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The electronic health record (EHR) is a digital version of the patient chart. All clinically

relevant patient information can be accessed from the EHR by professionals involved in the

patient’s care. For researchers, the EHR is a rich, convenient source for data to address a

vast range of medical research questions.

In observational studies with EHR data, it is common to define the treatment/exposure

status as a binary indicator reflecting whether patient was documented to receive a particular

medication or procedure. The outcome can be any type of information on patient status

documented in the EHR after the treatment has taken place.

The EHR, although not designed primarily for research, can serve as a platform for ob-

servational studies in clinical medicine. An advantage of the EHR is that it can document

treatments unequivocally, provided the treatment – medication or procedure – appears in

the record. For example, in a study in which treatment is the route of medication (intra-

venous=treated, oral=control), the EHR makes it clear which route was used. This does

not, however, relieve the investigator from the responsibility of defining and measuring con-

founding variables, and properly adjusting for them in comparative analyses.

In Chapter 1, we demonstrate the use of longitudinal EHR data in an evaluation of

the effects of treatment of 12,754 children with overweight/obesity in greater Dallas. Our

objective in this study is to estimate the causal effect of clinician attention to elevated body
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mass index (BMI), measured at up to 10 timepoints per child, on subsequent weight change.

To account for bias from confounding, we use the propensity score stratification method,

applied longitudinally at each timepoint. We specify the propensity score model to include

baseline covariates, current values of time-varying covariates, and treatment status at the

most recent visit.

An alternative method of causal inference when treatments are applied longitudinally in

an observational study relies on the marginal structural model (MSM). When estimating an

MSM, one eliminates confounding bias by constructing a series of propensity score models

for treatment at each time, then weighting the subjects based on these scores. The MSM has

the interpretation of a causal model for the effect of the series of treatments on the outcome.

Although MSMs are in wide use, there has been relatively little evaluation of the prop-

erties of model estimates in small samples. One can conduct a simulation study to assess

properties such as the suitability of asymptotic approximations to moderate samples, best

methods for computing the standard errors, choice of the weighting method, and robustness

to incorrect assumptions about the MSM or the underlying propensity score model. Several

simulation methods have been proposed, each with its pros and cons. In Chapter 2, we

introduce a new, simplified simulation method that addresses the limitations of the existing

methods. We demonstrate the use of our method in a Monte Carlo study to assess the

properties of an estimated MSM involving treatment at two timepoints.

An oft-cited concern with MSMs is the sensitivity of model estimates to large weights.

This issue arises in particular when there are multiple timepoints. As the number of time-

points increases, an individual’s propensity score can become very small, while the estima-

tion weights – defined as the inverse of the propensity score – becomes correspondingly large.

Having a few subjects with large weights can result in an unstable estimate. In Chapter 3,

we use the novel simulation method that we introduced in Chapter 2 to conduct a Monte

Carlo assessment of the impact of large weights on the validity of MSM estimates. Finally,
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we estimate a series of MSMs for the child obesity example from Chapter 1 and interpret

the results in light of our simulation findings.
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Chapter 1

The causal effect of clinician attention to high BMI in children across time

1.1. Background and significance Although childhood rates of overweight and obe-

sity continue to rise, time allocated to address this complex issue during pediatric visits has

not. In a median timespan of 20 minutes, pediatricians measure child weight, height, and

vital signs, compute body mass index (BMI) to screen for overweight/obesity, perform an

exam, communicate with children and their parents about a host of items, and prescribe vac-

cines, laboratory studies, and specialist referrals [1,2]. The American Academy of Pediatrics

recommends annual BMI screening, healthy weight/lifestyle communication, and evaluation

of health risks of overweight/obesity starting at age two years [3, 4].

The longitudinal impact on relative BMI of pediatrician BMI communication during

primary-care visits is unclear. Turer et al (2019) examined the association of pediatrician

communication of high BMI and relative BMI improvement in a retrospective analysis of elec-

tronic health record (EHR) data from 6–12-year-olds followed in primary care [5]. Evidence

that a clinician addressed weight management (termed “attention to BMI” or“BMI atten-

tion”) was determined using billing codes for visit diagnoses and problem lists, and orders

for laboratory tests, medication prescriptions, patient education, and referrals. The authors

reported that, among 6–12-year-old children with overweight or obesity, high-BMI/comorbid-

disease-risk communication was associated with a 20% increased likelihood of improvement

in BMI at the next visit (adjusted odds ratio 1.2, 95% confidence interval (1.09, 1.28)).

Nevertheless, the causal impact of BMI communication on longitudinal BMI improvement

remains unclear. Turer et al ’s study applied random-effects regression analysis of repeated

measures to evaluate the association of BMI attention and relative BMI improvement in

1



6–12-year-olds [5]. The analysis was not suited to examine the longitudinal effect of BMI

communication on relative BMI over time nor whether the association was causal. Also

lacking were data for children ages 2–5 and 13–18 years. Causal inference requires controlling

for bias, commonly using methods based on the propensity score [6, 7]. The present study

sought to estimate the longitudinal causal effect of attention to high BMI on relative BMI

improvement in children across the guideline-recommended age spectrum of 2–18 years.

Using methods designed for causal analysis, we estimated the causal impact of BMI attention

on relative BMI improvement across time, accounting for prior BMI attention.

1.2. Materials and methods

1.2.1. Study cohort We conducted a retrospective study using 2009–2016 clinical prac-

tice data from children followed in pediatric primary care practices that shared a networked

EHR hosted through Children’s Medical Center Dallas. The University of Texas Southwest-

ern Medical Center IRB approved the study with a waiver of informed consent. Primary

care visits for children represent an opportunity to intervene on overweight and obesity in

childhood. Population-based data indicate that 88% of children have a pediatric “usual

source of care” and complete three outpatient visits/year [8]. We selected children with

≥ 2 primary-care visits at ages 2–18 years with (a) height and weight measures, (b) ≥ 60

days between the first and last visits, (c) BMI ≥ 25 or BMI centile ≥ 85 [9]; and ≥ 1 well-

child/health-maintenance visit. We excluded children with diagnoses/conditions that might

affect clinician-patient BMI communication or the validity of BMI measurement, including

amputation, presence of a feeding tube, type 1 diabetes, pervasive development delay, and

other chronic metabolic, congenital, or oncologic condition. Though not part of the initial

study inclusion/exclusion criteria, children were required to have five separate height data

points, as noted in the statistical methods section.
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1.2.2. Data structure and measures

Visit and time structure In contrast to the 2019 study, here we followed children lon-

gitudinally with multiple (up to 10) high-BMI visits at which treatment (attention to BMI)

could have been administered. We assessed the effect of attention to BMI at one “high-BMI

visit” on BMI at a subsequent visit occurring from 1 to 30 months later. In contrast to the

uniformity of follow-up intervals in randomized trials, we permitted a wide range of time

intervals for each of the subsequent visits. US-based population data show no difference in

pediatric outpatient-visit frequency by BMI despite recommendations for 3–6-month follow-

up to readdress high BMI (frequency of visits/year for a child with a healthy weight is 2.9,

vs. 2.8 for overweight, and 3.0 for a child with obesity) [8].

Attention to BMI We used an electronic phenotyping approach to define a binary

attention-to-BMI variable that equaled 1 if there was EHR evidence that a clinician addressed

BMI at a visit with a 2–18-year-old child with overweight/obesity [unpublished data, 2022].

The electronic phenotype sought evidence of guideline-recommended weight-management

clinical practices using specific text associated with numeric International Classification of

Diseases (ICD) codes (from billing and problem-list codes), education codes for primary-care

obesity counseling, and referrals to nutrition, weight-management, and bariatric surgery. Ev-

idence was used as a proxy for a clinician identifying high BMI (BMI ≥ 25 or centile ≥ 85) in

children ≥ 2 years, communicating regarding high BMI/health risks, and providing lifestyle

communication in primary care or via referral to nutrition, weight management, or weight-

loss surgery. We previously reported that the electronic phenotype was 84.7% sensitive and

99.6% specific for detecting clinician attention to high BMI [unpublished data, 2022].

