (at least 

three with each having at least three independent trials) and non-rotating microparticles under the 

same conditions. The MSD of the rotating and non-rotating microparticles (averaged over at least 

3 beads, each with at least 5 trials) can be seen in Fig. S14 (a-b). On the non-logarithmic plot [Fig. 

S14 (a)] the rotating behavior clearly induces ballistic behavior while the non-rotating case retains 

a flat MSD throughout. Comparing the results in Fig. S14 (b) against diffusive (α~1) and 

superdiffusive behavior (α > 1), it is clear that rotating microparticles are actively propelling under 

rotation, while the non-rotating microparticles are only experiencing approximately diffusive 

behavior. After fitting the MSD data between lag time ranges of 1 to 5 seconds using a Delayed 

Rejection Adaptive Metropolis Markov chain Monte Carlo technique104, (see Appendix Section 

11 for more information) we find that diffusivity and the diffusion exponent are both reasonable 

for each case. For the non-rotating case the diffusivity and diffusion exponent were 0.0019 (
𝜇𝑚2

𝑠𝛼 ) 
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and 1.05. The rotating case had a diffusivity and diffusion exponent of 0.44 (
𝜇𝑚2

𝑠𝛼
) and 1.74; the 

plots for each can be seen as solid lines in Fig. S14 (b).  

 

 

 

 

 

 

 

 

 

 

 

Fig. S14. Mean square displacement of rotating and non-rotating microparticles in 4% mucin. Mean square 

displacement where (a) is the non-logarithmic plot and (b) shows the logarithmic plot with fittings. The black long 

solid line corresponds to the fit for the rotating case and the long solid green line is the fit for the non-rotating case. 

Short solid lines represent general mean square displacement profiles for different values of 𝛼.  
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Section 9: Propulsion Velocity Dependence on Mucin Concentration and Particle Size 

Only synthetic mucus of 4% mucin was explored in detail within Chapter 2 and can be 

considered a reasonable baseline since mucin concentrations within the human body typically 

ranges between 2-5%43. However, it was observed experimentally that microparticles could exhibit 

similar propulsive behavior for other concentrations of mucins. Presented in Fig. S15 are the 

propulsion velocities of 10 μm diameter microparticles within 2%, 3%, and 4% mucin solutions at 

different rotational frequencies; all data sets were averaged over six microparticles per diameter, 

per fluid, with at least 3 trials each. While at small frequencies (< 10 Hz) there is only minor 

variation between propulsion velocities, at larger frequencies (> 10 Hz) there are clear differences 

in propulsion behavior. Based on these trends it appears that increasing mucin concentration 

positively affects propulsion velocity, while lowering mucin concentration results in a velocity 

decrease. The limits of this behavior are not well understood at this time although it is expected 

that at extreme (higher or lower) mucin concentrations the microparticle propulsion velocity 

should decrease.  

 

Fig. S15. Velocity and mucin concentration. Propulsion velocity vs. frequency for 10 μm diameter microparticles 

inside different concentrations of mucin. Error bars represent standard error.  
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We tested microparticles of several different diameters (2, 4, 8, and 10 µm) to determine if 

propulsion velocity was influenced by microparticle size [Fig. S16 (a-b)]; all data sets were 

averaged over at least three microparticles per fluid with at least 3 trials each.  In 4% mucin as 

microparticle diameter increased, so did propulsion velocity, except that both 2 µm diameter 

microparticles and 4 µm diameter microparticles were nearly identical and had overlapping 

velocity curves. In 0.25% polyacrylamide the influence of microparticle diameter was less 

obvious, with 2 μm microparticles being faster than 4 μm microparticles, and 8 μm microparticles 

having a markedly non-linear relationship to frequency. Other than the 8 µm microparticles in 

polyacrylamide, for frequencies less than 10 Hz, the velocities of the differently sized 

microparticles in both fluids were all within a standard error of each other; but for frequencies 

above 10 Hz the velocity profiles of each diameter microparticle become more distinct from each 

other. 

