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Tumor xenograft experiments are a popular tool of cancer biology research. In a typi-

cal such experiment, one implants a set of animals with an aliquot of the human tumor of

interest, applies various treatments of interest, and observes the subsequent response. Ef-

ficient analysis of the data from these experiments is therefore of utmost importance. This

dissertation proposes three methods for optimizing cancer treatment and data analysis in

the tumor xenograft context. The first of these is applicable to tumor xenograft experi-

ments in general, and the second two seek to optimize the combination of radiotherapy

with immunotherapy in the tumor xenograft context.

In tumor xenograft experiments, one commonly observes that growth is exponential

(log-linear) initially but later decelerates. For this reason, it is common to model tumor

volume using a sigmoid growth curve such as the Gompertz, wherein growth increases

in what first appears to be an exponential curve and then decelerates, eventually reaching

a plateau. Scientists have advanced multiple biological hypotheses to explain this phe-
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nomenon. We propose that a contributing factor in the context of in vivo tumor xenograft

studies may be the loss of animals whose tumors are growing most quickly. As they die

or require sacrifice, we are left with only the smaller, slower-growing tumors on the re-

maining animals. To illustrate this point, we show via simulation that the performance

of the Gompertz model exceeds that of the exponential when fit to the average of incom-

plete exponential data where larger tumors are subject to truncation. A log-linear mixed

model, however, effectively recovers the individual exponential curves. We conduct an

analysis of real tumor xenograft data using these models, which shows that while tumor

growth appears Gompertz when analyzing the averages of the available tumor volumes,

an exponential mixed model fits well to the individual curves.

The efficacy of a radioimmunotherapy regimen for cancer treatment is sensitive to the

radiation fractionation scheme. Chapter 2 develops and evaluates a generalized, adaptive

method to identify the optimal radiation regimen for use with immunotherapy in the con-

text of a sequential tumor xenograft experiment. We use a predictive model, updated after

each new observation, to forecast future tumor growth under each of a set of candidate ra-

dioimmunotherapy regimens, selecting the one that yields the best result. We evaluate and

compare three versions of our method, characterized by three different predictive models

used for forecasting, in a simulation experiment that models an adaptive in vivo tumor

xenograft study. We observe that the predictive system characterized by a linear spline

mixed model best balances efficiency and robustness and therefore provides the most use

in practical applications.
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We also develop a Reinforcement Learning system to learn and generate such person-

alized optimal radiotherapy regimens, which is described in Chapter 3. This model was

developed based on a set of pre-clinical experimental data and can capture, in the context

of combination therapy, the dependence of performance on radiotherapy scheduling. The

timings chosen by the agent outperform the fixed application of the best-performing timing

observed in an in vivo experiment to all individuals. This preliminary endeavor provides

methodological foundation for a future adaptive in vivo tumor xenograft experiment, and

potentially a subsequent human trial.
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CHAPTER 1

Animal Sacrifice as a Potential Cause of Decelerating Growth in Xenograft
Experiments

1.1 Introduction

Modelling of tumor growth in animal experiments is a pillar of oncology research

(Heitjan, Manni, and Santen 1993; Demidenko 2010; Santen, Yue, and Heitjan 2012). In

particular, one commonly uses statistical models to analyze data from tumor xenograft

experiment. In a typical such experiment, one implants a set of animals with aliquots of a

cancer cell line derived from a human tumor of interest, applies various treatments, then

observes and compares the resulting tumor growth or decay in each treatment arm. One

can fit a growth model to the data from each experimental group, drawing conclusions

about treatment effects by making inferences on features of the growth models such as the

overall growth rate (Heitjan, Manni, and Santen 1993).

The growth of implanted tumors — at least in the early stages of an experiment — typ-

ically resembles an exponential curve; indeed, models that assume baseline exponential

growth have exhibited a moderately good fit to tumor xenograft data (Demidenko 2010;

1



Heitjan 1991). Closer inspection, however, reveals that the growth rate tends to decline

with time, and thus models that can accommodate late-stage growth deceleration are gen-

erally preferred: Popular choices include the Gompertz and logistic curves, both of which

are special cases of the generalized logistic function (Vaghi et al. 2020; Viossat and Noble

2021; Ghaffari Laleh et al. 2022; Hartung et al. 2014). The reason for the eventual late-

stage deceleration in mean tumor growth is not generally understood. While it is plausibly

a reflection of cell proliferation and diffusion mechanics and a resulting decline in carry-

ing capacity (Frenzen and Murray 1986; Sheergojri et al. 2022), the nature of this effect

remains under investigation (Yang et al. 2020; Tienderen et al. 2022; Baranowitz 2022).

Commonly in xenograft experiments some animals die spontaneously or undergo sac-

rifice for morbidity before the intended conclusion of observation. This removal of exper-

imental subjects, similar to the phenomenon of dropout in longitudinal studies in humans,

can induce a bias in graphical and numerical analyses of tumor growth. Because the larger

or faster-growing tumors are removed earlier, the remaining individuals are a biased sam-

ple of the original cohort, consisting primarily of animals with slower-growing tumors

(Figure 1.1). With the individuals bearing larger or faster-growing tumors eliminated,

the cross-sectional means computed from remaining animals will therefore be lower than

they would be had the animals with large tumors survived. We propose that this removal

of experimental subjects from tumor xenograft experiments due to spontaneous death or

compassionate sacrifice implies that one will observe a deceleration of growth, regardless

of the underlying characteristics of the individual tumors.

2



5 10 15 20 25 30 35 40

0
5

1
0

1
5

Days Post−Implantation

L
o

g
 T

u
m

o
r 

V
o

lu
m

e

Average: Observed
Average: All (Observed and Latent)
Individual: Observed
Individual: Latent (Dropped Out)

Figure 1.1: As faster growing tumors are eliminated, the growth rate of the curve of the average
remaining tumor volumes (solid red) declines.

We illustrate the potency of this effect by a simulation experiment where we generate

a series of tumor growth curves from an exponential mixed model with subject-specific

slopes, assuming that subjects are terminated from the experiment with probability de-

pending on their size at the previous observation. We then fit various models to the data ag-

gregated two ways: Individually by subject (resulting in a mixed model), and averaged by

time over all remaining subjects (using a classical regression model that ignores the "Ani-

mal" effect). We observe that the Gompertz model provides a better fit than the exponential

to the averages of the remaining observations, whereas the exponential mixed model ac-

curately recovers the parameters used to generate the data. This demonstration illustrates

that an aggregated curve with apparent growth deceleration can arise from underly-

ing exponential growth curves that are subject to truncation at large volumes. We

3



also fit the exponential (mixed), exponential (averaged), and Gompertz (averaged) models

to a real dataset, showing that whereas the Gompertz curve describes the averaged tumor

volume better than the exponential, the exponential curve is preferable on the individual

level. Finally, we investigate and compare growth deceleration on the subject-specific and

the average level by adding a squared "time” term to the log-linear (exponential) model

fit to the real dataset: While growth does still appear to decelerate on the individual level,

the deceleration effect is diminished by the inclusion of subject-specific growth rates and

intercepts.

1.2 Methods

1.2.1 Simulation

Data-generation model

We generated M = 1000 data sets consisting of synthetic log-scale tumor volumes

(denoted lnyit) from n = 30 subjects, indexed i = 1, . . . ,n, according to the model

lnyit = bi,l0 +bi,l1t + eit , (1.1)

eit ∼ N(0,σ2),
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where the subscript l is a label which stands for "linear". We generated yit for subject

i at times t = 1, . . . ,40 per Equation (1.1), where the eit are independent normal errors

with common variance σ2. For each individual i, we generated bi,l0 ∼ N(βl0,σ
2
β0i), and

bi,l1 ∼ N(βl1,σ
2
β1i), with bi,l0,bi,l1 independent.

Next, we deleted data points according to a probabilistic removal process. Define Ait

to be a random variable that takes the value 1 if individual i is still in the experiment at

time t, and 0 otherwise, with Ai1 = 1, and let this probability depend on the tumor volume

at the previous measurement time:

pit = Pr[Ait = 0|Ai,t−1 = 1,Yi,t−1 = yi,t−1]

=
exp(γ0 + γ1yi,t−1)

1+ exp(γ0 + γ1yi,t−1)
.

That is, for γ1 > 0, animals with larger tumors are more likely to undergo sacrifice, as

would happen in an actual experiment. In our simulations, we set the parameter vectors to

be (βl0,σβ0i,βl1,σβ1i,σ) = (0,0.5,0.15, .01,0.001) and (γ0,γ1) = (−10,1) to control the

overall dropout rate and ensure realistic dropout times.
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Data analysis models

We estimated three different models from each simulated dataset. The first of these

assumes baseline exponential tumor growth as follows:

ȳt = exp(βl0 +βl1t + et). (1.2)

In Equation (1.2), ȳt is the mean volume of the remaining tumors at time t and et ∼

N(0,σ2). The second model assumes that mean tumor growth is Gompertzian:

ȳt = βg0 exp
[
ln
(
βg1/βg0

)
× (1− exp(−βg2t))

]
+ et , (1.3)

where, as before, et ∼ N(0,σ2) and the subscript "l" stands for "linear". Similarly, the

subscript "g" on the parameters of the Gompertz model stands for "Gompertz". Equation

(1.3) assumes that the average tumor growth starts at volume βg1, increasing in a sigmoid

to reach its limiting volume βg0. Finally, we fit a linear mixed model to the log tumor

volumes that matches exactly the data generation process in Equation (1.1). Because ani-

mal removal depends only on the observed data (similar to missingness at random in the

parlance of missing data), estimation of the last model consistently recovers the original

exponential parameters (Little and Rubin 2019).
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1.2.2 Data

Our data consist of tumor measurements from wild-type mice implanted with Lewis

Lung Cancer (LLC) cell lines. We consider here the control data from three rounds of

radiation oncology experiments that investigated various combinations and timings of ra-

diation and immunologic therapy. The sample sizes of these control groups were 5, 10,

and 8, for a total of n = 23 mice. Moore et al (2021) analyzed Round 1 of these data

in an investigation of the effect of radiotherapy schedules on the synergy between radi-

ation and anti-PDL1 immunotherapy. They used repeated measures analysis of variance

to investigate potential difference between treatment groups, concluding that the timing

of the fractionated radiotherapy pulses impacts the degree of synergism between the two

treatment modalities. In order to account for the pre-emptive loss of experimental animals,

they excluded from analysis all data from all animals beyond the date of the first animal’s

death.

