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When conducting statistical analysis in the Bayesian paradigm, the most critical decision

made by the researcher is the identification of a prior distribution for a parameter. Despite

the mathematical soundness of the Bayesian approach, a wrongly specified prior can lead to

biased and incorrect results. To avoid this, prior distributions should be based on real

data, which are easily accessible in the ”big data” era. This dissertation explores two

applications of Bayesian hierarchical modelling that incorporate information obtained from

a meta-analysis. The first of these applications is in the normalization of genomics data,

specifically for nanostring nCounter datasets. A meta-analysis of 13 nCounter datasets were

used to identify informative prior distributions, which were then incorporated into RCRnorm,

a leading normalization procedure for nCounter data that utilizes a Bayesian hierarchical

model. With the new prior and other structural changes applied to the underlying model,

the new normalization approach ”MetaNorm”, improves on its predecessor with faster speed,

better convergence and stabilized estimation, even when normalizing lower-quality datasets.

The second application covers a novel sample-size determination method for one and two-

sample t-tests. This novel methodology uses an empirical Bayes approach to construct

a posterior predictive distribution for the variance estimate, based on data from previous

studies. Simulations and empirical studies demonstrate that this methodology outperforms

other aggregate approaches (simple average, weighted average, median) in variance estimation
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for SSD, especially in meta-analyses with large disparities in sample size and variance. Thus,

it offers a robust and practical solution for sample size determination in t-tests.
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Chapter 1

MetaNorm: Incorporating Meta-analytic Priors into Normalization of NanoString
nCounter Data

1.1. Introduction

1.1.1. Normalization methods for nCounter gene expression data The medium-

throughput platform NanoString nCounter has quickly become one of the most popular

and efficient ways to analyze complex mRNA transcripts (Geiss et al., 2008). One reason

for this is its ability to process formalin fixed, parrafin-embedded (FFPE) tissue samples

effectively. While freshly frozen (FF) samples experience less degradation in storage, FFPE

samples require less stringent storage requirements and are therefore cheaper and easier to

retain (Perlmutter et al., 2004). This has led to a ubiquity of FFPE samples and has made

the nCounter system an invaluable resource in medical research. Among other areas, the

nCounter framework has been used to analyze FFPE samples in studies of colon, breast, and

lung cancer (Chen et al., 2016a; Lim et al., 2020; Walter et al., 2016). However, a significant

downside to using FFPE samples is the level of mRNA “modification” during the preservation

and storage of the sample (Masuda et al., 1999), causing higher levels of variability and

uncertainty in the readings. Thus, it is critical that the gene read counts undergo an

efficient normalization procedure before being formally analyzed. In addition to degradation

in FFPE samples, normalization can also help to remove background noise or lane-by-

lane variation, which is common in FF samples as well. Perhaps the simplest approach

to normalization is NanoStringNorm, an R package that implements NanoString guidelines

and relies on summary statistics from the positive, negative and housekeeping probes to

account for separate types of variation (Waggott et al., 2012). Other normalization methods,
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such as NAPPA1 and NanoStringDiff (Wang et al., 2016), use model-based approaches that

can better account for the complexities in the data. Despite the improvements of NAPPA

and NanoStringDiff, all three of these approaches use each type of probe in the same way,

in that positive probes only remove lane-by-lane variation, negative probes only remove

background noise, and housekeeping genes only remove variation in the amount of the input

sample material. Among the latest normalization protocols to be developed is RCRnorm,

which stands for random coefficient hierarchical regression normalization (Jia et al., 2019).

RCRnorm is unique in that (1) it is an integrated system of hierarchical models for the

different types of probes, (2) it is designed specifically to normalize FFPE data (but can

be used with other types of samples), (3) it allows for sample-to-sample variation in the

housekeeping genes (Eisenberg and Levanon, 2013), and (4) it uses a Bayesian framework

rather than a frequentist framework for normalization, thus allowing statistical inference

about key model parameters and uncertainty quantification for estimates while leading

to better interpretability. Essentially, the RCRnorm model assumes that all probes in a

given sample have a shared intercept and slope on a linear regression of log10 (gene read

count) and log10 (RNA amount). While other probe-specific effects are included, this allows

all types of probes to influence the normalization process, yielding more robust estimates

(technical details of RCRnorm are outlined in Section 1.1.3). The model is implemented

with a Gibbs sampler, which is a type of Markov chain Monte Carlo (MCMC) algorithm

where parameters are individually resampled until reaching a stationary distribution. In

general, RCRnorm is much more flexible than its frequentist counterparts, with the MCMC

algorithm able to explore the extremely high-dimensional parameter space and land on the

targeted posterior distribution. Jia et al. (2019) also shows a significant improvement in the

correlation between FFPE samples and their corresponding FF samples, which have gene

read counts that are thought to be more accurate to the ground truth than the FFPE counts.

They show that RCRnorm has superior correlation, both at the gene level and patient level.

1R Package: http://CRAN.R-project.org/package=NAPPA
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Additionally, in a comparison of different normalization procedures, Bhattacharya et al.

(2021) find that RCRnorm removes more technical variation than its counterparts, including

NanoStringNorm and NanoStringDiff.

1.1.2. Motivation to improve RCRnorm

Despite its impressive performance, RCRnorm is not without its drawbacks. The weakest

point is its high computational cost, which is well-documented in Bhattacharya et al. (2021).

Large datasets will require a significant amount of time and working memory to produce

results, making RCRnorm an occasionally inconvenient choice for normalization. While

computational inefficiency is a common criticism of MCMC algorithms, often times this can

be alleviated with optimized code and special software packages. Another area of concern

is the high number of parameters, though it is typical in Bayesian hierarchical models. It

is common that Bayesian approaches rely on priors to regularize these parameters. Still,

in a highly complex system, an abundance of parameters combined with an absence of

accurate prior information can cause weak or fake convergence. Further, a concern closer

to the crux of the RCRnorm model is the construction of the prior distributions for the

hyper-parameters µa, µb. These hyper-parameters represent the means of the sample-specific

intercept and slope terms (respectively), which should reflect how the nCounter system

inherently operates rather than the characteristics of an individual dataset. They have a

significant impact on model estimates and so the results of RCRnorm are sensitive to the

choice of prior distribution placed on these hyper-parameters. As described in Jia et al.

(2019), RCRnorm uses a jackknife approach on the positive probe data to estimate the prior

mean and variance for µa, µb (a normal distribution is assumed), so that the priors vary

across datasets. This makes the results of RCRnorm more sensitive to the size and quality

of the dataset being normalized, in the sense that any data-based prior has no ability to

mitigate potential bias that can arise from sparse or unreliable data. For these reasons,

3



identifying and implementing new priors for these quantities will improve model estimation,

especially for messy or sparse datasets.

Since µa, µb are important global parameters in the RCRnorm model, replacing the

jackknife priors with non-informative priors would not effectively mitigate the potential bias

and noise stemming from low quality data. Rather, µa, µb reflects the underlying mechanism

of the nCounter system and constructing an informative a priori distribution based on

largely existing data of the same type will help avoid excessive data-dependence and provide

external calibration to low quality data. In this big-data era, accessing data from multiple

independent studies has become increasingly easy, due to federal regulations and substantial

efforts made in data sharing. Thus, leveraging such information to construct informative yet

objective priors becomes feasible.

The goal of this study is to create these prior distributions via a rigorous meta-analysis of

public FFPE gene expression datasets from independent studies using NanoString nCounter

platform. To do so, we devise a Bayesian hierarchical model, which adopts the linear

regression setup with random coefficients from RCRnorm. However, it is distinct from the

RCRnorm model in several aspects. First of all, it deals with data from multiple studies

and includes a layer to account for study-specific effects. Secondly, for reasons detailed in

the beginning of Section 1.2, this new model focuses on modeling data from positive control

probes only. Thus, it is able to allow probe-specific variance terms, removing the simplifying

assumption made by RCRnorm (i.e., constant variance across all positive controls). Thirdly,

unlike RCRnorm, the new model, with much more data available in a meta-analysis, is able

to account for the dependence between the sample-specific intercepts and slopes.

In addition to the new prior from the Bayesian meta-analysis, we have also made several

important changes to RCRnorm. We refer to this new algorithm as MetaNorm. Among these

enhancements are (1) optimized code and data structure, (2) implementation of constraints

on the positive and negative probe residuals, and (3) a simplified sampling approach to
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normalized RNA expression estimates for housekeeping and regular genes. We show that

these adjustments, along with the informative meta-analysis prior, improve computational

cost, model convergence, prediction error and performance with low-quality data. In the

remainder of this section, we outline in detail the RCRnorm model from Jia et al. (2019). In

Section 1.2, we provide an overview of our meta-analysis and a detailed summary of other

improvements made to RCRnorm. In Section 1.3, we compare the performance of MetaNorm

with RCRnorm on four real-world datasets. Finally, we provide a discussion of our findings

in Section 2.5.

1.1.3. Overview of the RCRnorm model

We conclude the Introduction with an overview of the notation used in this paper and a

description of the RCRnorm model. Each FFPE dataset has I patient samples (indexed by

i) with P,N,H,R positive probes, negative probes, housekeeping genes and regular genes

(indexed by p, n, h, r), respectively. The datasets have a factorial structure, with each sample

and gene being balanced with respect to the number of repetitions in the overall dataset

(I · (P + N + H + R) total observations). Typically, there are 6 positive probes (P = 6), a

relatively small number of negative probes and housekeeping genes (i.e., N < 10 and H < 20)

and a high number of regular genes (R > 80). Each of the six positive probes contains a

known amount of mRNA, while the amount of mRNA in a regular or housekeeping gene

is unknown and varies across samples. These mRNA levels must be estimated using the

read counts. For all negative probes, target transcripts are absent and so their mRNA levels

should be zero ideally. The aim of RCRnorm is to create consistent, unbiased estimates for

this mRNA amount for every gene/sample combination that adjust for unwanted biological
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Figure 1.1: Graphic representation of the original RCRnorm model (left) and the meta-
analysis model (right). Squares denote observed or fixed values while circles represent
model parameters (random variables). Parameters and hyperparameters with blue color-
coding represent diffuse inverse gamma priors, orange and yellow have “safe range” uniform
priors, with yellow having ranges determined by positive probe data. Red hyperparameters
have priors created by a jackknife analysis of the positive probe data. On the right, green
parameters represent those being estimated by the meta-analysis.

and technical effects. The remainder of this section summarizes the outline and technical

details of the model presented in Jia et al. (2019).