 

Fig. S16. Velocity and microparticle diameter. (a) Propulsion velocity vs. frequency for different diameter 

microparticles in 4% mucin. The coefficients of determination (𝑟2) values were 0.976, 0.8875, 0.9733, and 0.9650 for 

2 µm, 4 µm, 8 µm, and 10 µm, respectively.  (b) Propulsion velocity vs. frequency for different diameter microparticles 

in 0.25% polyacrylamide. The 𝑟2 values were 0.9255, 0.8066, -0.4007, and 0.9483 for 2 µm, 4 µm, 8 µm, and 10 µm, 

respectively. Error bars represent standard error.  
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Section 10: Rheological Analysis of First and Second Normal Stress 

The first normal stress difference (𝑁1) was measured directly from the axial force (𝐹𝐶𝑃) in 

a 2° cone-and-plate geometry (60 mm in diameter) on a TA Instruments AR-G2 rheometer,  

𝑁1 = 
2𝐹𝐶𝑃

𝜋𝑅2 .                                                 (S9) 

The second normal stress difference (𝑁2) was measured by comparing the axial force in the cone-

and-plate geometry to the axial force (𝐹𝑃𝑃) in a parallel-plate (60 mm diameter) geometry83,84, 

𝑁1 − 𝑁2 = 
𝐹𝑃𝑃

𝜋𝑅2 [2 +
𝑑 ln(

𝐹𝑃𝑃
𝜋𝑅2)

𝑑 ln(𝛾̇)
],         (S10) 

where 𝑅 is the radius of the geometry, and 𝛾̇ is the shear rate at the rim of the geometry. We zeroed 

the axial force balance before each sweep of shear rates and checked that the meniscus of the 

sample did not change shape during the sweep to ensure that capillary forces did not affect the 

axial force measurements. A polymethyl methacrylate (PMMA) sheet was used for the lower 

geometry surface to stabilize the contact line. Care was taken to trim the gap after sample loading 

and to ensure no air bubbles were trapped in the rheometer during sample loading.  

We validated our measurements by comparing measurements of the normal stresses of a 

2.5% polyacrylamide solution in water [Fig. S17 (a), averaged over 3 runs] to those reported in 

the literature149 (see Fig. 3.3-5 in reference). Similar to the reported values for 1.5% 
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polyacrylamide solution in a water-glycerin mixture, we measured a positive first normal stress 

coefficient, 

 

Fig. S17. First and second normal stresses for polyacrylamide and mucin. (a)  First and second normal stress 

differences for 2.5% polyacrylamide and respective (b) normal stress coefficients. (c) First and second 

normal stress differences for 10% mucin with theoretical inertial correction, with its respective normal stress 

coefficients shown in Fig. 2.5 (e). (d) First and second normal stress differences for 10% mucin with 

experimental inertial correction and its respective (e) normal stress coefficients. Error bars represent standard 

deviation.  



 

99 

 

Ψ1 = 
𝑁1

𝛾̇2
,            (S11) 

that decreased with increasing shear rate as  𝛾̇−
3

2, and a negative second normal stress coefficient, 

Ψ2 = 
𝑁2

𝛾̇2,           (S12) 

that was about 23% the magnitude of the first normal stress coefficient [Fig. S17 (b)].  The 

magnitude of our measured normal stresses were systematically smaller than those reported 

previously, possibly due to differences in the solvents and molecular weight of the polyacrylamide. 

We measured the normal stress differences of a 10% mucin solution for shear rates between 

100 and 1000 s-1 (near microparticles rotating at 15-20 Hz, shear rates are 94-125 s-1 in our 

experiments).  For each geometry, three runs were performed with the addition of a drop of 

nonionic surfactant (Nonidet P-40; 0.025 m/v% aqueous solution) to the air-sample interface. For 

these shear rates, inertial effects and normal stress differences contributed similar magnitude axial 

forces. We corrected for inertial effects in two different ways in Fig. S17 (c-e). The expected axial 

forces due to inertia are theoretically expected to be  𝐹 = −0.075𝜌𝜋𝑊2𝑅4 where 𝜌 is the density 

of the fluid, W is the angular velocity, and R is the radius of the geometry150. Normal stress 

difference measurements corrected using these expected axial forces were used to plot Fig. S17 

(c), while the normal stress coefficients were plotted in Fig. 2.5 (e). As a check of the accuracy of 

the theoretical inertial correction, we also measured axial forces due to inertia by performing 

measurements on water, with and without the addition of surfactant (Nonidet P-40; 0.025 m/v% 

aqueous solution) to account for any capillary effects. We observed no significant dependence on 

geometry type or impact due to capillary forces; however, we did find the measured contribution 
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due to inertia to be slightly less than expected. Normal stress difference measurements and normal 

stress coefficients corrected using these measured axial forces were used to plot Fig. S17 (d-e).  