1.2.3 Statistical analysis

In an initial analysis, we estimated the Gompertz and exponential curves from the

data averaged by measurement time, as well as the previously described exponential (log-

linear) mixed model with subject-specific slopes and intercepts. Next, we investigated the

potential of subject-specific nonlinearity via linear approximation, i.e. by adding a squared

7



term to the mixed log-linear model as follows:

lnyit = bi,l0 +bi,l1t +βl2t2 + eit (1.4)

In Equation (1.4), βl2 is a fixed quadratic coefficient; all other symbols are as defined in

Equation (2.1). If βl2 < 0, then the individual curves manifest late-stage growth decelera-

tion as suggested by Vaghi, et al (2020). Note, however, that some degree of subject-level

late-stage growth deceleration does not contradict our thesis that pre-emptive animal re-

moval contributes to the late-stage deceleration of average tumor volumes. We do not

include random effects on βl2 because the addition of such effects cause issues with model

convergence, indicating a poor fit to the data.

We also investigated the effect on the estimate of βl2 that occurs when one removes

the subject-specific random effects, fixing σβ0 = σβ1 = 0: Note that this procedure is

equivalent to fitting the model ¯lnyt = βl0 +βl1t +βl2t2 + et . If the removal phenomenon

contributes to the late-stage deceleration of average tumor growth, then one might expect

that ignoring the subject-specific effects would result in a larger negative estimate of βl2,

representing the deceleration phenomenon.

We estimated the log-linear mixed models using the R function lmer (Bates et al.

2015). To compare two models using likelihood analysis, one must fit both models on the

same scale. We therefore estimated both of the mean models to the raw values using non-
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linear least squares as implemented in R function nls (R Core Team 2021). To compare

non-nested models, we computed Akaike’s information criterion (AIC).

1.3 Results

1.3.1 Simulation

The Gompertz model gave an overwhelmingly better fit to the averages of the avail-

able post-dropout values, achieving a lower AIC on 97% of the Monte Carlo replicates.

Conversely, the exponential model fit the averages of the uncensored data better in all

1,000 Monte Carlo iterations. Figure 1.2 shows that the exponential mixed model suc-

cessfully recovered the original (pre-removal) curve. Here, the grey dots represent the

cross-sectional averages of the complete, pre-removal simulation data, and the dark black

line represents the cross-sectional averages of the "observed" simulation data post-removal

— that is, the remaining data after probabilistic removal. The three dashed lines character-

ize the predictions from the three models of interest, as fit to the observed (post-removal)

data. In order to obtain accurate cross-sectional averages from the post-removal data at

the later stages (when most individuals had been removed), we generated an additional

1.497 million individuals (for 1.5 million total) for plotting purposes, and truncated the

curve corresponding to cross-sectional post-removal data (i.e. the dark black line) at the

first timepoint that had fewer than 1,000 observed data points.

9



0 10 20 30 40

0
2

4
6

8

Average Tumor Volumes

Days Post−Implantation

L
o

g
 T

u
m

o
r 

V
o

lu
m

e

Data: No Removal
Data: With Removal
Gompertz
Exponential (Average)
Exponential (Mixed)

Figure 1.2: Simulated data and predictive curves from each model. All models are estimated from
the simulated data with imposed removal.

1.3.2 Data Analysis

All of the animals in the dataset were sacrificed before the end of the experiment, ei-

ther due to skin ulcer (nulc = 6) or tumor burden (ntum = 17). Figure 1.3 shows predictions

from each of the three models when estimated from the real data. In the left panel, the

dark black dots are the cross-sectional mean observed tumor volumes, and the dashed line

is the Gompertz model estimated from them. The dotted line is the exponential model

fit to the average volumes, and the black dot-dashed line is the average of the individual

exponential curves fit by the mixed model. The grey dot-dashed line characterizes the pre-

dictions of the mixed model characterized by Equation (1.4) (which includes the squared
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"time” term). Of the two models estimated from the mean volumes, the Gompertz has a

better apparent fit than the exponential. The AIC on the Gompertz fit is also lower than

that on the exponential model fit to the average, in agreement with the visual heuristic. The

takeaway is that unlike the exponential curve, the Gompertz fits well to the tumor volumes

on average. Moreover, when fit to the average of the data, the exponential creates predic-

tions that substantially exceed the observed values in the later stages of the experiment: It

is deficient in that it cannot capture the apparent deceleration of growth on the late-stage

cross-sectional averages of observed tumor volumes.
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Figure 1.3: Predictive curves from each model when estimated from the experimental data. Each
color corresponds to an individual animal, and the black and grey curves/dots represent averages
or marginal predictions.

In the right panel, each set of uniquely colored dots represents the datapoints from a

single animal, and the corresponding colored line represents the corresponding subject-
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specific predictions from the exponential mixed model for that animal. These predictions

conform moderately well to reality; unlike the exponential fit to the average, the estimated

exponential curves from the mixed model do not substantially exceed the observed values

at the later times. This phenomenon arises numerically in the mean squared prediction

error (MSPE): While the log-scale MSPE on the exponential model fit to the averages

was equal to 0.17, log-scale MSPE on individual curves had an inter-quartile range of

(0.02,0.06), with median 0.05. This constitutes further evidence in favor of the idea that

even if each individual curve is exponential — that is, in the extreme case where the growth

of individual curves does not decelerate — the average of the non-censored values may

appear to decelerate. Note also that in the left panel, the marginal predictions from the ex-

ponential mixed model (characterized by the black dot-dashed line) exceed the predictions

from the exponential model fit to the averages in later stages; this illustrates the potential

negative bias that the removal phenomenon may cause. Estimating a mixed exponential

model with subject-specific effects mitigates this bias.

The addition of a subject-specific squared term in the linear model contributed sub-

stantially to model fit, resulting in a lower AIC on the model characterized by Equation

(1.4) than the model characterized by Equation (2.1). The estimated mean of the subject-

specific squared coefficient was negative (β̂l2 =−0.39), as one might expect: This analysis

agrees with previous investigations such as Vaghi, et al (2020), which propose growth rates

of individual curves do still decelerate in the later stages. Removing the subject-specific

effects in the quadratic model, however, resulted in an estimate of β̂l2 = −0.64, substan-
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tially exceeding in magnitude the estimate from the mixed model. Moreover, removing the

subject-specific variability on the intercept and linear term in the quadratic model caused

an increase in AIC, indicating that the mixed quadratic model (i.e. the model with subject-

specific intercepts and initial growth rates) provides a better fit to our dataset than the

quadratic model fit wholly to the averages.

Inclusion of a random effect corresponding to experiment number did not substantially

improve the model fit, indicating that observations are homogeneous across rounds.

1.4 Discussion

The removal of subjects with larger or faster-growing tumors can cause decelerating

growth in the cross-sectional tumor volume averaged from the remaining subjects. This

removal mechanism can be so extreme as to cause a sigmoidal model to fit better than an

exponential curve to cross-sectional averages of truly exponential individual curves.

We do not dispute that the best-fitting model for a set of individual tumor growth

curves might still involve a late-stage deceleration in growth rate. Rather, we argue that

the removal of animals with faster-growing tumors can cause an apparent deceleration

of growth in the mean tumor volume curve, whatever the underlying kinetics. We have

illustrated this point with both simulated and real tumor xenograft data. Our conclusion

is consistent with visual inspection of the data, where we observe that the exponential

model fits better on the individual curves than it does on the averages. Future studies
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might benefit from an investigation of the implications of this phenomenon on analysis,

and the extent to which it depends on the mechanism of removal. We moreover observe

that the removal of animals with larger tumors is a feature of many xenograft experiments,

as tumors typically cause death or morbidity within the time frame of planned observation.

The fact that animal loss contributes to the late-stage deceleration of mean tumor

growth has various implications for the analysis of data from tumor xenograft experi-

ments. Most importantly, efforts to explain the biological mechanisms which cause this

phenomenon should take into account the behavior of the individual curves. An effective

way to accomplish this is to analyze data using linear or nonlinear mixed models — i.e.,

models that posit a basic shape for the growth curves with parameters that vary between

animals (Heitjan, Manni, and Santen 1993; Heitjan 1991). Other options might include

imputing the counterfactual post-death values using methods from the missing data litera-

ture; future research might include a direct comparison of a variety of methods and models

to this end.

In summary, we propose here that loss of experimental animals to morbidity or sacri-

fice contributes to the growth deceleration commonly observed in late-stage cross-sectional

averages of tumor xenograft data. Even if the individual curves exhibit deceleration, the

deceleration of the average curve will be more pronounced. Among other things, this

suggests that plotting average tumor volumes over time is likely to lead to an incorrect

understanding of individual growth kinetics; plotting individual curves using different line

types or colors will give a truer picture. Similarly, models that one estimates from data
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averaged by time are deficient for inference; estimating mixed models from the individual

data mitigates this problem.
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CHAPTER 2

Statistical and Machine Learning Methods for Adaptive Radiotherapy Treatment
Scheduling

2.1 Introduction

2.1.1 Overview

Recent studies in radiation oncology have demonstrated the potential for synergistic

effects of radiotherapy (RT) and immunotherapy (IO) in the treatment of solid tumors.