Covariates We identified clinic and patient covariates that were measured/documented in

the EHR and relevant to BMI change. Then, we selected ones that were associated with both

3



treatment (BMI communication) and outcome (BMI change) [10,11]. Instrumental variables

in the former study excluded from the present study were clinic location and visit type of the

high-BMI visit, because we determined that these variables affected the outcome through

treatment but did not affect the outcome in the absence of treatment. Finally, we categorized

the selected covariates as fixed or time-varying (Table 1.1) for timepoint t = 1, . . . , 10. When

t = 1, covariates from timepoint t − 1 are set to 0. Fixed variables were measured at visit

1 and did not change over time. Time-varying variables were measured at every timepoint.

Baseline variables were time-varying variables observed at timepoint 1.

Table 1.1: Covariates at time of visit t (when child eligible for BMI attention) in the causal
analysis.

Type of covariate Variable

Fixed, at visit 1 Sex

Race/ethnicity

Time-varying, Percent of BMI 95th percentile (%BMIp95)

observed at visit t. Obesity category at visit t

Age, continuous

variables from t−1 Age, categorical

When t = 1, Interval length from visit t− 1

were set to 0. Treatment status (attention to BMI) at visit t− 1

The value at t = 1 Reassessment status of treatment received at visit t− 1

is the. Prescription medication associated with weight gain

baseline value. Prescription medication associated with weight loss

Well-child visit in past 12 months

Sick visit in past 12 months

Visit occurred between April and July

Outcome The primary study outcome was the change in percent of BMI 95th percentile

(%BMIp95) from baseline, which was used as a proxy for improvement in child adiposity.
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Studies document that %BMIp95 more accurately reflects within- and between-child changes

in adiposity compared to use of BMI z score or BMI percentile, particularly in analyses that

include children across the BMI spectrum (from mild overweight to class 3 obesity) [12,13].

We assessed the effect of treatment (attention to BMI) given at visit t, by subtracting

a child’s post-treatment %BMIp95 (observed 1–30 months after BMI attention at visit t)

from the baseline %BMIp95 (observed at visit 1). We denoted this change in %BMIp95 as

∆%BMIp95.

Height cleaning Some EHR height data are missing or implausible [14]. This presents a

challenge because computation of BMI depends on height (BMI = weight [in kg]/height [in

meters] squared). We addressed this issue using the following steps:

1. Imputed missing heights by converting height centiles at nearby visits to height at the

visit missing height.

2. Removed implausible height values using methods published by Daymont et al [14].

3. Used ≥ 5 heights per child to fit separate monotone (nondecreasing) spline models.

4. Replaced observed and missing heights with model-fitted values.

1.2.3. Causal inference Causal inference — estimation of the effect of an intervention

on an outcome — is straightforward in a randomized study because treatment assignment is

unconfounded by design. In an observational study such as the present study, the mechanism

by which treatment is assigned is unknown and likely to depend on factors that also affect

treatment and outcome (for example, the severity of a child’s obesity). Because our interest

is in whether physician attention to BMI causes future weight change, we have applied

methods designed specifically to adjust for confounders and estimate this causal effect.
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1.2.4. Propensity score stratification analysis A common method to estimate a causal

effect from observational data is propensity score (PS) stratification analysis [6]. In a longi-

tudinal analysis like the present study, one conducts the following analysis at each timepoint:

1. Estimate each subject’s PS (probability of receiving treatment at a visit) by construct-

ing a logistic regression model. The observed treatment serves as the outcome and is

regressed on all known confounders associated with both treatment and outcome at

the visit [10, 11]. In the present study, the treatment is BMI attention, and known

confounders are those listed in Table 1.1.

2. Sort children by their estimated PS values and group them into 10 strata (so that,

within each stratum, treated and control groups possess similar distributions of child

characteristics for unbiased causal effect estimation) [15,16].

3. Apply criteria to verify balance across strata [7, 17]. Criteria used to determine if

covariate balance was achieved across strata were: (1) an absolute weighted (by stratum

size) standardized difference of covariates≥ 0.25, and, (2) a treated-to-control weighted

(by stratum size) variance ratio between 0.5 and 2 for continuous variables (e.g., age).

4. Average the treatment effects across strata (weighted by stratum size) to form a single

estimate of the causal effect of attention to BMI [6,17],

(∆%BMIp95, treated −∆%BMIp95, control)PS-adjusted.

We performed the above analysis at each of the ten timepoints. Separately, we computed

the raw unadjusted effects of attention to BMI,

(∆%BMIp95, treated −∆%BMIp95, control)unadjusted.
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An average treatment effect less than 0 denoted BMI attention improved ∆%BMIp95 relative

to ∆%BMIp95 among controls. An effect greater than 0 denoted ∆%BMIp95 worsened for

those receiving BMI attention compared to controls. We conducted the analysis in R version

4.2.0.

1.2.5. Sensitivity analysis PS analysis is valid for causal inference assuming no unmea-

sured confounders. We conducted a sensitivity analysis [18] to test the impact of failing to

include an unmeasured binary confounder, denoted U , by exploring varying degrees of U ’s

influence on treatment assignment and outcome at each timepoint.

1.3. Results

Population Of 17,397 children aged 2–18 years with overweight or obesity followed in

primary care, 13,036 (74.9%) had five more height datapoints. Of these, 12,574 (72.3%) had

a subsequent visit to evaluate the impact of BMI communication on BMI improvement. The

baseline BMI category of the 12,574 children was 65.0% with overweight, 29.9% with obesity

class 1, and 5.2% with obesity class 2 or greater.

Covariate balance At each of the 10 timepoints and across strata, we achieved a balanced

distribution of patient characteristics. At timepoint 1, for example (Table 1.2), the between-

group difference in mean child age decreased from 1.5 years before PS stratification (std.

diff, 0.39) to 0 years after PS stratification (std. diff, 0.01). Over half of the sample was

younger than age six years or 12 years or older.

BMI attention by obesity class The proportion of children receiving BMI attention

varied by BMI category (Figure 1.1). Children with obesity class 3 had the highest rates of

attention starting at 70% for timepoint 1, with half or more of the children receiving BMI
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Table 1.2: Covariate balance between control and treated groups before and after
propensity score (PS) stratification (balance for t = 1 shown as an example; balance
achieved at all 10 timepoints)

Before PS stratification After PS stratification

Characteristic Contr Interv Std. Contr Interv Std.

(N = 12, 574) (N = 8, 653) (N = 3, 921) diff (N = 8, 653) (N = 3, 921) diff

Age in years 6.9 8.4 0.39 7.50 7.50 0.01

Age category (%) 0.41 0.11

2–5 47.6 29.5 42.5 40.2

6–8 22.8 24.6 22.6 25.7

9–11 16.3 24.7 18.1 20.2

12–18 13.2 21.2 16.8 13.9

Sex, female (%) 48.0 51.0 0.06 48.9 48.8 0.00

Race/ethnicity (%) 0.12 0.01

Black 19.2 22.5 20.1 20.6

Hispanic 61.1 60.5 61.0 60.6

White 12.8 9.6 11.9 11.7

Other 6.9 7.3 7.0 7.1

Percent of BMIp95 101.4 110.0 0.55 104.0 104.3 0.06

Obesity class (overweight = 0) 1.3 1.5 0.32 1.4 1.4 0.01

Med with weight loss effect 1.6 1.6 0.00 1.6 1.6 0.00

Med with weight gain effect 11.0 10.3 0.03 10.9 11.1 0.01

Visit month (April-July) 28.7 31.6 0.06 29.8 30.3 0.01

Well child in past 12 mo. 20.4 11.4 0.25 17.7 17.3 0.01

Sick visit in past 12 mo. 36.8 27.8 0.19 34.3 35.0 0.02

8



attention at every timepoint. In contrast, among children with overweight, the proportion

receiving attention remained less than one third. Yet, most children in the study received

BMI attention at some point, including 100% with obesity class 3 and 85% with overweight.

Figure 1.1: Percent receiving BMI attention at each timepoint by BMI category, from
timepoint 1–10.

Causal effect of BMI attention on ∆%BMIp95 With PS stratification, BMI attention

significantly improved ∆%BMIp95, relative to no attention, at timepoints 1 and 8 and yielded

non-significant improvement in ∆%BMIp95 for all but timepoint 3 (Figure 1.2). Without

PS stratification, one might have concluded that BMI attention improved ∆%BMIp95 at

timepoint 1, worsened ∆%BMIp95 at timepoints 3–4, and yielded non-significant ∆%BMIp95

worsening at timepoints 5–10.

