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 The research presented in this study focuses on understanding fundamental mechanisms 

that drive material response under dynamic loading conditions.  The objectives of the research 

were to: (1) to understand damage initiation and propagation in the bulk geomaterial under a 

variety of loading conditions and (2) to systematically investigate the strain rate effects on the 

triaxial compressive response of cementitious materials through the development of an 

innovative, first of its kind large-diameter (50 mm) triaxial Kolsky bar system.  

The triaxial compressive response of high-strength concrete is needed to understand 

pressure-dependent material behavior, which is important for modeling extreme loading events. 

However, non-destructive damage analysis and dynamic triaxial experiments require specimens 

that are smaller than those typically used for model calibration. Reducing the specimen diameter 

from 50 mm to 25 mm showed negligible differences in the material response of a high-strength 

concrete (no coarse aggregate). However, a scalar correction factor is proposed to account for 

reductions in length-to-diameter ratio (L/D). By isolating size effects, results from experiments 

with scaled specimens can be implemented for model calibration efforts. 
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This study also investigates how cracking and pore collapse in high-strength concrete 

develops under hydrostatic loading and triaxial loading with confinement pressures up to 200 

MPa.  The impact of changes in specimen length-to-diameter ratio on damage mode were also 

evaluated. For brittle failure modes, three-dimensional crack networks were segmented to 

determine damage distribution and the angles of primary failure planes. High-strength concrete 

specimens were scanned using X-ray microtomography in both the pristine and damaged 

conditions to quantify changes in porosity size distributions as a result of pore collapse and 

crushing. Additionally, damaged specimens were then evaluated for residual compression 

strength. It was observed that although peak stresses increase with reduced length-to-diameter 

ratios, the dominant failure modes are not substantially influenced. 

Lastly, a triaxial Kolsky bar technique is provided to simultaneously investigate strain 

rate and pressure dependencies. A cylindrical specimen with diameter and length of 25.4 mm 

was investigated at quasi-static and dynamic strain rates with confining pressures up to 200 MPa. 

Annular pulse shapers were incorporated to ensure stress equilibrium under constant strain rate 

deformations. Furthermore, dynamic pressure variations were theoretically approximated and 

determined to be negligible. The dynamic increase factor was found to decrease as confining 

pressures increased. Additionally, a shift in the brittle-to-ductile transition point was also 

observed to show a more brittle failure mode under dynamic strain rates. Lastly, a dynamic 

failure surface is presented to illustrate the strain-rate and pressure dependencies of high-strength 

concrete.
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CHAPTER 1: 
 

INTRODUCTION 
 

The U. S. Army Engineer Research and Development Center (ERDC) is a leading 

research and development (R&D) organization in developing, characterizing and predicting the 

response of geomaterials subjected to weapon’s effects [1-4]. The ERDC sponsored this research 

effort to develop quantitative experiments that will inform both damage and rate parameters that 

support the modeling and simulation (M&S) community. 

1.1 Motivation 

The experimental techniques developed through this research provide significant insight 

into material response and morphology under extreme loading conditions. The aim of this 

research is to provide the M&S community with an experimental basis for determining rate and 

damage parameters for use in concrete constitutive models. Although these parameters have been 

defined under simple loading conditions, damage progression and rate effects are not well 

understood for materials under triaxial loading conditions that occur during ballistic events. 

ERDC applied research programs (Integrated Force Protection Against Advanced Threats, 

Material Modeling for Force Protection, Defeat of Complex Attacks, Hardened Installation 

Protection for Persistent Operations) have all encountered this same fundamental gap in 

knowledge for understanding and predicting the physical mechanisms that drive material 

response and failure under complex stress states. This research intends to narrow this knowledge 

gap by providing unique experimental data that supports the ERDC’s M&S capabilities, 



 

2 
 

enhances the development of new advanced materials, and further establishes the ERDC as a 

leading authority in the geomaterials community. 

1.2 Modeling Limitations 

 Continuum models for cementitious materials [1-3,5] are extensively used in explicit 

hydrocodes [6,7] to predict material behavior under penetration events. However, these models 

are fitted to materials based on limited material property data.  As an example, analysts currently 

rely on “tuning” a specific model for a particular objective. However, in many cases these tuned 

models often have difficulty in simulating material behaviors that are observed in simple 

laboratory experiments [8]. 

To date, the primary experimental technique for providing the properties of geomaterials 

is the quasi-static triaxial testing apparatus involving a universal testing machine and a 

confinement pressure chamber. This system has been successfully applied to the testing of Cor-

Tuf [4] and many other high-strength concretes. As shown in Fig. 1, the stress-strain behavior of 

cementitious material varies greatly as a function of confining pressure. 

 

Fig. 1:  Stress-strain responses from quasi-static triaxial 
compression tests of Cor-Tuf with confining pressures ranging 
from 10-300 MPa [4] 



 

3 
 

Although baseline triaxial experiments provide a firm foundation for model development, 

there are additional material behaviors that cannot be solely defined by the quasi-static triaxial 

technique. Two gaps identified in the current material property dataset include quantification of 

damage evolution and the dynamic behavior of materials under multiaxial stress states. Further 

understanding of material behavior under triaxial loading conditions will provide crucial 

information for the development of constitutive and numerical models used to simulate the 

response of structures in hostile environments. 

1.3 Research Objectives 

This research effort focuses on understanding the fundamental mechanisms that drive 

material response under triaxial loading conditions.  The objectives of the proposed study were: 

(1) to understand the relationship between damage initiation and propagation as compared to 

constitutive property behavior in the bulk concrete under a variety of loading conditions and (2) 

to systematically investigate the strain rate effects on the triaxial compressive response of 

cementitious materials through the development of an innovative, first of its kind large-diameter 

(50 mm) triaxial Kolsky bar system. This effort developed a novel high-pressure triaxial testing 

instrument for high-strain-rate experimental studies. Hypotheses included (1) that as lateral 

confining pressure increases up to a maximum of 200 MPa, material behavior at high strain rates 

would become more ductile as a result of modification in microstructural damage mechanisms, 

and (2) that the transition points between brittle and ductile behavior would occur at a lower 

stress level when tested at high strain rates due to inertial effects and the rate sensitivity of 

kinematically driven fracture processes. To the best of the author’s knowledge, there is no 

experimental evidence either supporting or denying these hypotheses related to high-strength 

concrete. The results from this research aimed to provide: (1) high-resolution visualization of 
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damage morphology of cementitious materials at different levels of triaxial compression (TXC) 

under quasi-static (QS) conditions, and (2) the quantification of strain rate effects at different 

levels of triaxial loading under dynamic conditions. 

1.4 Material Selection 

Although the experimental techniques in this research could be applied to many brittle 

materials, the development of these techniques required the selection of one material that would 

be of particular interest to the Department of Defense and the ERDC. The ERDC’s expertise in 

brittle geomaterials has a strong focus on high-strength and ultra-high-performance concretes 

(HSC and UHPC). The author recently co-developed an HSC known as BBR9, which stands for 

Baseline Basic Research – Mixture 9. Experimental data for this particular material can be 

openly published (not the case for many DoD materials), and the results provide insight to 

support ERDC’s direct and reimbursable research programs. Additional details on the 

development and mixture proportioning for BBR9 are provided in section 2.2.1. 

1.5 Outline 

The first chapter is devoted to providing background information describing the 

motivation and potential impact of the intended research area. Further background information 

for each specific research area is included as an introduction section in Chapters 2-4. 

The focus of Chapter 2 is to determine the size effects associated with triaxial testing. In 

order to adequately characterize triaxial damage mechanisms and dynamic triaxial material 

properties, non-standard specimen geometries were required. As a foundational step, the 

influence of changes in diameter and aspect ratio must be understood before proceeding with the 

use of non-standard specimen geometries. 
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In Chapter 3, triaxial damage mechanisms are investigated using micro-CT to non-

destructively record three-dimensional changes in morphology by comparing pristine and 

damaged specimens exposed to a variety of complex stress states. Crack isolations techniques 

were utilized for brittle failure modes while pore collapse was quantified for ductile failure 

modes. 

The fourth chapter is focused on measuring dynamic triaxial properties. A large-diameter 

triaxial Kolsky bar was utilize to provide a hydrostatic preload of up to 200 MPa prior to sending 

a dynamic stress wave to record high-rate material properties under triaxial loads. Dynamic 

increase factors were calculated as a function of confining pressure to provide insight toward the 

development of a dynamic failure surface. 

Finally, Chapter 5 provides an overarching summary related to the content discussed in 

Chapters 1-4. Additionally, a list of published, submitted, and planned publications are provided.
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CHAPTER 2: 
 

SIZE EFFECTS 
 

2.1 Introduction 

Worldwide, concrete is the second most consumed material after water with nearly 25 

billion tons produced annually [9]. The American Concrete Institute (ACI) recently published an 

emerging technology report [10] defining Ultra-High-Performance Concrete (UHPC) as a 

cementitious material with a minimum unconfined compressive strength of 150 MPa, according 

to ASTM C39 [11]. The material in this study will be referred to as high-strength concrete even 

though it falls slightly below the 150 MPa threshold.  However, it should be noted that concrete 

strength is not an absolute property but is dependent on the specimen shape, size, end 

preparation, and loading methods [12]. 

Although unconfined compressive strength has been well documented for specimen 

diameters of 46-144 mm and length-to-diameter ratios (L/Ds) ranging from 0.5 to 2.0 [13-16], it 

remains questionable that these strength correction factors will be valid under complex stress 

states. The effects of changes in specimen diameter and L/D have not been thoroughly 

investigated for concretes subjected to triaxial compressive loads. Under hydrostatic pressure and 

subsequent triaxial loading, concrete behavior deviates from a brittle failure mode and transitions 

to quasi-brittle and ductile failure regimes as a function of the applied confining pressure [4]. 

Quasi-static triaxial experiments on concrete are similar to those that have been 

documented for soils [17] but with substantially higher confining pressures . Initial triaxial 
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experiments on concretes were pioneered by Balmer [18]. Over the years, extensive work has 

been conducted to determine the triaxial properties of concrete [19-27] . Some alternative 

methods utilize cubes that can be loaded independently in the three principal directions [28]. 

Others have induced complex stress states using a rigid ring to conduct quasi-oedometric 

compression tests that reveal the evolution of strength for concretes undergoing a complex 

loading path [29]. However, the most common method for model calibration uses a sealed 

specimen within a steel chamber that provides active confinement controls using fluid pressure. 

In this method, a cylindrical specimen is sealed with a membrane (butyl, latex, and/or neoprene) 

to prevent leakage. Then, a hydraulic fluid fills the chamber and is pressurized to apply the 

desired hydrostatic loading phase. While confining pressure is maintained (s1 = s2), the loading 

piston is activated to apply a deviatoric stress in the axial direction (s3). By using fluid pressure, 

frictional effects are eliminated in the radial direction. 

 Most model calibration efforts have utilized specimen sizes with a diameter of 50 mm or 

greater and L/D of ~2. Triaxial testing has been conducted at the U.S. Army Engineer Research 

and Development Center (ERDC) for decades [30] on concrete materials, primarily using a cored 

specimen with a diameter of 50 mm and a height of 100-115 mm at confining pressures up to 

400 MPa [4,31,32]. Many previous studies have also been published using the GIGA facility in 

France to test concrete specimens that are 70 mm in diameter and 140 mm in height with 

confining pressures up to 850 MPa [27]. Sandia’s Geomechanics department also houses triaxial 

testing capabilities for testing specimens with a diameter of 38 mm and a height of 76 mm at 

confining pressures up to 600 MPa and specimens with a diameter of 25 mm and a height of 50 

mm at confining pressures up to 1 GPa [33]. However, most of the experimental data from 

Sandia have focused on rock specimens rather than concrete. Although larger specimens are 
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considered to be more representative of the bulk material, dynamic triaxial tests often require 

specimens to be on the order of 19 mm in diameter with L/D = 1 [34]. Thus, a knowledge gap 

exists to correlate data recorded from quasi-static and dynamic triaxial experiments where 

diameter and L/D may vary substantially.  

The objectives of this study are (1) to determine the suitability of reduced diameter (25-

mm) specimens for observing bulk triaxial properties of high-strength concrete and (2) to 

determine the effects of changing length-to-diameter ratio (L/D). Triaxial responses varying by 

less than 5% can be attributed to typical scatter in triaxial experiments performed on 

heterogenous materials such as concrete [[4,31]]. The experimental approach uses a sealed 

specimen with fluid pressure applying confinement. Several specimen geometries are considered, 

including multiple diameters (50 mm and 25 mm) and multiple values of L/D (0.5, 1.0, and 2.0). 

Novel insights are presented for interpreting experimental data from non-standard specimen 

geometries subjected to triaxial loading conditions. 

2.2 Material and Methods 

2.2.1 Material and Specimen Preparation 

 The high-strength concrete investigated during this study is referred to in the literature as 

BBR9 [35,36] and has a maximum aggregate size of 4.75 mm. BBR9 is a self-consolidating 

concrete (SCC) that contains the following constituent materials: manufactured limestone sand, 

type I/II portland cement, grade 100 ground granulated blast-furnace slag (GGBFS), undensified 

microsilica (silica fume), polycarboxylate-ether-based high-range water reducing admixture 

(HRWRA), and tap water. Mixture proportions for this concrete are presented in Table 1. The 

development of BBR9 utilized central composite design (CCD) of experiments methodology 

while focusing on dense particle packing, minimization of flaws, and maximum calcium silicate 
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hydrate (CSH), as described in prior publications [37,38]. Rheological property measurements 

included fresh properties per ASTM C 230 [39] (without drops) to obtain a spread value (flow). 

All hardened concrete specimens were obtained using the coring process as defined in ASTM C 

42 [40]. After retrieving cores with the desired diameter, specimens were cut with a precision 

diamond blade and finished on a double-sided planetary lapping machine to achieve parallelism 

and flatness within 25 µm. Unconfined compressive strengths were determined as prescribed by 

ASTM C 39 [11], although some values for specimen diameter and L/D fall outside of the 

recommended ranges. A representative cross section of BBR9 is shown in Fig. 2. 