Both Fig. 2.5 (e) and Fig. S17 (e) show that the mucin solution also has positive first normal 

stress coefficients and smaller negative second normal stress coefficients in this range of shear 

rates.  The magnitude of normal stress differences is significantly smaller than those we measured 

in polyacrylamide solution. For both 0.25% polyacrylamide and 4% mucin solution, axial forces 

were even smaller and below the limit of the sensitivity of the force transducers on both rheometers 

used during experiments, so we could not obtain reliable measurements. 

To summarize, our measurements show that mucin solutions develop normal stress 

differences under shear, which can lead to rod-climbing-like effects such as those we propose are 

responsible for symmetry-breaking propulsion. 
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Section 11: Secondary Flows from Microparticle Rotating 

Here we compare the radial inward flow observed in our µPIV data for particles propelling 

in the z-direction [Fig. 2.4 (g-i)] to the secondary flows expected for nonlinearly viscoelastic fluids. 

The secondary flow around a rotating and translating sphere predicted by the perturbation 

expansion described in Section 6 is,    

[

𝑣𝑟

𝑣𝜃

𝑣𝜙

] =

[
 
 
 
 
(−1+𝐵11)(−1+𝑟)2(−8−3𝑈2+𝑟(−4+3𝑈2))(1+3cos2𝜃)

16𝑟5

−3(−1+𝐵11)(−1+𝑟)(−8+3(−1+𝑟)𝑈2) sin 2𝜃

16𝑟5

3(−1+𝐵11)(−1+𝑟)𝑈 sin2𝜃

4𝑟4 ]
 
 
 
 

,     (S13) 

where 𝑟 is the nondimensional radius of the sphere, 𝑈 is the nondimensional velocity, 𝜃 is the 

cartesian angle from the spheres propulsion axis to it’s center plane, and 𝐵11 = 
𝑏11

𝑏2
 depends on the 

parameters of the constitutive law (see Appendix Section 6), where each term on the left hand side 

are the velocities in the spherical basis. The radial flow fields along the plane where 𝜃 =
𝜋

2
 were 

extracted from the μPIV data [Fig. 2.4 (g)] and plotted in Fig. S18 (a) for various angles of 𝜙; the 

average of these is shown using the black symbols and line in Fig. S18 (a). Aside from some 

variation between the different 𝜙 values, all of the velocity profiles were markedly similar. It is 

 

Fig. S18. Experimental and theoretical secondary flows. (a) Experimentally extracted secondary radial flow along 

several angles of 𝜙 for 𝜃 =
𝜋

2
, an ensemble average between the different angles, and a fit to the ensemble average 

over a range of different z-planes using Equation S13. (b) Experimentally extracted vector field of radial flow. (c) 

Theoretically predicted radial flow vector field using the estimated parameters and averages between the planes.     
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important to note here that the non-zero velocity within one normalized radius of the particle is the 

result of the particle translating upwards during the experiment. The resulting averaged radial 

component was used to nonlinearly fit the parameters 𝐵11, 𝑈, and the beginning and end heights 

of the z-slices used for averaging, by comparing the average µPIV radial flow [black curve in Fig. 