The RCRnorm model is based on a series of integrated linear regression models with

random coefficients. At the lowest level, the log10 gene read count Y for each of the four

probe types is summarized in the below equations:

Y +
ip ∼ N

(
ai + biX

+
p + d+

p , σ
2
e

)
(1.1)

Y −in ∼ N
(
ai + bic+ d−n , σ

2
n

)
(1.2)

Y ∗ih ∼ N
(
ai + biX

∗
ih + d∗h, σ

2
e

)
, where X∗ih = φi + κ∗ih (1.3)

Yir ∼ N
(
ai + biXir + dr, σ

2
e

)
, where Xir = φi + κir (1.4)

where the superscripts (+,−, ∗) indicate positive probes, negative probes, and housekeeping

genes, respectively (no superscript in gene specific variables indicates regular genes); the
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log10 RNA levels are known and fixed for each positive probe (X+
p ) in all samples and

are unknown but differ for all housekeeping and regular gene observations (X∗ih, Xir); the

unknown scalar c for negative probes can be interpreted as the mean non-specific binding

level due to background noise. The intercept and slope terms (ai, bi) reflect how the log read

count Y relates to the log RNA level X in each sample, and are assumed to be independent

and identically distributed normal variables: ai
iid∼ N(µa, σ

2
a) and bi

iid∼ N(µb, σ
2
b ). Note

that for a given sample, these terms are shared by all the four categories and so occur

in all four equations. Whereas φi represents the sample specific degradation level (with

the constraint
∑I

i φi = 0), κir and κ∗ih signify sample/gene specific mRNA levels before

degradation (these parameters can be thought of as the model output), with κir ∼ N(λr, σ
2
κ)

and κ∗ih ∼ N(λ∗h, σ
2
κ∗). The variables (d+

p , d
−
n , d

∗
h, dr) represent deviations from the general

linear pattern and can be thought of as probe-specific residuals, with d+
p , d

∗
h, dr ∼ N(0, σ2

d)

and d−n ∼ N(0, σ2
d−). Jia et al. (2019) suggests that all probe types have similar variability

except for the negative probes, which tend to have higher variances, hence σ2
d vs. σ2

d− and

similarly, σ2
e vs. σ2

n in (1.1)–(1.4). The left panel of Figure 1.1 summarizes the hierarchical

structure of the RCRnorm model. Note that the hyper-parameters µa and µb have data-

based jackknife priors, which we seek to improve with the results of our meta-analysis. See

sections 3 and 4 of Jia et al. (2019) for more details of RCRnorm.

1.2. Methods

The first step in improving RCRnorm is to identify realistic, informative prior distributions

to replace the current priors for µa and µb. We maintain the assumption that the priors are

independent normal distributions (the conjugate priors for µa and µb), but rather than

relying on the data that is currently being analyzed, the MetaNorm prior comes from a

meta-analysis. We identified multiple independent NanoString nCounter gene expression

datasets of FFPE samples from past studies and designed a Bayesian hierarchical model for

meta-analysis to attain parameter estimates for the prior mean and variance of µa and µb
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irrespective of a specific dataset. For positive control probes, both Y (the log transformed

count) and X (input RNA amount) are known so that we have strong information from the

data about the intercept and slope terms. In contrast, for housekeeping and regular genes,

only Y is known and X is latent with a complex underlying structure, so such information is

much weaker. Since our main interest is on the intercept and slope terms, the meta-analysis

only considers these positive controls (6 per sample) to find the posterior distributions for µa

and µb. As will be shown later, this would also allow us to remove simplifying assumptions

made by RCRnorm for the purpose of estimation stability. The remainder of this section

outlines the design, data and results of this meta-analysis.

1.2.1. Datasets

We identified 17 potential datasets containing mRNA FFPE samples from human subjects,

which are listed in detail in Table reftab:Meta-Analysis-Datasets of the supplementary

material, including GSE numbers for locating the data2. Each of these datasets are publicly

available and can be located at ncbi.nlm.nih.gov. Two of these datasets (id 4 and 5) were

used for testing the RCRnorm model, and were removed from the meta-analysis pool in

an attempt to be completely independent from the original study. Two other datasets were

removed for having low data quality, with one having a high number of low-quality samples by

the NanoString quality control guidelines3 and the other having a high positive correlation

between ai and bi estimates, contrary to the rest of the pool. This left us with K = 13

datasets, which ranges in size from n13 = 8 up to n9 = 1, 950 samples. All 13 datasets had 6

positive probes, each having the same control RNA levels (128, 32, 8, 2, .5, .125 fM for probes

1-6, respectively).

2https://www.ncbi.nlm.nih.gov/gds
3https://nanostring.com/wp-content/uploads/Gene Expression Data Analysis Guidelines.pdf
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1.2.2. Design

This section outlines the hierarchical model used to create our meta-analysis prior. We

assume that the log10 count of each sample/probe/study combination Yijk is characterized

by

Yijk = aik + bikX
+
j + rijk (1.5)

where X+
j is the log10 RNA level for each probe j, which is fixed across all samples and

studies at log10(128, 32, 8, 2, .5, .125), aik and bik are the slope and intercept terms for sample

i of study k, and rijk is the residual term reflecting the remaining variability of Yijk after

taking into account the linear trend, for i = 1, . . . Ik, j = 1, . . . 6, and k = 1, . . . K (Ik is the

number of samples in study k and K = 13). This structure maintains the original design of

RCRnorm while accounting for multiple data sources.

First, we focus on modeling the random regression coefficients aik and bik in (1.5).

Unlike RCRnorm, the meta-analysis includes samples from a variety of datasets, meaning

heterogeneity between data sources is a potential factor. To examine this, we first calculated

empirical estimates for all aik, bik by fitting individual linear regressions of the form

E[Yijk|aik, bik] = aik + bikX
+
j (1.6)

where each (âik, b̂ik) is calculated with 6 positive control datapoints of sample i (j = 1, ..., 6).

Figure 1.2(a) and (b) summarize the estimates obtained from this analysis. There is clear

heterogeneity in the distributions, both in the center and variance, when broken down by

dataset. Therefore it is reasonable to assume that parameters associated with aik and bik

are diverse for different datasets. This leads us to a separate bivariate normal distribution
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(a) (b)

(c) (d)

Figure 1.2: Meta-analysis: (a) and (b) show boxplots without outliers for empirical aik
(left) and bik (right) estimates by dataset; (c) shows error bar plots of (aik, bik) correlation
by dataset; (d) shows average empirical residual for positive probes by dataset. Red color
represents datasets that were excluded from the meta-analysis (id 4, 5, 12, and 15). In plot
(c), the dots represent the Pearson correlation between empirical estimates of aik, bik while
the bars reflect 95% confidence bounds. In plot (d), points on the same line come from the
same dataset, and this plot only shows the datasets included in the meta-analysis.

in (1.7) for each study k, where the study-specific means αk and βk are equivalent to µa, µb

in the RCRnorm model.

The next step is to determine the nature of the covariance matrix Σ(k), that is, whether

or not aik is independent from bik. Figure 1.2(c) shows a breakdown of correlation between

the empirical estimates âik and b̂ik by dataset. Several datasets show positive correlation

while others have a negative correlation, providing justification for modeling the study-

specific correlation rather than assuming a common correlation value across all studies.

Despite the fact that a few datasets would not have enough evidence to reject r = 0
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at the α = .05 level, 12 of the 17 datasets have 95% confidence bounds strictly above

or below 0, meaning we cannot assume that aik and bik are independent of each other

when coming from the same dataset k. The implication of this is that Σ(k) must be

modeled with a multivariate distribution rather than independent univariate distributions.

Several candidate distributions were considered, but a thorough simulation, which will be

detailed in Section 1.2.4, showed little difference in performance between prior distributions.

We therefore chose the path of least resistance by implementing a classic inverse-Wishart

distribution in (1.8), which is the conjugate prior for the covariance matrix of a multivariate

normal distribution and allows for both simplicity and computational ease. Finally, the

mean parameters αk and βk are modeled independently, since the empirical estimates have

a correlation near 0. The hyperparameters µα, µβ have “safe range” uniform priors while

σ2
α, σ

2
β have diffuse inverse gamma priors. Safe range prior distributions are those that follow

a uniform distribution with a range that comfortably covers all plausible values for the

parameters (usually it has a half-width of 3 or 5 standard deviations).

The full hierarchical structure of the slope and intercept terms is summarized below,

 aik

bik

 ∼ N

 αk

βk

 ,Σ(k)

 (1.7)

Σ(k) ∼ IW3 (I2) , where I2 =

 1 0

0 1

 (1.8)

αk ∼ N
(
µα, σ

2
α

)
βk ∼ N

(
µβ, σ

2
β

)
µα ∼ Uniform (Lα, Uα) µβ ∼ Uniform (Lβ, Uβ) , σ2

α, σ
2
β ∼ IG(ε, ε)
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where IW3 is an inverse-Wishart distribution with three degrees of freedom, IG is an inverse-

gamma distribution, and ε is a placeholder for a small value (i.e., .01) so that the prior is

diffuse.

We are now left with the residual term rijk from (1.5), which is modeled by the following

hierarchical structure:

rijk = sjk + δijk (1.9)

sjk ∼ N(tj, τ
2) where

6∑
j=1

sjk = 0 and
6∑
j=1

sjkX
+
j = 0 (1.10)

δijk ∼ N
(
0, σ2

jk

)
tj ∼ Uniform (Lj, Uj) where

6∑
j=1

tj = 0 and
6∑
j=1

tjX
+
j = 0,

τ 2, σ2
jk ∼ IG(ε, ε).

The above structure was carefully chosen to reflect what we observed from the data and

to achieve computing efficiency and stability. Figure 1.2(d) shows the mean residual for each

corresponding probe by dataset. While some probes seem to be centered at 0, there is a

clear pattern in the residuals especially for 5 and 6. This indicates that the model for rijk

should have probe specific terms. Since there is significant heterogeneity in the probe effect

between different datasets, the parameters are specific to both the probe and dataset (i.e.,

indexed by j, k). Therefore the residual term can be broken down into two pieces, shown

in (1.9). The parameters sjk are assumed to have a probe specific mean tj and a shared

variance τ 2, as the points by probe in Figure 1.2(d) have centers clearly distinct from one

another but have similar variability. We further enforce the constraints shown in (1.10), to

avoid issues with identifiability, making sjk dependent on other probe effects from the same
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dataset. We include these constraints to stabilize our distribution in the absence of strong

prior information, relying on the fact that the log-transformed positive probe data have a

strong linear relationship with the log-transformed control RNA expression levels in each

study alone. Since these terms represent probe specific residuals, we can reasonably expect

them to follow the same rules as residuals, namely that they sum to 0 with and without

multiplication by the factor-effects. While this is a frequentist technique, there is significant

value in using both frequentist and bayesian approaches together, despite the tendency to

think of them as separate, binary categories (Bayarri and Berger, 2004). In this case, our

analysis benefits from the constraints by reaching quick convergence without using artificially

informative prior distributions. A “safe range” uniform prior is applied to tj (including the

same constraints used for sjk) while a non-informative IG prior is used for τ 2. Finally, δijk

acts as our pure residual term that has no pattern remaining, which we center at 0. Given

the diversity shown in this section by probe and by dataset, we assume that the variance of

this residual differs by these factors. We use a diffuse IG prior for the σ2
jk terms.