Table 1: Mixture proportions for BBR9 high-strength concrete 
 

Constituent Mixture proportions, by weight Specific gravity 
Cement (Type I-II) 1.00 3.15 

Manufactured limestone sand 2.25 2.57 
Slag 0.60 2.95 

Microsilica (silica fume) 0.26 2.20 
Tap water 0.37 1.00 

High-range water-reducing admixture 0.03 1.20 
 

 

Fig. 2: Cross-sectional image of BBR9 high-strength concrete 
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2.2.2 Triaxial Test Equipment and Instrumentation 

Triaxial compression experiments were conducted using a 600-MPa-capacity pressure 

vessel paired with an 8.9-MN universal testing machine to provide axial loads. Radial 

confinement was applied using a 50/50 mixture of hydraulic oil and kerosene as the confining 

fluid. Test specimens were placed between hardened steel caps, and then two 0.6-mm-thick latex 

membranes and an Aquasealâ membrane were installed around the specimen. An additional latex 

membrane was then installed with the outside of the assembly being sealed with a liquid nitrile 

rubber. The purpose of this extra precaution was to secure the membrane to the caps and prevent 

deterioration by the confining fluid. Pictures of sealed triaxial test specimens are shown in Fig. 3.  

A cross-sectional view of the pressure vessel is shown in Fig. 4. An MTS FlexTest controller and 

data acquisition system were adopted for servo-controlled test conditions based on displacement, 

load, and/or pressure to achieve the desired stress or strain path.  

Axial deformation measurements were made with two linear variable differential 

transformers (LVDTs) located 180 degrees apart. For 25-mm-diameter specimens, radial 

deformation measurements were acquired using an LVDT-type lateral deformeter mounted to the 

vertical centerline of the specimen using footings that were glued to the specimen surface and 

located 180 degrees apart. Specimens with a 50-mm diameter experienced higher radial strains, 

requiring the use of strain-gaged spring-steel arms allowing for larger deformations.  
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Fig. 3: Closeup view of sealed triaxial specimen (left) and 
specimen inside the instrumentation cage (right) 

 

 

Fig. 4: Cross-sectional view of triaxial pressure chamber used to 
test concrete specimens [41] 
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Triaxial experiments were performed in two testing phases. The first phase was 

hydrostatic loading that increased fluid pressure in all directions so that the principal stress 

difference was zero (s1 = s2 = s3). The second phase maintained constant radial stress (s1 = s2) 

through fluid pressure while increasing the axial stress (s3) with a hydraulic actuator. All 

confined experiments presented in this study are considered to be undrained triaxial compression 

experiments since the pore fluid (liquid and/or gas) is unable to escape the membrane-enclosed 

specimens. Additional information on the testing apparatus can be found in ERDC technical 

reports [31,32,42-44]. 

2.2.3 Definitions for Strain and Stress Measurements 

Radial strain (er) measurements and axial strain (ea) measurements were continuously 

recorded through hydrostatic and triaxial loading phases. Volumetric strain (ev) was calculated as 

the sum of the axial strain and twice the radial strain, as shown in Eq. 1. Reported stress values 

are in terms of true stress, as they are based on the changing cross-sectional area of the specimen. 

The principal stress difference (q) is defined by the difference between radial stress (sr, or s1 and 

s2) and axial stress (sa, or s3), as shown in Eq. 2. Mean normal stress (p) is defined as the 

average of applied principal stresses, as shown in Eq. 3. 

Eq. 1:  𝜀! = 𝜀" + 2𝜀# 

Eq. 2:  𝑞 = 𝜎" − 𝜎# 

Eq. 3:  𝑝 = (%!&%"&%#)
(

= (%$&)%%)
(

  



 

13 
 

2.3 Results and Discussion 

2.3.1 Baseline Triaxial Experiments 

The baseline triaxial compression experiments were conducted on cylindrical BBR9 

specimens with a diameter of 50 mm and a height of 114 mm. The ERDC has used this particular 

specimen geometry for all of the triaxial experiments performed in the past decade. Since triaxial 

experiments are time/labor consuming, two replicate tests are typically performed at each testing 

condition. If the results show a large discrepancy, a third test is performed. For the BBR9 test 

series, two replicates were used to acquire triaxial compressive response under confining 

pressures of 10, 20, 50, 100, 200, and 300 MPa. The average response at each level of confining 

pressure is plotted in Fig. 5 in terms of principal stress difference and axial strain. The resulting 

data were then plotted in terms of mean normal stress to show triaxial loading paths and peak 

loads, as shown in Fig. 6. The peak stresses were then used to develop a calibrated failure 

surface, using parameters described by the Advanced Fundamental Concrete (AFC) model [36]. 

 
Fig. 5: Triaxial response of concrete specimens with 50-mm 
diameter to observe material response in terms of principal stress 
difference (q) and axial strain (ea) at confining pressures of 10, 20, 
50, 100, 200 and 300 MPa 
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Fig. 6: Triaxial stress paths and failure surface 

With increasing confinement pressures, the concrete transitions through multiple damage 

modes. In the unconfined state, the ultimate compressive strength for BBR9 is 141 MPa with a 

damage mode that is overwhelmed by unstable macrocrack propagation. As the confining 

pressure increases up to 10 and 20 MPa, crack growth is slightly stabilized. This stabilization 

leads to an increased compressive strength while maintaining a linear-elastic response until 

failure. At confining pressures of 50 MPa, the concrete begins to transition to a quasi-brittle 

failure regime where the material exhibits apparent plastic deformation. With confinement 

pressures in the range of 100-300 MPa, the material begins to flow plastically, as evidenced by 

the axial strain values extending to 15%. Although the specimens could continue to sustain 

mechanical loading beyond these strains, the specimens were unloaded after reaching a strain of 

15% (the selection of this value is discussed in more detail in section 2.3.4). 
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Based on the triaxial compressive behavior from the baseline BBR9 specimens, the 

following representative confinement pressures (and related failure modes) were selected to 

further analyze size effects: 10 MPa (brittle), 50 MPa (quasi-brittle), 100 MPa (ductile), and 200 

MPa (ductile). 

As a general note, the baseline triaxial experiments conducted in this section were 

performed with the concrete specimens directly in contact with steel loading platens. Although 

this is typical for historical triaxial work performed at the ERDC, a molybdenum disulfide 

(MoS2) lubricant was applied between the concrete-platen interface for all reduced diameter (25 

mm) specimens in this study. This step was taken to minimize frictional effects and improve 

repeatability. According to Van Mier, a decreasing frictional constraint in a triaxial experiment 

will result in decreasing post-peak ductility [45], which is more representative of true material 

behavior. 

2.3.2 Effects of Specimen Size  

Before investigating size effects under triaxial loads, it is important to quantify material 

behavior under unconfined compression. For these experiments, concrete specimens were cored 

and ground to achieve a constant L/D of ~2 for specimen diameters of 25 mm and 50 mm. 

Results from these experiments are presented in Table 2. The average compressive strength of 

the 25-mm-diameter specimens was 130.8 MPa, which represents a 7.5% decrease in strength as 

compared to the strength of 50-mm-diameter specimens at 141.4 MPa. Meanwhile, the 

coefficients of variation for baseline specimens were 5.6% and 7.3%, respectively. The observed 

decrease in the compressive strength of smaller specimens can be attributed to the reduction of 

frictional confinement at the specimen ends due to the application of the MoS2 lubricant. 
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Similarly, the application of the lubricant also reduces the experimental scatter for smaller 

specimens. 

Table 2: Unconfined compressive strength for BBR9 specimens with varying 
diameter  

 

  
Unconfined Compressive 

Strength (MPa) 

Specimen Number 
25-mm 

Diameter 
50-mm 

Diameter 
1 123.9 151.2 
2 130.1 125.0 
3 141.6 147.3 
4 131.9 134.4 
5 118.0 138.7 
6 134.8 132.9 
7 137.9 159.1 
8 125.5 140.7 
9 133.6 143.5 

Mean 130.8 141.4 
Standard deviation 7.35 10.29 

Coefficient of variation, % 5.62 7.28 
 

Size effects were then evaluated by using the same specimen geometries for triaxial 

compression experiments. The principal stress difference was recorded as a function of axial 

strain, as shown in Fig. 7. For direct comparison, baseline data for 50- x 114-mm-diameter 

specimens are shown in dashed lines, and reduced diameter specimens (25 x 50 mm) are shown 

in solid lines. Minimal discrepancies were observed between baseline specimens and reduced 

diameter specimens at confining pressures of 10, 50, and 100 MPa. However at 200 MPa, the 

size effect begins to cause a deviation on stress-strain response at axial strains exceeding 8%.  
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Fig. 7: Triaxial response of concrete specimens with 50-mm and 
25-mm diameters to observe size effects in terms of principal stress 
difference (q) and axial strain (ea) at confining pressures of 10, 50, 
100, and 200 MPa 

It is evident from Fig. 7 that all peak stress results match within 5% for varied specimen 

diameters under the same confinement pressure except for the 200-MPa confinement at large 

strains exceeding 8%. This degree of variability is common for heterogenous materials such as 

concrete, even with the same specimen size. Therefore, reducing the diameter from 50 mm to 25 

mm while maintaining the L/D ratio has negligible effects on the triaxial response of BBR9 

concrete. As a reference, BBR9 has a maximum (sand) particle size of 4.75 mm and a maximum 

pore size of 3.0 mm. Note that results for concretes with larger constituents (e.g., aggregate, 

fibers, and entrapped air) may not be representative of the bulk materials for specimens with a 

25-mm diameter. However, it is likely that similar results would be observed for mortars, grouts, 

and UHPC materials with similarly sized constituents. 
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2.3.3 Effects of Length-to-Diameter Ratio  

To determine a reasonable range of L/D, specimens were initially investigated with a 

diameter of 25 mm and a length of 12.7 mm (L/D = 0.5). This specimen geometry is common for 

high-rate unconfined Kolsky bar experiments performed on cementitious composites. At 200 

MPa confining pressure, triaxial compression results were compared for L/D = 2 and L/D = 0.5 

with a specimen diameter of 25 mm, as shown in Fig. 8. These preliminary results showed that 

the boundary conditions at the specimen ends included substantial frictional confinement effects, 

which caused material response to deviate at axial strains of 3.0%. Therefore, in an effort to 

reduce the end effects on the triaxial compressive response, additional specimens were fabricated 

with L/D = 1.0 at the same diameter for further evaluation. 

 

Fig. 8: Triaxial response of concrete specimens with 25-mm 
diameter and L/D of 2.0 and 0.5 
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Specimens with a diameter and height of 25 mm (L/D = 1) were fabricated to take a more 

in-depth look at the effects of changes in aspect ratio. First, unconfined compression experiments 

were conducted on specimens with different L/D, as displayed in Table 3. The average strength 

of the L/D = 1.0 specimens (140.7 MPa) must be multiplied by a correction factor of 0.93 to 

achieve the average compressive stress for L/D = 2.0 specimens (130.8 MPa). The strength 

correction for specimens with nonstandard aspect ratios is detailed in ASTM C39 [3], with a 

correction factor of 0.87 for L/D = 1.0. However, these published correction factors are intended 

only for concretes with a compressive strength below 42 MPa.  

Table 3: Unconfined compressive strength for BBR9 specimens with varying L/D 
 

  
Unconfined Compressive 

Strength (MPa) 
Specimen Number L/D = 1.0 L/D = 2.0 

1 144.2 123.9 
2 153.4 130.1 
3 126.8 141.6 
4 134.1 131.9 
5 142.0 118.0 
6 144.4 134.8 
7 131.1 137.9 
8 137.8 125.5 
9 152.1 133.6 

Mean 140.7 130.8 
Standard deviation 9.06 7.35 

Coefficient of variation, % 6.44 5.62 
 

Subsequent triaxial compression experiments were performed on the 25- x 25-mm 

specimens and then compared to the triaxial results from 25- x 50-mm specimens, as shown in 

Fig. 9. As observed in the unconfined experiments, the shorter specimens (L/D = 1) have an 

apparent increase in strength. However, the relative trend for material response remains 
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consistent at each level of confinement pressure (10, 50, 100 and 200 MPa). Modulus values 

show some deviation at low stress levels due to variations in compliance corrections for axial 

strain measurements. As observed in the literature, a reduction in L/D results in a more ductile 

stress-strain curve with a higher peak stress which may be attributed to frictional restraint in the 

shear band [45]. 

 

Fig. 9: Triaxial response of 25-mm-diameter concrete specimens 
with L/D = 2.0 and 1.0 to observe size effects 

Since ASTM C39 presents simple correction factors for unconfined compressive strength 

of concrete, similar correction factors were calculated for each confining pressure to correlate 

data with L/D = 2.0 specimens and L/D = 1.0 specimens. According to the literature 

[13,14,40,46], the correction factor for specimens with an L/D of 1.0 should be in the range of 

0.80 and to 0.91. However, as shown in Table 4, the correction factors calculated at different 

confinement pressures present a much narrower range from 0.89 to 0.94. The corrected stress-
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strain response for L/D = 1.0 specimens are shown in Fig. 10. These correction factors provide a 

reasonable method to relate triaxial behavior of short specimens to that of standard L/D 

specimens. The primary discrepancy among specimens with different aspect ratios is that the 

elastic portion of the curves from L/D = 1 specimens appears to slightly underestimate the 

material stiffness at low confinement pressures. This is probably due to the variability of 

compliance measurements for axial strain calculations.  

Through extensive studies, ASTM C39 correction factors have been thoroughly 

documented and broadly used for unconfined compressive strength. However, no similar 

literature exists for cementitious materials under triaxial loading conditions. Since the behavior 

of concrete is drastically different under triaxial stress states [47-49], it is imperative that we 

understand the size effects under various complex stress states. Although the recommended 

correction factors might be specific to a particular class of materials, they still provide 

engineering significance for interpreting triaxial behavior from non-standard specimens (similar 

to the current use of ASTM C39 correction factors). 