Moore et al (2021) showed that the degree of synergism is sensitive to the timing of the

RT pulses: If one applies two pulses of radiation 10 days apart, then the addition of IO sup-

presses tumor growth, whereas if one spaces the pulses one day apart, the IO has minimal

effect. Various radiobiological hypotheses compete to explain this observation. One such

hypothesis, which Moore et al (2021) termed "PULSAR”, suggests that the immune cells

newly recruited by RT are more sensitive to radiation than previously existing cells. Ap-

plying the second RT pulse too soon kills the newly recruited immune cells and weakens

both the secondary effect of RT and the main effect of IO.
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Planning the timing of the RT pulses is challenging because i) the optimal spacing

may vary among individuals due to heterogeneity in their immune systems, and ii) an

individual’s optimal spacing may change over the course of treatment due to immune

cell depletion or a vaccine effect. A method for determining personalized, adaptive RT

schedules is therefore needed. We propose here one such method.

2.1.2 Experimental context

We assume the context of an in vivo tumor xenograft experiment, which is a necessary

step in the pre-clinical development of a treatment for a solid tumor. In a typical such

experiment, one implants an aliquot of a cancer cell line into the flank of each experimental

animal, applies the treatment of interest, and observes the growth of the tumor over a

period of several weeks. In an experiment to study RT/IO combinations, treatment arms

would likely include a double-negative control (no RT or IO), an IO-only arm, an RT-only

arm, and arms representing various doses of RT and IO.

We consider here a hypothetical sequential tumor xenograft experiment aimed at iden-

tifying an optimally timed RT/IO regimen. That is, our study will involve implanting

an animal with a tumor, observing a partial pre-treatment growth series, treating the tu-

mor with one of the candidate regimens, and observing the subsequent growth of the

tumor. With the data from each new animal, we will update a statistical model relating

pre-treatment growth characteristics and type of treatment to an outcome that serves as a
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proxy for the effectiveness of the treatment. The product of this process is a treatment

regimen that optimizes this outcome. Algorithm 1 describes the process.

Algorithm 1: Design for identifying an optimal radiotherapy regimen

1. For a newly implanted mouse, measure a sequence of pre-treatment tu-

mor volumes; apply the initial dose of RT; observe the subsequent tumor

volume.

2. Using the data from step 1 together with a model for tumor growth,

predict the mouse’s future tumor growth under each potential action.

3. Identify âopt, the action that gives the optimal outcome.

4. Apply âopt and observe the animal’s response.

5. Update the estimated parameters of the predictive model using the data

collected in steps 1–4.

After application of a pulse of radiotherapy, the tumor typically shrinks for a time and

then regrows. If the RT-induced tumor recession is powerful enough, the subject’s immune

system can — in theory — take over and drive the tumor volume to zero. With this goal

in mind, we seek to minimize the nadir, or lowest attained value, of the post-RT curve.

We therefore quantify the performance of an RT regimen by the nadir of tumor volume

after application of the final pulse of RT. We define an optimal RT regimen as the regimen

which causes, for each animal, the lowest nadir (Figure 2.1).

Others have proposed approaches similar to Algorithm 1. Kosinsky et al (2018) used

a 25-parameter Bayesian non-linear mixed model of the tumor microenvironment to de-
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Figure 2.1: Counterfactual curve sets produced by the spline model corresponding to regrowth
(left) and cure (right). The lowest nadir is indicated on each: Here, the optimal action for the
curative example is 9, whereas the optimal action for the regrowth example is 1.

termine personalized RT-IO dose and schedule combinations, validating their results in-

directly by forecasting future tumor growth. They did not use the model for treatment

assignment, though they did suggest that as a potential extension. Zahid et al (2021) used

a similar approach to optimize radiotherapy dose-escalation regimens (with and without

chemotherapy). While these methods do use the mathematical model to derive future ac-

tions, they do not optimize the RT dosing schedule in light of its synergy with IO.

Our method represents a form of Reinforcement Learning called Q-learning (Mnih et

al. 2015; Sutton and Barto 2018), which is effective for determining personalized cancer

treatment in a variety of settings. These include chemotherapy (and general clinical trial)

dose determination (Yauney and Shah 2018; Padmanabhan, Meskin, and Haddad 2017;

Hassani and Naghibi-S 2010), optimization of a radiotherapy administration instrument
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called a multi-leaf collimeter (Hrinivich and Lee 2020), RT fractionation, and RT dose

determinaton (in isolation, i.e. with no immunotherapy) (Jalalimanesh et al. 2017; Tseng,

Luo, Cui, et al. 2017; Ebrahimi and Lim 2021). Various sources in the machine learning

literature stress the need for adaptive simulation-based and inverse planning methods like

Algorithm 1 (Tseng, Luo, Ten Haken, et al. 2018; Willcox, Ghattas, and Heimbach 2021;

Enderling et al. 2019). One benefit of our method is that it is simpler to understand and

apply than a general Reinforcement Learning approach, as it does not require the explicit

deployment of theory from Markov Decision Processes (though one could describe our

method in its parlance if desired).

As no such in vivo experiment has yet, to our knowledge, been attempted, we conduct

the experiment in silico by Monte Carlo simulation, where each replication consists of

running Algorithm 1 to completion (convergence). Among other things, this will allow

us to evaluate the practicability of an in vivo sequential experiment, determine the sample

size needed to obtain conclusive results, and assess effects of other factors such as model

complexity and choice of prior distributions. Most importantly, the simulation will allow

us to evaluate a range of possible choices of the sequential optimization method. Our work

is unique in that it investigates the long-term performance of the method, treating each run

from calibration to conclusion as a single Monte Carlo replicate; previous simulation-

based work on adaptive cancer treatment ran the adaptive algorithm only once (Hassani

and Naghibi-S 2010).
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One naturally expects that a method derived from the data-generating model will give

best results. But because in practice the correct model is generally unknown, it is essential

to consider the robustness of specific model choices. Below, we describe and compare

three different variants of the method that impose varying levels of structure on the pre-

dictive model.

We organize the remainder of this chapter as follows: First, we introduce the optimiza-

tion models and outline the specifications of our simulation. We also present two nonlinear

models that we used to simulate data, and interpret their parameters. We investigate the

effectiveness of three versions of our method by computing the causal effect of our method

on the outcome, relative to conventional methods of RT scheduling. We also compare the

efficiency and robustness of the three versions by varying both the sample size and the

model used to generate the simulation data, and observing the effects on each version’s

performance. Finally, we discuss the broader context of our method, describe strengths

and limitations, and propose future research directions.

2.2 Methods

2.2.1 Conduct of the experiment

We observe the tumor volume sequence Yi of animal i at a series of days t = 1, . . . , trt0.

On day trt0 we administer the initial RT pulse. We then observe the growth of the tumor

for an additional tw days; with these data in hand, we estimate the optimal number of days
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to wait to administer a second pulse. That is, we choose ai ∈ A = {1,2, . . . ,A} that gives

the lowest projected post-RT nadir, and administer the second pulse at day trt0 + tw + ai.

We identify ai using some systematic method of prediction Qθ : Rtrt0+tw ×A →R indexed

by parameter θ ∈ Θ to combine the pre-decision growth curve Yi,1:trt0+tw with a potential

action a to create a prediction of the outcome Y . Such a system might use, for example,

a tumor growth model with RT pulses applied at days trt0 and trt0 + tw + ai to predict Y ,

or it might simply be a prediction system obtained by machine learning. In Algorithm 1,

then, after observing the ith growth curve up to day trt0 + tw, one would use for prediction

(and subsequent determination of ai) an estimate θ̂ (i), computed using the i− 1 previous

individuals as well as the partially observed sequence from subject i.

The predictive accuracy of Q only affects the action selection task inasmuch as it af-

fects the ordering of the counterfactual nadir tumor volume predictions. For example,

suppose that applying actions a = 1,2 respectively to subject i will truly result in counter-

factual nadir volumes of 3 and 5, respectively, so that action 1 is truly better than action

2 for that individual. Consider two predictive systems: Q(1), which estimates these coun-

terfactual outcomes as 10,50, and Q(2), which estimates them as 4,3.5. Although Q(2)

is more accurate in terms of mean squared error, Q(1) is better for selecting an optimal

treatment, because it ranks the potential outcomes correctly.

The properties of an instance of Algorithm 1 depend on the form of Q. For example,

one implementation could involve estimating subject-level parameters of a mechanistic

model or a nonlinear growth model such as the Gompertz (Vaghi et al. 2020). Such non-
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linear models, even when correct, may be difficult or impossible to estimate, especially in

the early going. Conversely, a nonparametric method might approximate Q with a predic-

tion system derived from a neural network (NN) (Kosorok and Moodie 2015), purchasing

robustness at a price in efficiency. A compromise could involve a linear model that has no

biological interpretation but nevertheless fits the data well. We henceforth consider three

versions of Algorithm 1: A nonlinear modeling system denoted QNL, a linear model QLM,

and a nonparametric neural network QNN.

2.2.2 A nonlinear model

A sum-of-exponentials model

We consider a predictive system, denoted QNL, which uses a nonlinear tumor growth

model to predict Y . This model assumes exponential growth of the form exp(α0 +α1t)

for the tumor growth curve in the pre-treatment period t < trt0 on a subject with growth

parameter vector (α0,α1)∈R×R+. Immediately on first treatment (at day trt0), two things

happen:

1. A fraction ρ ∈ (0,1) of the tumor cells are killed and removed with

exponential decay rate ω > 0.