Sensitivity analysis results To illustrate the results of the sensitivity analysis using a

clinical example, assume high parental BMI was an unmeasured confounder (denoted U) that

affected both the likelihood of BMI attention and ∆BMIp95 of the child but was not included
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in the PS analysis (Table 1.3). Let U = 1 denote high parental BMI. Column 1 presents

two scenarios in which U doubles or triples the odds of BMI communication. Columns

2–3 indicate the impact of U on ∆BMIp95 among controls vs. treated. The final column

presents the impact of varying the prevalence of U . When U = 1 and the prevalence of U

is low (10%), all point estimates fall within the 95% confidence intervals (CIs) of our study

results. Once prevalence reaches ≥ 50%, sensitivity estimates remain within the 95% CI only

when U affects the outcome equally and in the same direction for treated and controls. A

similar pattern occurs at timepoints 2–5 with more results robust to U ’s presence compared

to results at timepoint 1 (data not shown). By timepoints 6–10, all estimates fall within

the 95% CI of study results. In sum, study results are largely robust to U at time 1–5, and

completely robust to U by timepoints 6–10.

Table 1.3: Sensitivity analysis examining impact of identifying an unmeasured confounder
at t = 1. Shading denotes point estimates outside 95% CI of study results at t = 1.

Effect of U = 1 :
Point estimates resulting from varying prevalence of U

On
treatment

On outcome for:

controls treated 10% 50% 90%

U = 1
doubles the
odds of
receiving
BMI atten.

-0.3
-0.3 -0.29 (-0.55, -0.03) -0.26 (-0.52, 0.00) -0.29 (-0.55, -0.03)

0.3 -0.38 (-0.64, -0.12) -0.63(-0.87, -0.37) -0.85 (-1.11, -0.60)

0.3
-0.3 -0.24 (-0.50, 0.02) 0.01 (-0.25, 0.27) 0.24 (-0.02, 0.50)

0.3 -0.33 (-0.59, -0.07) -0.36 (-0.62, -0.10) -0.32 (-0.58, -0.07)

U = 1
triples the
odds of
receiving
BMI atten.

-0.3
-0.3 -0.28 (-0.53, -0.02) -0.23 (-0.49, 0.03) -0.28 (-0.54, -0.03)

0.3 -0.38 (-0.64, -0.12) -0.64 (-0.90, -0.38) -0.86 (-1.12, -0.60)

0.3
-0.3 -0.23 (-0.49, 0.02) 0.02 (-0.24, 0.28) 0.24 (-0.02, 0.50)

0.3 -0.34 (-0.60, -0.08) -0.39 (-0.65, -0.13) -0.33 (-0.59, -0.07)

1.4. Discussion We observed that the effect of pediatricians addressing high BMI in

2–18-year-olds during primary-care visits is that ∆%BMIp95 improves early (at timepoint 1)
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Figure 1.2: Comparison of results from unadjusted and PS-stratification methods.
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and later (at timepoint 8) with non-significant improvements at most other timepoints. The

presence of a significant effect of BMI attention on ∆%BMIp95 at any timepoint suggests that

pediatrician attention to BMI can improve overweight/obesity. The absence of a significant

effect of BMI attention at most timepoints, even in large samples, highlights the need for

increasingly potent tools to improve the weight of children with obesity. This study provides

the first explicitly causal estimates of the effect of BMI attention on ∆%BMIp95 across time

using observational data from an EHR.

The non-uniform pattern of BMI effects differs from Turer et al ’s 2019 finding that

BMI attention was associated with a 20% increase in the likelihood of BMI improvement

[5]. Whereas the 2019 study used regression to account for clinic and patient (but not

time) effects, we applied longitudinal causal methods with PS stratification. This allowed

us to minimize the imbalance of patient characteristics between arms and thereby reduce

confounding bias.

PS methods have several notable advantages over regression-based covariate adjust-

ment [6,19]: First, one can conduct a PS analysis without repeatedly “touching” the outcome

value, thereby eliminating the risk of introducing bias through outcome model selection. Sec-

ond, correlation among covariates, which causes instability of treatment effects in regression

models, is irrelevant in a PS analysis, where the causal effect estimation depends on pre-

dicted PS values rather than model coefficients. Third, PS methods are less reliant on

tenuous model assumptions about the dependence of outcomes on covariates. Finally, the

fact that our longitudinal PS analysis demonstrates an enhanced effect of BMI attention on

the reduction of ∆%BMIp95 suggests that we have properly adjusted for bias by indication,

which we anticipated would be substantial in this study.

Strengths Our use of PS methods created excellent balance in participant characteristics

between arms, thereby substantially reducing bias in treatment effect estimates. Our study
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benefitted from access to ample longitudinal data, with each timepoint including data from

at least 2,000 children. Our study population was diverse, including 60% Hispanics and 20%

African Americans (Table 1.1).

Limitations A limitation of PS stratification is its assumption of no unmeasured con-

founders. We addressed this concern by conducting a sensitivity analysis that demonstrated

robustness of our findings to all but the most extreme confounding. A limitation of any

analysis taking BMI as an outcome is the dependence of BMI on height, which is often

missing or inaccurately recorded in EHR. We addressed this concern by imputing missing

and implausible height data. Finally, the 84.7% sensitivity of the electronic phenotyping

approach implies that ∼ 15% of the treated are misclassified as controls. Because such mis-

classification would be expected to attenuate treatment effects, it is conceivable that the

causal effect of attention to BMI is stronger than we have estimated it to be.

1.5. Conclusion Attention to BMI has a modest causal effect in the direction of

reducing ∆%BMIp95. The magnitude of this effect varies across time.
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Chapter 2

Generating data from a marginal structural model

2.1. Introduction The marginal structural models (MSMs) comprise “a class of

causal models for the estimation, from observational data, of the causal effect of a time-

dependent exposure in the presence of time-dependent covariates that may be simultaneously

confounders and intermediate variables” [20]. MSMs do not contain covariates because they

are models for causal effects on the entire population [20]. MSM parameters are the marginal

treatment effects. Thus, the response of an MSM is the expected outcome of the population

modeled on the treatment status or dosage only. When using observational data to estimate

an MSM, covariate-induced bias is eliminated by weighting the data by inverse-probability-of-

treatment weighting (IPTW). The weighted data, or pseudo-population, has two properties:

(1) the treatment and covariates are independent and (2) the expected outcome of one group

(treated or control) in the pseudo-population equals the standardized outcome mean of the

same group of the actual population [20, 21]. MSM estimates obtained using IPTW are

consistent and valid for causal inference.

To empirically assess the validity of MSM estimates, one can conduct a simulation study

in which one generates data under a specified MSM. A common, intuitive approach to data

generation is in the order of covariate X, treatment status A (1 for treatment received, 0 for

control), and the outcome Y as a function of X and A, modeled as a generalized linear model

with linear predictor α+ γX +βA. After weighting the data by IPTW, the treatment effect

β is estimated by regressing Y on A only, with the linear predictor modeled as α∗ + β∗A.

A problem with this approach is that β (the conditional effect of A on Y given X) and β∗

(the marginal effect of A on Y ) are in general nonnegligibly different, regardless of whether
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X and A are independent [22, 23]. This “bias” [22, 23] between β and β∗ was proven by

Gail et al [22] to occur when Y takes a form other than linear or exponential on X and

A. From this point onward, we refer to the “bias” as the noncollapsibility of covariates.

Noncollapsibility arises from the inclusion (or exclusion) of X; β̂ is a biased estimate of

β∗ and β̂∗ is a biased estimate of β. Because of noncollapsibility, when one generates data

from X and A, the actual marginal treatment effect may differ substantially from the desired

marginal treatment effect. The generated data will generally follow a saturated model rather

than the desired MSM.

Others have proposed methods of data generation to create a desired MSM [24–31].

However, the existing methods are highly specific to the type of data to be generated (e.g,

survival) [24–27,31], or are computationally burdensome [28–30].

In this chapter, we introduce a new method of generating data with a known marginal

treatment effect. Our method differs from the existing methods in that it is generalizable

to any type of outcome and is easy to implement. The key feature of the new method is

data generation directly from a specified MSM. Therefore, the order of data generation is

potential outcomes Y → X instead of the more natural order of X → Y . Using the new

method, we conducted Monte Carlo simulations to assess the the performance of estimated

MSMs by examining the (i) bias of the estimate, (ii) standard error (SE) and the coverage

probability (CP), (iii) Type I error, defined as the probability of falsely finding a significant

interaction term when interaction is not present, and (iv) power, defined as the probability

of correctly finding a significant interaction term.