Table 4: Correction factors to account for changes in L/D 
 

  
Peak Stress (q) with Confining Pressures at: 

0 MPa 10 MPa 50 MPa 100 MPa 
25 x 50 mm 130.8 191.1 257.6 282.7 
25 x 25 mm 140.7 204.2 274.0 318.3 

Correction Factor 0.93 0.94 0.94 0.89 
* Note that peak stresses are not observed at 200 MPa, but a correction factor of 
0.92 was determined to provide the best fit. 
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Fig. 10: Triaxial response of 25-mm-diameter concrete specimens 
with correction factors from Table 4 applied to L/D = 1 specimens  

2.3.4 Limitations of Experimental Setup  

As described in section 12.2.2, the radial strain measurements are taken at the center of 

the specimens. These strain values are then used to calculate the true stress as the cross-sectional 

area increases under axial compression. However, at high axial strains, the specimen geometry 

starts to “barrel,” as shown in Fig. 11. When the cross-sectional area begins to vary throughout 

the specimen, a local area measurement will no longer suffice for calculating volumetric strains. 

At this stage, the specimen is no longer under a uniform true stress loading condition. 
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Fig. 11: 25-mm x 50-mm specimens (top) and 25-mm x 25-mm 
specimens (bottom) under the following conditions (from left to 
right): pristine, 10 MPa, 50 MPa, 100 MPa, and 200 MPa 

To further investigate this phenomenon, tests were conducted in the ductile failure regime 

up to axial strains of ~30%. If the material has a scalar value of Poisson’s ratio, a steady slope 

should be observed while plotting axial versus radial strains. However,  

Fig. 12 shows that the slope is not constant. Each curve has three distinct phases:  pore 

collapse/crushing (non-linear portion starting at zero up till ~5% axial strain), uniform 

deformation (axial strains of 5-10%), and non-uniform deformation (axial strains beyond 15%). 

Reference lines are included for the non-uniform (barreling) region to highlight the distinct 

change in slopes. As observed in Fig. 11, barreling is more prevalent in the 25-mm x 50-mm 

specimens, which is also supported by the higher measured radial strains for a given axial strain. 

To further confirm this observation, Fig. 13 shows the dramatic barreling that occurs after 
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undergoing axial strains up to 30%. The corresponding internal microstructures were also 

captured using micro-CT to confirm that the pore structure had completely collapsed. These 

experimental results suggest that only the first 10% strain on the triaxial stress-strain curve, 

which are obtained under relatively uniform deformation, may be used for constitutive modeling.  

 

Fig. 12: Axial strain (ea) and radial strain (er) measurements at 
confining pressures of 100 and 200 MPa 
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Fig. 13: Pristine vs. damaged specimens after 30% axial strain at 
100 MPa (left) with corresponding microstructure for the pristine 
(top right) and damaged (bottom right) conditions 

2.4 Conclusions 

High-strength concretes, such as BBR9 used in this study, must be characterized under a 

variety of triaxial loading conditions for the calibration of material models that are used to 

predict dynamic impact events. This is typically done using cylindrical specimens with a 

diameter of 50 mm and a height of 100 -115 mm. However, high-strength concrete specimens 

with both reduced diameter (25 mm) and length-to-diameter ratio (L/D = 1.0) can also be used to 

characterize material behavior under triaxial loading conditions. By investigating changes in 

specimen diameter and L/D, the following conclusions can be drawn from this study on high-

strength concrete. 
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• For high-strength concretes with a maximum particle size < 5 mm, it is reasonable to 

assume that there is a negligible size effect when comparing triaxial behavior of 25-

mm x 50-mm specimens and 50-mm x 114-mm specimens. 

• The value of L/D has a noticeable effect on the observed triaxial response. Values of 

L/D below 1.0 are not recommended as frictional effects become more apparent. 

• The unconfined compressive response of 25-mm x 25-mm specimens (L/D = 1.0) can 

be correlated to the unconfined compressive response of 25-mm x 50-mm (L/D = 2.0) 

specimens by using a correction factor of 0.93. 

• The triaxial compressive response of 25-mm x 25-mm specimens (L/D = 1.0) can be 

correlated to the triaxial compressive response of 25-mm x 50-mm (L/D = 2.0) 

specimens by using a correction factor in the range of 0.89-0.94.  

• Although the proposed triaxial correction factor is primarily intended to provide the 

appropriate value of peak stress, the scalar factor also provides excellent correction to 

the full dataset in terms of principal stress difference (q) versus axial strain (ea). 

• It should also be noted that a reduced specimen geometry may not be representative 

for concretes with large aggregates and/or fibers.  

The use of a reduced specimen geometry provides opportunities to explore new parameters 

under triaxial loading conditions. First, a smaller specimen diameter allows for higher resolution 

morphometry data using conventional micro-computed tomography (micro-CT) scanners, where 
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scan resolution increases as specimen size decreases. The corresponding micro-CT scans would 

allow for observing and quantifying damage mechanisms after exposure to triaxial loadings at 

various confining pressures. Second, specimens with a reduced diameter and a reduced L/D 

could be used for future dynamic triaxial experiments while satisfying the assumptions of 

constant strain rate and stress equilibrium. The dynamic triaxial loading results could further 

complement the quasi-static triaxial data by adding crucial strain-rate sensitivity to the concrete 

constitutive models. Future work will focus on using reduced specimen geometries to explore 

micro-CT and dynamic properties for high-strength concretes subjected to triaxial loads. 
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CHAPTER 3: 
 

DAMAGE EVOLUTION 
 

3.1 Introduction 

Under a penetration event with multiple impacts, it is critical to know the state of damaged 

material in order to have predictive capabilities for subsequent impacts. This problem has proven 

to be very challenging for DoD researchers due to the very limited knowledge on pressure-

dependent damage evolution for high-strength concrete. Many models incorporate a scalar 

damage variable that describes damage arbitrarily from zero (pristine) to one (fully damaged). 

However, the implementation of this parameter would be more effective if related to physical 

observations and measurements. In order to improve modeling capabilities, researchers have 

extensively investigated damage and fracture processes of brittle materials [50-55]. Through the 

use of nondestructive X-ray microtomography (micro-CT), internal damage can be documented in 

three dimensions to better understand complex cracking and fracture patterns. Rather than solely 

using a statistical distribution to describe flaws and damage, micro-CT provides a method to 

precisely characterize discrete features to better understand crack nucleation and propagation 

within the various phases of brittle geomaterials [56].  

Through the development of high-resolution micro-CT, heterogeneities at small length 

scales can be precisely visualized and characterized allowing for better understanding of crack 

nucleation and propagation within complex geomaterials [56]. Cnudde provides a thorough 

review of the history of micro-CT as it relates to geosciences to include advantages, limitations, 
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artifacts, and operator dependencies [57]. Although large CT systems had previously been used 

for concrete [58], Landis was one of the pioneers for utilizing micro-CT to investigate 

cementitious materials as he worked toward providing a physical basis for a scalar damage 

variable [59]. Landis used synchrotron radiation to map 3D crack morphology of loaded concrete 

cylinders (4 mm x 4 mm) with an initial voxel resolution of 6 μm [60,61] that later improved to 

1.2 μm [62]. Researchers have also been pairing micro-CT studies with digital image correlation 

(DIC) [63] and eventually digital volume correlation (DVC) to measure displacements within 

heterogeneous materials to evaluate strain fields [64]. Micro-CT has provided valuable insight to 

concrete researchers in terms of compression [52,65,66], splitting tension [53,67], porosity [68], 

thermal effects [69], and self-healing [70]. A thorough review of micro-CT research as it relates 

specifically to cementitious materials has been documented by Brisard et al. [71]. 

Although micro-CT has been widely used on cementitious materials, the technique has 

been used infrequently for investigating specimens undergoing high-pressure triaxial loadings. In 

order to perform in situ micro-CT scans of specimens under confining pressure, the pressure 

vessel must be sufficiently X-ray transparent in order to achieve the desired resolution of the 

specimen. This poses many additional technical challenges, but the results would provide valuable 

information to measure crack formation without unloading the specimen and therefore causing 

crack closure. In situ micro-CT scans have been performed on Utica shale under triaxial direct-

shear fracturing with confining pressures up to 22.2 MPa and a 25-μm voxel size [72]. However, 

an in situ scan for triaxial compression testing of concrete is not feasible since non-X-ray 

transparent pressure vessels are required to achieve pressures that produce ductile failure modes in 

concrete. Nonetheless, some researchers have performed ex situ scans to characterize triaxial 
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damage modes for unloaded specimens made from conventional-strength concrete containing 

coarse aggregates [26]. 

However, to the best of the authors’ knowledge, triaxial damage states have not been 

investigated for high-strength concretes that do not contain coarse aggregates. Furthermore, prior 

investigations using micro-CT for triaxial damage studies have not included volumetric strain 

measurements. Although strain gauges can be used for radial strain measurements, the strain 

readings are localized and may not sufficiently represent the bulk behavior. Additionally, strain 

gauges would cause artifacts in micro-CT scans of damaged specimens. Therefore, a removable 

strain sensor must be implemented so that damaged specimens can be fully analyzed using 

micro-CT. Potential solutions include a radial strain sensor [73] or an LVDT (Linear Variable 

Differential Transformer) based lateral deformeter with removable gauge mounts [74]. 

Although pressure-dependent material properties of high-strength concretes have been 

thoroughly documented [4,75-77], the corresponding triaxial damage modes are not well 

understood. This study aims to assess the damage evolution and size effects of high-strength 

concrete under hydrostatic and triaxial stress states with confining pressures up to 200 MPa to 

capture brittle, quasi-brittle, and ductile failure modes. Triaxial experiments are performed using 

a sealed specimen with hydrostatic fluid pressure maintained in the radial direction while an 

additional axial load is applied by a hydraulic actuator. Volumetric strains are calculated using 

vertical LVDTs and a radial strain sensor with removable mounts. A high-resolution laboratory 

micro-CT scanner is implemented to non-destructively view and analyze pristine and damaged 

concrete specimens. The resulting micro-CT scans allow for damage visualization and 

measurements in terms of volumetric strains, shear planes, crack saturation, and the evolution of 
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pore size distributions. Additionally, residual strength measurements provide a method to 

connect damage morphologies to quantifiable material properties. 

3.2 Materials and Methods 

3.2.1 Material and Specimen Preparation 

A high-strength self-consolidating concrete referred to as BBR9 was selected for all of 

the testing and characterization presented in this study. BBR9 has been previously documented 

in the literature to include design philosophy [78] and mechanical performance [35,79-81]. 

Damage modes have also been investigated for unconfined compression experiments at high 

strain rates [65]. The mixture proportion for BBR9 is presented in Table 5 consisting of the 

following constituent materials: manufactured limestone sand, type I/II portland cement, grade-

100 ground granulated blast-furnace slag (GGBFS), undensified microsilica (silica fume), 

polycarboxylate-ether-based high-range water-reducing admixture (HRWRA), and tap water. 

The concrete contains no coarse aggregate, and the fine aggregate (sand) has a maximum particle 

size of 4.75 mm. 

 
Table 5. Mixture proportions for BBR9 high-strength concrete. 

Constituent Mixture Proportions, 
by Weight 

Specific 
Gravity 

Cement (Type I-II) 1.00 3.15 
Manufactured limestone sand 2.25 2.57 
Slag 0.60 2.95 
Microsilica (silica fume) 0.26 2.20 
Tap water 0.37 1.00 
High-range water-reducing admixture 0.03 1.20 

 

Cylindrical specimens with a diameter of 25.4 mm were cored from bulk samples in 

accordance with ASTM C 42 [40]. A precision saw was used to cut the specimens slightly longer 
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than the desired length. The final specimen lengths of 25 mm and 50 mm were achieved using a 

PR Hoffman PR-1 85T double-sided planetary lapping machine resulting in parallelism and 

flatness within 25 µm. Pristine BBR9 specimens are shown in Fig. 14.  

 

Fig. 14. Pristine cylindrical BBR9 high-strength concrete 
specimens with L/D = 2.0 (left) and L/D = 1.0 (right) 

3.2.2 Quasi-static Hydrostatic and Triaxial Compression 

The quasi-static hydrostatic and triaxial test equipment is detailed in the literature 

[4,42,44]. An in-depth review of the quasi-static triaxial testing on 25-mm-diameter BBR9 

concrete specimens is presented in previously published work [74]. As a brief overview, the 

cylindrical concrete specimen is sealed with fluid pressure being applied to the entire specimen 

to achieve a hydrostatic stress state. For the triaxial loading, the desired level of fluid 

confinement pressure is held constant in the radial direction while an actuator loads the specimen 
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in the axial direction. Furthermore, a MoS2-based lubricant is applied at the specimen/platen 

interface to reduce frictional end effects. 

Triaxial experiments frequently report data in terms of principal stress difference versus 

mean normal stress. All results in this study are presented in terms of true stress through active 

monitoring of the specimen’s cross-sectional area using a centrally located LVDT-based lateral 

deformeter with removable gauge mounts. The principal stress difference (q) is defined by the 

difference between axial stress (sa, or s3) and radial stress (sr, or s1 and s2), as shown in Eq. 4, 

and mean normal stress (p) is defined as the average of applied principal stresses, as shown in 

Eq. 5. Specimen deformations were measured in terms of axial strain (ea) and radial strain (er), 

with volumetric strain (ev) being calculated as defined in Eq. 6. Triaxial confinement pressures 

of 10 MPa, 50 MPa, 100 MPa, and 200 MPa were selected to facilitate different types of damage 

modes (brittle, quasi-brittle, and ductile). 

