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Telemetry sensors play a crucial role in spacecraft operations, providing essential data on 

efficiency, sustainability, and safety. However, identifying irregularities in telemetry data can be 

a time-consuming process that risks the success of missions. With the rise of CubeSats and 

smallsats, telemetry data has become more abundant, but concerns about privacy and scalability 

have resulted in untapped data potential. To address these issues, we propose a new approach to 

anomaly detection that utilizes machine learning models at data sources. These models solely 

transmit weights to a centralized server for aggregation, resulting in improved dataset 

performance with a single global model. We have also incorporated self-attention into the 

federated process to further enhance anomaly detection performance. Our experiments with real-

world telemetry data have demonstrated that our approach is state-of-the-art in that we can 

construct a single model to address multiple telemetry channels while still adhering to the 

constraints typically seen in space missions. Our framework streamlines anomaly detection, 

promoting operational efficiency, sustainability, and safety. It facilitates collaborative insights 

while abiding by mission security constraints and reducing the risk of accidents and downtime, 

ensuring sustainability.  
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CHAPTER 1: Introduction 
 

An integral part of space missions is the ability of the spacecraft to communicate data 

streams of each onboard instrument. This enables mission operators to capture payload data and 

critical engineering data regarding the health of the spacecraft. This process is called telemetry 

monitoring. Once in orbit, the spacecraft constantly sends telemetry data back to Earth, which 

contains valuable information about the performance and status of the spacecraft's numerous 

systems and instruments.[20]. The volume and generation of this data is determined by mission 

complexity, duration, onboard instruments, and spacecraft automation [42]. Throughout the 

operational phase of a mission, the amount of telemetry data generated can vary depending on 

the type of instrument and how frequently measurements are taken. For instance, an instrument 

that measures the temperature of a spacecraft's battery might only produce a handful of data 

points each minute, while a camera capturing images of a planet could yield several gigabytes of 

data daily [8]. One critical activity for telemetry monitoring is to observe for anomalies referred 

to as anomaly detection. Mission planners and designers assume certain states of the spacecraft 

when in orbit and need to be notified when the spacecraft is in an aberrant state enabling 

operators to return the spacecraft to a nominal state through a series of corrective telecommands.  

The history of spacecraft anomaly detection dates back to the early days of space 

exploration. In the early days of manned spaceflight, astronauts or ground-based personnel often 

detected anomalies and manually corrected them through teleoperation or other means [28]. 

However, the need for more advanced and automated anomaly detection techniques became 
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apparent as spacecraft missions became more complex and sophisticated. One of the earliest 

examples of automated anomaly detection in spacecraft occurred during the Apollo 11 mission in 

1969. The spacecraft's guidance computer encountered an error during the descent to the lunar 

surface, triggering an alarm. However, the astronauts were able to override the error and 

complete the landing successfully manually. After the mission, the error was traced to a faulty 

switch, and new procedures were implemented to prevent a recurrence of the problem. In the 

following decades, researchers continued developing and refining techniques for automated 

anomaly detection in spacecraft telemetry data. Early approaches focused on statistical methods, 

such as hypothesis testing and regression analysis, to detect anomalies in spacecraft data. 

However, these methods had limited accuracy and required extensive human involvement to 

interpret the results [49]. With the increase in the utilization of machine learning and data mining 

techniques seen in the 1990s, researchers began to explore these methods for anomaly detection 

in spacecraft telemetry data. For example, NASA's Jet Propulsion Laboratory researchers 

developed the Autonomous Sciencecraft Experiment, which used machine learning algorithms to 

detect and classify anomalies in Mars rover telemetry data [53]. Since then, research in 

spacecraft anomaly detection has continued to advance. New techniques and approaches have 

been developed to address the challenges of detecting anomalies in increasingly complex and 

diverse spacecraft systems. 

1.1 Background 

The ever-changing landscape of today's world has highlighted the need for adaptable and 

resilient systems that can function effectively in both expected and unforeseen circumstances. 

Deep learning (DL) or the subset of machine learning that uses multi-layered neural networks as 

function approximators, has emerged as a powerful technology that allows systems to learn rules 
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from vast amounts of data [18]. This approach has proved to be more effective than relying 

solely on prescriptive rules defined by engineers across a wide range of domains [30].  

The resurgence of AI(Artificial Intelligence) in recent years has been remarkable, and deep 

learning has played a significant role in its success, especially in tasks such as image recognition. 

Most DL methods assume a single machine will be dedicated to handling the computational task 

of fitting the model to the data available in the training process, referred to as Centralized 

Learning (CL) [16]. CL frameworks have been successful for technology companies with access 

to extensive cloud-based data. However, this approach has its limitations, particularly in 

situations where data cannot be easily transmitted to a central location due to factors such as 

limited bandwidth, connectivity issues, privacy concerns, and resource constraints. In healthcare, 

for example, strict privacy regulations make it challenging to pool data, while in IoT, 

transmitting raw data can be energy-intensive. Pursuing a centralized learning strategy in these 

scenarios can result in limited access to new data, leading to outdated decision-making criteria 

and a decline in system performance over time. Federated Learning emerges as a solution for 

such challenges. First introduced by [16], FL is defined as sub-field of machine learning focused 

on settings in which multiple entities collaboratively train a single model without the sharing of 

data but model parameters [16]. Unlike centralized learning, Federated Learning brings the 

model to the data rather than vice versa. It is particularly relevant in situations where transmitting 

raw on-device data is expensive or impractical. Federated Learning allows continuous training of 

intelligent systems post-production, addressing the limitations of centralized learning. It is 

especially useful in overcoming legal constraints in cases like the Health Insurance Portability 

and Accountability Act (HIPAA), where patient data aggregation for medical research is 

challenging. FL's ability to send model updates instead of bulk data minimizes data transmission 
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and respects privacy concerns. Google's application of FL in its Android operating system 

showcases its potential benefits for cell phone users concerned about privacy, battery life, and 

data usage. By communicating only model updates, FL reduces bandwidth usage and enhances 

privacy, crucial considerations for both cell phones and IoT devices with limited resources [16].  

In dynamic environments, users expect intelligent systems to adapt beyond the initial 

training dataset. FL, by enabling distributed model training on various devices simultaneously, 

allows systems to continually learn from local data during the Utilization & Support stages of the 

system lifecycle. The federated learning architecture proposed provides a framework for ongoing 

system training, overcoming the limitations of a traditional CL approach. 

1.2 Federated Learning Basics 

Federated learning is a machine learning approach that allows for model training across 

multiple devices or servers while keeping the data localized [16]. Unlike traditional machine 

learning methods where data is centralized in one location for training, federated learning 

enables model training directly on the devices where the data is generated or stored, such as 

smartphones, IoT devices, or edge servers [24]. This decentralized approach to training offers 

several advantages, including increased privacy, reduced communication costs, and the ability to 

leverage data that cannot be easily moved due to privacy concerns or regulatory restrictions. 

In federated learning, the training process typically involves three main steps: local 

training, aggregation, and global model update. During the local training phase, each device or 

server trains the model using its local data without sharing the raw data. Once the local training 

is complete, the updated model parameters are sent to a central server or aggregator. The 

aggregator then combines these local updates to compute a global update for the model. This 
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global update is then sent back to the devices for further refinement, and the process iterates until 

the model converges to an optimal state or a predefined stopping criterion is met [25]. 

One of the key benefits of federated learning is enhanced privacy protection. Since the raw 

data remains on the local devices and only model updates are shared, sensitive information is less 

exposed to potential breaches or unauthorized access. This makes federated learning particularly 

well-suited for applications where data privacy is a primary concern, such as healthcare, finance, 

and personalization services. Additionally, federated learning can also help reduce 

communication costs by minimizing the amount of data transferred between devices and central 

servers, making it more efficient for resource-constrained environments [57]. 