2.2. Overview of the marginal structural model

The key features of the MSM are captured in its name. The term marginal refers to

the fact that MSMs estimate the marginal distribution of potential outcomes (as opposed

to a joint distribution of the potential outcomes), and the term structural is borrowed from
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the econometric and social sciences literature, in which potential variables are referred to as

structural [20]. Table 2.1 illustrates the potential outcomes of N subjects in a longitudinal

setting with two timepoints. Under this scenario, there are four possible sequences of treat-

ment (11, 10, 01, 00), and thus, four potential outcomes for subject i (Y 11
i , Y 10

i , Y 01
i , Y 00

i ),

corresponding to the treatment sequences. The MSM models E[Y 11, Y 10, Y 01, Y 00].

Table 2.1: Under two timepoints, each subject has four potential outcomes.

i Y 11
i Y 10

i Y 01
i Y 00

i

1 Y 11
1 Y 10

1 Y 01
1 Y 00

1

2 Y 11
2 Y 10

2 Y 01
2 Y 00

2

3 Y 11
3 Y 10

3 Y 01
3 Y 00

3

...
...

...
...

...

N Y 11
N Y 10

N Y 01
N Y 00

N

The implementation of an MSM consists of three steps: (1) model specification, (2)

calculation of the propensity scores, and (3) estimation. We define At as a binary variable

that equals 1 for treatment received and 0 for control, for t = 1, . . . , T . The final outcome

Y is observed at timepoint T , after observing the covariate history up to time T , X̄T =

(X1, . . . , XT ), and the treatment history up to time T , ĀT = (A1, . . . , AT ).

Step 1: Model specification The model specification depends on the type of treatment

effect that one wishes to estimate. For continuous Y , we might specify model (2.1) if we are

interested in estimating time-specific treatments.

E[Y ] = β0 +
T∑
t=1

βtAt, (2.1)
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where β1, . . . , βT are the treatment effects at timepoints 1 to T . Model (2.1) contains the

main effects only, but one might fit a more complex model by including interaction terms.

Alternatively, model (2.1) can be simplified further to assume a constant treatment effect

(βc) over time:

E[Y ] = β0 + βc

T∑
t=1

At. (2.2)

Models (2.1) and (2.2) do not contain covariates because they model the marginal distribution

of the outcome given treatment status. In the observed dataset, the bias induced from

covariates is adjusted by weighting the subjects.

Step 2: Probability of observed treatment history Given a dataset, we can mimic the

population from which the data were sampled (in other words, create a pseudo-population)

by weighting subjects by the inverse of their probabilities of the observed treatment history,

conditional on X̄T :

Pr[ĀT = āT |X̄T = x̄T ] =
T∏
t=1

Pr[At = at|Āt−1 = āt−1, X̄t = x̄t]. (2.3)

We estimate Pr[At = 1|Āt−1 = āt−1, X̄t = x̄t] from a logistic regression model, setting

At−1 = 0 when t = 1. Then, we define the weight as

w =
1∏T

t=1 P̂r[At = at|Āt−1 = āt−1, X̄t = x̄t]
.

Because w can be highly unstable as T increases, it is generally recommended to use the

stabilized weight (w∗) [20] defined as

w∗ = w · Pr[ĀT = āT ], (2.4)
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where Pr[ĀT = āT ] is the marginal probability of the observed treatment history. The

marginal probability is estimated by the observed proportion of subjects with the specific

treatment history. Thus, the stabilized weight of subject i with treatment sequence āiT is

estimated by

ŵ∗
i = wi ·

∑N
j=1 I(ājT = āiT )

N
, (2.5)

where I is an indicator function that equals 1, if ājT = āiT , and 0 otherwise.

Step 3: Estimation The final step is to estimate the MSM parameters (specified in Step

1) by fitting a weighted regression using w∗ as weights. Estimates obtained from the weighted

regression are the estimated causal treatment effects.

2.3. Noncollapsibility Known to occur when the outcome is modeled other than

linear or exponential on the covariates and treatment effect, noncollapsibility is a “bias”

between the conditional treatment effect and marginal treatment effect that arises due to

the inclusion or exclusion of covariates [22,23]. In this section, we conduct simple simulations

by generating normal, binary and survival data for N = 1000, 10, 000, 10, 0000, 1, 000, 000.

First, we demonstrate the collapsibility of covariates using normal data, followed by the

demonstration of noncollapsibility in binary and survival data.

Normal: collapsibility We generated continuous, normal outcome data as

X ∼ N (0, 1)

Pr[A = 1] = 0.5

Y = X + βA+N (0, 0.2),
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where β = 2 is the group treatment effect for the treated. For each N , β was estimated by

regressing Y on A only. No weighting was required because there was no confounding by

X. Table 2.2 shows that β̂, which can also be obtained by using the averages of individual

outcomes in the treated and control, is approximately equal to β for all N .

Table 2.2: Illustration of collapsibility in normal data.

N β̂ 95% Confidence interval β

1000 1.98 1.86, 2.11

2
10,000 1.99 1.95, 2.03

100,000 1.99 1.98, 2.01

1,000,000 2.00 2.00, 2.01

Binary We generated binary outcomes as

X ∼ N (0, 1)

Pr[A = 1] = 0.5

E[Y |X,A] = expit (X + βA) ,

where exp(β) = 2 is the odds ratio of Y = 1 when A = 1. Ignoring noncollapsibility, a naive

estimate of β (β̂naive) was obtained by using a logistic regression to model Y on A only.

No weighting was required because there was no confounding by X on A. Table 2.3 shows

exp(β̂naive) across N . Noncollapsibility is evident in that exp(β̂naive) does not approximate

exp(β) whether N is small or as large as one million, and the confidence interval deviates

further from exp(β) as the standard error decreases.
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Table 2.3: Illustration of noncollapsibility in binary data.

N exp(β̂naive) 95% Confidence interval exp(β)

1000 1.69 (1.31, 2.18)

2
10,000 1.71 (1.58, 1.85)

100,000 1.75 (1.70, 1.79)

1,000,000 1.78 (1.76, 1.79)

Survival We generated survival data from a Cox-Weibull distribution as

X ∼ N (0, 1)

Pr[A = 1] = 0.5

E[Y |X,A] =

[
−log(U)

λexp(X + βA)

]1/η
,

derived by Bender et al [32], where U ∼ U(0, 1). Following the examples in the studies of

Austin et al, we set λ = 0.00002 and η = 2 [30, 33–36]. We set exp(β) = 2 as the hazard

ratio for the treatment status A. All event times Y were assumed to be observed.

Ignoring noncollapsibility, a naive estimate of β (β̂naive) was obtained by using a Cox

regression to model Y on A only (Table 2.4). No weighting was required because there

was no confounding by X on A. As in the binary data, the bias of the estimated measure

exp(β̂naive) did not diminish with increasing N .

2.4. Method We describe the new method of generating data from a specified MSM

for a longitudinal setting with T timepoints and binary treatment A. Here, we define Yi

as the set of all potential outcomes of subject i that correspond to all possible treatment

sequences under T timepoints.
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Table 2.4: Illustration of noncollapsibility in survival data.

N exp(β̂naive) 95% Confidence interval exp(β)

1000 1.52 1.39, 1.64

2
10,000 1.49 1.45, 1.53

100,000 1.55 1.54, 1.56

1,000,000 1.55 1.54, 1.55

Step 1: Generate potential outcomes According to the designated MSM, generate

the vector Yi (1× 2T ) of potential outcomes under all possible treatment sequences for each

subject i in i = 1, . . . , N .

Step 2: Generate baseline covariates For subject i, generate the baseline covari-

ates, Xi1, as a function of the subject’s potential outcomes Yi. For continuous X, Xi1 =

(xi11, . . . , xi1p) can be defined as

Xi1 = H · Y ⊺
i + ϵ, (2.6)

where H is a p× 2T matrix and ϵ is an error term. By varying the values H, one can control

the degree of confoundedness of X1 in Y . Setting all elements of H to 0 implies that Y and

X1 are independent.

Step 3: Define propensity score models For t = 1, . . . , T , define the propensity score

model at timepoint t, πt, conditional on the covariate history up to time t and the treatment

history up to time t− 1 (if t = 1, Āt−1 = 0):

πt = Pr[At = 1|Āt−1 = āt−1, X̄t = x̄t].