Eq. 4:  𝑞 = 𝜎" − 𝜎# 

Eq. 5:  𝑝 = (%!&%"&%#)
(

= (%$&)%%)
(

 

Eq. 6:  𝜀! = 𝜀" + 2𝜀# 

3.2.3 Micro-computed Tomography 

For damage visualization and quantification, X-ray microtomography was utilized for 

nondestructive characterization. All micro-CT scans presented in this study were conducted on a 

Bruker Skyscan 1173 high-energy spiral-scan micro-CT with a maximum X-ray energy of 130 

kV and a 5-megapixel (2240x2240) flat-panel sensor. Offset scans were used for all specimens 

by stitching side-by-side horizontal scans for the purpose of achieving the highest possible 

resolution. Optimized scan settings for 25.4-mm-diameter concrete specimens were determined 
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to be 130 kV and 60 µA with a rotational step size of 0.20 degrees for 360-degree scans. A 0.25-

mm thick brass filter was also used to remove lower energy X-rays that cause beam hardening 

artifacts on dense specimens. To reduce the effects of noise in the X-ray detector signal, dark 

flatfield corrections were updated at 60-minute intervals throughout the scan and 14 frames were 

averaged to record each saved X-ray projection image. Random stage movements (up/down) 

were also employed to reduce any artifacts that might be present from defective pixels in the 

detector. Voxel sizes were in the range of 8.8-25 µm depending on the specimen size and field of 

view and are notated in each relevant section. 

Cone-beam X-ray tomography projection images were reconstructed into cross-sectional 

images using a Feldkamp algorithm within Bruker’s NRecon software paired with the 

GPUReconServer reconstruction engine. Reconstruction parameters included a beam hardening 

correction of 15 and a ring artifacts correction of 15. To illustrate the input and output of the 

reconstruction process, an example projection image and reconstructed cross-sectional image are 

provided in Fig. 15. Finally, all of the cross-sectional images are vertically stacked to provide a 

complete dataset made up of 256-bit grayscale spectrum where black voxels represent the lowest 

density and white voxels represent the highest density. 
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Fig. 15. X-ray projection image (left) and reconstructed cross-
sectional image (right) 

The 3D microstructure of each specimen was recorded before and after loading to better 

understand damage initiation and propagation. Analysis for brittle failure modes focused on 

isolating large interconnected crack networks for visualization purposes and for measuring shear 

plane angles. For ductile failure modes (as observed at the macroscale), cracking occurs at a 

length scale that is not detectable within the resolution restrictions of the Skyscan 1173 micro-

CT. Nonetheless, micro-CT data still provides a means to quantify changes in pore structure. 

3.2.4 Image Segmentation 

Reconstructed cross-sectional images were all loaded into DataViewer to register pristine and 

damaged datasets to have the same orientation using sagittal, coronal and transverse plane views 

as shown in Fig. 16. Subsequently, unique features at the top and bottom boundaries of the 

pristine volumes of interest (VOIs) were identified in the damaged specimen scan data to 

appropriately determine the damaged VOIs. After registration, binary image operations were 

performed in CT-Analyser. Segmentation began with an automatic Otsu threshold method 
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applied to a global histogram function while visually confirming that pore space was segmented 

appropriately from the surrounding concrete matrix. After segmenting distinct phases, a shrink-

wrap tool was implemented to define the region of interest. Analysis included 2D measurements 

for the porosity of individual cross-sectional images and 3D measurements for global porosity 

measurements. Furthermore, individual object analysis was performed on each and every 

discreet binarized object (i.e., pore) in terms of either volume equivalent sphere diameter or 

major diameter. Objects were also binned into color coded images based on pore sizes to produce 

3D images that clearly compare and contrast void structures before and after triaxial loading.  

 

Fig. 16. DataViewer registration example for pristine (white) and 
damaged (brown) micro-CT scan data 
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The geometry of brittle damage observed in the specimens features multiple hairline 

fractures that are poorly captured by the thresholding segmentation. The fractures are segmented 

with discontinuities or not identified at all. Similarly, the fine aggregate posed problems with 

thresholding due to either thin features (shells) or high local variations of intensity (larger 

objects). Thus, to observe how fracture patterns relate to all phases in the material, selected 

specimens have been segmented with a manually trained Fast Random Forest machine learning 

algorithm [82,83]. After segmentation, fracture geometry has been inspected and corrected 

manually to provide the most accurate representation. 

3.3 Results and Discussion 

3.3.1 Triaxial Compression Data 

Triaxial compression (TXC) specimens were tested with length-to-diameter ratios (L/D) 

of 2.0 (25 mm x 50 mm) and 1.0 (25 mm x 25 mm). Replicate tests were conducted at each 

combination of pressure level and specimen size. For the first phase of a triaxial experiment, the 

specimen is initially loaded hydrostatically up to the desired confinement pressure. To illustrate 

material behavior under hydrostatic compression (HC) conditions, Fig. 17 presents loading and 

unloading data for hydrostatic specimens up to a mean normal stress (p) of 200 MPa. Note that 

the hydrostatic loading is fully reversible under these test conditions. TXC data is presented in 

Fig. 18 and Fig. 19, where each curve represents the average of two replicate experiments. 

Results are plotted in terms of both volumetric strains and axial strains. Although axial strains 

have been reported and discussed previously [74], the inclusion of volumetric strain 

measurements provides valuable insight when interpreting micro-CT imagery of triaxially 

damaged specimens. 
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Fig. 17. Hydrostatic loading and unloading for 25 mm x 50 mm 
specimens up to 200 MPa mean normal stress 

 

Fig. 18. Material response in terms of axial (left) and volumetric 
(right) strains for 25 mm x 50 mm and 25 mm x 25 mm TXC 
specimens at 10 and 50 MPa confining pressure 
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Fig. 19. Material response in terms of axial (left) and volumetric 
(right) strains for 25 mm x 50 mm and 25 mm x 25 mm TXC 
specimens at 100 and 200 MPa 

For all data presented in this paper, compression is considered positive. Therefore, axial 

strains are reported as positive while the specimen length decreases. Similarly, a positive 

volumetric strain indicates a decrease in the volume of the specimen. However, note that 

volumetric strains are calculated based on a combination of axial and radial strain measurements. 

As the concrete specimen begins to fail, internal crack formation causes expansion and a 

measured increase in volume. 

Considering Fig. 18, 10 MPa TXC experiments with an L/D of 2.0 exhibit an extremely 

brittle failure mode that is typical for unconfined compression experiments. The recovered 

specimens were fully fractured within the latex membrane. However, the corresponding 

specimens with an L/D of 1.0 experience a higher peak stress with volumetric strains decreasing 

near failure indicating that damage accumulation is likely more substantial as compared to the 
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taller specimens. For the 50 MPa TXC experiments, specimens were unloaded shortly after 

reaching a peak stress and the recovered specimens were mostly intact with some fragmentation 

observed. The 50 MPa TXC data for specimens having an L/D of 1.0 exhibited a larger decrease 

in volumetric strains after reaching a peak volumetric strain that is likely attributed to increased 

damage accumulation as compared to L/D = 2 specimens. The noted discrepancies from size 

effects are likely a result of higher confinement stresses in the shorter specimens due to end 

effects. 

At higher confinement pressures presented in Fig. 19, specimen size continues to have 

substantial effects on material behavior. For 100 MPa and 200 MPa TXC experiments, the tests 

are stopped after reaching an axial strain of 15% for the purpose of directly comparing material 

behavior. Note that these specimens experience a ductile failure mode and continue to have 

substantial load bearing capacity at axial strains beyond 15%. Prior to reaching a peak 

volumetric strain, changes in L/D do not appear to have any effect on volumetric response. As 

discussed further in sections 3.3.3 through 3.3.5, gauge-indicated volumetric strain readings are 

not reliable when the volumetric strains begin to move in the negative direction. However, in a 

relative sense, the amount of negative volumetric strain indicates the severity of non-uniform 

specimen deformation where the central region of the specimen expands more than the specimen 

ends (also referred to as barreling). 

3.3.2 Limitations of Volumetric Strain Measurements 

Volumetric strain measurements have limited use when approaching peak stress values 

since specimen cross-section is not uniform throughout the vertical axis after undergoing large 

axial deformations. To clearly observe non-uniform deformations, four specimens were tested to 

axial strains of ~30%. The material response is plotted in Fig. 20 with volumetric strains plotted 
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based on gauge-indicated values for ea and er and the use of Eq. 6. However, this method for 

calculating volumetric strain is only valid if deformations are uniform throughout the vertical 

axis of the specimen since the radial strain is only determined at one location in the center of the 

specimen. To better understand the deficiencies of volumetric strain calculations, gauge-

indicated readings were compared to micro-CT-indicated measurements from the full specimen 

volume as shown in Table 6. As mentioned earlier, a positive volumetric strain represents a 

reduction in volume, thus a negative volumetric strain should represent an increase in volume. 

 

Fig. 20. Gauge indicated material response in terms of axial (left) 
and volumetric (right) strains for large deformations (ea @ 30%) 
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Table 6. Volumetric strain readings from in situ gauges and ex situ micro-CT 
measurements for specimens loaded to ea @ 30%. 

Specimen Gauge indicated ev 
(%) 

Micro-CT indicated ev 
(%) 

100 MPa, L/D = 2.0 -27.6 2.12 
100 MPa, L/D = 1.0 -12.0 1.73 
200 MPa, L/D = 2.0 -18.8 5.71 
200 MPa, L/D = 1.0 -2.1 7.91 

 

The large negative values for volumetric strains are clearly errant as triaxial compression 

does not lead to expansion within the concrete microstructure. Referencing the gauge-indicated 

and micro-CT indicated volumetric strain measurements in Table 6, note that after unloading, 

gauge-indicated volumetric strains differ from micro-CT results by 10-30%. Therefore, the 

gauge-indicated volumetric readings should be neglected at the onset of non-uniform specimen 

deformation. Although large deformation volumetric strain readings can be misleading due to 

non-uniform specimen geometry, high axial strains were required to reach a true peak stress for 

the 200 MPa TXC specimens with L/D = 1.0. In cases where non-uniform specimen deformation 

is anticipated, additional in-situ measurement locations would provide a more accurate estimate 

of volumetric strain history. Micro-CT provides an additional method to verify specimen volume 

measurements before and after loading. 

3.3.3 Visual Observations from Micro-CT 

For preliminary observations, full-specimen micro-CT scans were conducted on all 

damaged specimens using voxel sizes with a side length of 25 µm or 18 µm for specimens with a 

height of 50 mm or 25 mm, respectively. Prior to looking at triaxially damaged specimens, we 

will first observe fracture patterns in unconfined compression experiments to provide a baseline 

reference. For high-strength concretes, a common failure mode in unconfined compression 
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(especially with lubricated surfaces to reduce end friction) is actually a tensile driven failure 

mode known as axial splitting [84,85]. The vertical cracking failure mode is defined as a Type III 

fracture by ASTM C39 [11]. For BBR9 specimens tested in uniaxial compression with MoS2 

lubricant applied to the specimen/platen interface, most specimens failed with a Type III 

columnar fracture pattern as shown in Fig. 21. Although less common, damage modes similar to 

Type II (well-formed cone on one end with vertical cracks) and Type IV (diagonal cracking) 

fracture patterns were observed in some cases. These specimens were preserved for micro-CT 

analysis by using a flexible latex membrane to contain post-fracture rubblized concrete debris. 

 

Fig. 21. Micro-CT imagery of concrete fracture patterns under 
unconfined compression 

All specimens exposed to multi-axial stress states were isolated from the hydraulic fluid 

using a latex membrane that was removed prior to micro-CT analysis. Images of damaged 

concrete specimens from hydrostatic and triaxial loadings up to 200 MPa are presented in Fig. 



 

44 
 

22. Note that after a 200 MPa hydrostatic compression (HC) experiment the specimen still 

appears to be in a pristine condition. It is interesting to note that visually observable damage is 

minimal even at high hydrostatic pressure, as expected based on the data recorded in Fig. 17. As 

the shear component is introduced during triaxial compression (TXC) experiments, damage 

progresses through different failure modes. At 10 MPa, the concrete undergoes a brittle failure 

mode similar to that of the unconfined specimens. However, this low level of confinement 

pressure changes the fracture pattern from axial splitting to a dominant shear fracture. For the 50 

MPa triaxial test, the concrete specimen still exhibits a primarily brittle (or quasi-brittle) failure 

mode. In this case, the crack network is more stable allowing damage to accumulate throughout 

the specimen as it undergoes slightly higher axial strains as compared to 10 MPa TXC 

experiments. For 100 MPa TXC experiments, the concrete displays a clear transition from brittle 

to ductile failure. The confinement pressure substantially stabilizes crack growth causing a 

dominant failure mode of pore collapsing and pore crushing. A slight barreling shape is also 

observed, which is likely attributed to additional confinement caused by end effects. Lastly, the 

200 MPa triaxial specimens exhibit a failure mode that is similar to 100 MPa TXC specimens. 

However, at this maximum pressure, cracks are not discernable in the micro-CT images and end 

effects become less substantial as the specimen undergoes uniform deformation in the radial 

direction. Visual observations show that barreling is more pronounced in 100 MPa TXC 

specimens as compared to 200 MPa TXC specimens, which was predicted by the volumetric 

strain behavior as discussed at the end of section 3.3.1. 
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Fig. 22. Micro-CT imagery of damaged concrete after multi-axial 
loading 

Historically, triaxial experiments conducted at the ERDC triaxial testing facility have 

only gone up to axial strains of 15%. In prior work, it was predicted that non-uniform 

deformation becomes dominant at axial strains beyond this point [74]. To further verify this 

claim, 100 MPa and 200 MPa TXC experiments were carried out to axial strains of ~30% to 

confirm deformed specimen geometries. As shown in Fig. 23, barreling becomes much more 

pronounced at higher axial strains and volumetric strain calculations based on uniform radial 

deformations are no longer valid as previously discussed in section 3.3.2. 
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Fig. 23. Comparison of damaged geometry at high confinement 
pressures with increasing axial deformations 

Finally, damage modes were also observed for specimens with a reduced length-to-

diameter ratio (L/D). The 25 mm x 25 mm specimens (L/D = 1.0) shown in Fig. 24 were 

exposed to the same testing conditions as the 25 mm x 50 mm (L/D = 2.0) TXC specimens from 

Fig. 22. As noted in section 3.3.1, there is an observed strength increase when transitioning from 

L/D = 2 to L/D = 1 that is likely due to end effects. Furthermore, fracture patterns also change 

with variations in L/D. For the 10 MPa TXC experiments, the shorter specimen is able to endure 

multiple shear cracks rather than a single, dominant failure plane. The 50 MPa TXC specimen 

appears to have a higher degree of crack saturation as compared to the taller specimen geometry. 