The right panel of Figure 1.1 gives a concise summary of variable relationships in the

meta-analysis. The values we want to identify are represented by the green parameters in

the figure. The full probability model is shown below:

P (Y ,Θ) ∝
K∏
k=1

 nk∏
i=1

 6∏
j=1

N
(
Yijk|aik + bikX

+
j + sjk, σ

2
jk

)

·
K∏
k=1

nk∏
i=1

N
aik, bik

∣∣∣∣∣∣∣∣∣

 αk

βk

 ,Σ(k)




·
K∏
k=1

(
N
(
αk
∣∣µα, σ2

α

)
·N
(
βk
∣∣µβ, σ2

β

)
· IW3

(
Σ(k) |I2

))
· π(µα) · π(µβ) · π(σ2

α) · π(σ2
β)

·
K∏
k=1

6∏
j=1

(
N
(
sjk
∣∣tj , τ2

)
· π(σ2

jk)
)
·

6∏
j=1

(π (tj)) · π(τ2)
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For derivation of the full conditional distributions, see Section S1 of the supplementary

material.

1.2.3. Diagnostics and Results

The MCMC algorithm for posterior sampling was written in R (R core team, 2019)

and implemented via a Gibbs sampler using the package rcpp, which greatly reduced the

computational cost. The meta-analysis model was run via 4 parallel chains of 12,000

samples, with each chain needing no more than 5,000 samples to converge. Figure S1 in

the supplementary material shows trace plots for our parameters of interest (µα, µβ, σ
2
α, σ

2
β).

For each parameter, the trace plots show that all four chains converge to the same

distribution, which is further supported by the Gelman-Rubin diagnostics (median and 95%

potential scale reduction factor at 1.00 for all four global parameters). Table 1.1 shows

summary statistics for the posterior draws across all chains. Since we observed relatively

low correlation among sequential draws, with all variables below 5% correlation for a lag of

2 (Figure S2), we thin the chains after burn-in by 1 draw, so every other sample is used to

calculate the summary statistics (a total of 14,000 samples). Therefore, we accept our meta

analysis prior for µa and µb to be

µa ∼ N (2.357, .041) µb ∼ N (.952, .003)

based on posterior means for µ parameters and posterior medians for σ2 parameters.

1.2.4. Sensitivity Analysis

To confirm our choice of the prior distribution for the covariance matrix Σ(k), we conducted

a simulation study and evaluated model performance in estimating the key global parameters
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Parameter 1st Quartile Median 3rd Quartile Mean Standard Deviation

µα 2.318 2.357 2.395 2.357 0.060

µβ 0.941 0.952 0.962 0.952 0.016

σ2
α 0.031 0.041 0.056 0.047 0.024

σ2
β 0.002 0.003 0.004 0.003 0.002

Table 1.1: Summary statistics for global parameters in our Bayesian meta-analysis after a
burn-in of 5,000 and thinning every other draw

µα and µβ across various objective priors for the bivariate covariance in the literature, as

summarized in Berger and Sun (2008). Seven simulation settings were included in our study,

each of which contains 50 synthetic datasets. For each dataset, we estimated µα and µβ

using nine different covariance prior setups: Inverse-Wishart, Scaling, Half-t distribution,

Prior J (Jeffery’s prior), Prior IJ (Independence Jeffery’s prior), Prior Rρ, Prior Rσ, Prior

R̂σ, and Prior S. Details about each of these priors can be found in Berger and Sun (2008).

Below we list the details of each simulation setting:

� Base: The empirical estimates of the model parameters are used as the truth.

� High Variance (HV): Parameters from the Base setting were used with the magnitudes

of σ2
α and σ2

β being multiplied by 2.

� Low Variance (LV): Parameters from the Base setting were used with the magnitudes

of σ2
α and σ2

β being divided by 2.

� Large Meta-Analysis (LMA, i.e., a large number of studies K): Parameters from the

Base setting were used. However, the number of studies is doubled.

� Small Meta-Analysis (SMA, i.e., a small number of studies K): Parameters from the

Base setting were used. However, the number of studies is halved.

� Large Sample (LS): Parameters from the Base setting were used. However, the number

of patients within each study is doubled.
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� Small Sample (SS): Parameters from the Base setting were used. However, the number

of patients within each study is halved.

To add some more variation into our synthetic datasets, for each setting, we simulated the

Σ(k)’s. Specifically, the variance components of Σ(k)’s were generated from Inverse-Gamma

distributions whose parameters were estimated using moment matching. To simulate the

correlation components, we first generated samples from a normal distribution with mean

and variance based on observed correlations after Fisher’s z-transformation. The variables

were then transformed back to the (-1,1) scale. Additionally, we generated the variance for

each probe within each study from an Inverse-Gamma distribution where the parameters

were estimated using moment matching. Finally, for each study, the number of samples (ni)

was drawn with replacement from the original numbers of patients.

For each covariance setup, we ran an MCMC chain of length 2,500 and burnt in the first

half of the chain. To measure the estimation performance of each method, we calculated the

MSEs of the estimated posterior means of µα and µβ. The Scaling method took too long

to generate posterior sample, so we excluded it from the comparison. The results, scaled

by a factor 1000, are summarized in Table 1.2, which shows that in each simulation setting,

the MSE’s under the different priors are quite close to each other. Furthermore, there is

no clear-cut winner among the priors. For instance, the inverse-Wishart approach has the

highest MSE in the base scenario for µα but has the lowest MSE in the same scenario for

µβ. These results show that the meta-analysis performance has relatively low sensitivity to

the prior choice for Σ(k).
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Estimation of µα Estimation of µβ

Base HV LV LMA SMA LS SS Base HV LV LMA SMA LS SS

IW 2.522 4.392 1.259 1.162 7.941 3.09 4.072 7.741 11.08 4.206 3.347 12.11 6.288 7.489

Half-t 2.456 4.411 1.253 1.171 8.187 3.067 4.097 7.989 10.63 3.898 3.296 12.06 5.712 7.208

Prior J 2.423 4.534 1.289 1.172 8.141 3.053 4.019 7.758 10.29 3.989 3.355 12.27 5.663 7.222

Prior IJ 2.408 4.473 1.278 1.15 8.171 3.087 4.024 7.975 10.01 4.014 3.193 12.41 5.776 7.437

Prior Rρ 2.483 4.482 1.316 1.177 8.077 3.039 4.071 7.984 10.36 3.884 3.257 12.69 5.791 6.982

Prior Rσ 2.403 4.44 1.281 1.154 8.085 3.058 4.039 7.876 10.27 4.013 3.268 12.15 5.983 7.489

Prior R̂σ 2.443 4.447 1.286 1.177 8.113 3.081 4.064 8.029 10.62 4.056 3.277 12.47 5.869 7.429

Prior S 2.396 4.498 1.307 1.175 8.148 3.068 4.075 7.872 10.26 4.022 3.224 11.98 5.865 7.3

Table 1.2: Analysis of sensitivity to various prior choices of the study-specific covariance
matrix Σk: 1,000×MSE is reported to evaluate the performance of estimating µα and µβ.
LV stands for large variance, SV for small variance, LMA for large meta-analysis, SMA for
small meta-analysis, LS for large sample, and SS for small sample.

1.2.5. Additional Enhancements

This section outlines the additional enhancements made to RCRnorm to improve model

efficiency, convergence and stability. In addition to the meta-analysis prior, three changes

were made to the model:

1. Implementing the constraints
∑P

p=1 dp = 0,
∑P

p=1 dpX
+
p = 0,

∑N
n=1 dn = 0 in the

positive and negative probe equations

2. Updating λr, λh and φi with fixed calculations (i.e., no random draws) in each iteration

3. Refurbishing R code with more efficient data structures and procedures to improve

computational cost

One other notable update is that MetaNorm does not allow non-randomized starting points.

The remainder of this section gives details and justification for the changes listed above.
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1.2.5.1. Constraints on dp, dn

In the presence of a high number of local parameters, implementing reasonable constraints

can help to stabilize a Gibbs sampler. This is the case with RCRnorm, where random

intercepts and slopes (ai, bi) are assumed for each sample along with probe-specific effects.

In a frequentist analysis of the positive probes, two constraints would be required to achieve

a unique solution. Without these constraints, there are an infinite number of solutions,

reflecting the fact that predictive power could be distributed in different ways to the probe or

sample effects. While this is less severe in an MCMC algorithm, where we rely on thousands

of “solutions” (draws) to form a posterior distribution, convergence can sometimes suffer in

such a highly complex system as described in (1.1)–(1.4), especially when the sample size I is

not large. This effect can be seen in the trace plots of d+
6 from the lung cancer FFPE dataset

(I = 28) used for testing in Jia et al. (2019), shown in Figure 1.3. The lefthand plot shows a

standard run of RCRnorm. While eventually all chains reach a similar range, it takes more

than 10,000 draws for this to occur. It is also clear that there is a significant amount of

autocorrelation and variability between chains, causing issues of replicability when chains

are not long enough. The righthand plot shows 5 chains of RCRnorm with the constraints

added. Clearly all chains are quickly converging to the same distribution, with minimal

autocorrelation present. These constraints not only help to stabilize d+
p , but also with other

key model parameters including κir.

1.2.5.2. Updating λh, λr and φi

Now we turn our attention to the housekeeping and regular genes. Currently, RCRnorm

relies on “safe range” uniform prior distribution for λr, λh (the mean parameters for κir, κ
∗
ih

respectively) and φi, which is generated based on empirical estimates of ai and bi. Because

there are a relatively large number of parameters for the information provided by the

housekeeping and regular gene read counts, the samples for these parameters can oscillate

18



Figure 1.3: Trace plots of d+
6 for RCRnorm with and without constraints (right and left,

respectively) from the lung cancer FFPE dataset (I = 28) used for testing in Jia et al.
(2019), showing that the convergence was greatly facilitated by the added constraints.

within the pre-defined range, failing to converge to a much narrower distribution as we may

expect. Figure S3 in the supplementary material shows an example of this behavior using

the φi trace plots from dataset 13 (I = 8).

Since the model structure is well-justified in Jia et al. (2019), we propose updating these

parameters with a fixed calculation to stabilize the φ and λ terms, while allowing the κ terms

to continue to be updated with its conditional distribution. First, we start by defining

X̃
(t)
ih =

Yih − a(t)
i

b
(t)
i

X̃
(t)
ir =

Yir − a(t)
i

b
(t)
i

which is an estimate of the log10 RNA amount for housekeeping and regular genes given

the tth draw of ai, bi. Let j index both housekeeping and regular genes such that j ∈

(1, ..., H,H + 1, ..., H + R = J) so that X̃ij represents log10 RNA from both types of genes.

For notational simplicity, we ignore the superscript t here. We propose that the linear fixed-

effects model X̃ij ∼ φi + λj with the constraint
∑I

i=1 φi = 0 be estimated in every loop of

the MCMC, with the parameter estimates φ̂i and λ̂j used as the draws for φi, λj. While this

might seem computationally expensive, the factorial design of the data allows us to take a
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simple shortcut, shown below.

φ̂i =
1

J

J∑
j=1

X̃ij −
1

IJ

I∑
i=1

J∑
j=1

X̃ij λ̂j =
1

I

I∑
i=1

X̃ij

This method allows us to separate the effect of ai and bi (driven by the positive probes) so

that φi can focus on the much more subtle sample effects in the housekeeping and regular

gene counts. Similarly, this will allow us to obtain stable estimates of λh, λr which will in-turn

stabilize the κ parameters. This will improve model convergence and allow the MetaNorm

output to be significantly more precise (as shown in section 1.3), increasing its value and

reliability to researchers.