Use a logistic regression to estimate π1. Then, generate generate A1 using π̂1 as the proba-

bility of A1 = 1. In R, A1 is generated by using rbinom() with π̂1 as the probability.
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Carry out Steps 4, 5 for j = 2, ..., T.

Step 4: Generate time-varying covariates Generate Xj as a function of X̄j−1 and

Āj−1.

Xj =

j−1∑
k=1

v⊺kXk +

j−1∑
k=1

ukAk +N (0, σ), (2.7)

where vk is a vector that controls the degree of influence of Xk on Xj, u is a scalar that

controls the degree of influence of Ak on Xj, and σ is the standard deviation of an error

term. Setting vk = 0 implies independence between Xk and the current covariate Xj; setting

uk = 0 implies independence between Ak and Xj.

Step 5: Generate treatment Generate Aj using π̂j as the probability of Aj = 1. In R,

Aj is generated by using rbinom() with π̂j as the probability.

Step 6: Observe one outcome per subject After carrying out Steps 4, 5 for j =

2, . . . , T , each subject now has a realized treatment history āT = (a1, . . . , aT ). We then

observe the outcome (of the potential outcomes) that corresponds to the realized treatment

sequence. In an example setting with T = 2 timepoints, if a subject’s realized treatment

sequence is āT = (1, 1), we observe the potential outcome Y 11, but not the other poten-

tial outcomes Y 10, Y 01, Y 00. Table 2.5 demonstrates an example of potential outcomes vs.

observed outcome for data with binary outcomes.

Step 7: MSM estimation Use the X, the observed treatment sequence āT , and the

observed outcome Y āT to estimate an MSM.

2.4.1. Binary data To apply the method to binary data, only step 1 needs to be

modified.
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Table 2.5: An example population of N subjects with their four potential outcomes and
one observed outcome (bold).

i (a1, a2) Y 11 Y 10 Y 01 Y 00

1 (1, 0) 1 1 1 1

2 (0, 1) 1 0 0 1

3 (0, 0) 1 1 1 1
...

...
...

...
...

...

N (0, 1) 1 0 0 0

Step 1 For binary data, the MSM can be specified as, but not limited to, equation (2.1)

or equation (2.2). Use E[YT |ĀT = āT ] as probabilities to generate binary potential outcomes

for ĀT = āT .

2.4.2. Survival data The method can be applied to survival data in the context of Cox

proportional hazards model by modifying steps 1, 7.

Step 1 Generate potential survival times S. For demonstration, we again use Bender et al ’s

formula from Section 2.3 for generating survival times from a Cox-Weibull distribution [32]:

S =

[
−log(U)

λexp
(
g(ĀT ; β)

)]1/η ,
where U ∼ U(0, 1). Following the studies of Austin et al, one can set η = 2 and λ = 0.00002

[30,33–35].

The exponentiated function g(ĀT ; β) is the linear form of an MSM that defines the

treatment effect on the outcome. As with any MSM, g(ĀT ; β) can be simple, saturated, or

have a single common treatment effect across T timepoints.
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After generating S, one can apply censoring by setting a threshold so that survival times

exceeding the threshold are censored. The threshold can be uniform or depend on ĀT .

Alternatively, one can generate a binary censored status (1 if censored) randomly or by

using probabilities defined by ĀT .

Step 7 Using g(ĀT ; β) from Step 1, fit a Cox proportional hazards model using the weights

at timepoint T :

h(T ) = h0(T )exp
(
g(ĀT ; β)

)
,

where h(T ) and h0(T ) are the hazard and baseline hazard at timepoint T .

2.5. Simulation Data were generated as described below for T = 2.

Specifying MSMs Motivated by obesity studies [5, unpublished data, 2022], we generated

data in which the intervention was clinician attention to high body mass index (BMI) and the

outcome was the binary status of weight improvement. Potential outcomes Y were generated

under two models:

Model A: Pr[Y = 1] = expit (β0 + β1A1 + β2A2)

Model B: Pr[Y = 1] = expit (β0 + β1A1 + β2A2 + β3A1A2)

The selection between the two models depended on the outcome measure to be assessed

(Table 2.7). The chosen values of β of the MSM reflect the study’s clinical findings:

• β0 = log(0.2): Without any attention to BMI, the odds of weight improvement is low

(OR= 0.2).

• β1 = log(3): Attention to BMI is effective at timepoint 1 (OR= 3).
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• β2 = log(2): The effect is diminished at timepoint 2 (OR= 2).

• β3 = −0.5log(3) (Model B only): More intervention is not much better than one

intervention at timepoint 1; treatment effects are not additive.

Baseline covariates For our simulated data, we induced confounding by generating the

scalar baseline covariate Xi1 with varying values of H (equation (2.6), p = 1), for i =

1, . . . , N . We induced four levels of confounding:

1. H = (0, 0, 0, 0): No confounding — X1 and Y are independent.

2. H = (−2, 0, 0, 0): The observed proportion of subjects with Y 11 = 1 underrepresents

the true proportion. Those with Y 11 = 1 are assigned lower values of X1, X2, lowering

their p1, p2. As a result, those with Y 11 = 1 are less likely to receive A = (1, 1). Instead,

those with Y 11 = 0 are more likely to receive A = (1, 1).

3. H = (0, 0, 0,−2): The observed proportion of subjects with Y 00 = 1 overrepresents

the true proportion. Those with Y 00 = 1 are less likely to receive A = (1, 1) (in other

words, more likely to receive A = (0, 0)). The magnitude of confounding levels 2 and

3 are considered equal.

4. H = (−2, 0, 0,−2): Both 2 and 3. This level of confounding is the highest.

For all confounding levels, H is a 1× 22 matrix and ϵ = N (0, 0.5) (equation 2.6).

Table 2.6 illustrates the observed proportions of subjects with Y a1a2 = 1 for the four

confounding levels using a sample of N = 10, 000 subjects. The numbers in the first row for

the population are the Pr[Y a1a2 = 1] determined by β0, β1, β2, β3.
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Table 2.6: The population’s probabilities of Y a1a2 = 1 and the observed means of Y a1a2 in a
sample of N = 10, 000.

Source Conf Y 11 Y 10 Y 01 Y 00

Population NA 0.42 0.39 0.30 0.16

Sample

1 0.42 0.37 0.29 0.17

2 0.05 0.40 0.29 0.17

3 0.41 0.37 0.29 0.43

4 0.05 0.38 0.29 0.28

Propensity score models The propensity score models at timepoints 1 and 2 were defined

as below:

π1 = expit(X1)

π2 = expit(0.4X1 + 0.6X2 + 0.5A1).

A1, A2 were generated by using rbinom() in R, setting π1, π2 as the probabilities.

The correct propensity score models were used to compute the inverse of probability of

treatment.

Time-varying covariates X2 were generated by setting v1 = 1, u1 = −2, σ = 0.5

(Equation (2.7)):

X2 = X1 + (−2A1 + b) +N (0, 0.5),

where b = 1. The additive term b was included so that when A1 = 1, the effect of A1 on X2

is −1, and when A1 = 0, the effect is 1.
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Fitting MSMs We also used Models A and B as the MSM to be estimated. The selection

between the two models depended on the outcome measure to be assessed. Table 2.7 outlines

the combinations of the specified and fitted MSMs and the corresponding result measures.

Table 2.7: Result measures assessed under Scenarios 1, 2, and 3.

Scenario True model Fitted model Results

1 A A Bias, SE, CP

2 B B Bias, SE, CP, Power

3 A B Type I error

Sample sizes Within each scenario, three sample sizes (N = 1000, 5000, 10, 000) were used

to generate data. Within each N , four confounding levels were used. Thus, for each scenario,

there were 12 unique combinations of N and confounding level. At each combination, we

generated 1000 samples using R version 4.2.0.

The correct propensity score models were used to compute the inverse of probability of

treatment.