At 100 MPa, the L/D = 1.0 specimen shows visible cracks near the specimen ends that were not 

apparent at L/D = 2.0. However, fracture patterns at 200 MPa appear consistent between 

different specimen geometries. Damage isolation and quantification is further evaluated in 

sections 3.3.4 and 3.3.5. 
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Fig. 24. Micro-CT imagery of TXC specimens with L/D = 1.0 

3.3.4 Isolation of Crack Patterns for Brittle Failure Modes 

As confinement pressure increases, material response transitions from a brittle failure 

mode (indicated by a sudden unloading after reaching a peak stress) to a ductile failure mode 

(indicated by material flow with significant residual load bearing capacity). However, even 

within the brittle failure mode, damage morphology and crack saturation can vary widely. To 

confirm visual observations, the scan data detailed in section 3.3.3 was used to isolate 3D 

damage in full specimens. For a more detailed look at microstructure, additional scans were 

conducted at maximum resolution (8.8 µm voxel size) and 2D sections were carefully segmented 

to visualize microcracking.  

For 10 MPa TXC experiments, shear dominated the fracture pattern. As observed in Fig. 

25, the 25 mm x 50 mm (L/D = 2.0) specimen failed through a single crack at an angle of ~30° 

from the vertical axis with a clearly defined shear plane. Taking a closer look in Fig. 26, a 

minimal number of microcracks were detected near the primary failure plane. In contrast, the 25 

mm x 25 mm (L/D = 1.0) specimen shown in Fig. 25 has multiple shear planes with crack angles 
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ranging from 25-30° from the vertical axis. The higher resolution scan presented in Fig. 26 

reveals distributed microcracking with high concentrations surrounding primary failure planes. 

 

Fig. 25. Crack segmentation for 10 MPa TXC specimens with  
L/D = 2.0 (top) and L/D = 1.0 (bottom) 



 

49 
 

 

Fig. 26. Fracture patterns for 10 MPa TXC specimens with  
L/D = 2.0 (top) and L/D = 1.0 (bottom 

As the confinement pressure increases to 50 MPa, observable damage progression 

continues to occur primarily through brittle fracture planes. In Fig. 27, the 25 mm x 50 mm (L/D 

= 2.0) specimen shows two intersecting shear planes at angles ranging from 25-30° from the 

vertical axis. Also in Fig. 27, the 25 mm x 25 mm (L/D = 1.0) specimen shows similar shear-

cracking angles with distributed shear planes throughout the specimen. In both specimen 

geometries, coalescence of microcrack networks and large voids ultimately leads to brittle 

failure. Taking a closer look at microstructure in Fig. 28, it is evident that microcracks are 

present throughout the specimens for both geometries. Keep in mind that as crack widths become 



 

50 
 

smaller, damage is more difficult to segment due to the resolution limitations of the micro-CT 

scanner.  

 

Fig. 27. Crack segmentation for 50 MPa TXC specimens with  
L/D = 2.0 (top) and L/D = 1.0 (bottom) 
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Fig. 28. Fracture patterns for 50 MPa TXC specimens with  
L/D = 2.0 (top) and L/D = 1.0 (bottom)  

When comparing damage from unconfined compression, 10 MPa TXC, and 50 MPa TXC 

specimens, a stark contrast in crack patterns is observed. Although axial splitting is the primary 

failure mode in unconfined compression experiments, failure occurs along shear planes in 

triaxial experiments at confining pressures of 10 MPa and 50 MPa. Crack growth is stabilized as 

the level of confinement increases. This is further supported by the higher number of shear crack 

planes observed with reduced L/D specimens that undergo additional confinement as a result of 

frictional end effects. Shear plane angles remain consistently in the range of 25-30° from the 

vertical axis for both specimen geometries at confining pressures of 10 MPa and 50 MPa. 



 

52 
 

3.3.5 Quantifying Damage for Ductile Failure Modes 

At higher confinement pressures, brittle failure modes are absent from the CT images of 

the deformed specimens. Instead, large axial deformation (high ductility) accompanied by 

significant reduction in porosity becomes prevalent, which is a hallmark for ductile failure of 

concrete. All porosity analysis utilized maximum resolution (8.8 µm voxel size) scans to capture 

pore sizes distributions. In this case, the scans focused only on the central portion of the 

specimen with a volume of interest (VOI) height of 14.3 mm. To visualize local variations and 

changes in pore structure, porosity was calculated for each cross-sectional image throughout the 

vertical axis of the VOI. Since the length of a specimen changes during testing, results are 

presented in terms of normalized axial position where “0” represents the bottom of the VOI and 

“1” represents the top of the VOI. Fig. 29 presents local porosity variations for 100 MPa and 200 

MPa TXC specimens after undergoing axial strains of ~15% (left) and ~30% (right).  

 

Fig. 29. Cross-sectional porosity percentages for 2D sections in 
terms of normalized axial position before and after ~15% (left) and 
~30% (right) axial strain deformations 
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The variability in local porosity values for pristine specimens is an indication of the 

heterogeneous nature of concrete. Although cross-sectional values of porosity in pristine BBR9 

specimens ranged from 1-5%, the mean total porosity was determined to be 3.01% (not 

accounting for porosity with a volume-equivalent sphere diameter below 50 µm). Referencing 

Fig. 29, no substantial differences were observed in terms of L/D. Specimens undergoing 15% 

axial strains in 100 MPa and 200 MPa TXC experiments did not show any clear discrepancies in 

terms of cross-sectional porosity measurements with mean values of 0.25% and 0.29%, 

respectively. However, at axial strains of 30%, mean porosity values were 0.14% for 100 MPa 

TXC specimens as compared to 0.03% for 200 MPa TXC specimens, indicating that pores are 

more thoroughly collapsed under higher pressure. 

Porosity size distributions were also calculated in terms of volume-equivalent sphere 

diameters ranging from 50 µm up to 4 mm. Bin sizes started at a minimum of 50 µm to ensure 

that a sufficient number of voxels (8.8 µm) were used to resolve individual pore morphologies. 

Starting with the smallest bin size, each subsequent bin size was identified using a multiplier of 

1.1 until reaching a maximum bin size of 3.64 mm. The resulting pore size distributions were 

then plotted in a log-log format as shown in Fig. 30 to clearly visualize distribution data for the 

full range of pore sizes. 
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Fig. 30. Void analysis in terms of volume-equivalent sphere 
diameter before and after ~15% (left) and ~30% (right) axial strain 
deformations  

Pore size distributions for pristine specimens were observed to be quite consistent 

considering the heterogeneous nature of concrete. Similar to observations made for Fig. 29, the 

pore size distributions are quite similar for all damaged specimens undergoing axial strains of 

~15%. However, it does appear that the 200 MPa TXC tests provided slightly more compaction 

for damaged volume-equivalent sphere diameters ranging from 50-120 µm. Also following 

observations from Fig. 29, samples undergoing axial strains of ~30% had more severe pore 

collapse (for all damaged pore sizes) in 200 MPa TXC specimens as compared to 100 MPa TXC 

specimens. As barreling becomes more pronounced at high axial strains, 100 MPa TXC 

specimens exhibit relatively larger radial deformations while the higher confinement in 200 MPa 

TXC specimens continues to drive the additional compaction of remaining void structures. 
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Although reducing L/D has been shown to increase peak stress values, changes in L/D do not 

show substantial differences for ductile failure modes. 

Since L/D was determined to have negligible effects on pore size distributions, 

visualization efforts were solely focused on specimens with a traditional L/D of 2.0. Each image 

in Fig. 31 and Fig. 32 depicts a specimen with pristine porosity shown on the left half and 

damaged porosity shown on the right half for a given VOI. Pores are color coded by major 

diameter to conveniently distinguish individual pores and sizes. 

  
Fig. 31. Void structure for pristine and damaged 100 MPa (left) 
and 200 MPa (right) TXC specimens after ~15% axial strain 
deformations 
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Fig. 32. Void structure for pristine and damaged 100 MPa (left) 
and 200 MPa (right) TXC specimens after ~30% axial strain 
deformations  

In pristine specimens, porosity is nearly spherical resulting in a major diameter that is 

approximately equivalent to the volume-equivalent sphere diameters presented in Fig. 30. 

However, damaged pores are more clearly distinguished by major diameter since the pore 

geometry is severely flattened after axial loading. The 3D rendering of damaged pore structures 

in Fig. 31 reveals similar void structures for 100 MPa and 200 MPa TXC specimens undergoing 

axial strains of ~15%. However, discrepancies are observed after ~30% axial strain deformations 

in Fig. 32 with the 200 MPa TXC specimen having a smaller number of observable pores as 

compared to the 100 MPa TXC specimen. As expected, the damaged VOI shrinks in height and 

expands radially as compared to the pristine VOI. The qualitative pore structure images in Fig. 

31 and Fig. 32 provide visual evidence that is consistent with quantitative porosity measurements 

presented earlier in Fig. 29 and Fig. 30 
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3.3.6 Residual Strength Measurements 

Residual strength experiments were conducted on specimens that underwent a ductile 

failure mode to provide a means for correlating pore collapse (as presented in section 3.3.5) to a 

physical measurement of strength degradation resulting from microstructural damage. Residual 

strength measurements were obtained for all triaxially damaged 100 MPa and 200 MPa TXC 

specimens by performing destructive unconfined compression experiments. As a reference for 

comparison, the mean unconfined compressive strength of pristine BBR9 specimens with LD = 1 

and L/D = 2 was previously reported to be 140.7 MPa and 130.8 MPa, respectively [74]. 

Residual strength measurements for damaged specimens are reported in Table 7. Stress 

measurements were calculated by using the largest specimen diameter in the center of each 

triaxially damaged specimen. Residual strength percentages were calculated by dividing the 

residual strength by the mean strength for pristine specimens having the same L/D. 

Table 7. Residual strength measurements 

Confining 
Pressure, 
MPa 

Axial 
Strain, 
% 

Length-to-
diameter 
ratio (L/D) 

Residual 
Strength, 
MPa 

Residual 
Strength, 
% 

100 ~15 1 49.9 35.5 
100 ~15 2 56.1 42.9 
100 ~30 1 47.7 33.9 
100 ~30 2 31.8 24.3 
200 ~15 1 67.7 48.1 
200 ~15 2 69.9 53.4 
200 ~30 1 48.9 34.8 
200 ~30 2 40.8 31.2 

 

After undergoing axial strains of ~15%, 100 MPa and 200 MPa TXC specimens retain 

approximately 40% and 50%, respectively, of their pristine strength capacity. Even after 
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undergoing axial strains of ~30%, 100 MPa and 200 MPa TXC specimens retain approximately 

30% of their pristine strength capacity. These residual strength measurements indicate that the 

cohesive strength of TXC specimens undergoing a ductile failure mode remains substantial and 

should be considered when defining a damage variable.  

3.4 Conclusions 

X-ray microtomography was used to analyze both pristine and damaged high-strength 

concrete specimens to characterize damage modes and size effects under hydrostatic and triaxial 

stress states. Specimens with a diameter of 25 mm and an L/D of either 1 or 2 were evaluated to 

determine damage features under triaxial confinement pressures of 0, 10, 50, 100 and 200 MPa. 

The conclusions below are based on the findings of this research 

• Axial splitting is the dominant failure mode for BBR9 high-strength concrete specimens 

under unconfined compression. 

• Deformations at hydrostatic pressures up to 200 MPa are fully reversible. Although the 

confining pressure is significant, a shear component is required to initiate plastic 

deformation. 

• Volumetric strain measurements can be recorded using a centrally located LVDT-based 

lateral deformeter, noting that signals are only valid up to the point where volumetric 

strains turn negative due to non-uniform specimen deformation. Removable gauge 

mounts are critical for conducting micro-CT scans on damaged triaxial specimens. 

• Micro-CT provides an accurate approach for measuring ultimate volumetric strains for 

irregularly shaped damaged specimens. 

• From visual observations, a transition in damage mode is noted as confining pressure 

increases: 10 MPa – brittle failure through a single crack with a predominant shear 
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failure, 50 MPa – quasi-brittle failure with distributed microcracks ultimately leading to 

shear failure, 100 MPa – ductile failure with minimal microcracks and damage primarily 

consisting of pore collapse, 200 MPa – ductile failure with no discernable cracking and 

damage observed through pore collapse and crushing. 

• At axial strains of 30%, specimen geometry presents a severe barreling shape leading to 

substantial variations in cross-sectional area throughout the specimen. However, at axial 

strains of 15%, the observed variations in cross-sectional area are minimal. 

• Brittle and quasi-brittle fracture modes for 10-50 MPa TXC experiments result in shear 

planes at angles ranging from 25-30° from the vertical axis. 

• As specimens undergo triaxial compression at 100-200 MPa, spherical voids are flattened 

into ellipsoidal morphologies as total porosity percentages continue to reduce. 

• After undergoing 15% axial strains, individual object analysis shows that specimens 

damaged under 200 MPa TXC include a more noticeable reduction of pore sizes in the 

range of 50-120 microns as compared to 100 MPa TXC specimens. 

• After undergoing 30% axial strains, porosity size distributions are noticeably lower for all 

pore sizes undergoing 200 MPa TXC as compared to 100 MPa TXC. This observation 

can be explained by the fact that the 200 MPa TXC specimens undergo a more complete 

pore collapse with smaller radial strain measurements for a given axial deformation as 

compared to the 100 MPa TXC specimens. 