1.3. Application and Comparison to RCRnorm

We compare the performance and diagnostics of MetaNorm to that of RCRnorm in 5

different areas, including computation time, convergence, stability of estimates, model bias

and performance with low-quality datasets. We will use four different datasets of varying

quality, three that were excluded from the meta-analysis and one with a low number of

samples. These datasets are summarized in Table 1.3. Dataset 4 is the lung cancer FFPE

dataset used in Jia et al. (2019) and contained in the RCRnorm R package. It contains 28

samples and 104 genes after cleaning, and is thought to be a high-quality dataset. Dataset

12 was excluded from the meta-analysis due to a high number of low-quality samples (low

R-squared in the positive probe data; see footnote 3) and dataset 15 was excluded for having

a very high positive correlation between ai and bi (see Figure 1.2(c)). Despite being included

in the meta-analysis, Dataset 13 is also used for testing due to its low number of samples

and high number of genes.
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Dataset ID Description # of Samples P N H R Total

4 Lung cancer FFPE 28 6 8 7 83 2,912

12 Triple negative breast cancer mRNA signatures 253 6 8 5 231 63,250

13 Merkel cell carcinoma samples 8 6 8 40 730 6,272

15 Metastatic Melanoma FFPE samples 24 6 6 12 204 5,472

Table 1.3: Characteristics of testing datasets

1.3.0.1. Computation Time

One of the most significant drawbacks to RCRnorm is the computation time. In a

comparison study observing NanoString normalization techniques, Bhattacharya et al. (2021)

cite this high computation cost, noting that RCRnorm could not be used to normalize a

dataset with > 1, 000 samples efficiently. After restructuring the algorithm and implementing

more efficient data-structures, MetaNorm significantly improves the computation time. Table 1.4

shows a breakdown of computation time for different datasets and samples in R-studio using

a laptop with an i7 core and 16 GB of RAM. The results show that MetaNorm outperforms

RCRnorm in computational efficiency, with a minimum improvement of 6-fold. But the

effects of MetaNorm is seen most clearly when the number of samples is large (I > 20), with

RCRnorm taking 25 to 40 times longer to produce the same amount of samples. In addition

to this, MetaNorm tends to reach convergence quickly with little autocorrelation, usually

needing under 500 draws to reach a stationary distribution and leading to improvement of

another 5-fold at least. So MetaNorm improves upon RCRnorm by being faster per-draw

but also by requiring fewer draws, leading to an increase an efficiency by anywhere from

30-fold for low-sample datasets to 200-fold for large-sample datasets.

1.3.0.2. Convergence

Part of assessing the performance of a stochastic process such as an MCMC is observing

how well it converges to a stationary distribution when initiated from diverse starting

points. When starting from reliable estimates from data, RCRnorm shows quick and stable
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Dataset ID Average Computation Time (seconds) MetaNorm

RCRnorm MetaNorm Improvement

4 96.80 2.29 42.2

12 1340.60 39.39 34.03

13 55.86 9.26 6.03

15 90.88 1.78 25.60

Table 1.4: Comparison between RCRnorm and MetaNorm on computation time using four
real datasets (1,000 draws per run)

convergence of high-level parameters such as µa, µb. However when the starting points are

randomized, convergence weakens, and occasionally a chain will fail to stabilize altogether.

This section demonstrates that MetaNorm resolves this issue, including cases where RCRnorm

produces a “faux” convergence. All datasets were run with 5 chains of 15,000 draws each

except for dataset 12, which we limited to 5 chains of 5,000 draws each due to the size of

the dataset.

Figure S4 in the supplementary material shows boxplots of post burn-in draws of µa

broken down by chain. The posterior distributions for both datasets 4 and 15 differ by chain

for RCRnorm (not much but visibly), whereas the posterior distributions for MetaNorm are

practically identical. This is confirmed by the convergence diagnostics shown in panel (a)

of Table 1.5, where RCRnorm has decent convergence for dataset 4 and (to a lesser extent)

dataset 15 but MetaNorm produces better convergence in either scenario. The corresponding

trace plots for this example are shown in figure S5 of the supplementary material, showing

that MetaNorm converges much faster than RCRnorm with merely a few hundreds of draws.

Panel (a) of Table 1.5 also shows that datasets 12 and 13 achieve good convergence for global

parameters regardless of which model is used. However the next level of the hierarchy tells a

different story. Figure S6 in the supplementary material shows trace plots of a1, a2, a3 from

the first three patients for the RCRnorm (top) and MetaNorm (bottom) chains. Clearly,

RCRnorm is not converging to the same distribution in every chain, which is a significant
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(a) Gelman-Rubin Diagnostics for µa (b) Median Standard Deviation of κirs

Dataset ID RCRnorm MetaNorm RCRnorm MetaNorm

Median Upper C.I. (95%) Median Upper C.I. (95%)

4 1.05 1.12 1.00 1.00 0.037 0.009

12 1.00 1.00 1.00 1.00 0.205 0.003

13 1.02 1.06 1.00 1.00 0.961 0.015

15 1.22 1.52 1.00 1.00 0.092 0.007

Table 1.5: Comparison between RCRnorm and MetaNorm on (a) convergency using
Gelman-Rubin diagnostics for µa and (b) median standard deviation of κirs.

issue. MetaNorm resolves this issue, with all 8 samples converge in their ai estimates. This

problem also exists in dataset 12 (results not reported due to the space limit). As a result, the

normalized gene read counts vary significantly between runs with different starting points,

casting doubt on our results (see panel (b) of Table 1.5). The issues raised in this section

indicate that RCRnorm suffers from a kind of “faux” convergence, where good convergence

around global parameters masks weak or absent convergence in lower-level parameters. It

should be noted that this does not occur in all datasets when using RCRnorm - such as

dataset 4 - but (to our knowledge) does not occur at all when using MetaNorm.

1.3.0.3. Stability of κir Estimates

Perhaps the most critical piece of both the RCRnorm and MetaNorm models are the κ

estimates for housekeeping and regular genes. Representing the RNA amount after accounting

for sample degradation, the κ parameters are the true model output and any value that the

models offer lies in these estimates. With this in mind, if we run separate chains on the

same dataset, ideally we will observe very similar estimates for these parameters. We will

once again show that MetaNorm improves upon RCRnorm in this way, providing more

stable estimates for these parameters. Panel (b) of Table 1.5 shows the median standard

deviation between chains among all κir estimates. For datasets 12, 13 and 15, which do not

have all chains of sample-specific parameters converging to the same distribution, the stark
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difference in standard deviation should not be surprising; if the ai and bi terms are different,

of course the κir terms would be wildly different. But even when the data is good-quality

and convergence is somewhat stable (as with dataset 4), there is still significant reduction

in standard error in MetaNorm. The left panel of Figure 1.4 shows the densities of these

standard errors.

Figure 1.4: Comparison between RCRnorm and MetaNorm: the left panel shows the density
of κir’s standard errors for dataset 4; the right panel shows boxplots of bi estimates for
dataset 12, where the dashed line represents µβ, the meta-analysis estimate for the prior
mean of µb, and the dotted line represents the empirical estimate of µb, using the positive
probe data.

1.3.0.4. Bias of κir Estimates

A small simulation study was performed to compare model bias of the κir estimates

between RCRnorm and MetaNorm. Data for the simulation was generated based on dataset

4 (lung cancer FFPE), under constraints
∑P

p=1 dp = 0,
∑P

p=1 dpX
+
p = 0,

∑N
n=1 dn = 0.

Bias was estimated using average mean difference between actual κir values that the data

was generated from and κir estimates from the normalization procedures. In 100 runs of

RCRnorm, we found that the normalization produced output that was off by an average

of -.0651 per κir. This translates to an average 13.9% reduction from actual to estimated
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normalized gene read counts. In 100 runs of MetaNorm, we found that the output differed

by an average of .0018 per κir. This translates to an average increase of 0.4% from actual to

estimated normalized gene read counts. While this does show that MetaNorm has superior

bias to RCRnorm, this result is not as significant as the reduction in prediction variance

(especially as it pertains to mean-squared error contribution).

1.3.0.5. Performance with Messy Data

We conclude the discussion of model improvements with a specific example of MetaNorm

producing more intuitive and interpretable estimates for data with a large number of low

quality samples. Dataset 12 contains 61 (24%) samples which have an R2 < .95 from a linear

regression of positive probe data. Since the nCounter system is designed to maintain very

strong linear relationship between the log-transformed counts and log-transformed control

RNA expression levels, NanoString’s recommendation is to discard any samples with R2 <

.95. In this section, we included all 253 samples for testing. Three chains of 10,000 draws

were run on each model, with the first 5,000 discarded as burn-in. The estimates for bi (the

sample-specific slope terms) were drastically different, as the right panel of Figure 1.4 shows,

despite the fact that the jackknife prior implemented in RCRnorm keeps the µb samples from

deviating off the empirical estimate. While the MetaNorm estimates are within a reasonable

neighborhood of µb, the RCRnorm estimates are much lower, with a significant portion of

them (˜34%) less than 0. As a point of comparison, empirical estimates for bi from dataset

12 have a minimum of .829. While some variation from the empirical estimates is expected,

the amount seen from the RCRnorm is counter-intuitive both to the original data and to

the nCounter system in general. Alternatively, MetaNorm is able to overcome the pitfalls

of messy data and produces reasonably intuitive estimates for bi. These estimates have a

downstream effect, causing the estimates for κir to become too large when bi approaches 0

and become too small when bi dips below 0 (see figure S7 in supplementary material). For
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this reason, the κir estimates from MetaNorm are more plausible than those from RCRnorm

for this dataset.

1.4. Discussion

When conducting statistical analysis in the Bayesian framework, many researchers rely

on non-informative or diffuse prior distributions to maintain objectivity. However, when

meaningful prior information exists and can be identified, using an informative prior distribution

to accurately reflect current knowledge may lead to superior outcomes and great efficiency.

This paper demonstrates a practical example of achieving improvement by incorporating

such prior information via meta-analysis into data normalization.

RCRnorm is a groundbreaking normalization tool that improved upon existing methodology

by leveraging the complexities of nCounter data. While other methods rely on frequentist

techniques, the Bayesian framework allows RCRnorm to thoroughly explore the parameter

space, identifying hidden information in the data, casting aside implausible assumptions, and

increasing model transparency and interpretability. But despite its improvements, RCRnorm

struggles to provide reliable estimates when the quality of data is in question. One reason for

this is the “non-informative” data-based prior implemented for two of the most important

global parameters µa and µb, potentially reinforcing bias stemming from the data. The goal

of this study was to enhance the RCRnorm model by (1) identifying prior distributions for

µa and µb based on a comprehensive meta-analysis of FFPE datasets and (2) implementing

additional algorithmic enhancements to improve computational cost, model convergence and

stability of estimates. This new Gibbs sampler is called MetaNorm.