2. The surviving fraction 1−ρ of the tumor continues to grow according

to the original exponential growth function.
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Assuming errors eit that are additive on the log scale with a common standard deviation

σ , we write the model as follows:

lnYit = µ(t;α0,α1)+ eit

where

µ(t;α0,α1)=


α0 +α1t t < trt0

ln{ρ exp(α0 +α1trt0)exp [−ω(t − trt0)]+(1−ρ)exp(α0 +α1t)} t > trt0.

We can moreover assume that the proportion of cells killed at subsequent treatments de-

pends on proximity to the last treatment time. For example, suppose for mouse i we

select action ai = 5 corresponding to a 5-day waiting time between the treatment deci-

sion day trt0 + tw and the next pulse. Let ρ2 denote the proportion of cells that begins

to die at the day of the second pulse. Then, using trt1 = trt0 + tw + 5 we can assume ρ2

is affected by two elements: i) trt1 − trt0, the time between pulses, and ii) ρ , the propor-

tion of cells which began to die at the first pulse. The PULSAR hypothesis can thus

be encoded as ρ2(ρ, trt1, trt0) = ρ(1− exp [−δ (trt1 − trt0)]) for δ > 0, where the factor of

(1− exp [−δ (trt1 − trt0)]) penalizes re-treatment at short intervals. One could readily ex-

tend the model to multiple pulses.
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Estimation

We treat a subset of the parameters as random effects that vary between individuals,

and the rest as fixed effects. Denote the vector of random parameters as θrand,i = (ρi,ωi),

and the vector of fixed parameters as θfix = (α0,α1,δ ,σ), with the complete parameter set

denoted θi = (α0,α1,δ ,ρi,ωi,σ). We assume that


logit(ρi)

ln(ωi)

∼ N




µρ

µω

 ,


σρ 0

0 σω


 ,

applying the logistic and logarithmic transformations to accommodate the restrictions on

the sample spaces of ρi,ωi.

Suppose we have a data set consisting of the previously collected tumor volume se-

quences Y1, . . .Yi−1, their respective treatments, and an incomplete sequence Yi, for which

we wish to predict the final-day tumor volume for each a ∈ A . We estimate the nonlinear

model in three steps:

1. Use the data Y1,1:trt0, . . . ,Yi−1,1:trt0 to estimate α0,α1 and the residual stan-

dard error via the lm() function in R.

2. Fixing these three parameters at their estimates, use the entirety of the

observed data Y1, . . . ,Yi to estimate the remaining parameters (δ ,ρ,and

ω) as fixed effects.

3. Fixing θfix at its estimated value θ̂fix = (α̂0, α̂1, δ̂ ), re-estimate θrand on

the incomplete sequence only, resulting in the estimate θ̂rand,i = (ρ̂i, ω̂i).
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We then use (θ̂fix, θ̂rand,i) along with QNL to predict the outcomes for subject i for each

a ∈ A .

We fit the nonlinear model by hand using least squares in R (R Core Team 2021).

2.2.3 A linear model

Assume, as before, that we have observed i− 1 individuals, and we wish to optimize

treatment for individual i given Y1:i−1,1:T , and Yi,1:trt0+tw (where T is the maximum number

of observation days, assumed constant between mice). We consider a system QLM that

uses a mixed model encoding time and treatment as fixed-effect predictors X and random-

effect predictors Z ⊆ X . The model used in QLM for data from subject i is as follows:

lnYi,1:T = Xiβ +ZiGi +Ei, (2.1)

with 
Gi

Ei

∼ N




0

0

 ,


Γ 0

0 σ2I


 ,

where Γ is the variance-covariance matrix of the random effects, and σ2I is the T × T

variance matrix of the residual Ei. We moreover assume independence across units.

We define Xi such that Equation (2.1) is a second-order spline model with a knot at each

radiation day, allowing interaction between the terms corresponding to knots between the
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days (Durrleman and Simon 1989). Specifically, we set

Xi =
(

1, t,(t − trt0)+,(t − trt0)
2
+,(t − trt1)+,(t − trt1)

2
+

)
(2.2)

where (u)+ = uI(u > 0), t is the vector of days (of length T for a completely observed

individual), 1 is a vector of ones of the same length, and trt0, trt1 are as defined above. We

moreover allow the spline coefficients to vary between animals, defining Zi to be

Zi =
(
(t − trt0)+,(t − trt1)

2
+

)
T×2

. (2.3)

Finally, we set Γ =


γ1 γ12

γ12 γ2

, indicating that the linear and quadratic spline coefficients

of the first and second pulses, respectively, are potentially correlated with covariance γ12.

Permitting nonzero γ12 allows the regrowth effect of the second pulse to depend on the

effect of the first pulse. This facilitates prediction of the effect of the second pulse, about

which the previously recorded information on the animal would otherwise be uninforma-

tive. The spline model is a flexible alternative to more complicated non-linear methods

(Figure 2.1). We fit this mixed effects spline model using the function lmer() from pack-

age lme4 in R (Bates et al. 2015).
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2.2.4 A nonparametric model

We also tested a version of Algorithm 1 that uses a single-layer NN with 30 neurons

and a linear output for the predictive model, with each neuron containing a set of weighting

parameters for each of its inputs. Here, our predictive model QNN uses each raw tumor

growth sequence and a potential action to predict the log tumor volume at the nadir of

the post-treatment curve, and the parameter θ̂ (i) represents weights estimated from the

i− 1 previously observed subjects. We estimate the NN parameters via gradient descent,

updating them by one step with each new observation.

Note the difference between the inputs to QNN and QLM; whereas QLM involves pre-

processing hand-engineered covariates using a quadratic action term, QNN automatically

extracts the relevant information for prediction. Its performance is therefore less sensitive

to the form and dependence structure of the input, although, as discussed below, it requires

more data to train.

Implementing Algorithm 1 with a model that requires a large sample size poses addi-

tional difficulties due to the bias incurred by deterministic action selection. One solution

to this problem is to use ε-greedy action selection, wherein one applies the arg max of Q

with probability 1−ε , and a random action otherwise (Sutton and Barto 2018). The value

ε begins at 1 and decreases during training by some decay rate κ ∈ (0,1): One selects

actions randomly with a probability that converges to 0, rather than switching from 1 di-
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rectly to 0 after a calibration period. We used the function neuralnet from the package

neuralnet to implement the neural network (Fritsch et al. 2022).

2.3 Simulation

2.3.1 Data

We performed the simulation on data generated from two different nonlinear growth

models. One of these models is characterized by a sum of exponentials described above;

the other is a mechanistic model where the mean is governed by a set of recursive differ-

ence equations. Evaluating each version of our method on two different datasets allows

us to investigate and compare the robustness of QNL, QLM, and QNN, as well as their data

requirements under different sets of parametric assumptions.

2.3.2 A mechanistic model

In the mechanistic simulation model, the mean observed tumor size Tumit on subject i

at time t is governed by a set of difference equations. We generate the log tumor volume

for subject i at time t per Equation (2.4), where the errors eit (corresponding here to mea-

surement error as well as other spontaneous factors unaccounted for by the deterministic

part of the model), are iid normal with standard deviation σ as before:

lnYit = lnTumit + eit (2.4)
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This model is based on a series of pre-clinical experiments exploring various combinations

of RT and IO. The model encodes the PULSAR hypothesis; Figure 2.2 presents a diagram

of the model, and Equations (2.5)–(2.10) present its defining equations. In the figure, blue

arrows denote propagation, and purple lines ending in circles denote mitigation. In the

equations, Latin characters denote treatments and aggregate effects; non-italicized 3-letter

words represent notional tumor cell populations; and Greek letters represent parameters.

Time (t) is discrete.

Figure 2.2: Heuristic diagram of the interactions encoded by the difference equation model.
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Tumi,t+1 = Sit ×Tumit × exp(ν1 −Bit) (2.5)

Sit = exp[(1+ν9Rit)(−ν4dit −ν5d2
it)] (2.6)

Rt+1 = min(Rit −Rit/ν6 +(1−Sit),1) (2.7)

Bit = p1itν2Sen−it + p1itν3Sen+i,t (2.8)

Sen+i,t+1 = (1−λi)Sen+i,t exp(−ν8dit)+ τsign(dit) (2.9)

Sen−i,t+1 = λiSen+it +Sen−it exp(−ν7dit) (2.10)

The difference equation set involves three interacting populations: Tumor cells Tumit ,

non-sensitive T cells Sen−it , and sensitive T cells Sen+it . We assume that the tumor would

grow exponentially with rate ν1 if left untreated. The T-cell populations — non-sensitive

and sensitive — inhibit the tumor cell population with rates ν2 and ν3, respectively. We

aggregate the two effects to produce the total immune effect Bit , which reduces the tumor

growth rate. Note that if Bit > ν1, then the tumor will shrink, thereby allowing the model

to accommodate a curative effect. The sensitive T cells are recruited by the radiation at

rate τ , and RT dose at time t is denoted dit . Here Sit is the fraction of tumor cells that

survive the RT pulse, which we assume follows the standard linear-quadratic model. The

linear term encodes the likelihood of a single DNA-strand break, while the quadratic term

encodes a double-strand break, with magnitudes determined by the parameters ν4 > 0 and
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ν5 > 0, respectively. Rit encodes the accumulated effect of RT from previous days, which

decays at a rate of ν6 > 0. RT kills the sensitive T cells at rate exp(−ν7dit),ν7 > 0, and

non-sensitive T cells at rate exp(−ν8dit),ν8 > 0.