S18 (a)]. The best fit parameters were calculated using a delayed rejection adaptive Metropolis 

(DRAM) Markov chain Monte Carlo algorithm104. Markov chains had a length of 100,000 and 

only the last 10% of the chain was used to estimate the parameters. A burn-in of 10,000 was used 

before adaptation occurred using the DRAM process. No prior distributions were utilized but there 

was a restriction of ||𝐵11|| < 1 and that the starting z-slice was limited to ≤  1 radii and the ending 

z-slice had to be > 1. Additionally, the fit was normalized again by its absolute maximum value to 

scale correctly with the ensemble averaged data. The ensemble average and the proposed fit can 

be found in Fig. S18 (a). The estimated values for 𝐵11 and 𝑈 for the fit were 0.0326 and 1.2911, 

respectively. The optimized starting and ending z-slices were estimated to be -2.8507 and 4.2760 

radii, respectively. The best-fit secondary flow prediction is similar to those of experiments, with 

the main difference being the radial position of the maximum magnitude of radial velocity. The 

vector flow field for the experimental data is shown in Fig. S18 (b) while the vector field from the 

estimated fit can be seen in Fig. S18 (c).  
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Section 12: μPIV in 0.25% Polyacrylamide 

Performing the same μPIV experiment as Fig. 2.4 (g-i) in 0.25% polyacrylamide resulted 

in similar flow fields to those produced in the 4% mucin experiments. These results can be seen in 

Fig. S19 where a 10 μm diameter microparticle was rotated at 15 Hz along the positive z-direction. 

The radial component of the flow field in Fig. S19 (a) matches the secondary flows predicted by 

the theory and is similar to the ones displayed by particles in 4% mucin; the (b) azimuthal velocity 

and (c) total velocity are likewise comparable.  

When imaging the μPIV of a 2 μm particle, we find that the flow fields are very similar to 

the ones produced by the larger particles. Figure S20 shows (a) the radial, (b) the azimuthal, and 

(c) total flow field for a 2 μm microparticle; unlike the 10 μm case, this particle was not in contact 

with the substrate and was ≥ 20 µm away from it. Note that the radial inward flow remains present 

despite the larger distance from the substrate, indicating that the secondary flow is not caused by 

 

Fig. S19. µPIV in 0.25% polyacrylamide. The (a) radial, (b) azimuthal, and (c) total velocity flow field for a 

microparticle propelling away from the substrate (positive z-direction). All PIV experiments were performed close 

to the boundary (< 100 µm, see 2.4 Methods). Magenta circle is the microparticle. Color bars to the right represents 

percentage of velocity magnitude with respect to the maximum velocity magnitude. 
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boundary effects. Compared to the 10 μm case, the magnitude of the flows decay more rapidly as 

distance from the sphere increases, perhaps due to boundary effects.  

 

 

 

 

 

 

 

 

 

 

Fig. S20. µPIV in 0.25% polyacrylamide for a 2 µm particle. The (a) radial, (b) azimuthal, and (c) total velocity flow 

field for a 2 μm microparticle propelling in the positive z-direction. The microparticle was 20 μm off the substrate. All 

PIV experiments were performed close to the boundary (< 100 µm, see 2.4 Methods). Magenta circle is the 

microparticle. Color bars to the right represents percentage of velocity magnitude with respect to the maximum velocity 

magnitude. 
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Section 13: Additional µPIV Information 

All µPIV graphs shown in Chapter 2 and throughout the Appendix section were normalized 

between 0 and 1 for comparability. Provided below in Table S.1 is a listing of each figure and the 

maximum absolute velocities measured by the µPIV software during each experiment.  

Table S.1: Maximum Velocity in µPIV Figures 

 

Figure # Maximum Velocity (𝜇𝑚/𝑠) 

Fig. 2.4 (a) 58.91 

Fig. 2.4 (b) 47.21 

Fig. 2.4 (c) 73.01 

Fig. 2.4 (d) 59.91 

Fig. 2.4 (e) 73.16 

Fig. 2.4 (f) 82.26 

Fig. 2.4 (g) 164.26 

Fig. 2.4 (h) 162.69 

Fig. 2.4 (i) 218.70 

Fig. S19 (a) 207.00 

Fig. S19 (b) 189.97 

Fig. S19 (c) 253.02 

Fig. S20 (a) 90.16 

Fig. S20 (b) 72.49 

Fig. S20 (c) 100.84 
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Janus swimmers with magnetotactic behavior. ACS Nano 11, 3973-3983 (2017). 