The meta-analysis employs a Bayesian hierarchical regression model of similar structure

to RCRnorm. Since almost all of the information about ai and bi come from the positive

probe read counts, the meta-analysis only considers these 6 observations per sample (i.e.,

negative probe and gene data are ignored). Conjugate hierarchical structures are used
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throughout the meta-analysis, allowing for straightforward conditional distributions. To

ensure quick model convergence, constraints are implemented on the probe/study effects

sjk as well as the means of these parameters tj. The estimates obtained from the meta-

analysis are used as informative priors in MetaNorm, which serve as guide-rails for µa and

µb. In addition to the implementation of the new priors, we made 3 other changes to the

model. The first, was the enforcement of constraints on d+
p and d−n . These constraints

mitigate the identifiability concerns while also implementing assumptions we associate with

regression residuals (i.e., completely separating the probe effect from the additive sample

effect and the mRNA sample effect). For similar reasons, φi, λr,and λh are updated using

empirical estimates in MetaNorm, based on updated samples of ai and bi. This helps to

separate information into sample and gene-specific buckets provided by the regular and

housekeeping gene read counts, mitigating the effect of having more parameters than actual

observations for these genes. Finally, we restructured the code and used more efficient

functions and processes to improve computation, which led to a significant reduction in

run time. Additionally, all datasets tested on MetaNorm for this manuscript converged in

less than 1,000 draws, suggesting that smaller chains can be used for MetaNorm. We also

showed that MetaNorm leads to more consistent convergence in global parameters while

ensuring that sample-specific parameters (ai, bi) reliably converge to the same distribution

from diverse starting points. We also observed reduced bias and variance in normalized κir

estimates then those produced by RCRnorm. Finally, a dataset of triple negative breast

cancer mRNA signatures shows that MetaNorm continues to produce realistic and intuitive

parameter estimates when data-quality is a concern, while RCRnorm falters.

One area where both RCRnorm and MetaNorm can be improved is the computational

load. The downside to MCMC approaches in general is the amount of additional computation

time needed to individually sample different parameters one after another. However beyond

that is the amount of RAM (random access memory) needed to store thousands of samples

for (potentially) 100,000+ parameters. Bhattacharya et al. (2021) describes this issue when
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trying to test RCRnorm against other normalization approaches. When the amount of

samples and/or genes is high (1,278 samples, in their case), there is simply not enough RAM

in standard computers to store the chains for all parameters. A potential remedy for this is

to add options to the algorithm to not store and track all draws for local parameters, but

instead to keep the most recent draw as well as calculating posterior means in a piecemeal

fashion after burn-in. This would keep the algorithm from inefficiently storing hundreds

of thousands of chains. We hope to implement such a change to MetaNorm in the near

future. Additionally, estimating the posterior distribution with variational inference rather

than MCMC would further improve computational efficiency and is a topic of future research

(Blei et al., 2017).
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Chapter 2

A Meta-analysis based Hierarchical Variance Model for Powering One and Two-sample
t-tests

2.1. Introduction

One of the most important steps in designing a clinical trial is determining the number

of patients (n) to recruit for the study. Underestimating n can result in an underpowered

study where any effect, no matter how clinically relevant, is unlikely to yield a statistically

significant result, leading to financial and ethical consequences (Halpern et al., 2002). However,

being overly conservative and recruiting more patients than needed comes with its own

financial and ethical costs, wasting capital and subjecting an excessive number of patients

to (potentially risky) experimental treatments (Hochster, 2008). Moreover, the importance

of the targeted effect size should not be overlooked either, as small effect sizes may be

practically insignificant yet require larger sample sizes to detect. Therefore, it is crucial to

determine an accurate sample size for a clinically relevant effect to mitigate these issues and

put researchers in the best position to succeed. Power analysis provides a mechanism for

researchers to justify and calculate n based on a set of specific criteria.

For a one or two-sample t-test, traditional power analysis is determined solely by point

estimates of the anticipated variance and mean (or mean difference). While some methodology

exists to help researchers identify reasonable values for variance and effect size based on

historical data (Lenth, 2001; Liu, 2010; Santis, 2007), the resulting estimates are, at best,

educated guesses based on previous work or estimates from relevant literature. While

this is a reasonable approach when done responsibly, a lack of scrutiny given to sample

size justification gives way to “power-hacking”, a practice where researchers start with a
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specific value for n and then hunt for effect sizes and variance estimates in the literature to

retroactively justify it. An expensive alternative to this is to conduct a pilot study, using

the data collected to estimate the variance and effect size. Despite the general benefits of

pilot studies when planned correctly (Lancaster et al., 2004; Moore et al., 2011), the risks

of using these values as direct stand-ins for a power calculation while ignoring uncertainty

is well-documented (Kraemer et al., 2006). More complex procedures exist, including both

Bayesian and frequentist approaches to incorporate uncertainty in the variance estimate from

a pilot study (Browne, 1995; Sims et al., 2007; Shieh, 2017).

Approaches that account for uncertainty in effect size or variance are not limited to pilot

studies, where most leverage the Bayesian paradigm to take in a distribution of plausible

values rather than singular estimates. While most of these methods are designed to power

Bayesian analyses, typically by controlling the width/coverage rate of credibility intervals

(Cao et al. 2009 and references therein) or the type II error of a Bayes factor test (Weiss,

1997; Santis, 2004), the Bayesian framework is well-suited for power analysis of frequentist

studies (Spiegelhalter and Freedman, 1986; Joseph et al., 1997). Rather than clashing ideals,

this approach allows researchers to use both methods in harmony (Bayarri and Berger,

2004), leveraging the flexibility of Bayesian methods to account for the significant levels

of uncertainty encountered in sample size determination, while using the more traditional

and (in most cases) conservative frequentist methodology for the actual analysis. Perhaps

the best example of this is the “what-if” prior discussed in Gelfand and Wang (2002),

a simulation-based approach where different prior distributions are used for sample size

determination (reflecting what we expect/hope) and the actual analysis (reflecting what

we actually know). Thus, if researchers have an idea of where a parameter might lie, the

Bayesian approach can be implemented with a prior that reflects this idea to design the

study, while the actual analysis makes no such assumptions to remain unbiased. Several

other approaches exist as well, including leveraging historical data, or even meta-analysis,

to determine prior distributions for effect sizes (Du and Wang, 2016). While information
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obtained from meta-analysis should yield more accurate estimation, these approaches lead

to a different issue: if the effect size distribution crosses into “clinically irrelevant” territory,

the target sample size will then increase to account for these smaller effect sizes, inflating the

cost of the study. In this paper, we propose a new methodology for sample size determination

that leverages historical information from multiple studies to construct a distribution for the

variance based on an empirical Bayes (EB) approach while keeping the unstandardized effect

size fixed to ensure practically significant results. This methodology is based on the Bayesian

paradigm and uses a hierarchical gamma-inverse gamma model to allow the variance to vary.

To the knowledge of the authors, this is the first outlined methodology that uses multiple

studies from the literature to model the variability of the variance estimate alone, reducing

the bias of sample size determination from one particular study while guaranteeing practical

significance. Compared to approaches that recommend pilot studies, it requires much less

time and fewer resources.

In Section 2.2, we outline our method in detail, exploring both the hierarchy and the

simulation approach to calculating the target sample size. In Section 2.3, we evaluate the

performance of our method against alternative approaches using a simulation study. In

Section 2.4 we demonstrate our method using real data examples and provide discussion and

future directions in Section 2.5. Code used to implement the algorithms described in this

paper can be found at https://github.com/jbarth216/Bayesian-Meta-SSD.

2.2. Methodology

In this section, we introduce our innovative sample size determination approach and

explain the underlying theory and rationale. Our goal is to develop a method that can

effectively synthesize and utilize information from multiple studies instead of relying solely

on aggregate point estimates for the variance. When variances from different studies are

exchangeable, our proposed Bayesian method, detailed in this section, is able to capture

more information about the variability than a simple point estimate. To calculate the power
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of a study with a given sample size, we employ a simulation-based procedure based on the

variance distribution with parameters estimated using a formal EB approach, which can

later be simplified to a discretized probability mass function to facilitate computation.

2.2.1. One-sample t-tests

Assume we have X1, ...Xn from a normal population N(µ, σ2) where both µ and σ2 are

unknown. Furthermore, assume that there are k studies that are related to the study of

interest, with each study having an observed sample variance s2
1...s

2
i ...s

2
k which, for the sake

of notational simplicity, we will call y1, ..., yi, ...yk. Note that the studies included in the

meta-analysis should be carefully chosen based on the response variable and the specific

population being studied. Since each of these studies assume a normal distribution, classical

theories teach that for study i,

yi|θi ∼ Gamma(
ni − 1

2
,
ni − 1

2θi
)

where θi ≡ σ2
i , and the first parameter of the Gamma distribution is the shape parameter

and the second is the rate parameter. We assume a priori that

θ1, ..., θk, θ̃ ∼ IG(α, β),

where the variance of the study of interest, θ̃, is exchangeable with respect to those of the

meta-analysis, and the inverse-gamma (IG) distribution with shape parameter α and scale

parameter β is used to achieve conjugacy. Let θ = (θi)
k
i=1 and y = (yi)

k
i=1. Obtaining the

distribution of θ̃|y entails averaging p(θ̃|α, β) over all possible values of (α, β) according to
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their posterior distribution p(α, β|y), namely

p(θ̃|y) =

∫ ∫
p(θ̃|α, β)p(α, β|y)dαdβ

=

∫ ∫ ∫
p(θ̃|α, β)p(θ, α, β|y)dθdαdβ

∝
∫ ∫ ∫

p(θ̃|α, β)p(y|θ)p(θ|α, β)p(α, β)dθdαdβ,

where p(α, β) is the hyper-prior distribution on (α, β). Although the distribution of θ|y, α, β

is known under the conjugate structure, p(θ̃|y) is not analytically tractable. Thus, we employ

an empirical Bayes approach; that is, we find the estimates of (α, β) using the observed data,

say (α̂, β̂), by maximizing the marginal likelihood (MML) `(α, β;y) ≡ p(y|α, β), and then

use p(θ̃|α̂, β̂) instead. In this way, we also avoid the need for specifying p(α, β), which is a

nontrivial task.

We first identify the joint distribution θ, y|α, β and then integrate out θ. We have

p(y|α, β) =

∫
θ

p(y,θ|α, β)dθ

=

∫
θ

k∏
i=1

[
(ni−1

2θi
)
ni−1

2

Γ(ni−1
2

)
y
ni−3

2
i e

−yi
ni−1

2θi · βα

Γ(α)
θ−α−1
i e

−β
θi

]
dθ

which reduces to

p(y|α, β) =
k∏
i=1

[
hi ·

Γ(α + ni−1
2

)

(β + yi(ni−1)
2

)α+
ni−1

2

βα

Γ(α)

]
, hi =

(ni−1
2

)
ni−1

2

Γ(ni−1
2

)
y
ni−3

2
i .
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Now we can solve for the MML estimates of α, β in terms of our observed data y. The log

likelihood ``(α, β;y) is shown in (2.1) and its partial derivatives are shown in (2.2) and (2.3).