2.6. Results

Bias We assessed the bias of estimates ( 1
1000

∑1000
m=1(β̂j − βj)) under Scenarios 1 (j = 1, 2)

and 2 (j = 1, 2, 3). Figure 2.1 shows that bias decreased as N increased, but it increased

as the level of confounding worsened. The effect of confounding on bias was greater as the

N decreased. The sensitivity of bias with respect to confounding levels suggests that IPTW

is not completely robust to the degrees of confounding. This was consistent with the study

results of Austin and Stuart [30] which showed, using survival data, that strong confounding
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in the treatment mechanism resulted in biased estimates of the hazard ratio, even when the

propensity score model was correctly specified (as was the case in our study). In Scenario 2,

the estimate of β3 (compared to β1, β2) incurred the most bias across N and confounding.

Standard error and coverage probability The standard error (SE) and coverage prob-

ability (CP) of MSM coefficients were evaluated under Scenarios 1 and 2. To obtain standard

errors, we used two methods of variance estimation: the conventional method based on max-

imum likelihood estimation, and the bootstrap method using 250 samples per iteration.

Figures 2.2 and 2.3 show the SE of each coefficient under both scenarios, stratified by N .

Overall, the bootstrap SEs were larger than the conventional SEs. In Scenario 1 (Figure

2.2), the bootstrap SEs were larger at confounding 2, 4. In Scenario 2 (Figure 2.3), at

confounding 2 and 4, the bootstrap SEs of β̂3 were notably larger than the SEs of β̂1, β̂2,

likely because, at levels 2 and 4, confounding was induced to distort the observed effect of

interaction.

The bootstrap CP performed better than the conventional CP. Figures 2.4 and 2.5 show

that, across N , the CPs using the bootstrap method were around 0.95, while the conventional

method tended to undercover, consistent with the findings of Austin (2016) using survival

outcome data [29]. Compared to bootstrap, the conventional CPs were sensitive to the

confounding levels.

The superior performance of the bootstrap method is especially highlighted in the CPs

of β̂3 (Figure 2.5). While the bootstrap CPs hovered around 0.95, the conventional CPs of

β̂3 performed poorly (as low as 0.46 at confounding 4).

The undercoverage of the conventional CPs suggests that the model-based SEs underes-

timate the true variability.
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Figure 2.1: Bias under Scenarios 1 and 2, stratified by N and confounding levels.
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Figure 2.2: Standard errors in Scenarios 1, stratified by N and confounding levels.
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Figure 2.3: Standard errors in Scenarios 2, stratified by N and confounding levels.
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Figure 2.4: Coverage probability in Scenarios 1, stratified by N and confounding levels.
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Figure 2.5: Coverage probability in Scenarios 2, stratified by N and confounding levels.
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Type I error We defined Type I error as the probability of falsely finding a significant

interaction term, at level 0.05, in the fitted MSM. Thus, we assessed Type I error under

Scenario 3, in which the true model used to generate data did not have an interaction term,

but the fitted model falsely had an interaction term. When determining the statistical

significance of the interaction term (level 0.05), we used the bootstrap method of variance

estimation, as it was shown to be superior to the conventional method. Figure 2.6 shows the

Type I error across N and the confounding levels. There was no discernible pattern with

respect to N or the confounding levels. Overall, the Type I errors ranged from 0.024 to

0.064.

Power We defined power as the probability of correctly obtaining a significant interaction,

at level 0.05, from the fitted MSM. Thus, we assessed power under Scenario 2, in which both

the true and fitted models contained an interaction term. At each N , the reference power

was obtained by conducting 1000 Monte Carlo simulations without confounding, using equal

weights for all subjects (0.480, 0.986, 1.000 in the order of increasing N). Figure 2.7 shows

that, across N , the power of all four confounding levels resembles the pattern of the reference

power across N , with confounding levels 2,4 lagging behind the other levels.

A plausible reason for the lower power at confounding 2, 4 is that, at those confounding

levels, confounding was induced to distort the observed effect of the interaction term β3 (See

Basleine covariates in Section 2.5, Table 3.2). If confounding is not completely adjusted by

IPTW, the estimated interaction effect β̂3 may not be substantial enough to be statistically

significant.

2.7. Discussion We introduced a simple method of generating data directly from a

specified MSM. Using the new method, we conducted Monte Carlo simulations and assessed

some properties of the MSM using binary data and the correct propensity score models. The
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Figure 2.6: Type I error in Scenario 3, stratified by N and confounding levels.

Figure 2.7: Power in Scenario 2, stratified by N .
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results highlighted three findings. First, using binary data, the increasing magnitude of bias

of the MSM estimates with respect to the level of confounding showed that IPTW is not

robust to the degree of confounding, consistent with the findings of Austin and Stuart using

survival data [30]. Second, also consistent with Austin’s study [29], the bootstrap method

of variance estimation outperformed the conventional (maximum-likelihood based) method.

The bootstrap standard errors were larger, but the resulting coverage probability approxi-

mated the nominal value at all confounding levels. This signifies that one can generally make

a valid inference using the bootstrap estimation of variance. Lastly, the estimated interaction

terms were less stable than the estimates of the main effects when confounding was induced

to affect the observed outcomes of those who received treatment at both timepoints. The

relative instability was reflected in lower power. For investigators, the low power indicates

that the decision to include interaction terms in the MSM should not be solely based on the

significance of the estimated interaction parameter.

Our method differs from other methods in that the potential outcomes are generated

directly from the specified MSM, without covariates, thus avoiding the noncollapsibility of

covariates. Our method is not the only way to avoid noncollapsibility for all types of data.

Alternatively, one can specify the marginal treatment effect, and use an iterative process

to determine values of the conditional treatment effects that would induce the specified

marginal effect [29, 30]. The advantage of our method is that it omits the iterative process

and generates potential outcomes directly from the specified MSM.

We limited the simulation study to two timepoints (T = 2). As T increases, the proba-

bility of treatment becomes smaller, resulting in large weights even if stabilized weighting is

used. When a handful of subjects with large weights drives the study results, weight trunca-

tion is a widely explored alternative. However, if the propensity score model is correct, large

weights obtained using the propensity score should be valid. The next step of this study is

to evaluate the validity of the MSM procedure when the weights are large.
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Chapter 3

Assessing the impact of large weights on MSM estimates under multiple timepoints

3.1. Introduction In the preceding chapter we introduced a new method for generating

data directly from a designated marginal structural model (MSM). Using this method, we

demonstrated the behavior of MSM estimates in a simulation study assuming two timepoints.

In this chapter, we further examine the behavior of MSM estimates, addressing some issues

that arise in practice when applying more complex MSMs.

Generally, as the number of timepoints T increases, the estimated probabilities of treat-

ment can become very small, and correspondingly the subject weights (computed as the

inverses of the probabilities of treatment) can become large [20]. One does expect to see

some discrepancy in weights, reflecting the value of weighting as a means to eliminate bias

caused by confounding. But when discrepancies are extreme, investigators may be concerned

about sensitivity of estimates to the outcome values of small numbers of highly influential

observations, as well as sensitivity to the specification of the propensity score model [37].

Weight-trimming methods can reduce the impact of a few extremely large weights [38–42].

However, it is known that weight trimming may not always improve estimate accuracy

[43], and there remains a lack of guidance on the optimal level of weight trimming [37, 43].

Moreover, the ad hoc approach of weight trimming is effectively an admission of failure of

the procedure used to estimate the propensity scores [43]; thus, assuming that the propensity

score model is correct – or nearly so – one would prefer to avoid trimming.

In this chapter, we deployed our new simulation method to assess the validity of MSM

estimates obtained without weight trimming under scenarios with multiple treatment time-

37



points. We used two types of weights to obtain MSM estimates: Inverse-probability-of-

treatment weights (IPTW) and stabilized weights (SW), the latter being generally recom-

mended in the literature [20, 38]. Our study aims to compare the two weighting schemes

using MSMs with binary outcomes. We moreover assess the sensitivity of estimates to mis-

specification of the propensity score model at a range of sample sizes (N = 200, 500, 1000,

and 10,000) and numbers of treatment timepoints (T = 2, 5, 8, and 10).

3.2. Method The method of generating data from an MSM without noncollapsibility

(Chapter 2, Section 2.4) is briefly outlined.

Step 1: Generate potential outcomes According to the designated MSM, generate the

vector Yi (1 × 2T ) of potential outcomes under all possible treatment sequences for each

subject i in i = 1, . . . , N .

Step 2: Generate baseline covariates For each subject, generate the baseline covariates,

X1, as a function of the subject’s potential outcomes. For continuous X, Xi1 can be defined

as

Xi1 = H · Y ⊺
i + ϵ,

where H is a p× 2T matrix and ϵ is an error term.