• After undergoing axial strains of ~15-30%, triaxially damaged specimens in a ductile 

failure mode maintain a residual unconfined compressive strength that is ~30-50% of the 

pristine strength 
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For axial strains up to 15%, the damage modes under the same confining pressure were 

very similar regardless of the change in length-to-diameter ratio (L/D). This observation 

indicates that specimens with a reduced L/D could be reasonably used to assess mechanical 

properties for high-strength concrete, although perceived strength increases as a result of end 

effects should still be considered. The suitability of L/D = 1 specimens is encouraging for 

experimental methods using a triaxial Kolsky bar where the specimen length must be restricted 

to ensure a constant strain rate deformation under dynamic stress equilibrium. 
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CHAPTER 4: 
 

HIGH-RATE RESPONSE 
 

4.1 Introduction 

In both civilian and military applications, engineers attempt to design structures that can 

withstand extreme events such as blast, fragmentation, and penetration. However, it can be 

challenging to predict material behavior under complex stress states that occur during a dynamic 

loading event. Continuum models for cementitious materials [1-3,5] are extensively used in 

explicit hydrocodes [6,7] to predict material behavior under dynamic loading events. Quasi-static 

triaxial experiments have been widely used to develop failure surfaces and define model 

parameters for a variety of cementitious materials [42,81,86,87], while the rate-effect parameters 

for concrete are typically acquired through unconfined Kolsky bar experiments [65,88,89]. 

Nonetheless, a simultaneous characterization of rate effects under triaxial loading conditions 

presents a substantial knowledge gap for cementitious materials. 

The Kolsky bar, or split-Hopkinson pressure bar, was named after the pioneers who 

developed controlled dynamic experiments based on the principles of wave mechanics [90-92]. 

Over the years, the technique has been utilized to determine the high-rate properties of concrete 

in compression [93-98], split tension [99,100], direct tension [101-103], and spall [104-107]. The 

method aims to achieve a constant strain rate deformation while the specimen is loaded under 

dynamic stress equilibrium, which can be challenging for brittle materials [108,109]. Pulse 

shaping is required to achieve these conditions [110-113].  The shape of the incident pulse is 

tailored through the use of a deformable “tip” material placed between the striker and the 
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incident bar, known as a pulse shaper, which is typically made of annealed copper for the testing 

of brittle materials [114-116]. 

The Kolsky bar technique has also been adapted to induce complex stress states in the test 

specimens. The simplest experimental setup is achieved by using a mechanical sleeve to confine 

a specimen during the Kolsky bar experiment [117,118]. However, this process can cause 

difficulty in data interpretation because of the unknown frictional effects between the sleeve and 

the specimen. The method is also incapable of producing a constant radial stress throughout the 

experiment. Other methods have used a pressurized chamber for radial stress but implemented an 

actuator on the end of the bar to provide axial stress [119,120]. However, these designs result in 

an imbalanced load state where the system undergoes a reaction moment from the axial loading. 

This causes issues with non-normal impacts of the striker, bending of the bars, susceptibility to 

buckling, and increased friction in guide bushings [121]. 

To achieve a better defined radial stress state, i.e., confinement pressure, a more 

sophisticated confinement chamber system was designed for Kolsky bars [121]. This system 

utilizes a symmetric tie-rod configuration to eliminate the possibility of a reaction moment in the 

system.  Additionally, two separate chambers are used for radial and axial loads but operate on 

the same hydraulic system to ensure uniform pressure loading throughout the system. Constant 

radial confinement is maintained throughout the test by providing sufficient fluid volume for 

dissipation of pressure changes due to volume changes in the specimen. Lastly, this design 

allows for the use of pulse shapers to develop the appropriate loading wave to maintain constant 

strain rates during testing. A schematic of the triaxial Kolsky bar is presented in  

Fig. 33.
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Fig. 33: Schematic of the triaxial Kolsky bar with hydraulic 
confinement chambers [122].  

Since the introduction of this triaxial Kolsky bar system, it has been applied to the testing 

of several materials. Dynamic confined behavior of sand [123-127], glass [122,128], rock [129], 

and concrete [130] has been investigated by using a 19-mm-diameter triaxial Kolsky bar system. 

Limestone has also been evaluated by using a 12.7-mm-diameter triaxial Kolsky bar [121]. 

However, for heterogeneous composites, specimen size becomes a critical issue due to the large 

constituent phases. Therefore, a large-diameter (~50 mm) triaxial Kolsky bar system is needed to 

minimize size effects for cementitious materials. Prior work analyzed the effects of specimen 

geometry under triaxial loading to determine that a cylindrical specimen with a diameter and 

height of 25.4 mm (L/D = 1:1) can be used to characterize the bulk behavior of high-strength 
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concrete with a maximum particle size of 4.75mm [74]. To the best of the authors’ knowledge, 

identical specimen geometries have not been evaluated at both quasi-static and dynamic strain 

rates under triaxial loading conditions. 

4.2 Materials and Methods 

4.2.1 Material 

All testing was performed on BBR9 high-strength concrete, which is detailed in literature 

[35,65,74,79-81]. A mixture proportion for BBR9 is presented in Table 1. The self-consolidating 

material was developed based on particle packing methodologies while using a central composite 

design of experiments to reduce the number of trial mixtures [78]. Constituent materials include 

manufactured limestone sand, type I/II portland cement, grade-100 ground granulated blast-

furnace slag (GGBFS), undensified microsilica (silica fume), polycarboxylate-ether-based high-

range water-reducing admixture (HRWRA), and tap water. Sand is the largest constituent 

material with a maximum particle size of 4.75 mm. 

Table 8. Mixture proportions for BBR9 high-strength concrete 

Constituent Mixture Proportions, 
by Weight 

Specific 
Gravity 

Cement (Type I-II) 1.00 3.15 
Manufactured limestone sand 2.25 2.57 
Slag 0.60 2.95 
Microsilica (silica fume) 0.26 2.20 
Tap water 0.37 1.00 
High-range water-reducing admixture 0.03 1.20 

 

4.2.2 Specimen Preparation 

Following guidance of ASTM C 42 [40], 25.4-mm-diameter concrete cores were taken 

from a bulk sample. The resulting cores were cut with a precision diamond blade to a length of 
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approximately 30 mm. A PR Hoffman PR-1 85T double-sided planetary lapping machine was 

used to achieve a final length of 25.4 mm with parallelism and flatness within 25 µm. A pristine 

BBR9 specimen is shown in Fig. 2. 

 

Fig. 34. Cylindrical BBR9 high-strength concrete specimen. 

4.2.3 Quasi-static Triaxial Compression 

Although the primary focus of this paper is the acquisition of pressure-dependent 

dynamic properties for concrete using a novel triaxial Kolsky bar system, a quasi-static baseline 

is required for the development of rate-effect parameters. A detailed description of quasi-static 

test methods, results, and size effects was presented in a prior publication [74]. The quasi-static 

triaxial test equipment is also detailed in the literature [4,42,44]. To provide a brief summary, the 

triaxial loading device uses sealed cylindrical specimens with hydrostatic loading applied by 
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fluid pressure. A hydraulic ram then contacts the specimen to apply axial loading. A light coating 

of MoS2 lubricant is applied at the specimen/platen interface to reduce the influence of frictional 

end effects. 

Triaxial experiments frequently report data in terms of principal stress difference and 

mean normal stress. Previously reported stress values [74] were in terms of true stress, as they 

were based on the changing cross-sectional area of the specimen. However, axial engineering 

stress will be employed in the current study to make a direct comparison to triaxial Kolsky bar 

experiments. The principal engineering stress difference (qeng) is defined by the difference 

between axial engineering stress (sa, or s3) and radial stress (sr, or s1 and s2), as shown in Eq. 7. 

Mean normal stress (p) is defined as the average of applied principal stresses, as shown in Eq. 8. 

Eq. 7:  𝑞*+, = 𝜎" − 𝜎# 

Eq. 8:  𝑝 = (%!&%"&%#)
(

= (%$&)%%)
(

 

4.2.4 Unconfined Kolsky Bar 

Although unconfined Kolsky bar experiments have been well documented in the 

literature for a wide variety of cementitious materials, it is critical to determine dynamic 

unconfined BBR9 properties by using the geometry specified in this work. Note that specimens 

in the literature that show evidence of satisfying stress equilibrium and constant strain rate 

requirements typically have a diameter below 25 mm and/or a length-to-diameter ratio (L/D) 

below 1.0. Although a larger L/D is preferred for standardized measurements of the quasi-static 

compressive strength of concrete, achieving dynamic stress equilibrium becomes more 

challenging for longer specimens. Meanwhile, the specimen diameter must be large enough to be 

representative of the bulk material. The unconfined Kolsky bar utilized C300 maraging steel bars 
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of 50.8-mm diameter with the striker, incident bar, and transmission bar having lengths of 0.46 

m, 3.05 m, and 1.52 m, respectively. Annealed copper sheets were utilized to fabricate annular 

pulse shapers 

4.2.5 Triaxial Kolsky bar 

The U.S. Army Engineer Research and Development Center (ERDC) recently acquired a 

large-diameter triaxial Kolsky bar that was designed and manufactured by Dynamic Systems & 

Research Corporation (DSR). In addition to the traditional Kolsky bar setup, this bar 

incorporates a confinement system that is a larger version of the optimized design shown in  

Fig. 33. The confinement system utilizes kerosene as a medium to apply hydrostatic fluid 

pressures up to 200 MPa. A radial confinement chamber, located between the incident and 

transmission bars, provides fluid pressure around the specimen. Similarly, an axial confinement 

chamber is located at the end of the transmission bar, providing axial loading through the 

specimen-bar interfaces. A reaction structure is created by using four tie rods (38.1-mm 

diameter) located in a symmetric pattern with the incident/transmission bars centrally located to 

eliminate bending stresses. Both confinement chambers and the tie rod system are shown in Fig. 

35. The C300 maraging steel bars have a diameter of 50.8 mm with the strikers having lengths of 

0.46 m or 0.61 m, while the incident bar and transmission bar are 2.44 m in length. 
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Fig. 35. Confinement chambers for applying fluid pressure in the 
radial (left) and axial (right) directions. 

A uniform hydrostatic pressure loading is achieved through a high-pressure air-driven 

liquid pump that simultaneously pressurizes the radial and axial chambers by using kerosene. 

The dynamic axial loading is then applied in a typical fashion for Kolsky bar experiments. For a 

successful experiment, it is critical that the specimen is sealed to prevent confining fluid from 

penetrating both the specimen itself and the specimen-bar interface. The final specimen 

installation method consists of applying a small radius of J-B WaterWeld epoxy to eliminate the 

sharp transition from the 25.4-mm-diameter specimen to the 50.8-mm-diameter bar. A latex 

triaxial membrane is then slid over the specimen, overlapping the previously installed epoxy. 

Lastly, another layer of WaterWeld epoxy is used to cover the ends of the triaxial membrane and 

is feathered across the full diameter of the bar. To minimize the influence from the epoxy, tests 

were conducted after a 1-hour cure time while the epoxy remained in a soft malleable state. A 

picture of the final specimen is shown in Fig. 36. Note that a small piece of electrical tape was 

periodically added around the membrane to squeeze out lingering air bubbles. 
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Fig. 36. An installed triaxial test specimen.   

To properly interpret data from triaxial Kolsky bar experiments, it is important to note 

that the static offset (preload) must be removed from dynamic data analysis as described by Chen 

and Song [131]. The offset correction is required because the static preload is lost when the bar 

separates from the stopper shortly after impact. As the stopper reengages with the incident bar, a 

secondary loading wave (also known as the detachment wave) is observed. To further illustrate 

the impact of the detachment wave, Fig. 37 provides original test signals at two locations on the 

incident bar and one location on the transmission bar.  
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Fig. 37. Original test signal in the form of bar stress under 50 MPa 
confining pressure. 

Prior to the collection of data, a hydrostatic pressure is applied (50 MPa for the 

experiment shown in Fig. 37). The test signal from the first strain gauge location on the incident 

bar shows that it is possible to have the detachment wave occurring between the incident and the  

reflected waves. However, by recording the signal at the second strain gauge location on the 

incident bar (closer to the specimen), the reflected wave can be captured prior to the arrival of 

the detachment wave. By comparing the two signals from the incident bar, the reflected waves 

have an offset in the amount of the hydrostatic prestress (~50 MPa). Therefore, a proper 

understanding of the unloading and loading of static prestress is critical for data analysis. A more 

thorough discussion on the detachment wave is provided in the literature [132]. 

As demonstrated in Fig. 38, stress equilibrium is satisfied under 10 MPa confining 

pressure. At higher pressures, stress equilibrium is more easily satisfied due to increased 

specimen ductility and longer loading times. However, it is difficult to verify stress equilibrium 
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at high confining pressures due to overlapping of the detachment wave and the reflected wave 

[132]. Therefore, subsequent data analysis uses the stress equilibrium assumption to calculate the 

reflected wave as the difference between the incident and transmission waves. By utilizing this 

approach, data processing no longer requires a means to separate overlapping signals from the 

detachment wave and the reflected wave. Equations 9-11 were used to calculate specimen stress 

(ss), specimen strain rate history (𝜀-̇), and specimen strain (es), where Ab, As, Eb, Cb, and Ls are 

the cross-sectional area of the bar, the cross-sectional area of the specimen, the Young’s modulus 

of the bar, the wave speed in the bar, and the specimen length, respectively, and eT  and eR are 

the transmitted and reflected waves. 