The IO concentration at time t for subject i is denoted p1it : Specifically, our model

aims to capture the effect of anti-PDL1 immunotherapy, which permits the T cells to more

effectively attack the tumor. For simplicity, we assume that the immune effect in the ab-

sence of IO is negligible: The T cells attack the tumor only in the presence of a non-zero

concentration of IO. Sensitive T cells are converted to non-sensitive T cells with proba-

bility λ ∈ (0,1). The parameters ν1, . . . ,ν9 are fixed, and τ,λ potentially vary between

animals such that 
logit(λi)

ln(τi)

∼ N




µλ

µτ

 ,


σλ 0

0 στ


 .

Table 2.1 presents the model parameters together with their biological interpretations

and population averages when fit to the data of Moore, et al (2021). This model is pre-

sented and discussed in detail in an in-progress manuscript which is anticipated to be

published shortly (Xing et al. 2023).
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Table 2.1: Parameters of the non-linear model along with their respective interpretations

Parameter Interpretation Population Average

ν1 Unconditional tumor aggression 0.216

ν2 Tumor control due to non-sensitive T cells 0.02

ν3 Tumor control due to sensitive T cells 0.01

ν4 Tumor control due to 0.024

RT-induced single-strand DNA damage

ν5 Tumor control due to 0.0014

RT-induced double-strand DNA damage

ν6 Decay rate of RT effect 8.7

ν7 Recession of non-sensitive T cells due to RT 0.05

ν8 Recession of sensitive T cells due to RT 0.96

ν9 Incremented tumor control rate due to 0.88

to previously administered RT

τ T-cell recruitment rate due to RT 1.71

λ T cell conversion rate (sensitive → non-sensitive) 0.304

2.3.3 Model specifications

Data generation

We set tw = 7 (i.e., a week-long waiting period after the first RT pulse before the

treatment day) and A = 9 potential actions (corresponding to application of the second

pulse on one of the 9 days after that). We set the date of the initial RT pulse to trt0 = 15.
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When generating data from the sum of exponentials model, we fixed the parameter

vector (α0,α1,δ ,σ) = (0.1,0.216,0.5, .001), and allowed ρ,ω to vary by individual as


logit(ρi)

ln(ωi)

∼ N




logit(.975)

ln(1)

 ,


2 0

0 0.1


 .

When generating data from the recursive model, we fixed (ν1,ν2, . . . ,ν9) at their fitted

values and set σ = .001 as before. Finally, for the ith individual, we generated λi,τi as


logit(λi)

ln(τi)

∼ N




logit(0.304)

ln(1.707)

 ,


1 0

0 3


 .

Note that the majority of the between-subject variability is attributed to the radiation re-

cruitment effect, τi. This agrees with Kosinsky, et al (2018), who found that the most

important variable for explaining between-subject variability was a term which encoded

the capacity of T cells to infiltrate the tumor (which in our model corresponds to entering

the tumor microenvironment).

Following Moore et al (2021), we assumed that the anti-PDL1 drug was administered

four times per RT dose, every two days starting two days before the RT day. We assume

each anti-PDL1 dose results in an effective concentration of 1 with a 7-day linear decay;

p1it is the aggregate of these effective concentrations for subject i at time t. To account for

carrying capacity, we assumed p1it < 1.5.
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Predictive Models

For the nonlinear and the linear model, we performed an initial calibration using 30

simulated mice with actions chosen randomly. We then applied the sequential estima-

tion/prediction procedure to a set of 30 additional training (burn-in) mice, respectively.

Next, we simulated nt = 40 more individuals for testing, applying an evaluation procedure

described in Section 2.3.4 to each.

We trained QNN on 436 additional observations, for a total of 500 training individuals.

Next, we generated 50 additional individuals, applying the testing procedure to each of

these individuals as before. Note the much larger sample size required to train QNN than

QLM (discussed below). We used ε-greedy action selection with decay κ = .99. We

repeated the training and evaluation in M = 1000 Monte Carlo iterations.

2.3.4 Evaluation

For each simulated animal, we computed a predicted curve and final-day tumor vol-

ume under each potential action, and ranked them all by the post-RT nadir, with 1 cor-

responding to the lowest counterfactual nadir. We then ranked each action according to

the predicted lowest nadir from Algorithm 1. We considered evaluating Q by computing

the correlation between the projected ranks and the true ranks, but this metric has draw-

backs which make it undesirable: First, since action 1 was the most frequently occurring

optimum by a substantial margin, it is possible to achieve a mean correlation very close
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to 1 just by predicting the same ranks for every individual, thus defeating the point of a

personalized radiotherapy plan. Further, since only one action can actually be applied,

ranking the suboptimal actions correctly is less important than identifying the true opti-

mal action, which the correlation coefficient does not capture: Consider the case where

actions 1–9 have ranks 5,4,3,2,1,6,7,8,9, respectively (i.e. true outcome is asymmetric in

the action space). Suppose we have two versions of Q: Q(1), under which the projected

ranks are 1,2,3,4,5,6,7,8,9, and Q(2), under which the projected ranks are 9,8,7,6,1,2,3,4,5.

Clearly, Q(2) is better here, because it points to a better radiotherapy schedule (the best,

in fact). However, the correlation of Q(2)’s ranks with the true ranks is −.06, whereas the

correlation between Q(1)’s ranks and the true ranks is 0.66.

To show that our method is effective, we wish to show that the actions chosen adap-

tively, conditional on the observed data, are better than the marginal optimum; that is, we

want to show that our method chooses better actions (i.e. actions with lower true ranks)

than any action-selection policy that treats all patients identically. We therefore selected

actions under a variety of scenarios: One corresponding to the lowest predicted nadir per

Algorithm 1, and nine where we applied the same action to all animals (one for each

a ∈ {1, . . . ,9}). We then computed, for each reference, the mean difference in ranks for

each individual.

For example, to compare the selections of the system Q to the fixed spacing corre-

sponding to applying action 6 to all individuals, we compute ζi,ref=6 = 7− 3 = 4, which

indicates that the action chosen by Q is 4 ranks better than action 6 for individual i. Con-
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versely, if the fixed action was better than the selected action, then the difference in ranks

would be negative. For example, suppose that in the same scenario where we apply ac-

tion 6 to all individuals, 6 is the true optimal action for subject i (that is, its true rank

is 1), and suppose action 1 is the worst (with rank 9). If the lowest predicted counter-

factual curve under Q corresponds to action 1, then the rank difference for subject i is

ζi,ref=6 = 1− 9 = −8. We used the average of these rank differences across all subjects,

denoted ζ̄ref = ∑
n
i=1 ζi,ref/n, to estimate the average rank increase of the actions selected

using Q relative to each reference. If ζ̄ref > 0 for all reference actions, we conclude that Q

provides a useful policy for action selection.

2.4 Results

Table 2.2 displays the average rank differences for each version of the method, as

applied to each version of the simulation (sum of exponentials and recursive). When the

data come from the sum of exponentials model, they are all positive, indicating that on

average the action selection policy corresponding to argminQ produces better actions than

the policy that applies any single action to all individuals. The neural network outperforms

the linear model, but at great price, requiring a quantity of data that would be impractical

to collect in a real animal experiment.

The nonlinear model works reasonably well when the parametric assumptions of the

analysis model match those of the generating model. However, it is less robust than the
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Table 2.2: Average rank differences ζ̄ref for each reference action predictive system Q, and from
the simulated data. Positive values indicate that the actions selected by Q were better — i.e. had
lower ranks — than the corresponding reference. Parenthetical values in QLM, QNN cells were
trained using 500,60 training individuals, respectively.

Sum of Exponentials Recursive

Reference Action QNL QLM QNN QNL QLM QNN

1 0.42 0.32 0.76 −0.52 0.10 (0.11) 0.27 (−0.45)

2 0.69 0.99 1.02 −0.26 0.22 (0.23) 0.38 (−0.35)

3 1.30 1.72 1.61 0.44 0.75 (0.76) 0.94 (0.20)

4 2.13 2.46 2.45 1.36 1.55 (1.57) 1.77 (1.03)

5 3.10 2.24 3.42 2.43 2.60 (2.60) 2.84 (2.09)

6 4.14 4.04 4.46 3.46 3.62 (3.60) 3.86 (3.12)

7 5.19 4.84 5.53 4.48 4.63 (4.63) 4.89 (4.13)

8 6.25 5.67 6.58 5.50 5.67 (5.66) 5.93 (5.18)

9 7.30 6.48 7.63 6.54 6.74 (6.73) 6.99 (6.24)

other two methods, even underperforming several references when the data are from the

recursive model.

To highlight the efficiency/performance tradeoff between QLM and QNN, we re-ran

the simulation on the recursive data using 500 observations (the number used for main

results from QNN) to train QLM and 60 observations (the number used for main results

from QLM) for QNN (results in parentheses in Table 2.2). Whereas QNN works well only

with a large sample size, the performance of QLM is satisfactory even with a small sample

size. Overall, QLM performs better on samples of a realistic size.
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We also computed the average prediction error on the estimates of log tumor volumes at

the post-RT nadir for all individuals used for testing, standardized by the variability of the

true log tumor volumes at the true post-RT nadir. This standardized average prediction

error for QLM (QNN) [QNL] was 0.75 (0.61) [0.28] when the data were generated from the

sum of exponentials model, and 0.21 (0.97) when the data came from the recursive model,

indicating that in all well-performing cases the between-individuals sums of squares ex-

ceeded the sum of squared prediction errors on the test set (since QNL did not perform well

on the data from the recursive model, one would not expect that its predictions are accu-

rate). When the data came from the sum of exponentials model, the error on the estimated

parameters converged to zero as the sample size increased, with α̂0, α̂1 converging first

(almost instantaneously). Residuals were homogeneously scattered about 0 and did not

give cause for concern. The fitted coefficients on the fixed linear and quadratic terms in

the spline model had differing signs (where the linear term was negative and the quadratic

positive); this implies that according to the fitted spline model, after radiation the tumor

growth rate decreases and then recovers, as expected.