``(α, β;y) =
k∑
i=1

[log(hi) + α log(β)− log(Γ(α)) +

log(Γ(α +
ni − 1

2
))− (α +

ni − 1

2
) log(β +

yi(ni − 1)

2
)] (2.1)

d``

dα
= k(log(β)− ψ(α)) +

k∑
i=1

[ψ(α +
ni − 1

2
)− log(β +

yi(ni − 1)

2
)] (2.2)

d``

dβ
= k(

α

β
)−

k∑
i=1

2α + ni − 1

2β + yi(ni − 1)
(2.3)

Setting the derivatives to zero, we get the following set of equations, shown in (2.4) and

(2.5).

k(log(β̂)− ψ(α̂)) +
k∑
i=1

[ψ(α̂ +
ni − 1

2
)− log(β̂ +

yi(ni − 1)

2
)] = 0 (2.4)

kα̂

β̂
−

k∑
i=1

2α̂ + ni − 1

2β̂ + yi(ni − 1)
= 0. (2.5)

Then 2.5 can be re-written as

kα̂

β̂
−

k∑
i=1

2α̂

2β̂ + yi(ni − 1)
−

k∑
i=1

ni − 1

2β̂ + yi(ni − 1)
= 0→ α̂ =

∑k
i=1

ni−1

2β̂+yi(ni−1)

k

β̂
− 2

∑k
i=1

1

2β̂+yi(ni−1)

which can be substituted into (2.4) for α̂, and then a simple numerical root finder can do

the heavy lifting.

Using the above MML approach, we can sample the variance of our prospective study

θ̃ = σ2 from IG(α̂, β̂). For one-sample, one-sided t-tests, the hypotheses of interest are of
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the form

H0 : µ = µ0, Ha : µ > µ0.

Without loss of generality, we will for now assume that µ0 = 0. Because σ2 is unknown

under H0, the well-known t-test statistic is

T =
x̄√
s2/n

∼ tn−1 (2.6)

while under the alternative hypothesis, this statistic follows a non-central t distribution with

n− 1 degrees of freedom and non-centrality parameter λ =
√

n
θ̃
µ.

In calculating the power, we assume a specific value of µ, representing a minimum

practically significant result, while the variance σ2 follows the distribution determined by the

meta-analysis. By definition, if a random variable z follows a standard normal distribution

and (independently) v follows a chi-squared distribution with nv degrees of freedom, then

the random variable

T =
z + λ√
v/nv

follows a non-central t distribution with nv degrees of freedom and non-centrality parameter

λ. When this is applied to a sample from a normal distribution X1, ..., Xn with mean µ and

variance σ2 (as is done in this setting), the components of this non-central t are

v =
(n− 1)s2

σ2
∼ χ2

nv=n−1, z =
x̄− µ
σ/
√
n
→

x̄−µ
σ/
√
n

+ λ√
s2

σ2 (n− 1)/(n− 1)
=
x̄− µ+ λ σ√

n√
s2/n

This becomes 2.6 when λ = µ
√
n
σ

. Note that this is the conditional distribution of T , since

the variance is generally assumed to be fixed; that is, T |θ̃ = σ2 ∼ tn−1(λ = µ
√
n
σ

). Finding

the marginal distribution gets messy very quickly, since the distributions of both x̄ and s2

depend on σ2. However, since software packages can generate random variables from both
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Gamma and non-central t distributions, a simulation approach based on sequential sampling

can be easily implemented to obtain the marginal distribution of T , outlined below.

2.2.1.1. SSD algorithm

The general framework for the algorithm to search for the minimum sample size to achieve

a certain power 1 − βt given αt for a one-sided test is shown below. Note that αt and βt

represent the desired level of Type I and II error for a t-test under study, respectively, while

α̂ and β̂ refer to the MME estimator for the shape and scale parameter discussed previously.

When considering a two-sided test, the same algorithm can be used with αt as half of the

Type I error rate. This does ignore a miniscule amount of probability on the opposite side

of the fixed effect size, as commonly done in power analysis.

1. Generate M draws (θ̃j)
M
j=1 from θ̃ ∼ IG(α̂, β̂)

2. For a hypothetical sample size n(i)(i denotes the iteration number, so i = 1 in the

first iteration), calculate R(i) = F
(−1)

n(i)−1
(1 − αt), where F

(−1)

n(i)−1
is the inverse CDF of a

t-distribution with n(i) − 1 degrees of freedom. This is the edge of the rejection region

for the test.

3. Estimate the power, P = Pr(T ≥ R(i)), recognizing that

Pr(T ≥ R(i)) =

∫
θ̃

[
Pr(T ≥ R(i)|θ̃) · p(θ̃|α̂,β̂)

]
dθ̃

≈ 1

M

M∑
j=1

Pr(T ≥ R(i)|θ̃j) =
1

M

M∑
j=1

[
1− FT |θ̃j(R

(i))
]

(2.7)

where FT |θ̃j is the CDF of a non-central t-distribution with n(i)− 1 degrees of freedom

and non-centrality parameter λ = µ
√

n(i)

θ̃j
. Note that µ is the pre-specified clinically

relevant effect size.
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4. If P ≥ 1− βt, stop, and accept n(i) as the target sample size. Otherwise, let n(i+1) =

n(i) + 1 and return to step 2.

An initial value n(1) must be specified. At minimum this can be 2, but higher starting

values will lead to quicker computation. An alternate approach to this is to set n(1) to the

sample size using an aggregate approach to variance estimation (i.e., the weighted variance

approach explained in Section 2.3.2), and then iterate n up or down depending on the level

of power it achieves. The approximation used in step 3 of the algorithm becomes more

accurate as M gets larger, but the computation cost also increases greatly as M gets larger.

In Section 2.3.1 we explore the accuracy of P for different levels of M and evaluate different

methods of sampling θ̃. As outlined in Section 2.3.1, the recommended methodology is

remarkably accurate, consistent and fast.

2.2.2. Two-sample t-tests with homogeneity of variance

We now extend the methodology to the much more common two-sample case. Assume

that we have normal data from two groups for comparison, W1, ...,Wn ∼ N(µw, σ
2
w) and

V1, ...Vm ∼ N(µv, σ
2
v). If it can be assumed that σ2

w = σ2
v = σ2, then this reduces almost

entirely to the one-sample case, with a slightly different set of constraints . When testing

the hypothesis H0 : µw − µv = 0 vs. HA : µw − µv > 0, the test-statistic used is given below:

T =
w̄ − v̄√
ỹ( 1

n
+ 1

m
)

Under the null hypothesis, this follows a t-distribution with m + n − 2 degrees of freedom.

In reality, this follows a non-central t with the same degrees of freedom and non-centrality

parameter λ = (µw − µv)/
√
θ̃( 1

n
+ 1

m
).
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2.2.2.1. SSD Algorithm

The algorithm used here is very similar to the one-sample case, since only one variance

needs to be estimated and the test statistic follows a similar distribution. Since there are

two samples, we will assume a fixed allocation ratio for all two-sample problems, so m = ζn.

1. Generate M draws (θ̃j)
M
j=1 from θ̃ ∼ IG(α̂, β̂)

2. For a hypothetical sample size n(i)(and m(i) = ζn(i)), calculate R(i) = F
(−1)

df (i)
(1 − αt),

where F
(−1)

df (i)
is the inverse CDF of a t-distribution with df (i) = n(i) +m(i) − 2. This is

the rejection region for the test.

3. Estimate the power, P = Pr(T ≥ R(i)) using ((2.7)) in Section (2.2.1), where FT |θ̃j is

the CDF of a non-central t-distribution with n(i) +m(i)−2 degrees of freedom and non-

centrality parameter λ = d/
√
θ̃j(

1
n(i) + 1

m(i) ). Note that d = µw−µv is the pre-specified

clinically relevant difference.

4. If P ≥ 1 − βt, stop, and accept n(i),m(i) as the target sample sizes. Otherwise, let

n(i+1) = n(i) + 1 and return to step 2.

2.2.3. Two-sample t-test with heterogeneous variance

Let σ2
i = (σ2

w.i, σ
2
v.i), where σ2

w.i and σ2
v.i denote the variance of each group in study i in

the meta-analysis, for i = 1, ..., k. Recall that in the one-sample case, we assume σ2
i s are

exchangeable. If σ2
w.i = σ2

v.i cannot be assumed, there are three alternative approaches that

can be taken to deal with the variances:

1. Assume that all the variances including both σ2
w.i’s and σ2

v.i’s are exchangeable.

2. Assume that σ2
w.i’s are exchangeable and σ2

v.i’s are exchangeable. Further, for each

study i, σ2
w.i and σ2

v.i are independent, and are generated from different (IG) distributions
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3. Assume that σ2
i ’s are exchangeable. Further, for each study i, σ2

w.i and σ2
v.i have

pair-wise correlation, and are generated from a multivariate distribution with ρ > 0,

typically.

It should be noted that (1) and (2) reduce to the same variance case for identifying the

distribution of ỹ, the main difference being that we perform this twice in (2), using the

meta-analysis results from the one-sample case. (3) is a much more complicated problem,

and will not be covered in this manuscript. It should be noted, however, that in cases

where the sample sizes are equal between two groups, the pooled-variance two-sample t-test

maintains strong power even when the true variances differ (Moser and Stevens, 1992).

2.2.4. Stratified sampling with discretization

The SSD algorithm described in Section 2.2.1 produces consistent sample size estimates

when M , the number of draws from IG(α̂, β̂), is large. But when the effect size is small

(and the corresponding sample size is larger), the computation time increases exponentially

as M moves from 1,000 to 10,000 to 100,000 etc. While this is a trade-off frequently seen

in computational statistics, it is a major obstacle to our approach, as more common SSD

methods can be quickly and systematically calculated. One potential remedy to this trade-

off is to consider a stratified sampling approach, which is able to better capture the overall

variability of a distribution with a smaller number of samples. Suppose one wishes to draw

100 samples of a random variable X with CDF FX(x) and support (0,∞). Rather than

allowing each and every draw to come from any part of the distribution of X, we instead

draw each sample i from the ith 1% of the distribution. In other words, the first draw

is forced to be between
(
0, F−1

X (.01)
)
, the second between

(
F−1
X (.01), F−1

X (.02)
)
, and so on

until the last is between
(
F−1
X (.99),∞

)
. This guarantees that each draw comes from a

different sub-range. Since power analysis is less concerned with the randomness properties

and more concerned with a consistent and representative sample, we take this a step further
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by accepting the median of each range (i.e., the first draw of X would be F−1
X (.005)). In this

way, we represent the distribution of ỹ as an approximate discrete distribution rather than a

continuous distribution. In Section 2.3.1 we show that this method has the speed of a low-M

completely random simulation with the accuracy and stability of a high-M simulation.

As to the SSD algorithm, we only need to replace Step 1 with a step of stratified sampling

with discretization: compute θ̃ ≡ (θ̃i)
M
i=1 =

{
F−1
θ (p) : p = vi

}M
i=1

, where F−1
θ is the inverse

CDF of θ|α̂, β̂ and vi = i
M
− 1

2M
for i = 1, ...,M . All other steps remain the same as before.

2.3. Numerical Experiments

Three numerical studies were conducted to evaluate our methodology. The first uses

simulated data to explore the performance of the discretized sampling approach outlined in

Section 2.2.4; the second conducts an empirical study to evaluate the accuracy of our SSD

approach, where meta-analyses of different sizes were simulated from real data; and the last

explores the circumstances under which our method differs from other aggregate approaches.