131 Gao, W., D'Agostino, M., Garcia‐Gradilla, V., Orozco, J. & Wang, J. Multi‐fuel driven 

janus micromotors. Small 9, 467-471 (2013). 

132 Halliwell, B., Clement, M. V., Ramalingam, J. & Long, L. H. Hydrogen peroxide. 

Ubiquitous in cell culture and in vivo? IUBMB Life 50, 251-257 (2000). 

133 Lynn Humberston, C., Dean, B. S. & Krenzelok, E. P. Ingestion of 35% hydrogen peroxide. 

Journal of Toxicology: Clinical Toxicology 28, 95-100 (1990). 

134 Pritchett, S., Green, D. & Rossos, P. Accidental Ingestion of 35% Hydrogen Peroxide. 

Canadian Journal of Gastroenterology 21, 423217 (2007). 

135 Chatterjee, P., Tang, E. M., Karande, P. & Underhill, P. T. Propulsion of catalytic Janus 

spheres in viscosified Newtonian solutions. Physical Review Fluids 3, 014101 (2018). 

136 Lai, S. K., Wang, Y.-Y., Wirtz, D. & Hanes, J. Micro- and macrorheology of mucus. 

Advanced Drug Delivery Reviews 61, 86-100 (2009). 

137 Kei Cheang, U., Lee, K., Julius, A. A. & Kim, M. J. Multiple-robot drug delivery strategy 

through coordinated teams of microswimmers. Applied Physics Letters 105, 083705 

(2014). 

138 Tang, J., Rogowski, L. W., Zhang, X. & Kim, M. J. Flagellar nanorobot with kinetic 

behavior investigation and 3D motion. Nanoscale (2020). 

139 Ali, J. et al. Fabrication and magnetic control of alginate-based rolling microrobots. AIP 

Advances 6, 125205 (2016). 

140 Stanton, M. M., Simmchen, J., Ma, X., Miguel‐López, A. & Sánchez, S. Biohybrid janus 

motors driven by Escherichia coli. Advanced Materials Interfaces 3, 1500505 (2016). 

141 Mellnik, J. W. et al. Maximum likelihood estimation for single particle, passive 

microrheology data with drift. Journal of Rheology 60, 379-392 (2016). 

142 Rogowski, L. W. et al. in 2019 International Conference on Robotics and Automation 

(ICRA), Montreal, Canada.  1352-1357 (IEEE). 

143 Ebagninin, K. W., Benchabane, A. & Bekkour, K. Rheological characterization of poly 

(ethylene oxide) solutions of different molecular weights. Journal of Colloid and Interface 

Science 336, 360-367 (2009). 

144 Rogowski, L. W. et al. in 2019 International Conference on Robotics and Automation 

(ICRA)    1352--1357 (2019). 



 

113 

 

145 Malekian, B. et al. Fabrication and Characterization of Plasmonic Nanopores with Cavities 

in the Solid Support. Sensors 17, 1444 (2017). 

146 Quach, A. & Simha, R. Pressure‐volume‐temperature properties and transitions of 

amorphous polymers; polystyrene and poly (orthomethylstyrene). Journal of Applied 

Physics 42, 4592-4606 (1971). 

147 Cheang, U. K., Kim, H., Milutinović, D., Choi, J. & Kim, M. J. Feedback control of an 

achiral robotic microswimmer. Journal of Bionic Engineering 14, 245-259 (2017). 

148 Ali, J., Kim, H., Cheang, U. K. & Kim, M. J. Micro-PIV measurements of flows induced 

by rotating microparticles near a boundary. Microfluidics and Nanofluidics 20, 131 (2016). 

149 Huppler, J., Ashare, E. & Holmes, J. Rheological Properties of Three Solutions. Part I. 

Non‐Newtonian Viscosity, Normal Stresses, and Complex Viscosity. Transactions of the 

Society of Rheology 11, 159-179 (1967). 

150 Kulicke, W., Kiss, G. & Porter, R. S. Inertial normal-force corrections in rotational 

rheometry. Rheologica Acta 16, 568-572 (1977). 

 


	Microparticle Propulsion for in vivo Navigation
	Recommended Citation

	tmp.1607474764.pdf.tZ5B9