1.3 Research Motivation 

The power of deep learning to enhance human understanding and automate spacecraft 

telemetry analysis is clear. Machine learning, especially in deep learning, can surpass human 

capabilities and identify subtle changes in complex data patterns. Automating the analysis of 

telemetry data not only improves operational efficiency but also reduces the cognitive load on 

personnel who monitor spacecraft data streams. Federated Learning (FL), a concept applicable to 

both spacecraft telemetry and the Internet of Things (IoT), presents an avenue for intelligent 

systems to continuously learn post-deployment in operational space environments. Diverging 

from Centralized Learning (CL), FL proves effective in settings characterized by limited network 

bandwidth and remote computing resources. This architectural approach is particularly suited for 

pre-existing, constrained spacecraft networks, bringing about efficiency gains and substantial 

cost savings by obviating the need to upgrade network capabilities. The diminished reliance on 

extensive telemetry downlinks not only enhances system adaptability across various operational 

environments, including deep space missions, but also fosters an overall increase in resilience. 
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Strategically implementing FL in telemetry systems allows mission planners to judiciously 

reallocate precious network bandwidth to other critical spacecraft operations. This strategic 

approach proves especially advantageous in scenarios involving both constrained networks and 

computationally limited edge devices, as commonly encountered in spacecraft missions. 

However, achieving these objectives in space missions necessitates the establishment of a 

well-defined system architecture. This architecture serves as the cornerstone for designing FL 

components and understanding their dependencies on the network and available edge resources. 

A comprehensive grasp of tradeoff considerations in FL systems enables engineers, architects, 

and mission planners to effectively scope, plan, and execute telemetry projects. In both IoT and 

spacecraft telemetry applications, recognizing and navigating system limitations are integral to 

making informed system design decisions. A federated learning architecture adeptly captures 

these system dependencies, intricately linking them with the anomaly detection (AD) system’s 

performance metrics. Tailoring the architecture to the specific operational environment facilitates 

continuous learning even under sub-optimal conditions, ensuring the system's maintainability 

and adaptability in the dynamic and challenging realm of space missions. 

1.4 Thesis Statement 

This research thesis explores the application of federated learning in spacecraft telemetry 

anomaly detection, with a primary focus on evaluating its effectiveness in achieving or 

surpassing state-of-the-art results in anomaly detection accuracy. Additionally, the study 

aims to explore how hybrid transformer architecture can be used in personalizing 

attention to each client’s data without compromising global performance. By addressing 

these objectives, the thesis contributes to the advancement of anomaly detection systems 



 

7 
 

in the context of space exploration, offering insights into the practical implementation and 

optimization of federated learning techniques. 

1.5 Research Objectives 

The objective of this research is to present a demonstrative application and blueprint for a 

Federated Learning (FL) platform specifically for the task of onboard spacecraft anomaly 

detection. The focus is primarily on developing a single DL model trained in the FL paradigm 

capable of detecting anomalies across a wide range of telemetry channels while also 

understanding the mission implications of our approach. Previous work in this domain has 

generally taken the approach of building multiple models to address the problem, one unique 

model for each data channel available. Furthermore, none of the work done before has 

considered mission implications of doing an onboard approach, thereby demanding a large 

centralized server to implement.  

The unique constraints of these environments dictate a careful structuring of the FL system 

to ensure its practicality and longevity. The research outcomes will serve to validate the 

feasibility of employing FL to enhance the performance of telemetry anomaly detection. The 

findings will be instrumental in evaluating whether the proposed federated learning architecture 

outperforms centralized telemetry monitoring approaches. This comparative analysis is vital for 

establishing the efficacy and advantages of the proposed FL system. By providing a clear 

roadmap and addressing these key aspects, this research aims to contribute valuable insights to 

the broader field of FL, edge computing, and telemetry monitoring.  



 

8 
 

1.6 Research Questions and Hypothesis 

The principal aim of this research is to evaluate whether Federated Learning (FL) can 

achieve performance levels comparable to established centralized techniques. Additionally, the 

study explores the feasibility of applying FL across missions, emphasizing spacecraft 

personalization instead of demanding maintainability requirements often associated with space 

missions. If successful, this approach could offer mission planners a more cost-effective means 

of developing intelligent and rapidly adaptive systems. The importance of spacecraft 

personalization in space missions is paramount, ensuring sustained functionality, adaptability, 

and reliability of mission-critical systems. A focus on effective personalization practices 

guarantees the continued success and safety of spacecraft operations, communication, and 

scientific data, contributing to the overall mission objectives. It's noteworthy that integrating 

spacecraft personalization requirements with FL performance is still an emerging area in the 

machine learning community. 

The evaluation of updating machine learning models through a personalized system is 

conducted both conceptually and through simulation to assess its feasibility, marking a 

significant step in advancing the understanding of the coupling between personalization and FL 

performance in the context of space missions. 

RQ1: To what extent can a federated learning approach be effectively applied to 

spacecraft telemetry anomaly detection, aiming to achieve or surpass state-of-the-art results in 

anomaly detection accuracy? 

RQ2: How can a hybrid transformer approach be strategically integrated into the 

federated anomaly detection system to optimize local performance for individual spacecraft, 
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thereby advancing anomaly detection accuracy and contributing to the overall efficacy of the 

framework? 

H1: By leveraging the decentralized nature of federated learning, spacecraft telemetry 

anomaly detection can benefit from the contributions of individual spacecraft components. The 

implementation of this approach is expected to yield comparable results to existing state-of-the-

art methods, while enhancing the accuracy of anomaly detection. We hypothesize that this 

federated learning model will prove to be a robust and effective method for improving the 

accuracy of spacecraft telemetry anomaly detection, achieving comparable results to current 

approaches. 

H2: By strategically incorporating a hybrid transformer approach into the existing 

federated anomaly detection system, we anticipate a significant boost in the performance of 

individual spacecraft, resulting in a marked improvement in anomaly detection accuracy. This 

innovative model is expected to exceed the baseline results obtained through standalone 

federated learning, and potentially even surpass the performance of state-of-the-art techniques. 

As such, it represents a potent and effective means of optimizing the overall efficacy of the 

federated framework for spacecraft telemetry anomaly detection. 

In the pursuit of addressing these inquiries, a set of best practices and sound assumptions 

surfaces, providing valuable guidance for system designs in the formulation of similar systems 

and model architectures.  

1.7 Scope of Research 

This research aims to evaluate the effectiveness of centralized and federated anomaly 

detection methods implemented through TensorFlow software. Particular emphasis will be 
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placed on exploring diverse model architectures and potential strategies for adapting the system. 

Furthermore, a systematic approach will be formulated to optimize these methods within the 

framework of Federated Learning (FL). Considerations pertinent to mission planners will be 

thoroughly deliberated upon and documented for the deployment of such an architectural 

framework. Special attention will be dedicated to understanding the tight coupling of 

dependencies inherent in the deep learning (DL) model algorithms. The variability of these 

constraints will yield valuable insights into tailoring the proposed federated learning architecture 

to suit the unique demands of spacecraft missions. The results obtained will quantitatively assess 

the correlation between architectural modifications and the efficacy of telemetry anomaly 

detection, contributing to a deeper understanding of the interplay between personalization and 

anomaly detection methods within the context of space missions. 

1.8 Limitations 

While this research endeavors to make significant contributions to the field of spacecraft 

telemetry anomaly detection through the application of federated learning, certain limitations 

should be acknowledged. The primary constraint lies in the limited availability of data for 

training and testing purposes. The scarcity of diverse and comprehensive datasets specific to 

spacecraft telemetry anomalies may impact the generalizability of the proposed federated 

learning framework. Additionally, the effectiveness of machine learning models, including 

federated learning, heavily relies on the quality and quantity of data. The limited dataset may 

pose challenges in achieving robust and highly accurate anomaly detection models. The scarcity 

of real-world telemetry anomaly instances could potentially constrain the model's ability to adapt 

to a wide range of scenarios and variations that might be encountered in actual space missions. 
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Furthermore, the scope of this research may be influenced by the constraints imposed by 

the availability of resources, both in terms of computational power and time. These limitations 

may impact the depth and breadth of the experimentation and analysis conducted within the 

study. Despite these constraints, this research aims to provide valuable insights and establish a 

foundation for future work in the domain of spacecraft telemetry anomaly detection with 

federated learning. The findings, while recognizing these limitations, can still offer meaningful 

contributions and guide further exploration in this evolving field. 