2.3.1. A simulation study for comparing sampling strategies

To test the performance of the discretized sampling (DS) algorithm, we compared the

simple random sampling (SRS) approach with 10,000 samples against the DS approach with

1,000 samples. For each setting, the SRS approach was run 100 times, with the mean and

variance of n, the recommended sample size, recorded for each run. The DS approach is

designed to produce the same sample size every time, so there was no need to repeat it for

any individual setting. To be as conservative as possible, we assumed that with M = 10, 000,

the SRS approach is virtually unbiased, and that the observed n̄ is the “true” sample size.

For specific settings, we used α = {0.5, 1, 3, 5, 10, 20, 50, 100}, β = {10, 100, 1000, 10000},

power1 − βt = {.8, .9} and standardized effect sizes of {.25, .5, 1} (192 unique settings in

total). The Type I error rate αt was fixed at 5% for two-sided tests. Here, to compare the
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Table 2.1: A simulation study for comparing two sampling strategies: simple random
sampling (SRS) vs. discretized sampling (DS) in terms of estimation performance and
computation time

Median Computation Time (seconds)

α SRS M = 10k (Variance) SRS M = 100k (Variance) DS (Bias squared) SRS M = 10k SRS M = 100k DS

0.5 7886.792 367.326 57.595 1.324 6.1565 0.525

1 55.843 9.097 0.764 0.312 1.2460 0.135

3 1.183 0.162 0.058 0.147 0.597 0.060

5 0.493 0.070 0.043 0.132 0.554 0.055

10 0.215 0.022 0.023 0.123 0.482 0.050

20 0.092 0.038 0.035 0.117 0.477 0.050

50 0.026 0 0.001 0.108 0.422 0.045

100 0.053 0.015 0.025 0.108 0.439 0.050

performance of DS vs. SRS, there is no need to estimate α and β via meta-analysis and thus

we take samples from IG(α, β) directly using the different strategies in the first step of the

SSD algorithm.

The results of this simulation are shown in Table 2.1, aggregated by the value of α. We

find that the DS method produced estimates at (or in some cases very close to) our best

estimate from the SRS approach, while maintaining computational efficiency in nearly all

settings considered. Perhaps the only cause for concern is the first row for α = 0.5 where the

DS approach appears to have relatively high (squared) bias. Partly to blame for this is the

fact that the SRS approach has an extremely high variance, and 100 runs is not enough for

n̄ to be a consistent predictor of the true sample size. However we can also point to α ≤ 1 as

a possible culprit as well, since this implies that the mean parameter of the inverse-gamma

distribution is infinite and that the studies collected are inconsistent (see Section 2.5; we do

not recommend any version of our approach when α ≤ 1).

2.3.2. Empirical Studies for performance evaluation

To conduct an empirical comparison of the proposed SSD method versus other existing

alternatives, we identified two large meta-analyses in the literature (Spooner et al., 2000;
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M.D. et al., 2017) having 17 and 19 studies, respectively. In our numerical analysis, one

study is excluded from M.D. et al. (2017), since the response variable is defined slightly

differently than the rest of the meta-analysis, so 18 studies were included. For each, we

performed the following steps:

1. Let P be the set of all possible subsets of size k from a large meta-analysis of N

datasets.

2. For a subset A ∈ P :

(a) For a study a /∈ A, perform SSD using the following five methods:

i. Calculate a target sample size using the reported variance from a (the ground

truth).

ii. Calculate a target sample size using A with our method.

iii. Calculate a target sample size with a weighted average variance from A,

weighted by the sample sizes of individual studies.

iv. Calculate a target sample size with a simple (non-weighted) average variance

from A.

v. Calculate a target sample size using the median variance from A.

(b) Repeat for all a /∈ A, for a total of N − k per A.

3. Repeat for all possible A ∈ P , for a total of

 N

k

.

In this way, we treat the sample size calculated using the actual reported variance as the

ground truth. This allows us to objectively evaluate our method against common approaches

for approximating power analysis. With the exception of our method, all sample sizes (and

corresponding power) were calculated using power.t.test() in R. Here, we set the Type I error

rate αt = 5% and power 1− βt = 90% for two-sided tests, and a standardized effect size of
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Table 2.2: An empirical study for performance evaluation on SSD using 19 datasets from
Nedocromil Sodium meta-analysis

MSE Median Power Lost Median Excess n

Method k = 3 k = 4 k = 10 k = 3 k = 4 k = 10 k = 3 k = 4 k = 10

Our Method 734.78 647.59 524.98 13.5% 12.8% 11.3% 15 15 15

Weighted Average 756.08 669.10 541.93 13.8% 13.1% 9.7% 15 16 18

SimpleAverage 756.61 664.21 531.86 13.7% 12.8% 12.2% 16 15 14

Median 833.36 698.83 502.87 16.5% 14.1% 11.7% 18 16 14

Table 2.3: An empirical study for performance evaluation on SSD using 17 datasets from
blood pressure meta-analysis

MSE Median Power Lost Median Excess n

Method k = 3 k = 4 k = 10 k = 3 k = 4 k = 10 k = 3 k = 4 k = 10

Our Method 143.58 135.66 124.21 5.6% 5.4% 3.9% 6 6 6

Weighted Average 154.61 146.79 130.41 6.2% 6.2% 4.2% 6 6 5

Simple Average 162.23 151.33 131.00 5.6% 5.3% 6.0% 8 7 6

Median 161.26 147.23 126.88 6.2% 5.4% 4.4% 7 7 6

1
2

as the clinically relevant effect. Let n∗a be the “ground truth” sample size for study a, and

n
(A)
a be the sample size determined by one of the other methods ((b)-(e) above) for study a

using the subset A. Then we approximate a mean squared error for this method with the

following formula,

MSE =
1

M

∑
A∈P

∑
a/∈A

(na − n(A)
a )2

where M = (N − k)

 N

k

. The methods were also evaluated by calculating the median

difference between the power at the ground truth sample size (i.e., 90%) and power from a

(b)-(e) method given that the study is underpowered (i.e., power < 90%), and the median

difference between the ground truth sample size and a (ii)-(v) method given that the study

is overpowered (i.e., power > 90%). We performed the simulation for each meta-analysis

3 times, varying k in {3, 4, 10}. The results are shown below: Across both datasets, our

method clearly seems to have the best overall performance based on MSE, but the gap
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between it and the other simpler methods shrinks as k increases. A similar trend emerges

when looking at median power lost, a measure of how much a study is underpowered given

that the study is underpowered, and median excess n, a measure of how many extra subjects

are identified when the study is overpowered. Our method tends to perform the strongest

when the sample size is small, but as it increases the other methods tend to catch up.

It should be noted that the results here do depend on the data in question: these meta-

analyses were chosen for testing because the variances fit the exchangeability assumption

well. In cases where the variances (σ2) could plausibly be the same among all studies, then

we would expect the weighted average method to perform the best, as this would use the

MLE of σ2 for estimation.

2.3.3. Cases where our method differs from others

Inspecting the results from Section 2.3.2 can help identify specific circumstances when our

method provides sample size recommendations different from the weighted average method,

which, among the three alternatives, tends to perform well consistently. The first (and

perhaps obvious) result to note is the case when α̂ and β̂ are very large, drifting to infinity

with a stable ratio. In this case, the empirical variance distribution IG(α̂, β̂) is quite trivial,

largely reduced to a point mass at the mode β̂/(α̂ + 1),which is very close to the weighted

average variance. When this happens, the estimated sample size with our method is very

similar if not equal to that of the weighted average method, as in the left panel of Figure 2.1.

Theoretically, this occurs when the sample variances (y) could plausibly share a true variance

(θ) and there is no need for heterogeneity in the distribution. The right panel of Figure 2.1

shows that, in general, the studies with sample variances that are similar to the rest tend

to produce more trivial distributions, but the criterion for similarity relaxes as the sample

size decreases. So even if a study has a sample variance inconsistent with other studies, if

the sample size is small enough it can still lead to a trivial distribution. In general, non-

44



Figure 2.1: The left panel shows the difference in sample size of our method vs. the weighted
average method by triviality of the empirical variance distribution (i.e., α̂ → +∞). This
covers all possible datasets of size 4 from the blood pressure meta-analysis. The right panel
shows a scatter plot of sample standard deviation vs. sample size of datasets from the
blood pressure meta-analysis. Each point represents a different study, and the color of each
dot corresponds to how often it led to a trivial distribution (via simulation results from all
combinations of 4 datasets).

trivial distributions tend to arise when the sample variances are different enough to suggest

heterogeneity in distribution with somewhat large sample sizes.

As the lefthand boxplot in Figure 2.1 shows, often it is the case that sample size

recommendations from trivial empirical distributions lead to very similar results as the

weighted average method. Inspecting the empirical distributions from our simulations suggest

that this occurs when these distributions have higher skewness and kurtosis, which are driven

solely by the shape parameter estimate α̂ . Inspecting the sample size calculation results from

Section 2.3.2 shows that this occurs more often when the meta-analyses has greater diversity

in the sample variances and when the sample sizes are diverse as well (see Figure 2.2).

Note that the structure of our method considers not only the relative size of each study

but also the actual size. For example, in a two-study meta-analysis, the weighted average

approach will produce the same variance estimate (and therefore sample size) as long as the

ratio between the two sample sizes stays the same; in other words, using sample sizes of 10
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Figure 2.2: The scatterplot shows variation in sample variance vs. variation in sample size of
meta-analytic studies for all possible combinations of 4 studies from the numerical analysis
in Section 2.3.2. The color represents the difference between the sample size recommended
by our method and that of the weighted average approach.

and 100 produce the exact same result as sample sizes of 50 and 500. Our method avoids

this issue, by recognizing that larger sample sizes in general produce more stable variance

estimates, and the reliability of a sample variance from 10 observations is much weaker than

that of size 50. So with our method, the study with n = 50 will have more influence than

the study with n = 10, despite having equal weight with the other method.

2.4. Real Data Applications

To illustrate our approach in practice, we now look at two examples of meta-analyses

where our approach can be applied.

2.4.1. UPDRS Data

The Unified Parkinson’s Disease Rating Scale (UPDRS) is a questionnaire designed

to measure the severity of symptoms experienced by patients diagnosed with Parkinson’s

disease. The questionnaire looks at a wide range of symptoms, covering everything from
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Table 2.4: UPDRS study overview

Reference Intervention Reported Sample Size Reported Variance (SD)

Holloway, et. al. (2000)
Pramipexole 151 161.29 (12.7)

Levodopa 150 116.64 (10.8)

Palhagen, et. al. (2006)P
Selegiline 35 134.56 (11.6)

Placebo 41 158.76 (12.6)

Shoulson (2007)
CEP-1347 (25mg BID) 157 105.88 (10.3)

Placebo 145 82.63 (9.1)

mental/emotional health to the ability of patients to complete normal physical activities

(walking, eating food without assistance, etc.). For example, under tremors (probably the

most well-known symptom of Parkinson’s) the patient scores a 0 on this section if they

have experienced no tremors, but would score a 4 if they have severe tremors that interfere

with most daily activities. Patients with higher overall scores (up to 199) have experienced

significant debilitation, while those with lower scores (at or just above 0) have endured very

little disruption to their lives. Because it is a slow-developing disease, reducing the rate at

which a patient UPDRS score increases overtime can have drastic effects on patients’ life

quality and even their long-term survival rate. Our first meta-analysis looks at 3 different

studies of pharmaceutical interventions meant to slow the increase of UPDRS score overtime.