2.5 Discussion

RT schedules adaptively chosen by Algorithm 1 generally performed better than any

fixed RT schedule applied to all individuals. QNL worked well when its parametric as-

sumptions were met, but its performance deteriorated under departures from these as-

sumptions. QNN outperformed each reference by a greater margin than QLM, but took 500
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observations (over eight times the amount of data used for QLM) to achieve this perfor-

mance. The magnitude of this data requirement is not an anomaly: While the necessary

sample size for stable convergence on a neural network largely depends on the size of

the network and the complexity of the task, networks of similar size and structure tend to

perform well on medical datasets ranging from 200 to 2000 observations (Sargent 2001).

Nevertheless, 500 is an unreasonable number of observations to expect from a practical

animal experiment. Because of this practical infeasibility in tandem with the difficulty in

validating parametric assumptions in practice, we recommend QLM as a predictive system

for the proposed adaptive experiment.

The question of efficiency is of utmost importance to the tumor xenograft experiment

and to any human trial that might follow. Further, model robustness is imperative when

attempting to bridge the gap from animal to human trials. Hence, a more extensive evalu-

ation of a variety of specifications of Q is a compelling direction for future work.

There are several ways one could modify QNN in order to resolve the large data require-

ment problem: For example, one might apply domain randomization, a tool primarily used

in robotics, to augment the real data with synthetic data simulated from a model such as

the recursive model described above. Other efforts might include transfer learning from a

similar task, or using a pre-trained network with the last layer replaced.

Another direction for future work might investigate ways of defining and estimating

QNL to increase robustness. Candidates for the predictive system in QNL might include

a Gompertz or logistic model, which have been shown to fit well to tumor growth data,
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or a generalized version of the sum of exponentials model described here (Vaghi et al.

2020). A potential generalization might include models that allow tumor volume to shrink

to 0 instead of regrowing after some delay. Nevertheless, the efficiency of QLM relative to

QNN suggests that imposing some nonlinear structure on the predictive system might repay

the modeling effort, and thus a thorough investigation of nonlinear modeling techniques

would be useful.

Given our stepwise approach to parameter estimation (first estimating α0,α1, then

treating them as fixed while other parameters are estimated), the fast convergence of their

estimates is encouraging. Furthermore, since these two parameters - which we treat as

fixed - can be estimated from control data, and since labs often perform multiple experi-

ments, producing realistic estimates of α0,α1 in vivo is not a concerning issue.

A limitation of our method is that it only considers point estimates of the forecasted

tumor volumes. Future endeavors might benefit from an analysis of different ranking

procedures which take into account the uncertainty on these predictions: For example,

one might produce a confidence interval for each estimated nadir value, then choosing the

one which has the lowest upper (or lower) bound. Minimizing the upper bound would

correspond to a pessimistic approach, i.e. choosing the action that has the most favorable

worst-possible outcome, whereas choosing the action corresponding to the lowest lower

confidence interval bound would correspond to an optimistic approach, i.e. choosing the

action that has the highest potential (most favorable outcome). Investigating combinations

of the above methods might provide additional benefit.
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2.6 Conclusion

We have presented an adaptive method for determining the optimal timing of RT in

tumor xenograft experiments, demonstrating the efficacy of three different versions of

the method via simulation. We observed that the predictive system characterized by a

spline mixed model provides the best balance of efficiency and robustness. Our work,

moreover, establishes precedent for not only an adaptive tumor xenograft experiment, but

also a potential subsequent adaptive human trial.
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CHAPTER 3

Optimizing radiotherapy delivery schedules in combination with immunotherapy
using Reinforcement Learning

3.1 Introduction

Two common treatments for solid tumors are radiotherapy (RT) and immunotherapy

(IO). Recent developments in radiobiology have shown the effectiveness of combination

therapy including administration of both treatment modalities, wherein one attacks the

tumor directly with RT while simultaneously bolstering the subject’s immune system with

IO (Deng et al. 2014).

The mechanistic interactions of RT with IO are not yet fully understood, which makes

it difficult to determine their optimal settings (such as timing and dose) in combination

therapy. Arina, et al (2019) proposed that RT has a dual effect, both killing the tumor

directly and stimulating the subject’s immune system by recruiting new T cells. They

moreover suggest that the newly recruited T cells are more sensitive than the existing T

cells to DNA damage by subsequent RT pulses; hence if one applies several RT pulses too

close together, the newly recruited T cells are killed, diminishing the synergy of RT and
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IO. Moore et al (2021) provided evidence for this hypothesis via an in vivo tumor xenograft

experiment, showing that the degree of synergy between RT and IO heavily depends on

the timing of the RT pulses: If one applies two pulses of RT 10 days apart, the addition

of IO generally has a large effect; however, if one applies these same two pulses of RT

one day apart, the effect disappears. Moreover, due to subject-specific factors such as

individual variation in innate immune response, the optimal timing of the RT pulses may

differ between subjects (Kosinsky et al. 2018). A system for determining personalized

optimal RT schedules for use in combination with IO would therefore be of great utility.

Previous researchers have developed similar systems for personalized medicine and

adaptive therapy in different contexts. For example, Hassani (2010) used reinforcement

learning to develop an optimal chemotherapy schedule for patients with progressive can-

cer; Kosinsky (2018) used a mathematical method which involved fitting a Bayesian mixed

non-linear model with random effects corresponding to individual subjects; and Yauney

and Shah (2018) used Reinforcement Learning (RL) to optimize chemotherapy and clini-

cal trial dosing regimens. All of these works use – in full or in part – the following process

for developing systems for automated, adaptive regimen selection:

1. Construct some virtual environment that mimics the response-adaptive

patient dynamic of interest;

2. Train an artificial intelligence (AI) agent in this virtual environment;

3. Fine-tune and test the predictions of the AI in vivo.

We follow this paradigm in the current work.
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The remainder of this chapter is structured as follows: First, we discuss the virtual

environment used to train our AI agent. Next, we introduce the reinforcement learning

framework that we use for our agent training, and describe the agent’s mechanisms in re-

inforcement learning parlance. We then discuss various methods for evaluating the agent’s

performance, including a virtual clinical trial. Finally, we use transfer learning to adapt

our agent from the virtual world to a real-world setting, evaluating its predictive power on

a real dataset with and without calibration.

3.2 Methods

3.2.1 Virtual Environment

We trained our agent in a virtual environment governed by the same difference equation

model described in Chapter 2. Recall that, using the fitted parameters, the model captures

the differing average effect of immunotherapy with adjustments to radiotherapy timing

(Figure 3.1).

To incorporate between-individual variability, we applied noise to 3 of the 11 parame-

ters in the model: These parameters are i) ν1, the unconditional tumor growth rate, ii) λ ,

the rate at which new, sensitive T cells become non-sensitive T cells, and iii) τ , the T cell

recruitment rate due to radiotherapy. The second and third of these parameters appeared to

be the most important, of the 11 model parameters, for determining the optimal schedul-

ing: Adjustments to these two parameters caused the optimal timing to move. This result
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Figure 3.1: Groupwise plots of the real (a) and simulated (b) tumor growth data under various
conditions: Two pulses of RT applied 1 and 10 days apart (characterized by red and blue color,
respectively), with and without IO (characterized by dashed and solid line types, respectively).

agrees with Kosinsky (2018); in their model, the most important parameter for explaining

the between-animal variability corresponded to the ability of T cells to infiltrate the tumor.

In our model, this effect corresponds to the T cell recruitment rate.

Because the model is non-linear and defined through a set of difference equations, es-

timating the variability on these parameters from the data is challenging. In this project

we used a heuristic approach, visually comparing the groupwise variances for the real and

simulated data and selecting the values which resulted in similar variances (Figure 3.1).

Each animal in the virtual world, therefore, is characterized by a unique set of parame-

ters. The data visualized in Figure 3.1-(b) were generated from the recursive model with

distributions placed on ν1,λ ,τ s.t.
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

logit(ν1)

logit(λ )

ln(τ)


∼ N





logit(ν̂1)

logit(λ̂ )

ln(τ̂)


,diag3×3(0.05,1,1)


(3.1)

where ν̂1, λ̂ , τ̂ are the marginal estimates of ν1,λ ,τ when fit to the data of Moore, et al

(2021). Here, we assume normality on the logit and log scales to bound the parameters

within their respective spaces.

Following Moore, et al (2021), we fixed the timing of the first RT pulse at 15 days

post-implantation. Because our model does not account for toxicity, we constrained the

number of RT pulses to 2; our task, therefore, reduces to the selection of a day for the

second pulse. For consistency with the data of Moore et al (2021), we considered days 16

through 20 for the second pulse, corresponding to spacings between 1 and 10 days.

We first applied an exhaustive search to determine the most frequently occurring opti-

mal spacings, defining an “optimal” spacing as the one that maximizes synergy between

the two treatment modalities: For each set of parameters and each potential day for the

second pulse of RT, we computed two counterfactual curves, one where immunotherapy

is present, and one where it is absent. We then approximated the area between the curves

(shaded in gray) in Figure 2 by computing the sum of the difference in tumor volumes over

all days beyond the date of the first immunotherapy treatment. We deem a radiotherapy

regimen to be optimal if and only if it maximizes this sum of differences.
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Figure 3.2: Diagram illustrating the evaluation metric, using the data from two experimental
groups investigated by Moore, et al (2021): Both groups received 10Gy radiation 10 days apart.
The solid and dashed lines represent cross-sectional averages from the treatment groups that re-
ceived RT only, and RT as well as IO, respectively. The shaded area, therefore, represents the effect
of IO and is what we wish to maximize by optimizing the timing of the second radiotherapy pulse.
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Figure 3.3: Frequencies of optimal time between two pulses of 10 Gy radiation, per the simu-
lated tumor microenvironment governed by a set of differential equations with noise applied to its
parameters.