Step 3: Define propensity score models For t = 1, . . . , T , define the propensity score

model at timepoint t, πt, conditional the covariate history up to time t and the treatment

history up to time t− 1 (if t = 1, Āt−1 = 0.).

πt = Pr[At = 1|Āt−1 = āt−1, X̄t = x̄t].

Generate A1 using π1 as the probability of A1 = 1.

Carry out Steps 4, 5 for j = 2, ..., T.
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Step 4: Generate time-varying covariates Generate Xj as a function of X̄j−1 and Āj−1.

Xj =

j−1∑
k=1

vkXk +

j−1∑
k=1

ukAk +N (0, σ),

where vk is a vector that controls the degree of influence of Xk on Xj, u is a vector that

controls the degree of influence of Ak on Xj, and σ is the standard deviation of an error

term.

Step 5: Generate treatment Generate binary Aj using πj as the probability of Aj = 1.

Step 6: Observe one outcome per subject For each subject, observe the potential out-

come that corresponds to the treatment history realized from generating A1, . . . , AT having

used π1, . . . , πT as the probabilities.

Step 7: MSM estimation

3.3. Simulation For T = 2, 5, 8, 10, potential outcomes Y were generated from an

MSM with a common treatment effect:

Pr[Y = 1] = expit

(
β0 + βc

T∑
t=1

At

)
, (3.1)

setting β0 = log(0.7), βc = log(1.2).

Baseline scalar covariate Xi1 was generated by defining the 1 × 2T matrix as H =

(−1, 0, . . . , 0,−1), setting the first and last elements to −1 and the rest to 0:

Xi1 = H · Y ⊺
i + ϵ,

where ϵ = N (0, 0.5).
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The subsequent time-varying covariates were generated by setting vj−1 = 1, uj−1 = −2,

σ = 0.5 (Equation (2.7)):

Xj = Xj−1 + (−2Aj−1 + b) +N (0, 0.5),

for j = 2, . . . , T . The additive term b = 1 was included so that when Aj−1 = 1, the effect of

Aj−1 on Xj is −1, and when Aj−1 = 0, the effect is 1.

We considered two scenarios of propensity score models (Table 3.1). The first scenario

only includes first-degree polynomials and the second scenario contains a third-degree poly-

nomial.

At each timepoint, treatment status was generated by using rbinom() in R, setting the

propensity score as the probability.

For both scenarios, propensity scores were estimated by using the logistic regression to

model A as:

A1 ∼ X1

Aj ∼ Xj−1 +Xj + Aj−1,

for j = 2, . . . , T . Thus, the propensity score model was correctly specified under Scenario 1

and misspecified under Scenario 2.

Under each scenario, data were weighted by IPTW and SW. Using the weighted data,

we estimated model (3.1) to obtaini β̂c.

We conducted 1000 iterations using sample sizes N = 200, 1000, 5000, 10, 000 and time-

points T = 2, 5, 8, 10. Following the results from Chapter 2, we used the bootstrap method

of variance estimation for β̂c.
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Table 3.1: Two propensity score models were considered.

Scenario True propensity score models

1
π1 = expit(X1)

πj = expit(0.6Xj + 0.4Xj−1 + 0.5Aj−1), j = 2, . . . , T.

2
π1 = expit(X1)

πj = expit(0.6Xj + 0.2Xj−1 + 0.2X3
j−1 + 0.5Aj−1), j = 2, . . . , T.

3.4. Results Results are shown for four combinations of weighting and type of

propensity score models: (1) IPTW with the correct propensity score models, (2) SW with

the correct propensity score models, (3) IPTW with misspecified propensity score models

(denoted IPTW-mis), and (4) SW with misspecified propensity score models (denoted SW-

mis).

Distribution The Q-Q plots (Figure 3.1) were plotted by normalizing β̂cm of iterationm as

β̂cm−βc

s
, where s = 1

999

∑1000
m=1(β̂cm− ¯̂

βc)
2,

¯̂
βc =

1
1000

∑1000
m=1 β̂cm. The distribution of β̂c obtained

using IPTW is well-approximated by the normal distribution. The distribution becomes more

thick-tailed as T and N increase. For instance, the tails are thicker at T = 10, N = 10, 000

than at T = 8, N = 10, 000. The same pattern applies to β̂c obtained using SW, IPTW-mis,

and SW-mis (Appendix A).

Estimate error The error of β̂cm from iteration m, defined as β̂cm − βc, was examined

using boxplots (Figures 3.2, 3.3). Outliers (shown as empty circles) were defined as being

outside 1.5 interquartile range from the first or third quartile. The median estimate errors

approximated 0 across T , except at T = 2, N = 200. Overall, the error distributions of SW

varied less with fewer outliers than distributions of IPTW. Furthermore, the distributions of

IPTW-mis varied less with fewer outliers than the distributions of IPTW, and SW-mis less

than SW.
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Figure 3.1: Distribution of β̂c obtained using IPTW. A similar pattern was observed for
SW, IPTW-mis, and SW-mis.
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Figure 3.2: Distributions of estimate error at T = 2, 5.
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Figure 3.3: Distributions of estimate error at T = 8, 10.
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% Largest weight % Largest weight (%LW) is defined as the relative percentage of the

largest weight to the sum of all weights in the sample. It measures the influence of the

subject with the largest weight on MSM estimates. Figure 3.4 shows that both T and N

affect %LW. The median %LW increased with T and decreased with N , indicating that the

weights are more equally distributed in larger samples with fewer timepoints. In IPTW-mis

and SW-mis, the median %LW were lower than in IPTW and SW and the effect of T on

%LW lessened as N increased.

In geneneral, %LW is positively correlated with absolute estimate error (|β̂c − βc|), more

so in IPTW (Figure 3.5) and SW (Figure 3.6) than in IPTW-mis (Figure 3.7) and SW-

mis (Figure 3.8). For IPTW and SW, the correlation increased with T and N (except at

T = 2), reaching 0.8 and 0.82 respectively at T = 10, N = 10, 000. On the other hand,

IPTW-mis and SW-mis showed weaker correlations, reaching 0.7 and 0.78, respectively, at

T = 10, N = 10, 000. The higher correlation can be attributed to the larger largest %LW in

IPTW. At T = 10, N = 10, 000, the largest %LW for IPTW and SW were 98.4% and 89.4%,

compared to 44.5% for IPTW-mis and 57.7% for SW-mis.

Standard error The standard errors (SEs) increased with T . At T = 2, SW and SW-mis

had smaller SEs than IPTW and IPTW-mis (Figure 3.9). At the other timepoints however,

IPTW-mis and SW-mis had smaller SEs than IPTW and SW, indicating that MSM estimates

obtained with IPTW-mis and SW-mis were more stable than estimates obtained by IPTW

and SW.

Coverage probability The coverage probability (CP) was generally higher for SW and

SW-mis than IPTW and IPTW-mis (Figure 3.10). The CPs of SW and SW-mis ranged from

0.90 to 0.97, whereas the CPs of IPTW and IPTW-mis ranged from 0.83 to 0.94.
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Figure 3.4: Median % largest weights.
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Figure 3.5: Correlation between %LW and absolute estimate error for IPTW. Green is the
median %LW and red is the fitted regression.
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Figure 3.6: Correlation between %LW and absolute estimate error for SW. Green is the
median %LW and red is the fitted regression.
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Figure 3.7: Correlation between %LW and absolute estimate error for IPTW-mis. Green is
the median %LW and red is the fitted regression.
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Figure 3.8: Correlation between %LW and absolute estimate error for SW-mis. Green is
the median %LW and red is the fitted regression.
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Figure 3.9: Standard errors

Figure 3.10: Coverage probability
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3.5. Real-data example Using the child obesity data from Chapter 1 [5, unpublished

data, 2022], we illustrate the interpretation of the results presented in the previous section.