1.9 Organization of Praxis 

This praxis is centered on a thorough exploration of the implementation of Federated 

Learning (FL) in the unique context of spacecraft missions. The initial phase involves a review 

of foundational research, with a specific emphasis on guiding principles for selecting model 

architectures suitable for FL in spacecraft telemetry. Subsequently, the focus shifts to the 

introduction of methods crafted to encompass various aspects of a personalized system within 

the FL framework, particularly through the exploration of hybrid transformers. The ensuing 

discussion addresses the inherent limitations associated with existing architectural designs, 

offering insights into how these constraints can be effectively addressed through strategic 

refactoring techniques. 

As the praxis progresses, it transitions into delineating the practical methodologies involved 

in model training within a federated learning framework, considering the intricacies of spacecraft 

telemetry. The culmination of the praxis is dedicated to the assessment of anomaly detection 

(AD) accuracy within the FL model, utilizing relevant performance metrics. The conclusive 

section consolidates the outcomes of the praxis, including the exploration of hybrid transformers, 

architectural considerations, and implications to a system design. 
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Within this concluding framework, tailored recommendations are presented, specifically 

aimed at mission planners contemplating the integration of FL with hybrid transformers into 

their space systems. This offers a roadmap for informed decision-making in the dynamic and 

challenging realm of spacecraft missions. 
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CHAPTER 2: Previous Work 
 

2.1 Machine Learning in Spacecraft Anomaly Detection 

Recent research has witnessed the integration of deep learning techniques, these 

advancements have shown promise in capturing spatial and temporal dependencies and 

enhancing anomaly detection capabilities. Moreover, several state-of-the-art anomaly detection 

methods have emerged in recent years, each contributing to the diverse landscape of anomaly 

detection techniques. KitNet [32] is recognized as the pioneering work that utilizes auto-

encoders, both with and without ensembles(using multiple ML methods), for online anomaly 

detection. OmniAnomaly [46] introduces a novel approach by employing a variational auto-

encoder with gated recurrent units, specifically tailored for multivariate time series anomaly 

detection. GAN-Li [36] and MAD-GAN [37] present unsupervised multivariate anomaly 

detection methods based on Generative Adversarial Networks (GANs), leveraging LSTM-RNNs 

as both generator and discriminator models to capture the temporal correlations in time series 

distributions. Furthermore, LSTM-VAE [4] focuses on fusing signals and reconstructing their 

expected distribution using Variational Auto-Encoders (VAEs) with Long Short-Term Memory 

(LSTM) networks. LSTM-NDT [21] introduces a univariate time series detection method based 

on LSTMs, incorporating a novel nonparametric anomaly thresholding approach suitable for 

NASA datasets. DAGMM [17] employs a deep auto-encoder to generate an error sequence, 

which is then fed into a Gaussian Mixture Model (GMM) for anomaly detection. MTAD-GAT 

[39] takes a different approach by jointly optimizing a forecasting-based model and a 

reconstruction-based model to capture time relationships and variable dependencies. GTA [33] 

presents a novel framework for multivariate time series anomaly detection, involving the 

automatic learning of a graph structure, graph convolution, and modeling of temporal 
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dependencies using a Transformer-based architecture. Moreover, while these state-of-the-art 

anomaly detection methods have made significant contributions to the field, it is worth noting 

that, to the best of our knowledge, the exploration of these advanced techniques within a 

federated learning domain, particularly in the context of spacecraft anomaly detection, remains 

relatively unexplored. As such, there is a notable gap in the literature regarding the application of 

these methods in federated settings, presenting an opportunity for future research to bridge this 

gap and explore the potential implications and challenges of deploying such techniques in 

federated environments, particularly in the context of space system design. 

2.2 Federated Learning and its Applicability 

Federated Learning (FL) is a burgeoning paradigm in machine learning that introduces a 

decentralized approach to model training. This section provides a literature review on Federated 

Learning and its applicability across various domains. A foundational work by [16] establishes 

the concept of Federated Learning, emphasizing its potential to address privacy concerns in 

distributed learning scenarios. The study introduces the idea of training models across 

decentralized devices, enabling learning without raw data leaving individual devices. This 

privacy-preserving aspect of FL has spurred its adoption in applications where data security and 

confidentiality are paramount. Further exploration of FL's applicability is found in [23], which 

investigates its effectiveness in scenarios with massive datasets distributed across different 

geographical locations. The study demonstrates how FL can significantly reduce communication 

costs and alleviate privacy concerns while maintaining model performance in scenarios 

characterized by diverse data sources. 

In the healthcare domain, [30] explores the use of Federated Learning for collaborative 

model training across multiple healthcare institutions. The study highlights FL's potential to 
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build robust models without compromising patient data privacy, making it an attractive approach 

for collaborative medical research and personalized healthcare applications. Moreover, [22] 

delves into the challenges and opportunities of applying Federated Learning in edge computing 

environments. The study explores how FL can enhance model training on resource-constrained 

devices, making it suitable for Internet of Things (IoT) applications and edge computing 

scenarios. Addressing the scalability of FL, [55] investigates techniques for federated 

optimization that can efficiently handle large-scale and dynamic datasets. The study contributes 

insights into the scalability challenges of FL and proposes methodologies to improve its 

applicability in scenarios involving vast and evolving data sources. 

2.3 Transformers 

Transformers have emerged as a groundbreaking architecture in the field of natural 

language processing (NLP) and machine learning. Introduced by [59], transformers have 

revolutionized various applications, including language understanding, translation, and image 

processing. The core idea of transformers lies in their attention mechanism, enabling the model 

to focus on different parts of the input sequence when making predictions. The architecture 

eliminates the sequential nature of recurrent neural networks (RNNs) and the fixed context 

window of convolutional neural networks (CNNs), allowing for more effective capture of long-

range dependencies. The self-attention mechanism is a fundamental component of transformers. 

It allows the model to weigh different parts of the input sequence differently, capturing 

relationships between words regardless of their positions. This mechanism contributes to the 

model's ability to handle variable-length sequences and has proven to be crucial for tasks like 

language modeling and machine translation. 
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Bidirectional Encoder Representations from Transformers (BERT), introduced by [60], 

marked a significant advancement. BERT and subsequent pre-trained models like GPT-3 have 

demonstrated the power of transfer learning in NLP. These models are pre-trained on large 

corpora and fine-tuned for specific tasks, achieving state-of-the-art results in various 

benchmarks. While transformers gained prominence in NLP, their success has extended to other 

domains. Vision Transformer (ViT) introduced by [61], showcased the applicability of 

transformers in computer vision, challenging the dominance of convolutional neural networks 

(CNNs). Transformers have also been successfully applied in speech processing and 

reinforcement learning. Despite their success, transformers come with computational challenges 

due to their quadratic self-attention complexity, limiting their scalability. Researchers have 

explored techniques like attention pruning and approximations to address these issues. 

Additionally, advancements like the Longformer model have aimed to extend the reach of 

transformers to even longer sequences [62]. The concept of hybrid transformers, combining 

transformer architectures with other neural network structures, has gained attention. This 

approach aims to capture the strengths of transformers while mitigating their limitations. For 

example, models combining transformers with convolutional layers or recurrent components 

have shown promise in certain tasks. 



 

17 
 

CHAPTER 3: Methodology 
 

3.1 Introduction 

Our study endeavors to assess diverse deep learning models within the context of our 

federated framework, specifically focusing on their effectiveness in spacecraft anomaly detection 

and their influence on real-time communication and system resource utilization. Employing a 

multifaceted approach, we combine a quantitative evaluation of anomaly detection performance 

with a system-level analysis. The dataset utilized encompasses information from two distinct 

sources, namely SMAP and MSL, incorporating alterations. The research leverages federated 

learning, exploring its suitability in real-time scenarios. Our selection of models considers not 

only their anomaly detection capabilities but also their impact on resource efficiency. This 

comprehensive methodology ensures practical insights into both model performance and their 

real-world applicability in the context of space missions. 