Figure 3.3 presents the results of the exhaustive search: In 500 simulated test subjects,

the 10-day spacing was optimal in the majority of cases, providing the maximum added

benefit of IO 42.8% of the time (214 cases). We therefore trained our agent to select among

11 actions, corresponding to 10-day through 20-day spacing (inclusive).

The optima in Figure 3.3 do not follow a Gaussian distribution, possibly because the

governing mathematical model is nonlinear, with partial derivatives/differentials which are

not always well-defined.
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3.2.2 Reinforcement Learning

In order develop an AI agent capable of obtaining optimally synergistic RT spacings,

we use Reinforcement Learning (RL) (Kosorok and Moodie 2015; Yauney and Shah 2018;

Hassani and Naghibi-S 2010); specifically, we use Q-learning with neural network-based

function approximation as described by Mnih, et al (2015). Application of RL requires

framing the problem as a Markov Decision Process (MDP). In this paradigm, the current

model is an episodic MDP with one action per episode: The subject is the episode, and the

selection of the day of the second RT pulse is the action. In our virtual environment, each

subject has a unique set of parameters in the difference equation model.

We define a state s as a matrix of three column vectors: 1) previously observed tumor

volumes at each time, 2) previously administered radiotherapy doses at each time, and 3)

previously administered immunotherapy concentration at each time. Our action space A

is the set {10,11,12,13,14,15,16,17,18,19,20} of ten potential spacings between the two

RT pulses, and the reward is the aggregate causal effect of immunotherapy on log tumor

volume over the last three days of observation. That is, for each individual, we consider

two counterfactual curves (i.e., vectors of log tumor volumes): One where the subject re-

ceives immunotherapy, and one where it does not. Denote these two vectors of values as

Y io+,Y io−, respectively, with elements y indexed by a time variable t = 1 . . .40. We define

our reward as r =
(
∑

4
t=13 0(Y io−−Y io+)

)
I(sis terminal), where I is the indicator function

and the summation begins at day 13 because the first dose of immunotherapy is applied

13 days after implantation. The state transition probabilities are governed by the virtual
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environment characterized by our difference equation model. High rewards therefore cor-

respond to states where the addition of immunotherapy causes a large reduction in tumor

growth.

We train our agent using Q-learning, wherein one treats each subject according to

the best predicted action per some function Q, whose input is the current state Q and a

potential action Q, and whose output is the long-term reward. We use a neural network

to approximate Q, as discussed by Mnih, et al (2015). After random initialization or

initialization on a preliminary calibration set, one updates the parameters of Q by one step

of gradient descent after each observation until convergence. We consider two versions of

Q-learning: An offline version, where actions are chosen randomly before convergence,

and an online version, where all post-initialization actions are chosen to maximize Q̂, the

estimate of Q (Riedmiller 2005). For example, suppose Q requires nq > 10 observations

in order to achieve stable convergence, and we use 5 observations for initial calibration.

Let a10 denote the 10th action applied. The offline version of the agent would draw a10

randomly from the set of potential actions: a10 ∼ DU(A ). Conversely, the online version

would select the action which its internal Q function predicts will be the best: a10 =

max argA Q(s10,a), where s10 is the 10th observed state.

We implemented our RL framework by hand in the programming language R (R Core

Team 2021), using the function neuralnet from the package neuralnet to fit the Q

function (Fritsch et al. 2022).
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3.2.3 Evaluation

Primary Evaluation

We evaluated the performance of our agent on a testing set of nt = 100 simulated

individuals, indexed i = 1, . . . ,nt . Recall that each simulated individual is characterized

by a set of parameters to the difference equation model. We can therefore simulate what

would happen to that individual under a variety of different scenarios corresponding to

different days for the second RT pulse (only one of which, of course, could actually be

applied). For each subject, then, we first computed the set of counterfactual rewards, each

of which corresponds to a different space between the two RT pulses (considering, as

before, 1–20 potential days between these two pulses). From the 20 potential rewards,

we retrieved the true optimal action, i.e. the action that maximizes the added benefit of

immunotherapy; for subject i, denote this optimal action ai,opt. To evaluate the quality of

an action applied to a given individual, we compute the difference (in days) between that

action and ai,opt, and average these scores across all individuals in the testing set to evaluate

whatever policy was used to generate those actions. Let ai,π be the action selected by some

policy π for subject i. We refer to the difference between each selected and optimal action,

denoted ∆i = ai,π − ai,opt, as the optimal-day miss difference, because it is the difference

between the selected day and the optimal day, i.e. the number of days by which the action

selection policy "missed” the optimum. The optimal-day miss difference can be positive

or negative: Negative values indicate that the day selected for the second pulse of RT was

too soon, whereas positive values indicate that the selected day was too late. The optimal-
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day miss differences can also be squared and averaged across the testing set to obtain an

MSE-type value for policy π: We consider here the quantity RMSE(π) = ∑
nt
i=1 ∆2

i as a

performance metric for policy π . We computed the optimal-day miss differences across

all observations in the testing set for a variety of different action selection policies:

1. π =online: A policy where actions were selected by the online version

of our agent

2. π =offline: A policy where actions were selected by the offline version

of our agent

3. π =random: A random action selection policy (where the day of the

second pulse was chosen randomly from 1–20 days)

4. π = a,a ∈A : 20 policies, each corresponding to uniform application of

a spacing to all individuals in the testing set

Note that some of the policies described in points iii-iv involve the application of RT

spacings unselectable by either version of the agent: Our agents wait 9 days after the

first pulse of RT to decide on the timing of the next pulse. Hence, for example, the 1-

day spacing is not selectable by the policies π =online, offline (corresponding to actions

selected by the online and offline versions of the agent).

Virtual Clinical Trial

We also evaluated our agent by performing a virtual “clinical trial”, where 1,000 sim-

ulated animals are randomized to one of four treatment arms: An arm where actions are
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chosen randomly, an arm where actions are chosen by the online agent, an arm where ac-

tions are chosen by the offline agent, and an arm taking action 10, the best action per the

data of Moore, et al (2021). After selecting actions according to the mechanism indicated

by the individual’s corresponding treatment arm, we computed the difference between the

selected action and the optimal action (described above) for each arm. We also investigated

the difference in tumor growth between groups by fitting a simple linear mixed model to

the tumor growth on the last five days, after all treatments have been applied:

lnYit = b0i +β0,offlineI(offline)+β0,onlineI(online)+β0,randomI(random) (3.2)

+ (b1i +β1,offlineI(offline)+β1,onlineI(online)+β1,randomI(random))t

+ eit

In Equation (3.2), Yit is the tumor volume from subject i at time t days post-implantation,

I(A) is the indicator function of treatment assignment to arm A, and eit ∼ N(0,σ2). Each

Greek letter represents a scalar coefficient to be estimated. We assume subject-specific ef-

fects on the intercepts and unconditional growth rates, denoted bi,0,bi,1 respectively, with

bi,0 ∼ N(β0,σ
2
b0
),bi,1 ∼ N(β1,σ

2
b1
), and bi,0,bi,1 independent. If our agent works, and if

the model captures the mechanism of interest, one expects the agent-treated tumors to

grow more slowly in the final days of the experiment, i.e., β1,online,β1,offline < 0.
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Indirect Validation on Real Data

We tested our agent indirectly by evaluating its predictive performance on the data

of Moore, et al (2021). Of course, in reality, each individual can only receive one treat-

ment, so we do not directly observe the outcome that we desire to optimize (i.e., the space

between the curves corresponding to IO and no IO for each individual). Instead, we used

techniques from causal inference to impute these counterfactual values for each mouse (see

Appendix A). For the mice who received immunotherapy, the counterfactuals correspond

to the values which theoretically would have occurred had they not received immunother-

apy. Conversely, for the mice who did not receive immunotherapy, we generated similar

values corresponding to their outcomes had they received immunotherapy. The counter-

factual values, moreover, can be thought of as the tumor growth values from a "digital

twin” which received the other treatment. For simplicity, we focus only on the groups

which received two pulses of RT, each with the same dose (10Gy).

With these imputations in hand, we can compute, for each individual, the sequence of

log tumor volume differences Y io−−Y io+, where Y io− corresponds to the sequence of log

tumor volumes for the case where that individual received RT only, and Y io+ corresponds

to the sequence from the case where that individual received IO as well as RT. If the indi-

vidual truly received both treatments, then the values of the vector beyond the first date of

IO application are counterfactual (imputed mathematically using the method described in

Appendix A); conversely, if the individual received radiation only, then the values beyond
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the date of first IO treatment are counterfactual. As before, we used the summation of the

difference vector Y io−−Y io+ to approximate the area indicated in Figure 3.2.

In order to bridge the gap from simulation to reality, we calibrated our model’s predic-

tions on a subset of the real data, fitting a simple linear model which relates the predicted

outcomes (using the online agent) to the real values. We tested the performance on the

remainder of the data. To measure the efficacy of this calibration, we compared the pre-

diction error on the testing set between the calibrated and the uncalibrated versions of the

neural network. We evaluated the overall predictive accuracy of our agent by comparing

the average prediction error (MSE) to the variance on the true values.