 

  
Fig. 38. Demonstration of stress equilibrium for tests under 10 
MPa confining pressure. 
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Eq. 9:  s- =
.&
.'
𝐸/𝜀0 

Eq. 10:  𝜀-̇ = −2 1&
2'
𝜀3 

Eq. 11:  𝜀-	 = − )1&
2'
∫ 𝜀3𝑑𝑡
4
5  

4.3 Results and Discussion 

4.3.1 Unconfined Dynamic Response 

Cylindrical BBR9 specimens (25 mm x 25 mm) were evaluated for dynamic unconfined 

compressive strength (sr = 0). To achieve a constant strain rate, an annealed copper pulse shaper 

with an annular geometry was implemented having a thickness, outer diameter, and inner 

diameter of 1.59 mm, 25.4 mm and 19.1 mm, respectively. Between the specimen-bar interfaces, 

MoS2 lubricant was applied to reduce end friction effects. Five replicate experiments are shown 

in Fig. 39 with a mean unconfined compressive strength of 249.6 MPa. The average strain rate 

history is also plotted in Fig. 39 to highlight the constant strain rate loading at 70 s-1, which 

remains constant until the specimen fails. 
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Fig. 39. Unconfined dynamic compressive response of BBR9 and 
strain rate history 

For the most direct comparison, quasi-static experiments were conducted using the same 

specimen size and lubricant as those of dynamic experiments. From prior results [74], the mean 

quasi-static unconfined compressive strength of cylindrical BBR9 specimens was determined to 

be 140.7 MPa at 10-5 s-1. Subsequently, the dynamic increase factor (DIF) can be calculated by 

dividing the dynamic strength by the quasi-static strength, yielding a DIF of 1.77. 

4.3.2 Confined Dynamic Response 

4.3.2.1 Pulse Shaping 

In contrast to pulse shaping for unconfined experiments, the desired loading wave for 

dynamic triaxial testing is no longer linear-elastic as the failure mode of concrete transitions 

from brittle to ductile. However, the difference between the incident and the transmission waves 

must remain constant to achieve a constant strain rate deformation. Preliminary experiments 
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were conducted at each confinement pressure to determine the approximate profile of the 

transmitted wave. Subsequently, pulse shaping experiments were performed to achieve the 

appropriate wave shape, strain rate, and amplitude required for constant strain rate deformation 

at each level of confining pressure. All pulse shapers were fabricated from various thicknesses of 

annealed copper sheets. Specifications for all pulse shaper designs are presented in Table 9 and 

visually depicted in Fig. 40. 

 
Table 9. Pulse shaper specifications. 

      Primary Pulse Shaper Secondary Pulse Shaper 

Confinement 
Pressure 
(MPa) 

Striker 
Length 
(cm) 

Tank 
Pressure 

(kPa) 
QTY Thickness 

(mm) 
OD 

(mm) 
ID 

(mm) QTY Thickness 
(mm) 

OD 
(mm) 

ID 
(mm) 

10 45.7 138 1 1.59 25.4 19.1 --- --- --- --- 

50 45.7 193 1 2.36 28.6 12.7 3 0.305 4.76 --- 

100 45.7 241 1 1.59 28.6 12.7 1 0.071 22.2 19.1 

200 61.0 448 1 0.81 31.8 19.1 --- --- --- --- 

 

  
Fig. 40. Pulse shapers for confinement pressures of (left to right) 
10 MPa, 50 MPa, 100 MPa, and 200 MPa. 

4.3.2.2 Triaxial Kolsky Bar Experiments 

Triaxial Kolsky bar experiments were conducted at confinement pressures of 10 MPa, 50 

MPa, 100 MPa, and 200 MPa. Five replicate specimens were tested at each level of confining 
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pressure. Table 10 provides a summary of experimental results for all Kolsky bar experiments 

with strain rates in the range of 70-245 s-1. To demonstrate that an approximately constant strain 

rate deformation was achieved, strain rate profiles are plotted in Fig. 41. For most confinement 

pressures, a distinct plateau is present to confirm a constant strain rate deformation. However, 

experiments at 100 MPa resulted in a gradual increase of strain rate from 100 s-1 to 

approximately 200 s-1 before reaching the peak stress. This is mainly caused by the brittle-to-

ductile transition of the material constitutive behavior between 100~200 MPa confining pressure, 

which makes precise pulse shaping very difficult as the material response becomes increasingly 

nonlinear. To observe stress-strain behavior, principal engineering stress difference (qeng) is 

plotted in Fig. 42 as a function of strain for each experiment. 
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Table 10. Summary of Kolsky bar experiments. 

   
Principal engineering stress difference, qeng 

Specimen 
Number 

Confinement 
Pressure 
(MPa) 

Strain 
Rate (s-1) 

Peak 
(MPa) 

Mean 
(MPa) 

Coefficient of 
Variation (%) 

1 0 70 255.7 

249.6 3.10% 

2 0 75 244.4 

3 0 70 256.6 

4 0 75 252.7 

5 0 70 238.8 

6 10 90 291.3 

303.0 2.81% 

7 10 90 309.6 

8 10 85 297.7 

9 10 85 311.9 

10 10 90 304.5 

11 50 115 383.8 

379.9 2.08% 

12 50 115 389.3 

13 50 115 373.9 

14 50 115 369.8 

15 50 110 382.6 

16 100 190 398.7 

412.4 3.57% 

17 100 200 404.6 

18 100 205 422.9 

19 100 195 402.8 

20 100 185 432.8 

21 200 235 464.4 

473.7 6.34% 

22 200 225 489.3 

23 200 245 432.5 

24 200 240 468.9 

25 200 215 513.2 
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Fig. 41. Kolsky bar strain rate histories at each confinement 
pressure. 
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Fig. 42. Stress-strain behavior at each confinement pressure. 

Dynamic strain rates had minimal variation for a given combination of confining pressure 

and pulse shaper design. The coefficient of variation (COV, standard deviation divided by the 

mean) for peak stress values was 2.0-3.6% for specimens tested at confinement pressures up to 

100 MPa. Previous research on dynamic triaxial properties of granite observed that size effects 
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increased COV at low levels of confinement for 11.8-mm-diameter specimens [129]. The 

consistently low COV in the present study further supports the earlier claim that the 25-mm x 25-

mm specimens are representative. The increased COV for 200 MPa experiments is likely due to 

these specimens’ inability to reach a peak stress prior to unloading. Specimens under confining 

pressures of 200 MPa would have likely experienced a further increase in qeng if higher strain 

deformations were possible under dynamic loading conditions. 

4.3.2.3 Dynamic Pressure Changes 

In section 4.3.2.2, a key assumption is that the hydrostatic pressure remains constant 

throughout the duration of the dynamic experiment. However, it must be noted that a pressure 

increase may occur as the result of the hydraulic fluid’s being compressed together with the test 

specimen by the advancing incident bar. In this research, an analytical study is conducted to 

evaluate the amount of hydrostatic pressure change during the specimen deformation. 

In general, two aspects contribute to the pressure changes in the triaxial chamber. One is 

the possible specimen volume change during axial loading, and the other is the squeezing of the 

hydraulic fluid as a result of bar movement. Since it is extremely challenging to directly acquire 

radial deformation, and thus the volume change, of the specimen during the dynamic test, the 

volumetric strain was instead measured from quasi-static tests under the same loading path. The 

engineering axial, radial, and volumetric strains measured from triaxial compression experiments 

at the confining pressure of 200 MPa are presented in 

Fig. 43a. Synchronizing the strain measurement with the loading procedure shown in  

Fig. 43b, an initial axial deformation ∆𝐿"5 with corresponding strain 𝜀"5 (positive in 

compression) driven by the increase of hydrostatic pressure up to the predetermined level (200 
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MPa) can be determined. To exclude this deformation from the initial system setup, the corrected 

specimen axial strain 𝜀"′ is then given by  

Eq. 12:  𝜀"′(𝑡) =
∆2$((4)
2$(

= ∆2$(4)7∆2$)
2$7∆2$)

              

where 𝐿" is the axial dimension of the undeformed concrete specimen. By submitting the real-

time axial engineering strain 𝜀"(𝑡) = ∆𝐿"(𝑡)/𝐿"  and the initial axial strain 𝜀"5 = ∆𝐿"5/𝐿" into 

Eq. 12, we then have 

Eq. 13: 𝜀"′(𝑡) =
8$(4)78$)
978$)

           

Similarly, the corrected radial strain is given by  

Eq. 14:  𝜀#′(𝑡) =
8%(4)78%)
978%)

           

where 𝜀#5 is the initial radial strain. Both corrected and uncorrected axial and radial strains are 

presented in  

Fig. 43a, together with the volumetric strain 𝜀:(𝑡) (uncorrected) and 𝜀:′(𝑡) (corrected). The 

volume change of the hydraulic fluid caused by the specimen deformation can then be expressed 

as   

Eq. 15:  ∆𝑉9;(𝑡) = −[−𝑉-𝜀:; (𝑡)] = 𝑆-𝐿"[𝜀"′(𝑡) + 2𝜀#′(𝑡)	]             

where 𝑆- is the cross-sectional area of the concrete specimen. Additionally, a strain ratio 

factor	𝜈(𝑡) is introduced 

Eq. 16:  𝜈(𝑡) = − 8%;(4)
8$;(4)

 

In typical uniaxial compression or tension, 𝜈(𝑡) is known as the Poisson's ratio and is generally 
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considered a rate-independent constant. Herein we still assume 𝜈(𝑡) is rate-independent under 

triaxial loading conditions, but its value may be dependent on the axial deformation history of 

the specimen. Under this assumption, the specimen radial deformation under dynamic triaxial 

loading can be inferred from that of the quasi-static triaxial loading at the same axial strain and 

confining pressure. In this case, Eq. 16 can be written as 

Eq. 17:  𝜈(𝜀"′) = − 8%;
8$;

 

With Eq. 15, Eq. 16, and Eq. 17, we can establish the volume change for the specimen under 

dynamic triaxial loading 

Eq. 18:  ∆𝑉9; = 𝑆-𝐿"𝜀"; [1 − 2𝜈(𝜀"′)]             

 
Fig. 43. The corrected and uncorrected engineering strain histories 
from quasi-static triaxial compression (left) and specimen loading 
and deformation histories from quasi-static triaxial compression at 
confining pressure of 200 MPa (right). 
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On the other hand, the movement of the Kolsky bars, which directly interface with the 

hydraulic fluid and the specimen during dynamic loading, may also cause additional volume 

change as the gap between the two bar ends decreases with specimen deformation. The change of 

volume caused by bar movement can be expressed as   

Eq. 19:  ∆𝑉)(𝑡) = −𝑆/∆𝐿"(𝑡)             

where 𝑆/ is the cross-sectional area of the bars. Then the corrected volume change can be written 

as 

Eq. 20:  ∆𝑉);(𝑡) = −𝑆/[∆𝐿"(𝑡) − ∆𝐿"5]             

By submitting Eq.3 into Eq. 11, we have 

Eq. 21:  ∆𝑉); = 𝑆/𝐿"𝜀"′(𝜀"5 − 1)         

Finally, the total corrected volume change ∆𝑉< of the hydraulic fluid throughout the dynamic 

triaxial experiment is  

Eq. 22:  ∆𝑉<; = ∆𝑉9; + ∆𝑉);         

For a specimen loaded to a certain axial strain in dynamic tests, the corresponding 

volume change ∆𝑉< can be determined based on Eq. 22, and the results are shown in Fig. 44 

together with the normalized value ∆𝑉</𝑉< which represents the volumetric strain of the fluid. 

The total initial volume of the hydraulic fluid in the confinement chamber is 𝑉< = 810.4	cm(. 

Due to very limited experimental data for the equation of state for the hydraulic fluid (kerosene), 

it is assumed that the pressure in the confinement chamber increases linearly with 

decreasing volume 

Eq. 23:  ∆𝑃 = −𝐾∆𝑉</𝑉<             

where 𝐾 = 1.3	GPa is the bulk modulus of kerosene [133]. To better demonstrate the pressure 
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change in the chamber relative to the applied confinement pressure, a pressure change factor is 

defined as 

Eq. 24:  𝜂 = ∆𝑃/𝑃             

where P is the hydrostatic confining pressure under which the dynamic triaxial tests were 

conducted.  

 

 
Fig. 44. Volume change of the hydraulic fluid as a function of the 
specimen axial strain. 

Based on the above discussion, the pressure change throughout the duration of the 

specimen deformation is calculated and presented in Fig. 45. The chamber pressures are found to 

increase by 0.69-3.4 MPa, depending on the peak specimen strain. The stars placed in Fig. 45 

represent the peak specimen strain (at which the specimen failure strength is calculated) under 

each respective confining pressure. Meanwhile, Table 1 gives a detailed pressure change under 

different initial hydrostatic pressures when specimens reach their peak stress. For confining 
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pressures of 10 MPa, the pressure change factor is 𝜂 = 0.069. This factor decreases drastically 

with increasing hydrostatic pressure and reaches the lowest value of 0.011 at 100 MPa. The data 

presented in Table 11 and Fig. 45 show that the overall dynamic pressure change in the 

confinement chamber is relatively small. Therefore, this slight fluctuation in confining pressure 

is not likely to cause significant error for the strength characterization.  

 

 
Fig. 45: The pressure change in the confinement chamber 
throughout the duration of the specimen deformation. 

Table 11. The calculation of pressure change under different initial hydrostatic 
pressures. 

Initial hydrostatic pressure (MPa) 10 50 100 200 

Axial strain at peak stress (%) 1.07 1.43 1.71 5.07 

Pressure increase (MPa) 0.69 0.94 1.10 3.40 

Relative pressure change (%) 6.9 1.9 1.1 1.7 
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4.3.3 Pressure-dependent Dynamic Increase Factor 

The dynamic increase factor (DIF) is a ratio between dynamic and quasi-static strength 

that is commonly used to determine rate-effect parameters based on unconfined compression 

experiments. The novel triaxial Kolsky bar technique developed in the current study offers a 

unique opportunity to calculate the DIF as a function of confining pressure. In Fig. 46, triaxial 

Kolsky bar data are compiled with quasi-static triaxial data to provide a means of direct 

comparison. Quasi-static data are represented by a solid line that represents the average response 

from two replicate specimens for a given loading condition. Similarly, dynamic data are 

presented by a dashed line that represents the average response from five replicate specimens for 

a given loading condition. Quasi-static tests previously published in terms of q have been 

converted to qeng, as presented in Table 12.  