3.2 Data Sources and Datasets 

In this section, we provide an overview of the datasets utilized in our research for anomaly 

detection within the context of spacecraft systems, specifically from the Mars Science 

Laboratory (MSL) and Soil Moisture Active Passive (SMAP) missions. The dataset contains 82 

normalized telemetry channels of data labeled with 105 anomalies, lending itself to be evaluated 

in a federated setting. A summary of the characteristics of our data pool is provided in in table 3-

1. These datasets have been curated and annotated by the International Society of Automation 

(ISA) and serve as the foundation for our study. The selection of these datasets is crucial in 

addressing the unique challenges of spacecraft operations, including both planetary exploration 
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and Earth observation, and ensuring the relevance of our research to the field of aerospace 

engineering.  

The datasets used in this research have been obtained from ISA, a recognized authority in 

the field of automation and industrial processes. ISA's expertise in standardization and system 

monitoring makes their annotated datasets particularly valuable for anomaly detection within 

spacecraft systems, whether in the demanding conditions of planetary exploration (MSL) or 

Earth observation (SMAP).  

 

Figure 3-1 Example of data used in this experiment showing actual telemetry value and 
corresponding metadata (Hundman et al, 2018) 

The datasets provided by ISA encompass a wide range of telemetry and sensor data from 

both the MSL and SMAP missions. For the MSL mission, these datasets capture the intricate 

telemetry related to the exploration of Mars, covering aspects such as rover mobility, scientific 

instrument operations, and environmental conditions. For the SMAP mission, the datasets 

include Earth observation telemetry related to soil moisture levels and environmental factors. An 
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essential aspect of these datasets is the detailed annotations provided by ISA. Figure 3-1 

visualizes the general nature of the data and how we intend to use it for the task of anomaly 

detection, in that a single channel is a multivariable time series data where the first variable is the 

measurement of the channel while the remain variables are Booleans denoting a command event. 

 

Table 3-1 Summary of two data sources used in this study SMAP at 55 and MSL 27 channels 
respectively. 

 

These annotations specify the occurrence and characteristics of anomalies within the 

telemetry data for both the MSL and SMAP missions. ISA's expertise in anomaly detection and 

their access to domain knowledge ensures that the annotations are accurate and informative. The 

presence of these annotations is invaluable for the supervised learning approach we adopt in our 

research, as they serve as ground truth labels for training and evaluating our machine learning 

models. The utilization of ISA-annotated datasets from both the MSL and SMAP missions 

enhances the credibility and reliability of our research while addressing the specific challenges of 

planetary exploration and Earth observation. By leveraging these datasets, we can develop and 
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assess machine learning models that are tailored to the unique demands of both missions, with a 

focus on accurate anomaly detection and minimal false alarms. 

3.3 Descriptive Statistics 

Something we have not seen in similar work are corresponding descriptive statistics 

outside of the number of features and corresponding sequence lengths. In having these 

descriptors, we will have a more meaningful way to discuss any result anomaly detection 

metrics. The data in its raw state has already been normalized using the min-max technique so 

we know all values for the measurement reading will be in the range of -1 to 1. Commonly 

discussed in previous works are sequence length and number of features which we also 

incorporated.  In a manual inspection of the data, we felt the best approach to incorporate some 

common signal descriptors in both the time and frequency domain summarized in Table 3-2. 

Table 3-2 Descriptors used in this study and their definitions. 
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Table 3-3 Summary statics of descriptors 1 of 2. 

 

 

Table 3-4 Summary statics of descriptors 2 of 2. 

 

3.4 Model Selection and Description 

The heart of our research lies in the selection, development, and description of the deep 

learning models used for anomaly detection in the MSL and SMAP mission datasets. In this 
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section, we present an overview of the selected models, their specific characteristics, and how 

they are tailored to address the unique challenges of each mission. For our research, we have 

chosen a suite of machine learning models known for their effectiveness in anomaly detection. 

These models have been selected based on their adaptability to the complex telemetry data and 

their capacity to operate in real-time conditions. The following models have been chosen for this 

study. 

3.4.1.1 Long Short-Term Memory (LSTM) Networks:  
 

LSTM networks are a type of recurrent neural network (RNN) known for their ability to 

capture sequential dependencies in data. We employ LSTM networks to model temporal 

dependencies within the telemetry data, making them ideal for capturing anomalies that manifest 

over time. 
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Figure 3-2  Sample LSTM architecture used in this study. 

 

LSTMs are a type of neural network that can handle long sequences without facing issues 

like vanishing or exploding gradient problems. This is possible due to a more memory 

mechanism that incorporates several key components such as the cell state, input gate, forget 

gate, and output gate. These components work together to regulate the flow of information 

within the network, allowing it to retain or discard information over time. The cell state acts like 
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a conveyor belt that runs through the entire sequence, enabling LSTMs to maintain long-term 

dependencies by preserving information across many time steps. 

 

Figure 3-3 Anatomy of an LSTM layer. 

The input gate plays a crucial role in the LSTM network by controlling the flow of new 

information into the cell state. It analyzes the current input and the network's internal state to 

decide which parts of the input should be stored in the cell state and which parts should be 

discarded. This adaptive filtering capability allows LSTMs to selectively retain relevant 

information. Various studies in spacecraft anomaly detection have demonstrated their suitability 

for this problem [21].  
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3.4.1.2 1D Convolutional Neural Networks (1D CNNs)  
 

1D CNNs are well-suited for detecting patterns within one-dimensional data, which is 

characteristic of many telemetry features. These models excel at feature extraction and are 

crucial for identifying localized anomalies within the datasets. One-dimensional Convolutional 

Neural Networks (1D CNNs) are neural network architectures specifically designed for 

processing one-dimensional sequential data, such as time series or sequences of text. Unlike 

traditional 2D CNNs used for image processing, which operate on two-dimensional grids of 

pixels, 1D CNNs apply convolutions across the temporal dimension of the input. In a 1D CNN, 

the convolutional layers slide one-dimensional filters (kernels) along the input sequence, 

extracting local patterns and features. These filters capture relationships between adjacent 

elements in the sequence, enabling the network to learn hierarchical representations of the input 

data. Our implementation is motivated by attempting to capture the temporal components of the 

data with a series of convolutional networks with a minimal about of parameters to facilitate an 

onboard deployment, shown in figure 3-4. 
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Figure 3-4 Sample CNN architecture used in this study. 

By stacking multiple convolutional layers followed by pooling layers, 1D CNNs can capture 

increasingly abstract and complex patterns in the input sequence. Pooling layers reduce the 

dimensionality of the feature maps while preserving the most relevant information, helping to 

prevent overfitting and improve computational efficiency. 1D CNNs are commonly used in 
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various sequential data tasks, including natural language processing (NLP), speech recognition, 

and time series analysis. They have shown effectiveness in tasks such as sentiment analysis, 

named entity recognition, and anomaly detection, often achieving competitive performance with 

simpler architectures compared to recurrent neural networks (RNNs) and long short-term 

memory (LSTM) networks. With their ability to automatically learn hierarchical representations 

from sequential data, 1D CNNs offer a powerful tool for capturing patterns and extracting 

features in a wide range of applications including spacecraft anomaly detection [29]. 

 

3.4.1.3 CNN-LSTM Models 
 

Combining the strengths of both 1D CNNs and LSTMs, CNN-LSTM models offer a holistic 

approach to anomaly detection. They extract spatial and temporal features from the data, making 

them particularly effective in recognizing complex patterns that may indicate anomalies [63]. 
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Figure 3-5 Sample CNN-LSTM architecture used in this study. 

3.4.1.4 Transformers 
 

Transformers are a neural network architecture that has changed the field of natural language 

processing (NLP) significantly. They introduced the self-attention mechanism, which is different 

from traditional sequential models like recurrent neural networks (RNNs) and convolutional 
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neural networks (CNNs). These models process input data sequentially or with fixed-size 

receptive fields, whereas transformers use a self-attention mechanism. Transformers consist of 

multiple layers of self-attention and feed-forward neural networks, often stacked on top of each 

other. These layers enable the model to learn hierarchical representations of the input data, 

capturing both local and global patterns. 

 

Figure 3-6 Dot product Attention and transformer encoder. 

Additionally, transformers use positional encoding to provide the model with information about 

the order of tokens in the input sequence, as the self-attention mechanism alone does not 

inherently capture sequential information.  
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Figure 3-7 Sample Transformer architecture used in this study. 