These were chosen as comparable studies by researchers investigating the effects of Isradipine

on UPDRS in a recent clinical trial and were used to justify the sample size, according to

the protocol1. The data for these studies are shown in Table 2.4.

For each of these studies, the response variable measures the change in UPDRS score

from baseline over a period of 36 months (or closest time period). Using the two-sample,

same variance methodology outlined in Section 2, we find that α̂ = 33.397 and β̂ = 4034.366,

with the large α̂ suggesting that the data fits the IG distribution well (see Figure 2.3). At

80% power for a two-sided test, our method recommends a sample size of 123 participants

per group, which is then increased to 145 to account for an anticipated dropout rate of 15%.

1https://clinicaltrials.gov/ct2/show/NCT02168842?term=STEADY-PD+III&draw=2&rank=1
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Figure 2.3: UPDRS study: empirical distribution for θ (inverse gamma with α = 33.397, β =
4034.366), with markers at sample variances from each of the meta-analysis studies.

The weighted average yields a sample size of 140 per group (after accounting for dropout).

The protocol cites that a standard deviation of 12 (the 82nd percentile of our fitted inverse

gamma distribution) is supported by the studies, yielding a target sample size of 168 per

group .

2.4.2. CBT data

Cognitive Behavior Therapy (CBT) is a form of psycho-social therapy used to treat

various mental illnesses, including depression and anxiety. Segool and Carlson (2008) sought

to evaluate and compare CBT with pharmacological treatments on children suffering from

social anxiety using a meta-analysis of small CBT studies. The data for these studies are

shown in Table 2.5 below (note that the response variables for these studies are various forms

of social anxiety scores).
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Table 2.5: CBT study overview

Study (CBT treatment) Reported Sample Size Reported Variance

Albano (1995) 5 4.251

Gallagher (2004) 12 1.031

Hayward (2000) 11 1.133

Lumpkin (2002) 4 0.961

Masia (2001) 6 2.126

Shortt (2001) 10 3.252

Spence (2000) NPI 19 0.951

Spence (2000) PI 7 0.464

Since each study has such a small sample size, we can expect the sample variances to

differ significantly from each other, making this a prime example for our approach. The

weighted average of these variances yields θ̃ = 1.5745. With this variance estimate and an

unstandardized effect of 0.5, a one-sample, two-sided test with a type I error of 5% rejects

the null hypothesis with 90% probability when 69 patients are studied. With our method,

the number of patients needed for these specifications increases to 74. However, it should be

noted that the distance between our method and the weighted average approach depends on

the targeted amount of power, as shown in Figure 2.4. Interestingly, our method recommends

smaller sample sizes for lower power levels compared to the weighted average method. An

intuition-based explanation is that for small power values, a larger proportion of the total

power can be obtained from the smaller variances in the distribution; as the power level

increases, more power needs to be borrowed from the larger variances, leading to a need for

larger sample sizes. Or in other words, as the power increases, our method has to consider

the possibility of larger variances in the tail, driving up the sample size. When the power

is low, our method can ignore the probability of “drawing” a large variance, bringing the

overall sample size down.
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Figure 2.4: CBT study: the left panel shows power curves for both approaches. The right
panel shows the empirical distribution for θ (inverse gamma with α = 7.011, β = 9.909),
with markers at sample variances from each of the meta-analysis studies.

2.5. Discussion

We introduced a new methodology for powering one and two-sample t-tests using a set of

related studies to construct an empirical distribution for the variance. The method assumes

that the true variances from each of these studies are exchangeable with respect to an inverse

gamma distribution with shape and scale parameters α, β. In some cases, the marginal

MLEs for these parameters lie on the boundary, where all mass of the fitted inverse gamma

distribution lies at one point. In these cases, our method reduces to a simple weighted mean

approach. The actual sample sizes are calculated via a discretized grid of possible values

for σ2, which is shown to have similar accuracy to an SRS approach with a high number of

draws while significantly reducing computation time and prediction variance. Our method

demonstrates excellent performance in terms of mean squared error (MSE) when the studies

used to estimate the variance distribution are similar to the study of interest, satisfying

the assumption of exchangeability. Specifically, it outperforms other methods when the

number of studies in the meta-analysis is less than or equal to 5, which is true of roughly
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75% of meta-analyses (Rhodes et al., 2015). Our method leverages all information provided

by the relevant studies, considering a wide distribution of plausible variances rather than

condensing all information into one single estimate. We do not recommend proceeding with

this approach if α̂ < 1, as this suggests that the distribution has an infinite mean and likely

does not meet the exchangeability assumption. If 1 < α̂ < 2, we recommend proceeding

with caution and comparing the results to other methods.

There are several directions in which we hope to expand this research. The first is to

expand on the two-sample, unequal variance case, particularly when the variances have inter-

study correlation. This will lead to further exploration of multivariate distributions for the

two variances from each of the component studies. Another area of interest is exploring the

use of other prior distributions for σ2 outside of an inverse gamma approach. Additionally,

we would like to explore a fully Bayes approach that would allow for more flexible modeling of

parameters, as well as cases where the effect size is allowed to vary while assuring it stays in

a clinically relevant range. The last, and perhaps most obvious, is to apply this methodology

to other types of hypothesis testing, including tests of binary events and analysis of variance.
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Appendix S

Supplementary Material for Chapter 1

S1. Full Conditional Distributions for Meta-Analysis

Let θik =

 aik

bik

 ,Xik =


1 Xi1k

... ...

1 Xi6k


,mk =

 αk

βk

, while Yik, sk are vectors over

all 6 Yijk, sjk and diag(σ2
jk) is a diagonal matrix with σ2

1k...σ
2
6k in the diagonal. I(L,U) is the

indicator function, where I(L,U) = 1 when L < x < U and 0 otherwise. For all Inverse-

Gamma (IG) distributions, ε = .01.

θik| · · · ,Y ∼ N
(
µαβ,Σ

(k)
αβ

)
where

µαβ = Σ
(k)
αβ

(
Σ(k)−1

mk +XT
ikdiag(σ2

jk)
−1(Yik − sk)

)
and

Σ
(k)
αβ =

(
Σ(k)−1

+XT
ikdiag(σ2

jk)
−1Xik

)−1

Σ(k)
∣∣∣ · · · ,Y ∼ IWnk+3

I +

nk∑
i=1

 (aik − αk)2 (aik − αk)(bik − βk)

(aik − αk)(bik − βk) (bik − βk)2




mk| · · · ,Y ∼ BV N

((
Σ−1
m + nkΣ

(k)−1
)−1

(
Σ−1
m µ+

nk∑
i=1

(
Σ(k)−1

θik

))
,
(
Σ−1
m + nkΣ

(k)−1
)−1

)

µα| · · · ,Y ∼ I(Lα,Uα) ·N

(
1

K

K∑
k=1

αk,
σ2
α

K

)
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µβ| · · · ,Y ∼ I(Lβ ,Uβ) ·N

(
1

K

K∑
k=1

βk,
σ2
β

K

)

σ2
α

∣∣ · · · ,Y ∼ IG

(
ε+

K

2
, ε+

1

2

K∑
k=1

(αk − µα)2

)

σ2
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For sjk, we apply two constraints and update the parameter vectors s5k and s6k based on

s1k, s2k, s3k, s4k. Let hj =
X6−Xj
X5−X6

, rijk = Yijk − aik − bikXj, S1:4,−j =
(∑4

l=1 slk
)
− sjk,

(XS)1:4,−j =
(∑4

l=1Xlslk
)
−Xjsjk.
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)
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For tj, we apply two constraints and update the parameters t5 and t6 based on t1, t2, t3, t4.

Note that T1:4,−j and (XT )1:4,−j are defined similarly to S1:4,−j and (XS)1:4,−j above.

tj| · · · ,Y ∼ I(Lt,Ut) ·N
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µ
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j , σ
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)
where t = 1, 2, 3, 4
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S2. Additional Tables and Figures

Table S1: Meta-Analysis Datasets

ID Description of samples # of samples Reference GSE ID or Link

1 Lung adenocarcinoma (LUAD) patients 162 Molania et al. (2019) N/A1

2 Inflammatory bowel disease patients 989 Molania et al. (2019) GSE73094

3 Colon cancer patients 96 Chen et al. (2016b) GSE62932

4 Lung cancer patients 28 Jia et al. (2019) N/A2

5 Colorectal cancer (CRC) patients 54 Jia et al. (2019) GSE86561

6 Early stage CRC patient tumors 144 Low et al. (2017) GSE81983

7 Early stage CRC patient tumors 131 Low et al. (2017) GSE81985

8 Breast tumor samples 1321 Liu et al. (2016) GSE74821

9 Patients stimulated with anti-CD3/CD28 1950 Molania et al. (2019) GSE60341

10 Healthy individuals (stimulated and controls) 2441 Molania et al. (2019) GSE53165

11 Carolina breast cancer study (CBCS) tumors 1278 Patel et al. (2022) GSE148418

12 Survivors of triple negative breast cancer 254 Cascione et al. (2013) GSE45498

13 Merkel-cell carcinoma patients 8 Gravemeyer et al. (2021) GSE159662

14 T-cell lymphoma or dermititis (plus controls) 128 Nielsen et al. (2019) GSE143382

15 Metastatic melanoma patients 24 DeVito et al. (2021) GSE165745

16 Breast cancer patients 1253 Pu et al. (2019) GSE147126

17 Squamous cell carcinoma patients 67 Meehan et al. (2020) GSE148944

1https://github.com/RMolania/NanostringNormalization/tree/master/Example%201_LungCancerStudy

2Data can be accessed in the RCRnorm R package
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Figure S1: Trace plots (left) and Gelman-Rubin plots for global parameters in in our Bayesian
meta-analysis

Figure S2: Autocorrelation for global parameters in our Bayesian meta-analysis. Since all
chains produced similar results, only autocorrelation from chain 1 is shown.
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Figure S3: Trace plots for φ1 − φ4 (dataset 13).

Figure S4: Posterior distribution (by chain) of µa for RCRnorm and MetaNorm
normalization of datasets 4 and 15
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Figure S5: Comparison between RCRnorm and MetaNorm on convergency using trace plots
for µa
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Figure S6: Comparison between RCRnorm and MetaNorm using traceplots of sample-specific
intercepts a1 − a3 (Dataset 13).
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Figure S7: Comparison of κir (normalized log10 mRNA expression levels) for dataset 12
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Patel, A., Garćıa-Closas, M., Olshan, A. F., Perou, C. M., Troester, M. A., Love, M. I., and
Bhattacharya, A. (2022). Gene-level germline contributions to clinical risk of recurrence
scores in black and white patients with breast cancer. Cancer research (Chicago, Ill.),
82(1):25–35. 55

Perlmutter, M. A., Best, C. J. M., Gillespie, J. W., Gathright, Y., González, S., Velasco,
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