  
Fig. 46. Quasi-static (dashed lines) and dynamic (solid lines) 
response of BBR9 concrete under different confining pressure. 
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Table 12. Quasi-static principal stress difference conversion. 

Confinement 
Pressure (MPa) 

Strain Rate 
(s-1) 

Peak q 
(MPa) 

Peak qeng 
(MPa) 

0 10-5 140.7 140.7 

10 10-4 204.2 208.7 

50 10-4 274 278.2 

100 10-4 318.3 --- 

200 10-4 497.4 --- 

 

As evidenced in Table 12, converting principal stress difference from q (true stress) to 

qeng (engineering stress) results in minor differences at confining pressures ranging from 0-50 

MPa. This negligible difference is directly related to small changes in cross-sectional area. 

However, triaxial experiments ranging from 100-200 MPa experience substantial changes in 

cross-sectional area. Referencing Fig. 46, tests at 100 MPa and 200 MPa do not reach a peak 

value in terms of qeng after undergoing axial strains of 15%. Specimens were not tested beyond 

15% axial strain due to the development of non-uniform deformation (barreling) [74]. 

Subsequently, the DIF was calculated for each confinement pressure by dividing the 

dynamic peak stress by the quasi-static peak stress.  Values for the DIFs are presented in Table 

13. For the 100 MPa triaxial experiments, a peak stress was recorded only in terms of q, so the 

Kolsky bar data at 100 MPa was transformed into true stress to make an approximation of the 

DIF. Since radial strains were not measured directly during Kolsky bar experiments, the 100 

MPa DIF approximation assumed that the relationship between axial and radial strains observed 

at quasi-static strain rates would also be valid at dynamic strain rates. The DIF could not be 

calculated or approximated at 200 MPa, since peak stresses were not observed in either quasi-
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static or dynamic tests. A clear trend emerges showing that the DIF decreases with increasing 

confining pressure. Another key observation from Fig. 46 is that the brittle-ductile transition 

shifts under dynamic strain rates, as evidenced by material behavior under 100 MPa confining 

pressure.  

 
Table 13. Pressure dependency of the DIF for BBR9. 

  Quasi-Static Dynamic 
 

Confinement 
Pressure (MPa) 

Strain Rate 
(s-1) 

Peak qeng 
(MPa) 

Strain Rate 
(s-1) 

Peak qeng 
(MPa) DIF 

0 10-5 140.7 70 249.6 1.77 

10 10-4 208.7 90 303.0 1.45 

50 10-4 278.2 105 379.9 1.37 

100 10-4 --- 195 412.4 ~1.29* 

* Approximated by transforming 100 MPa Kolsky bar data from qeng to q 

 
A recent study on the uniaxial unconfined DIF for this same material reveals that the 

damage initiation under impact loading occurs at a stress level much lower than the peak failure 

stress, which is what has been typically used for the DIF calculation [65]. Therefore, the DIF 

calculated by using the damage initiation stress, known as the True DIF, appears to have a much 

lower value (~1.32). In the current study, a transition in damage mechanism from axial splitting 

to shear cracking was observed with increasing confining pressure. While axially cracked 

specimens are still capable of bearing dynamic axial mechanical loading, which leads to higher 

peak failure stress, such load-bearing capability is completely compromised once the failure 

mode changes to shear cracking. Hence, it is reasonable to assume that the lower DIF observed at 

higher confining pressure is caused by the gradual transitioning of failure mode.  
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4.3.4 Dynamic Failure Surface 

From prior work [74,80,81], a quasi-static failure surface was developed for BBR9 high-

strength concrete using cylindrical specimens with a diameter of 50 mm and a length of 114 mm. 

However, experimental work has not previously been used to validate changes in the failure 

surface for dynamic events under complex stress states. Since the DIF values from Table 13 are 

calculated by using the same specimen geometry at both quasi-static and dynamic strain rates, 

the DIFs are applied to the quasi-static failure surface, as the DIFs do not inherently contain size 

effects. Prior research on high-strength concrete has shown that unconfined failure strength is 

dependent on specimen geometry while the DIF is independent of specimen size [89]. The 

authors recognize that this observation may or may not hold true under triaxial loading 

conditions. Under the assumption that the DIF is independent of specimen size for triaxial 

Kolsky bar experiments, the calculated DIF values were applied to the quasi-static failure 

surface, as shown in Fig. 47, by extending quasi-static test data (solid lines) with a dynamic 

strength increase (dashed lines). 
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Fig. 47. Dynamic failure surface in terms of principal stress 
difference (q) and mean normal stress (p). 

As evidenced by the decay in the DIF at increasing confinement pressures, the failure 

surface should shift as a function of both strain rate and stress state. After applying the DIFs to 

the quasi-static triaxial results for 50-mm x 114-mm specimens, the triaxial DIF shifted peaks 

were plotted as distinct points for determining a dynamic failure surface. It is clear that a scalar 

multiplier for strain rate effects would not match the experimental results presented in this study. 

However, a vertical offset of 55 MPa applied to the quasi-static failure surface results in a 

dynamic failure surface that fits well with peak values of q that were shifted to account for the 

triaxial DIF values. Please note that the proposed dynamic failure surface accounts only for 

experimental results with confining pressures in the range of 0-100 MPa. These results are 

intended to provide a visual representation of the DIF values presented in Table 13. Although 

the dynamic failure surface cannot be directly incorporated into existing concrete models, it does 

provide an experimental basis for further interrogation of future modeling and simulation efforts. 
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4.4 Conclusions 

A large-diameter triaxial Kolsky bar was designed and implemented to characterize the 

bulk material behavior of heterogenous brittle materials as a function of both strain rate and 

confining pressure. BBR9 high-strength concrete was selected as a representative material for 

this study, but the method is applicable to a variety of concretes and other brittle materials. To 

quantify rate effects, BBR9 specimens were tested at quasi-static strain rates and dynamic strain 

rates for the same specimen geometry and boundary conditions. All data presented in this study 

were gathered from cylindrical concrete specimens with a diameter and length of 25.4 mm. The 

confining pressures in this study included tests at 0 MPa, 10 MPa, 50 MPa, 100 MPa, and 200 

MPa. Specific conclusions are presented in the list below. 

• A specimen sealing technique was established by using a latex membrane paired with 

layered epoxy to sufficiently isolate the specimen from confining fluid while maintaining 

a non-rigid form. 

• Dynamic pressure variations within the confining chamber were determined to be 

negligible, with a maximum relative pressure change of 6.9%. 

• Annular pulse shaping techniques were incorporated to provide various geometries from 

annealed copper sheets to establish constant strain rate deformations at each loading 

condition. 

• Stress equilibrium was verified at lower confining pressures where deformation time is 

shortest. Subsequent tests calculated the reflected wave as the difference between the 

incident and the transmitted waves to avoid signal interference from the detachment wave 

resulting from the stopper/bar interface. 
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• Triaxial Kolsky bar experiments provided very repeatable high strain rate deformations 

with a maximum COV of 6.3% for qeng values at confining pressures of 200 MPa. 

• The dynamic increase factor (DIF) was determined to decay as confining pressure 

increases. The DIF values were 1.77, 1.45, 1.37 and ~1.29 for confining pressures of 0 

MPa, 10 MPa, 50 MPa, and 100 MPa, respectively. 

• The brittle to ductile transition point shifts as a function of strain rate. This is evidenced 

at 100 MPa where the failure mode is extremely ductile at quasi-static strain rates but 

becomes brittle at dynamic strain rates. 

• A dynamic failure surface was presented to illustrate interdependent effects from both 

strain rate and confining pressure. 

This study confirms that the behavior of high-strength concrete is both strain-rate and 

pressure dependent. For high-fidelity modeling of concrete under extreme loading conditions, it 

is imperative to quantify the dynamic material behavior under complex stress states. The large-

diameter triaxial Kolsky bar provides an experimental method to support future interrogation of 

modeling parameters, as it has proven to be a robust method for characterizing dynamic triaxial 

properties of cementitious materials with representative specimen sizes. 
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CHAPTER 5: 
 

CONCLUSIONS 
 

5.1 Conclusions 

The research presented in this study provides novel methods and results for determining 

the damage evolution and high-rate response of high-strength concrete under triaxial loading. As 

a foundational step, size effects were rigorously investigated in terms of changes in diameter and 

length-to-diameter ratio. Size effects must be considered since damage analysis and high-rate 

experiments require non-standard specimen geometries. The results show that specimen diameter 

can be successfully reduced from 50 mm to 25 mm while maintaining the same stress-strain 

relationships under confining pressures ranging from 10-200 MPa. Furthermore, changes in L/D 

from 2.0 to 1.0 were shown to have minimal effects on triaxial stress-strain relationships. A 

scalar correction factor (similar to those recommended by ASTM for unconfined compression) 

provides an empirical solution that accounts for end effects while maintaining minor variations 

as compared to standard specimen geometries. Thus, specimens with reduced diameter and 

reduced L/D were shown to be representative of the bulk material behavior of high-strength 

concrete. 

Specimens having a diameter of 25 mm and an L/D of either 1.0 or 2.0 were evaluated 

for damage evolution after undergoing quasi-static triaxial compression with confining pressures 

of 10, 50, 100, and 200 MPa. A removable strain gauge mount was also incorporated to 

document volumetric strain behavior.  Each specimen was scanned in the pristine and damaged 

condition to make direct comparisons for damage isolation and quantification. Specimens in a 

brittle failure mode ultimately failed along shear planes with higher crack saturation as confining 
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pressures increased from 10 MPa to 50 MPa. Specimens undergoing a ductile failure mode (100 

MPa and 200 MPa confinement pressures) experienced substantial pore collapse and 

microcracking while maintaining residual strength capacities of 30-50%. Although damage 

modes were similar, increasing the confinement pressure from 100 MPa to 200 MPa resulted in 

additional pore compaction, especially for smaller pore sizes (below 120 um). Specimens with a 

reduced L/D (1.0) had slightly more distributed crack growth due to end effects, but damage 

modes remained consistent with specimens having a standard L/D (2.0). 

Lastly, high-rate response was investigated using a state-of-the-art large-diameter (50 

mm) triaxial Kolsky bar. All triaxial Kolsky bar experiments required a specimen with a 

diameter of 25 mm and length of 25 mm (L/D = 1.0) to achieve dynamic stress equilibrium while 

maintaining a constant strain rate deformation. Annular pulse shapers were carefully designed 

for each level of confinement pressure. Quasi-static experiments were also conducted on the 

same specimen geometry to determine the dynamic increase factor (DIF) at each level of 

confinement pressure (10, 50, 100, and 200 MPa). The DIF was determined to be pressure 

dependent with results that provide insight towards the development of a dynamic failure 

surface. Additionally, comparisons in stress-strain relationships indicate that failure modes 

transition from ductile to brittle as strain rates increase from quasi-static to dynamic.  

After verifying the suitability of non-standard specimen sizes, damage progression and 

dynamic material behavior have been recorded under a variety of triaxial loading conditions. The 

results link damage morphology under complex stress states to material property measurements. 

Furthermore, it has been shown that rate parameters are pressure dependent, indicating that 

quasi-static triaxial characterization is not sufficient to fully describe the dynamic behavior of 

high-strength concrete under extreme loading events. 
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5.2 Future Work 

The presented research program has confirmed the suitability of non-standard specimen 

geometries, developed methods for quantifying damage accumulation, and established an 

experimental technique for a large-diameter triaxial Kolsky bar. These developments have led to 

the following ideas for future research activities. 

• In practice, high-strength concrete and ultra-high-performance concrete (UHPC) 

frequently incorporates fiber reinforcement. Future work should aim at understanding 

the effects of fibers on damage evolution and high-rate response under triaxial 

loadings.  

• The scope of damage evolution portion of this study was limited to quasi-static 

triaxial loadings. However, the development of a single loading technique for the 

triaxial Kolsky bar could provide a way to observe dynamic damage evolution under 

triaxial loadings. 

• In quasi-static triaxial experiments, saturation (moisture content) effects can be 

substantial, especially at high confinement pressures. A rigorous investigation of 

saturation effects using the triaxial Kolsky bar might show that saturation effects 

become more significant at dynamic strain rates. 

• The pressure dependent DIF values should be utilized to interrogate material models 

to determine the sensitivity of adjustments in a dynamic failure surface. Perhaps 

model accuracy can be improved by adapting rate parameters to have a pressure 

dependent term. 

• Lower values of DIF corresponding to damage initiation stress are likely attributed to 

the intrinsic enhancement of material strength at dynamic strain rates. However, high-
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dynamic strength gain is likely a structural effect more so than a material effect [134]. 

Future work should take a closer look at developing a fundamental approach for 

understanding the different components that contribute to a dynamic increase factor, 

including crack tip inertia, crack velocity, radial confinement pressures, and 

corresponding wave speeds within a specimen. For reference, maximum crack-tip 

velocities are typically in the range of 8-30% of the primary (P) wave speed and 

typically less than 50% of the Rayleigh wave speed [135]. 

5.3 Publications 

• Williams B., Heard W., Graham S., Martin B., Loeffler C., Nie X. (2019). 

Mechanical Response and Damage Evolution of High-Strength Concrete Under 

Triaxial Loading. In: Kimberley J., Lamberson L., Mates S. (eds) Dynamic Behavior 

of Materials, Volume 1. Conference Proceedings of the Society for Experimental 

Mechanics Series. Springer, Cham 

• Williams B., Heard W., Martin B., Loeffler C., Nie X. (2020). Large-Diameter 

Triaxial Kolsky Bar for Evaluating Very-High-Strength Concrete. In: Lamberson L. 

(eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the 

Society for Experimental Mechanics Series. Springer, Cham 

• Williams, B. A., Heard, W. F., Graham, S. S., & Nie, X. (2020). Effect of specimen 
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and Building Materials, 244, 118348. 
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Concrete Composites. 
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M. Z., Nie, X. (ERDC review). Characterizing damage modes and size effects in 

high-strength concrete under hydrostatic and triaxial stress states using X-ray 
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