Transformers have shown great success in multiple natural language processing (NLP) tasks, 

such as machine translation, text generation, and sentiment analysis. They have also been used 

for spacecraft anomaly detection, as highlighted in a study by [49]. In our research, we employed 

two variations of this approach. For answering RQ1 or simply employing the model in the 
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vanilla federated averaging implementation, we utilized a series of multi-head attention layers, 

followed by a dense layer. In RQ2 we looked at augmenting the federated averaging process to 

operate on a disjointed model, we devised a composite model to separate the two components 

across different stages of training shown in figure 3-8. 

 

Figure 3-8 Sample Transformer architecture used in RQ2, the front half of hybrid-transformer. 
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Anticipating the integration of a hybrid transformer, our model selection spans a variety of deep 

learning models highlighted in the literature review for their established relevance to spacecraft 

anomaly detection. Each of these models is specifically tailored to address distinct facets of 

anomaly detection within our federated framework. Together, they provide a comprehensive 

approach to identifying anomalies in telemetry data, effectively addressing the diverse challenges 

inherent in both planetary exploration and Earth observation missions. 

 

3.5 Reconstruction Error in Federated Learning 

As there are dozens of telemetry anomaly detection methods, we limit our design to focus on 

gradient-based reconstruction error implementations, representative of most modern DL AD 

systems, where the goal is to translate the classical approximation function, equation 1, into one 

where the objective is to reconstruct the original input space as closely as possible, equation 2. 

 𝐹(𝑥, 𝑤) 	≅ 	𝑦 (1) 

 

 𝐹(𝑥, 𝑤) 	≅ 	 �̅� (2) 

 

The difference between the original input and the reconstructed output can then be used to 

measure how familiar the approximator is with the sample given and thereby linearly equate to 

how atypical each input is. 

 𝑒! 	= 	 |𝑥! 	− 	𝑥"/| (3) 
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In a centralized setting, the objective is to find the set weights that define an algorithm such that 

it minimizes the error between an output and a given input along with a set of weights, equations 

4 and 5. 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	#

$
4𝑒!

$

!%#

 
(4) 

 

 
𝐹(𝑤) ≝ 	 #

$
4𝑓!(𝑤)𝑠𝑡. 𝑓!(𝑤) = 𝑙𝑜𝑠𝑠(𝑥! , 𝑥"/ ,𝑤)	
$

!%#

	 
(5) 

 

To determine the most effective combination of weights, a training process can utilize a gradient 

method such as stochastic gradient descent. This method involves selecting a random subset of 

samples, or mini-batches, from a dataset at each epoch to calculate a gradient, which is then used 

to update the model weights in the following training step. The process of updating is repeated 

over multiple epochs until the optimal set of weights is obtained. To determine the most effective 

combination of weights, a training process can utilize a gradient method such as stochastic 

gradient descent. This method involves selecting a random subset of samples, or mini-batches, 

from a dataset at each epoch to calculate a gradient, which is then used to update the model 

weights in the following training step. The process of updating is repeated over multiple epochs 

until the optimal set of weights is obtained. 

 𝑤&'# ← 𝑤𝑡 − 	𝜂∇𝑓(𝑤&; 𝑥( , 𝑥(@@@)	 (6) 
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Building upon this notion, the goal of our design becomes to enable the discovery of a function 

that minimizes the reconstruction error as an aggregate of k models trained on their own 

respective datasets or more formally, equation 7. 

 
𝑤!

"#$ 	= 	𝑤!
" 	− 	𝜂𝛻𝑓(𝑤!

") = 	𝑤!
" − 	𝜂*

𝑛%
𝑛

&

%'$

𝑔% , 𝑠𝑡. 𝑔% =	∇𝐹%(𝑤") 
(7) 

 

Once the reconstruction error is generated, the subsequent step is to establish a threshold value 

that separates normal and anomalous data points. Due to the likelihood of false positives when 

using reconstruction error-based techniques, we have adopted a dynamic threshold approach 

based on the research by [21], as detailed in equations 8 and 9. This approach is used during 

post-processing to assist with the detection process. 

 𝜖	 = 	𝜇	(ℯ() 	+ 	𝑧𝜎(ℯ() 

 

(8) 

 

 𝜖( 	= 	
𝛥𝜇(𝑒()/𝜇(𝑒() 	+ 	𝛥𝜎		(𝑒()/𝜎		(𝑒()

|𝑒)| 	+	 |𝐸|*
 

such that 𝑒) 	= {𝑒( ∈ 	 𝑒( 	|𝑒(	 > 	𝜖}	, 

𝛥𝜇(𝑒𝑖) = 𝜇(𝑒𝑖) 	− 	𝜇({𝑒𝑖 ∈ 	 𝑒𝑖	|𝑒𝑖	 < 	𝜖}),  

𝛥𝜎(𝑒𝑖) = 𝜎(𝑒𝑖) − 	𝜎({𝑒𝑖 ∈ 	 𝑒𝑖	|𝑒𝑖	 < 	𝜖}), 𝑎𝑛𝑑 

 𝐸 = 𝑠𝑒𝑡	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔𝑠	𝑜𝑓	𝑒) 

 

(9) 
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Having these formulations, algorithm 1 FedAvg can then be implemented, with the specific task 

of anomaly detection. 

 

 

 

 

 

 

 

Algorithm 1: FedAvg 

𝑆𝑒𝑟𝑣𝑒𝑟	𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑠:	 

1. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒	𝑤-! 
2. 𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑟𝑜𝑢𝑛𝑑	𝑡	 = 	1,2, . . . , 𝑑𝑜 

i. 𝑚	 ← 	𝑚𝑎𝑥(𝐶	 ∗ 	𝐾, 1) 
ii. 𝑆"	 ←	(	𝑟𝑎𝑛𝑑𝑜𝑚	𝑠𝑒𝑡	𝑜𝑓	𝑚	𝑐𝑙𝑖𝑒𝑛𝑡𝑠) 
iii. 𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑐𝑙𝑖𝑒𝑛𝑡		𝑘	 ∈ 𝑆"	𝑖𝑛	𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙	𝑑𝑜	 

i. 𝑤"#$% ← 	𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑘, 𝑤"!) 
3. 𝑤"#$! ←	∑ .!

.
&
%'$ 	𝑤"#$% 	 

 

𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑘, 𝑤): 

1. 𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑙𝑜𝑐𝑎𝑙	𝑒𝑝𝑜𝑐ℎ	𝑖	𝑑𝑜 
i. 𝑓𝑜𝑟	𝑏	 ∈ 𝐶𝑙𝑖𝑒𝑛𝑡′𝑠	𝑑𝑎𝑡𝑎		𝑑𝑜 

i. 𝑤% 	← 	𝑤	 − 	𝜂𝛻𝑙(𝑤; 	𝑏) 
2. 𝑟𝑒𝑡𝑢𝑟𝑛	𝑤% 	𝑡𝑜	𝑠𝑒𝑟𝑣𝑒𝑟 

 

For research question 2, we shift our focus from building a unified model to one that can be 

trained and personalized simultaneously. To do this, algorithm 1 is modified to incorporate a 

model that can be split in two and reunited as needed while optimizing for the two objectives. 



 

36 
 

 

 

 

 

 

 

 

 

Algorithm 2: Hybridized FedAvg 

𝑺𝒆𝒓𝒗𝒆𝒓	𝒆𝒙𝒆𝒄𝒖𝒕𝒆𝒔:	 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒	𝑤-! 	𝑎𝑛𝑑	∅- 
𝑎𝑝𝑝𝑒𝑛𝑑	𝑤-!𝑡𝑜	∅-	𝑡𝑜	𝑑𝑒𝑓𝑖𝑛𝑒	∅-! 
𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑟𝑜𝑢𝑛𝑑	𝑡	 = 	1,2, . . . , 𝑑𝑜 

𝑚	 ← 	𝑚𝑎𝑥(𝐶	 ∗ 	𝐾, 1) 
𝑆"	 ←	(	𝑟𝑎𝑛𝑑𝑜𝑚	𝑠𝑒𝑡	𝑜𝑓	𝑚	𝑐𝑙𝑖𝑒𝑛𝑡𝑠) 
𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑐𝑙𝑖𝑒𝑛𝑡		𝑘	 ∈ 𝑆"	𝑖𝑛	𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙	𝑑𝑜 

𝑤"#$% ← 	𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑘, ∅"!) 

𝑤"#$! ←	*
𝑛%
𝑛

&

%'$

	𝑤"#$%  

 

𝑪𝒍𝒊𝒆𝒏𝒕𝑼𝒑𝒅𝒂𝒕𝒆(𝒌, ∅): 

𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑙𝑜𝑐𝑎𝑙	𝑒𝑝𝑜𝑐ℎ	𝑖	𝑑𝑜 
𝑓𝑜𝑟	𝑏	 ∈ 𝐶𝑙𝑖𝑒𝑛𝑡′𝑠	𝑑𝑎𝑡𝑎		𝑑𝑜 

∅% 	← 	∅	 − 	𝜂𝛻𝑙(∅; 	𝑏) 
 

𝑒𝑥𝑡𝑟𝑎𝑐𝑡	𝑤%𝑓𝑟𝑜𝑚	∅% 	 
𝑟𝑒𝑡𝑢𝑟𝑛	𝑤% 	𝑡𝑜	𝑠𝑒𝑟𝑣𝑒𝑟 
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3.6 Simulation Testbed Design 

The design of our testbed aims to achieve scalable simulations while also enabling 

transitioning quickly to a deployment setting, addressing the rigor demanded by any flight 

system. In that, we initially started exploring a virtual machine approach but found that the 

overhead incurred was a detriment to the system’s performance and suitability for embedded 

devices, generally representative of onboard flight computers.  

Containers are lightweight and standalone executable software package that includes everything 

needed to run an application, such as code, libraries, system tools, and settings [11]. A container 

is isolated from the underlying host operating system and other containers, providing a consistent 

runtime environment for the application regardless of the underlying infrastructure [11]. 

Containers are often used to deploy and run applications in a portable and efficient manner.  
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Figure 3-9 Container level overview of Testbed. 

They can be easily moved between computing environments such as development, testing, and 

production. Moreover, containers can be configured with communications ports, available 

memory, and CPU limits [11]. Communication between worker nodes and the aggregator is done 

with RabbitMQ, an AMPQ (advance message passing queuing) protocol implementation [31]. A 

wrapper was implemented to enable customized functionality, including additional tunable 

security measures and a rule engine object to facilitate adaptability and futurization. The 

aggregator and worker nodes are decedents of the communication class; thus, both instantiate a 

base rule engine as an aggregate object, which the aggregator can then modify during runtime. In 

doing so, each party implicitly agrees upon a uniform set of rules and corresponding actions. 
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Figure 3-10 Data flow diagram of FL Testbed. 

 

3.7 Experimental Design 

In addressing Research Question 1 (RQ1), which delves into the effectiveness of federated 

learning (FL) for spacecraft telemetry anomaly detection using various deep learning (DL) 

models, our experiment seeks to elucidate the performance dynamics within the federated 

learning paradigm. Structured to evaluate the suitability of different DL models for real-world 

deployment on edge devices in spacecraft telemetry, the experiment commences with 30 

simulations for each model, resulting in a total of 120 simulation runs using SMAP data 

exclusively. Each simulation randomly allocates 10 channels for global model assessment and 
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distributes the remaining SMAP channels among clients, capped at 30. Hyperparameters are 

randomly selected from predefined ranges specific to each model architecture shown in tables 3-

5 and 3-6. The experiment proceeds with 5 client epochs per batch of data, with the current 

global model computing an average reconstruction loss on holdout data at each federation step, 

terminating after 5 divergence steps are noted. 

Baseline federated learning performance for each model is established using vanilla 

federated averaging, employing fixed numbers of local epoch architecture-specific 

hyperparameters. Simulations run until a patience value is exceeded, involving training and 

evaluation of DL models on decentralized fragments of the SMAP dataset. Metrics such as 

reconstruction loss across clients over federation steps, reconstruction error for the global model 

against a holdout dataset, number and size of messages, and CPU usage for training and 

inference serve as benchmarks for subsequent comparisons and form the basis for evaluating the 
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impact of the federated learning paradigm. Incorporation of MSL data, with an additional 30 

features, follows a similar protocol.  

Table 3-5 Hyperparameters varied in this study. 

 

Throughout the federated learning process, continuous monitoring and recording of 

reconstruction loss for anomaly detection, quantification of communication overhead through 

message exchange, determination of the number of federation steps required for convergence, 

and measurement of local training time on each edge device are emphasized. Adherence to 

resource constraints, including message size and CPU time capped at 2GB, is paramount. The 

experiment also involves repeating a truncated version with both SMAP and SOIL datasets, 

forcing the system to handle varying input spaces for all models and adding a padding step to the 

preprocessing pipeline. Research Question 2 (RQ2) is further explored using both SMAP and 

MSL datasets in a similar protocol, incorporating the rapid adaptation component where the 

model is given a small sample of available training data for each channel before commencing the 

anomaly detection component. 
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Table 3-6 Hyperparameters held constant in this study. 

 

Having a collection of globally trained models from these protocols the experimentation 

continues by examining them for their AD performance by applying each of the models to the 

entire test dataset using the equation 9 to make the determination of anomalies detected. 

 

3.8 Metrics 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(10) 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(11) 

 𝐹1 = 	
2	 × 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 	𝑅𝑒𝑐𝑎𝑙𝑙

 

 

(12) 
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We assessed the effectiveness of various methods using the commonly employed metrics in 

anomaly detection, namely Precision, Recall, and F1 scores, where TP, FP, and FN represent the 

counts of true positives, false positives, and false negatives, respectively. The definitions for 

precision, recall, and F1 are provided in equations 10, 11, and 12 respectively. Consistent with 

the evaluation approach outlined in [21], we employed point-wise scoring. In real-world 

scenarios, anomalies in time series data typically manifest as contiguous abnormal segments. 

Anomaly alerts may be triggered at any subset within the actual anomaly window. Thus, the 

entire anomalous segment is considered correctly detected if the model identifies any single time 

point as an anomaly. 
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CHAPTER 4: Results  
 

4.1 Simple Federated Anomaly Detection Experiment (RQ1) 

In this work, we set out to investigate the viability of employing a federated learning 

architecture for the task of spacecraft anomaly detection. As described in our experimental 

design section, we used a collection of previous works to derive the minimal target threshold of 

approximately 0.2 RMSE in the reconstruction error phase of our system before any meaningful 

anomaly detection can commence. Using only the channel data with 25 features, figure 4-1 

shows the average loss at each federation step for each of the architectures evaluated when tested 

on each client’s data available at that time step. All architectures were able to achieve this goal 

before the study limit of 100 steps with the fastest being the CNN-LSTM model which reached 

the 0.2 target at 35 steps followed by the transformer and LSTM model at approximately 45 

steps.  

 

Figure 4-1 Distribution of reconstruction error of client models across all simulations categorized 
by model architecture using only 25 feature data. 
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Figure 4-2 Average reconstruction error of global model across all simulations categorized by 
model architecture on 25 feature data. 

To assess the viability of deploying these models on unseen data, the global model is tested with 

10 additional channels worth of hold-out data progressing at a similar cadence with the client 

data. Figure 4-2 shows that with unseen data, only the LSTM and CNN-LSTM are able to reach 

the target threshold while the CNN and transformer model settle around a loss of 0.28 upon the 

study limit of 100 steps. 
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Figure 4-3 Distribution of reconstruction error of client models across all simulations categorized 
by model architecture using both 25 and 55 feature data. 

 



 

47 
 

 

Figure 4-4 Distribution of reconstruction error of Global models across all simulations 
categorized by model architecture using both 25 and 55 feature data. 

To further understand the behavior of the federated learning approach in a deployment 

setting we reran the simulations with incorporating the datasets of 55 channels each along with 

the original set. Figures 4-4 and 4-5 show the reconstruction performance respectively for the 

client and global models, yielding a similar result to the 25 features-only experiment where all 

models were able to reach the target loss before the study limit on client data and the CNN-

LSTM and LSTM models being the only two to achieve this milestone for the global data which 

was also supplemented with sets of 55 feature data.  