The electronic health record (EHR) data consists of primary-care visits of 12,754 children

with overweight or obesity in greater Dallas. The treatment variable in this dataset is the

clinician’s attention to the child’s high body mass index (BMI). The binary status of attention

to BMI is determined by an electronic phenotype approach. The electronic phenotype sought

evidence of guideline-recommended weight-management clinical practices using specific text

associated with numeric International Classification of Diseases (ICD) codes (from billing

and problem-list codes), education codes for primary-care obesity counseling, and referrals

to nutrition, weight-management, and bariatric surgery. The binary outcome, observed 1

month to 2.5 years after attention to BMI, is the status of change in percent of BMI 95th

percentile (%BMIp95) from the baseline %BMIp95, equaling 1 if %BMIp95 decreased by more

than 0.5%. At timepoint t, covariates used to estimate propensity scores pt included age,

sex, race, %BMIp95 (observed at time t), medication associated with weight gain, medication

associated with weight loss, whether the child had a well-child care visit in the past 12

months, whether the child had a sick visit in the past 12 months, whether the current visit

was in the summer, and the treatment status at the previous timepoint (t− 1).

We took subsets of the data by the number of timepoints, T = 2, 5, 8, 10. In each

subset, we estimated an MSM that modeled the outcome with a common treatment effect

for treatments at all timepoionts: E[Y ] = expit
(
β0 + βc

∑T
t=1At

)
. Table 3.2 shows the

odds ratio (OR), 95% confidence interval (CI), and % largest weight (%LW) for each subset.

The confidence intervals were constructed using the bootstrap method variance estimation

(250 samples). Here, we assume that the propensity score models used for this data are

misspecified. Based on the findings in Section 3.4, we focus on estimates obtained using

SW-mis.
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The estimated OR 1.11 at T = 2 can be considered more reliable than at other timepoints

due to the advantages of a small number of timepoints and a large sample size (N > 10, 000).

In Section 3.4, we saw that, for T = 2, N = 10, 000, the distribution of estimate error was

close to 0 with few outliers. However, because we also saw in Section 3.4 that the coverage

probabilities at T = 2, N = 10, 000 did not exceed 0.95, it is possible that the 95% CI using

SW, (1.02, 1.18), should be wider.

The estimated ORs at other timepoints should be accepted with more caution not only

because we saw that there were more outlying estimate errors at T = 5, 8, 10 (Section

3.4), but also because the %LWs in Table 3.2 are large compared to the largest %LWs of the

corresponding (approximately) T and N in Figure 3.8. For SW-mis, the reported correlations

between %LW and absolute estimate error are not large, but they are also not negligible.

Table 3.2: Estimated odds ratios of improvement in %BMIp95 for children who received
BMI attention. Propensity score models are assumed to be misspecified.

T N
IPTW-mis SW-mis

OR 95% CI %LW OR 95% CI %LW

2 11413 1.11 (1.04, 1.20) 0.33% 1.10 (1.02, 1.18) 0.27%

5 6821 1.17 (1.01, 1.34) 1.78% 1.23 (0.98, 1.55) 13.52%

8 3357 1.25 (0.90, 1.74) 15.5% 1.25 (0.87, 1.81) 31.24%

10 2025 0.83 (0.62, 1.10) 16.6% 0.82 (0.61, 1.12) 39.49%

3.6. Discussion This simulation study assessed the the validity of MSM estimates ob-

tained under multiple timepoints using the correct and misspecified propensity score models

and inducing mild confounding in the generated data. Data were weighted using two methods

of weights: inverse-probability-of-treated weights (IPTW) and stabilized weights (SW).
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General findings MSM estimates were affected by the number of timepoints. The dis-

tribution of normalized estimates (against the true effect) were approximately normal un-

der T = 2 but became increasingly thick-tailed under T = 5, 8, and 10. The thick-tailed

distribution of estimates went hand-in-hand with estimate error. In later timepoints, the

occurrences of large estimate errors did not diminish with increasing sample sizes. %LW

also increased with with respect to T and N . As %LW increased, the correlation between

%LW and estimate error also increased. The increasing positive correlation with respect to

T and N suggests that in a large dataset with multiple timepoints, the presence of large

weights carries more potential for an inaccurate estimate than in a smaller sample with less

timepoints.

IPTW, IPTW-mis vs. SW, SW-mis SW is generally recommended over IPTW [20,38].

Using binary data, our study results confirmed this recommendation, consistent with the

results of Xu et al ’s study using risk ratios as the outcome [44]. The advantage of SW

manifested most prominently in the coverage probability. The coverage probabilities of SW

and SW-mis were always higher than IPTW and IPTW-mis.

SW vs. SW-mis There were notable differences between SW and SW-mis. Estimates

obtained using SW-mis were closer to the true parameter than estimates obtained using SW.

For SW-mis, %LW were smaller and there was less correlation between %LW and estimate

error. The standard errors were also smaller but the coverage probabilities were higher.

The reason for the superior performance of SW over IPTW, and of SW-mis over SW

may lie in the magnitude of extreme weights. Compared to IPTW, SW is less extreme. In

our study, weights produced under misspecified propensity score models were less extreme

because the misspecified propensity score model did not have the third-degree polynomial

term present in the true propensity score model. Thus, the resulting propensity scores under
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misspecified models varied less than the true propensity scores and yielded less extreme

weights.

A possible alternative to SW is the overlap weights (OW) introduced by Li et al [39].

Unlike IPTW and SW, the overlap weights are bounded. The next plausible simulation

study would be to assess MSM estimates obtained by SW and OW under varying propensity

score models.
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Appendix A

Appendix of Chapter 3
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Figure 1.1: Distribution of β̂c obtained using SW.
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Figure 1.2: Distribution of β̂c obtained using IPTW-mis.
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Figure 1.3: Distribution of β̂c obtained using SW-mis.

59



BIBLIOGRAPHY

[1] C. Norlin, M. Crawford, C. Bell et al., Delivery of well-child care: A look inside the door,
Acad Pediatr 11 (2011) 18–26. 1

[2] K. Manning, A. Ariza, T. Massimino et al., Health supervision visits of very young
children: Time addressing 3 key topics, Clin Pediatr (Phila) 48 (2009) 931. 1

[3] S. Barlow and E. Committee, Expert committee recommendations regarding the
prevention, assessment, and treatment of child and adolescent overweight and obesity:
summary report, Pediatrics 120 (2007) Suppl 4:S164–92. 1

[4] B. Dennison, Bright futures and NHLBI integrated pediatric cardiovascular health
guidelines, Pediatr Ann. (2012) e31–6. 1

[5] C. B. Turer, S. E. Barlow, D. B. Sarwer, B. Adamson, J. Sanders et al., Association of
clinician behaviors and weight change in school-aged children, American Journal of
Preventive Medicine 000 (2019) 1–10. 1, 2, 12, 24, 52

[6] G. Imbens and D. Rubin, Causal Inference for Statistics, Social, and Biomedical Sciences.
New York, NY: Cambridge University Press, 2015:257-306. 2, 6, 12

[7] D. Rubin, Using propensity scores to help design observational studies: Application to the
tobacco litigation, Health Services and Outcomes Research Methodology 2 (2001) 169.
2, 6

[8] C. Turer, H. Lin and G. Flores, Health status, emotional/behavioral problems, health care
use, and expenditures in overweight/obese US children/adolescents, Acad Pediatr. 13
(2013) 251–258. 2, 3

[9] Centers for Disease Control and Prevention, “Defining childhood weight status.”
https://www.cdc.gov/obesity/basics/childhood-defining.html, Aug., 2022. 2

[10] K. Kainz, N. Greifer, A. Givens et al., Improving causal inference: Recommendations for
covariate selection and balance in propensity score methods, Journal of the Society for
Social Work and Research 8 (2017) 279–303. 4, 6

[11] J. Pearl, Invited commentary: Understanding bias amplification, American Journal of
Epidemiology 174 (2011) 1223–1227. 4, 6

[12] D. Freedman and G. Berenson, Tracking of BMI z scores for severe obesity, Pediatrics
(Evanston) 140 (2017) e20171072. 5

60

https://www.cdc.gov/obesity/basics/childhood-defining.html


[13] D. Freedman, N. Butte, E. Taveras et al., BMI z-Scores are a poor indicator of adiposity
among 2- to 19-year-olds with very high BMIs, NHANES 1999-2000 to 2013-2014,
Obesity (Silver Spring, MD) 25 (2017) 739–746. 5

[14] C. Daymont, M. Ross, L. Russell et al., Automated identification of implausible values in
growth data from pediatric electronic health records, J Am Med Infom Assoc. 24
(2017) 1080–1087. 5

[15] J. Lunceford and M. Davidian, Stratification and weighting via the propensity score in
estimation of causal treatment effects: A comparative study, Statistics in Medicine 23
(2004) 2937–2960. 6
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