3.3 Results

3.3.1 Primary Evaluation

Figure 3.4 shows the empirical cumulative densities of ∆i,π (i.e. across all subjects in

the testing set), under a variety of different policies π: These policies are a representative

subset of all of the tested policies discussed above. The numbers in the legend correspond

to the RMSE(π) values described above. Note that these RMSE values are much lower

under the agent-driven (online and offline) action selection policies: This indicates that on

average, the online and offline agents pick actions closer to the true optima than one could

achieve by applying the same treatment to all individuals, or by picking actions randomly.

For simplicity, we show here only four fixed curves: Day 1 and Day 20; the extreme values
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Figure 3.4: Empirical density plots (smoothed histograms) of optimal-day miss differences – i.e.
the difference between selected action and true optimal action – with actions chosen under a variety
of different policies. The solid and dashed black curves characterize the densities of optimal-day
miss differences using actions generated by the online and offline versions of the agent, respectively.
The curve labeled “random” characterizes the optimal-day miss differences under random action
selection, and the remaining curves characterize optimal-day miss differences from uniform action
application corresponding to 1, 10, 11, and 20-day RT spacings. The numbers in the legends
correspond to the resulting RMSE of the optimal-day miss difference under each action selection
policy.

from Moore, et al, Day 10; the best-performing spacing observed in an in vivo experiment

per Moore et al,(2021) and Day 11; the most frequently occurring true optimum per the

results of the exhaustive search excluding days already included as references. Curves

using other fixed days as references looked similar.

We also investigated the efficiency and required sample size of both versions of our

agent. Figure 3.5 shows the optimal-day miss difference RMSE of each version of the

agent with increasing sample size: After the 700-observation mark, all subsequent aver-
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Figure 3.5: Performance of the online and offline versions of the agent with increasing training
samples. RMSE values are computed by using the online and offline versions of the agent to select
actions applied to a testing set of 100: The y-axis corresponds to the RMSE between the selected
and the true optimal days for the second pulse of radiation across all samples in the test set.

age loss values were less than 1, indicating that on average, each version of the agent

consistently picked the best actions on the test set when trained with nt = 700.

3.3.2 Virtual Clinical Trial

Figure 3.6 shows the results from the virtual clinical trial: Note that both versions of

the agent select actions closer to the true optimum than fixed spacing or random chance.

Estimates of β1,offline,β1,online from Equation 3.2 were both significantly less than zero

at –.033, –.030, respectively. This indicates that individuals randomized to treatment arms

where actions were selected by our agent had slower-growing tumors post-treatment than

the individuals randomized to the best-performing treatment arm from Moore, et al (2021).
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Figure 3.6: Results from the virtual clinical trial. The black lines indicate the means. "Fixed”
spacing corresponds to the application of 10-day spacing (the best-performing spacing from
Moore, et al (2021)) uniformly to all individuals. Individuals randomized to “offline” were treated
with actions selected by the offline version of the agent, and individuals randomized to “online”
were treated with actions selected by the online version of the agent. Individuals randomized to
the “random” arm were treated with randomly selected actions. Each action corresponds to a day
selected for the second RT pulse.
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This is notable because both versions of the agent were trained to maximize synergy be-

tween the two treatment modalities – i.e., the reward is the sum of differences between

the two counterfactuals corresponding to IO+RT and RT only; they were not trained to

directly minimize tumor volume. Nevertheless, as anticipated, the maximization of syn-

ergy indirectly causes the tumors to grow slower in our experiment, providing compelling

evidence for continued investigation into this line of combination therapies.

3.3.3 Indirect Predictive Evaluation

Figure 3.7 shows predictive error using the uncalibrated vs the calibrated version of

our agent. Testing values were not used for calibration. Note that the predictive error

is substantially lower under the calibrated model, indicating that the calibrated version

produces better predictions.

The standard deviation of the residuals from the calibrated model (RMSE of model

prediction – true value) was less than the between-subject standard deviation on the true

values, indicating that the model accounts for a substantial portion of the variability on the

testing set, as desired.

3.4 Discussion

We have trained and tested an AI agent in silico to find RT schedules that maximize the

synergy between RT and IO, demonstrating its effectiveness in a virtual environment gov-
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Figure 3.7: Difference between predicted and actual synergy between RT and IO, acquired using
counterfactual outcome prediction, on the testing set of real data.

erned by a mechanistic model. The actions chosen by our agent were closer, on average,

to the actions that yield the greatest synergy between treatment modalities than actions

chosen at random, or any fixed spacing when applied to all subjects. Moreover, in a virtual

clinical trial, individuals randomized to treatment by our agent had slower-growing tumors

in the post-treatment stage than individuals randomized to the best-performing spacing of

Moore, et al (2021). This result is notable, because both versions of the agent were trained

to maximize synergy between the treatment modalities, as opposed to directly minimizing

tumor volume.

Using the data of Moore, et al (2021), we have also shown the effectiveness of a sim-

ple calibration method to bridge the domain shift from the virtual world to a real tumor
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xenograft experiment. This preliminary endeavor appears to be effective; however, fu-

ture research might benefit from a thorough exploration and application of more advanced

methods from the Sim2Real literature. Such methods, while they have not yet been applied

to radiotherapy regimen selection, have been shown to be effective in other fields, such as

autonomous robotics and self-driving cars (Höfer et al. 2020). This approach would lend

credibility to our method when considering a future adaptive in vivo experiment, and sub-

sequent human trial.

In in vivo experiments, efficiency is of utmost importance. Consequently, other future

studies could investigate the sample size required to calibrate these agents, and explore

methods to improve efficiency.

3.5 Conclusion

We have developed a reinforcement learning agent to identify the optimal combination

of RT and IO in a tumor xenograft experiment. The agent selects RT regimens that out-

perform the best experimentally observed regimen and random selection of the regimen.

An exhaustive search performed in a virtual environment suggests that when applying two

pulses of RT, 10-day spacing is best on average, and that calibrating the model on real data

substantially improves its predictive accuracy. Future directions include rigorous estima-

tion of the variability of each of the model parameters, and evaluation of the system in

virtual environments that correspond to different radiobiological hypotheses. Ultimately,

62



one could verify the results in a real adaptive tumor xenograft experiment with actions

generated by the agent.
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Appendix A

Imputation Procedure

Dropout is a phenomenon well-studied in the statistical literature on missing data

which arises in follow-up studies when an experimental unit on which one is taking serial

measurements becomes unavailable for evaluation prior to the planned end of follow-up.

We consider each animal in the immunotherapy group as a dropout from the radiation-

only group beyond the first date of immunotherapy administration: Subsequent values are

not strictly “missing” from the radiation-only group (since these values are counterfactual

rather than lost), nevertheless, it can be useful to consider them as such under the premise

that we are able to recover the values that would have occurred had each of these subjects

not received immunotherapy. The converse premise is identically applicable to the individ-

uals who received radiation only. We use here established statistical techniques from the

missing data literature to impute these missing values, thereby obtaining two completed

datasets consisting of values from the same individuals under the two different conditions:

Radiation only, and radiation in combination with immunotherapy. We then subtract the

values in the combination treatment dataset from the values in the radiation only dataset

to obtain estimates of the causal immunotherapy effect illustrated in Figure 3.2.
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We describe the series of log tumor volumes for a mouse as a p-vector Y of observa-

tions that follows the multivariate Gaussian distribution MVN(µ,Σ). Here µ is a p-vector

mean and Σ is a p× p variance-covariance matrix. We further denote Y =


Yo

Ym

, where

Yo is the po-vector of tumor log volume values that are observed, and Ym is the pm-vector

of tumor log volume values that are considered missing, with p = po + pm. We partition

the mean of Y as µ =


µo

µm

 and the variance-covariance matrix as Σ =


Σoo Σom

Σmo Σmm


where, as before, the subscript “o” (“m”) refers to the observed (missing) portion of Y .

We applied a simple imputation procedure that consists of i) estimating the model

parameters µ and Σ and ii) imputing individual tumor log volumes conditionally on the

estimated parameter values and Yo. We based our imputations on a mixed linear model, as

implemented in the R package lme. This procedure fits models of the type

Y ∼ MVN(Xβ ,Σ(θ)),

where X is a matrix of predictors, β is a regression coefficient, and θ is a vector of param-

eters governing the variance matrix. A simple but often realistic model assumes that the

error consists of two components: A mouse-specific random intercept plus an element of

white noise.
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Although lme does not directly impute missing observations, for some specifications it

can draw samples from the Bayesian posterior distribution of the model parameters; with

these in hand, it is straightforward to impute the missing portion conditional on the ob-

served portion. Specifically, when the variance model is of the variance components type

(including, as a special case, the random intercept model mentioned above), lme creates

parameter estimates which characterize the posterior distribution of (β ,θ). Denote one

such sample as (β̃ , θ̃ and Σ̃ = Σ(β̃ ), and set µ̃ =


µ̃o

µ̃m

 with variance Σ̃ =


˜Σoo ˜Σom

˜Σmo ˜Σmm


Then, by standard normal theory, we have Ym|yo, β̃ , Σ̃ ∼ MVN( ˜µm|o, ˜Σm|o), where ˜µm|o =

µ̃m + ˜Σmo ˜Σoo
−1
(yo − µ̃o) and ˜Σm|o = ˜Σmm − ˜Σmo ˜Σoo

−1 ˜Σom. See also Tan et al.(2002)
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Appendix B

Poetical Supplement

The schedule best for RT

Various surely will be

So spacings should switch

Depending on which

Initial response that we see!

And we have to assume that the end

On two pulses will jointly depend

Else prior pulse two

We don’t have a clue

What effect the second will lend!

But to benefit from Machine Learning

We need sample size fit for a king

So classic statistics

Yield far more realistic

Methods for scheduling!
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