 

48 
 

Table 4-1 Precision, recall and F1-Scores by architecture on 25 feature data only. (*note: unique 
model per channel data in centralized setting) 

 

 Having a collection of fitted global models, we proceeded to evaluate their anomaly 

detection abilities using equations 8 and 9 across all 82 channels worth of test data yielding 

tables 4-1 and 4-2 for the 25 feature only and 25 and 55 feature data respectively. For both 

experiments, the performance in reconstruction error linearly maps directly to the anomaly 

detection performance. Regarding the 25-feature experiment, all models reached a precision of 

0.8 or greater however struggled with recall averaging around 0.49.  
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Table 4-2 Precision, recall and F1-Scores by architecture for 25 and 55 feature data. (*Note: 
Unique model per channel data in a centralized setting. 

 

The best-performing model was the CNN-LSTM reached an F1 Score of 0.702 

surpassing the performance of the channel-specific transformer models of [49] but still not 

besting the channel-specific LSTM models by [21]. In the 25 and 55 feature data, our best was 

also the CNN-LSTM model reaching an F1 score of 0.65 and a precision value of 0.91 

surpassing both the channel-specific LSTM and transformer models however failed to do so 

when comparing recall. 

 

4.2 Hybrid Model Anomaly Detection Experiment (RQ2) 

As part of our efforts to answer research question 2, which aims to enhance the 

performance of anomaly detection by customizing the head component of our model for each 

channel while creating a universal model that can be used for new problems, we have been 

focusing on developing a distinct model. This model consists of a self-attention head and an 

LSTM tail. Our objective was to optimize this composite model on each of the client's data, with 

the resultant global module serving as the tail portion. The experimentation protocol was similar 
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in that we evaluated the performance in terms of reconstruction error on both the client and 

global data pools shown in Figure 4-6. With this configuration, the target loss is reached with 30 

steps on average with the client’s data while the global target never reaches the target value 

within the study limit however a correlation can be used to infer the performance when re-

appending the head component. 

 

Figure 4-5 Comparison of Global vs client reconstruction error across federation steps. 

In comparing the performance of anomaly detection, the previous protocol underwent a 

shift by incorporating a mini-fit step before running the AD testing protocol. This mini-fit step 

exposed each model to a small fraction of the available data, varying batch size, learning rate, 

number of steps, and epochs. The findings, as summarized in Table 4-3, reveal that optimal 

precision was achieved at 0.8501 with a batch size of 70, a learning rate of 0.05, 1 epoch, and 10 

steps. However, this came at the cost of recall, which was 0.6545. Regarding the F1 scores, the 
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optimal configuration was noted to be a batch size of 50, a learning rate of 0.02, 5 epochs, and 5 

steps, resulting in an F1 score of 0.7531. This score surpassed the channel-specific transformers 

models from [49] of 0.72. Lastly, in terms of recall, the optimal configuration was a batch size of 

50, a learning rate of 0.02, 40 epochs, and 2 steps, which yielded a value of 0.7090. 

 

Table 4-3 Comparison of Mini-fitting Parameters across and impact on AD performance. 
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CHAPTER 5: Discussion and Conclusion  
 

5.1 Discussion 

In this study, we aimed to explore the potential of federated learning (FL) for onboard 

spacecraft detection and to enhance anomaly detection (AD) performance through the use of 

hybrid-transformer architecture. Our investigation into research question 1 involved simulating 

various FL processes across multiple deep-learning architectures. While some architectures 

showed promising results, the conventional centralized approach using a single model per 

channel consistently outperformed the FL implementations. Regarding research question 2, we 

found that employing a hybrid transformer framework alongside a multi-head attention module 

significantly improved AD performance with minimal initial data. In interpreting the results for 

research question 1, we observed that CNN-LSTM and LSTM models achieved superior 

performance, emphasizing the importance of temporal components in telemetry channels. These 

models demonstrated proficiency in capturing and utilizing temporal information inherent in 

telemetry data, owing to their ability to handle sequential dependencies and long-term patterns. 

Conversely, 1DCNN and multi-head attention models performed poorly compared to CNN-

LSTM and LSTM models, likely due to their limitations in capturing temporal dynamics and 

handling varying lengths of sequential data. 

All FL models struggled with the recall metric, indicating the vast variability across 

different channel data that a single model failed to capture adequately for onboard deployment. 

For research question 2, we achieved competitive AD performance by exposing a hybrid 

architecture to the FL process, allowing for the development of a global understanding of 

underlying patterns. Leveraging the transformer module's normalization effect and multi-head 
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attention mechanism, the hybrid model captured temporal intricacies and channel-specific 

patterns, resulting in robust performance in AD tasks. 

 

Figure 5-1 Shap plot of RF regressor targeting F1 scores for LSTM(Blue) and Hybrid-
Transformer (Red) on AD task. 

Despite the effectiveness of the hybrid-transformer approach, it did not surpass the 

performance of the channel-specific LSTM model. To understand this, we analyzed the impact 

of descriptors on model performance using Shapley Additive Explanation analysis. We found 

that the waveform-replicate error descriptor had the largest impact on both LSTM and hybrid-

transformer models, with simple reconstruction tasks contributing to higher F1 values. The 

distribution of the events per 100 timesteps descriptor had a more negative impact on the 

channel-specific LSTM model compared to the hybrid model, indicating the latter's ability to 

incorporate temporal data effectively. 
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Table 5-1 Mission critical metrics of onboard deployment for models in this study. 

 

Regarding mission implications, our findings suggest the viability of employing FL 

onboard small satellites for AD, potentially opening up precious downlink bandwidth. However, 

considerations such as message size and computational resource consumption need to be 

addressed. We recommend the hybrid-transformer model for its superior performance and 

minimal message size, although missions with more conservative computing budgets may find 

the CNN-LSTM model suitable with further AD performance refinements. Future research 

should focus on optimizing computational resources and refining AD performance for practical 

deployment. 
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5.2 Conclusion 

In conclusion, our investigation into federated learning for onboard telemetry anomaly 

detection highlights the intricate balance between model performance, computational resources, 

and practical deployment considerations. Our study aimed to address two key questions: the 

feasibility of utilizing a federated learning approach for onboard telemetry anomaly detection 

and the potential of a hybrid transformer architecture to achieve state-of-the-art results. To 

answer these questions, we developed a container-based simulation framework with its own 

communication and scheduling mechanism. Our findings reveal that while federated learning 

processes generally yield decently performing models in terms of anomaly detection precision, 

further refinement is necessary due to underwhelming recall scores. Additionally, our 

exploration of the hybrid transformer architecture, while comparable to state-of-the-art methods, 

comes with slower training times that may impact mission resource considerations. Notably, the 

integration of the multi-head attention component was found to enhance the capture of 

communication events in telemetry channels even when compared to channel-specific 

implementations. 

An analysis of mission-critical metrics suggests that the hybrid transformer implementation 

is the most promising option, albeit requiring significantly more budget for onboard compute 

resources. For future work, we propose porting our implementation onto a collection of boards 

used in cube and nanosat missions to validate our findings. Furthermore, we aim to refine the 

CNN-LSTM implementation with a similar paradigm as the hybrid transformer, modularizing 

the CNN component for personalization. Using the findings of the SHAP analysis can also be 

studied further as means for identifying channel categories and stratifying results. Additionally, 

we are interested in integrating a large-scale foundational model into the server side for further 
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enhancement of anomaly detection performance. By addressing these avenues for future research 

and considering the practical implications of our findings, we aim to contribute to advancements 

in telemetry anomaly detection and pave the way for more efficient and effective onboard 

spacecraft detection systems. 
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CHAPTER 6: APPENDIX 
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6.1.1.1 F1 Comparison of LSTM[21] and our hybrid transformer 
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6.1.1.2 Wall-times for each model in our study across ranging batch size. 
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6.1.1.3 Comparison of SOTA results 

 

 

 

 

6.1.1.4 Descriptor functions python code. 
from numpy.fft import fft, ifft 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.signal import find_peaks 
def snr(x:pd.DataFrame): 
    axis=0 
    ddof=0 
    a = x[0].to_numpy() 
    a = np.asanyarray(a) 
    m = a.mean(axis) 
    sd = a.std(axis=axis, ddof=ddof) 
    return np.where(sd == 0, 0, m/sd) 
 
def get_harmonics(x:pd.DataFrame, d:int): 
    sr =1 
    ts = len(x[0])/sr 
    t = np.arange(0,ts,1) 
    # Perform FFT 
    X = fft(x[0]) 
 
    # Perform peak detection 
    peaks, _ = find_peaks(np.abs(X), distance=d) 
    freqs = np.fft.fftfreq(len(X), 1) 
    peak_freqs = freqs[peaks] 
    if not len(peak_freqs): 
        return 0 
 
    # Assuming the first peak corresponds to the fundamental frequency 
    fundamental_frequency = peak_freqs[0] 
    harmonic_numbers = np.round(peak_freqs / fundamental_frequency) 
    harmonic_freqs = fundamental_frequency * harmonic_numbers 
 
 
    fundamental_frequency = peak_freqs[0]  # Assuming the first peak corresponds to the fundamental frequency 
    harmonic_numbers = np.round(peak_freqs / fundamental_frequency) 
    return len(harmonic_numbers) 
 
def waveform_replicate(x:pd.DataFrame, size:int): 
    #sample first n timesteps 
    sample = x[0].head(size).values 
    #get total number of timesteps 
    dsize = x[0].shape[0] 
    #determine number of replicates needed 
    nsamples = int(np.ceil(dsize/size)) 
    #create replicates in 2D 
    repeats = np.array([ sample for _ in range(nsamples)]) 
    #compute rmse between original data and replicates 1D 
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    return np.sqrt(mean_squared_error(repeats.flatten()[:dsize],x[0])) 
 
def get_len(x:pd.DataFrame): 
    return x[0].shape[0] 
 
def get_des(x:pd.DataFrame): 
    return x[0].mean(),x[0].std(),x[0].min(), x[0].max() 
 
def count_events(x:pd.DataFrame): 
    #get columns in data, exclude telemetry point 0 
    cs = [*list(x.columns)] 
    cs.pop(0) 
    #create array of sum of sums across both axis for every 100 steps 
    sums = [x[cs][i:i+100].sum().sum() for i in np.arange(0,x.shape[0],100)[:-1]] 
    #return average 
    return np.mean(sums)/x.shape[1] 
def dsp_metrics(x,l): 
    #average out transitent spikes by l 
    y = x[0].rolling(l).mean() 
    if not y.std(): 
        return 0,0,0 
    #init prev, spans array, amps array and previous direction 
    prev = y[0] 
    spans = [] 
    span = 1 
    amps = [0] 
    amp = 0 
    prev_direction = False 
 
    #for each sample, get delta from previous then compute direction 
    for i in y[1:]: 
        dt = (i-prev) 
        direction = dt >= 0 
        #if nonzero direction change, store length and amplitude 
        if prev_direction != direction and dt != 0: 
            spans.append(span) 
            amps.append((np.abs(amp-i))) 
            amp = 0 
            span =1 
        #else increment 
        else: 
            span += 1 
        prev_direction = direction 
        prev = i 
        size = y.shape[0] 
    return np.mean(np.array(spans)), len(spans)/size*100, np.mean(amps) 

 
6.1.1.5 Sample rule engine for Hybrid experiment 
 

class GT_fedAvgh_Engine(GT_fedAvg_Engine): 
    def __int__(self, connection_handler): 
        super().__init__(connection_handler) 
 
    def start_train(self, data): 
        x, y = next(self.ch.idata) 
        x = padd(x) 
        tl = 0 
        t1 = time.time() 
        if self.ch.train_steps: 
            LOGGER.warning("Time since last train {:.2f} seconds".format(t1 - self.last_train)) 
        for _ in range(self.ch.cfg['epochs']): 
            tl = self.step(x, y) 
            LOGGER.warning(f"loss: {tl}") 
        t2 = time.time() 
        self.last_train = t2 
        LOGGER.warning("Elapsed time: {:.2f} seconds".format(t2 - t1)) 
        msg = {'id': self.ch.QUEUE, 'loss': tl.numpy().tobytes().hex(), 
               'step': self.ch.train_steps} 
        for i in range(len(self.ch.model.layers[1].trainable_variables)): 
            msg[i] = self.ch.model.layers[1].trainable_variables[i].numpy().tobytes().hex() 
        self.ch.add_msg_to_q(self.ch.wt, self.ch.QUEUE, dumps(msg), 'train_metrics') 
        self.ch.train_steps += 1 
 
    def process_metrics_job(self, data): 
        dct = loads(data) 
        self.ch.buffer[dct['step']].append(dct) 
        ids = set(map(lambda x: x['id'], self.ch.buffer[self.ch.step])) 
        if (len(ids.intersection(self.ch.C)) == len(self.ch.C) and 
            self.ch.round != 0) or (self.ch.round == 0 and len(ids) >= 10): 
            data = {} 
            for d in self.ch.buffer[self.ch.step]: 
                data[f"{d['id']}-step"] = d['step'] 
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                data[f"{d['id']}-loss"] = float(np.ndarray(1, dtype=np.float32, buffer=bytes.fromhex(d['loss']))[0]) 
 
            for i in range(len(self.ch.tail.trainable_variables)): 
                update = np.zeros(self.ch.tail.trainable_variables[i].numpy().shape) 
                vals = list(map(lambda x: x[str(i)], self.ch.buffer[self.ch.step])) 
                for v in vals: 
                    update += np.ndarray(self.ch.tail.trainable_variables[i].numpy().shape, dtype=np.float32, 
                                         buffer=bytes.fromhex(v)) 
                update = update / len(self.ch.comm_metrics) 
                self.ch.tail.trainable_variables[i].assign(update) 
 
            scores = [] 
            for id in self.ch.idata: 
                x, y = next(id) 
                x = padd(x) 
                yhat = self.ch.tail.predict(x) 
                scores.append(mse(yhat, y).numpy()) 
            data['global-loss'] = float(np.mean(scores)) 
 
            if int(self.ch.step) > 1: 
                less_than = bool(self.ch.last_target_score > data['global-loss']) 
                if less_than and self.ch.cfg['direction_min']: 
                    self.ch.tail.save(os.path.join(self.ch.run_metrics_location, "tail.h5")) 
                    self.ch.g_min = data['global-loss'] 
                    self.ch.patience_test = 0 
                else: 
                    self.ch.patience_test += 1 
            self.ch.run_data.append(data) 
            save_file = open(os.path.join(self.ch.run_metrics_location, "training.json"), "w") 
            json.dump(self.ch.run_data, save_file, indent=6) 
            save_file.close() 
 
            LOGGER.warning(f"TEST UPDATE: {data['global-loss']}") 
            weights = {} 
            for i in range(len(self.ch.tail.trainable_variables)): 
                weights[i] = self.ch.tail.trainable_variables[i].numpy().tobytes().hex() 
            # send broadcast signal to update_weights as long patience is within tolerance 
            if self.ch.patience_test < self.ch.cfg['patience']: 
                self.post_agg_processing(weights) 
            else: 
                print("***Patience exceeded, experiment terminated!***\n\n\n") 
                q_items = list(self.ch.comm_metrics.keys()) 
                for prty in q_items: 
                    self.ch.add_msg_to_q(prty, self.ch.QUEUE, "blank", 'reset') 
                self.ch.comms_enabled = False 
            self.ch.last_target_score = data['global-loss'] 
            self.ch.round += 1 
            self.ch.step += 1 
            self.ch.buffer[self.ch.step] = [] 
        else: 
            self.ch.add_msg_to_q(dct['id'], self.ch.QUEUE, "standbye", 'info') 
 
    def update_weights_job(self, data): 
        dct = loads(data) 
        for i in range(len(self.ch.model.layers[1].trainable_variables)): 
            weights = np.ndarray(self.ch.model.layers[1].trainable_variables[i].numpy().shape, dtype=np.float32, 
                                 buffer=bytes.fromhex(dct[str(i)])) 
            self.ch.model.layers[1].trainable_variables[i].assign(weights) 
        self.ch.add_msg_to_q(self.ch.wt, self.ch.QUEUE, self.ch.QUEUE, 'train_req') 
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