
Southern Methodist University Southern Methodist University

SMU Scholar SMU Scholar

Computer Science and Engineering Theses and
Dissertations Computer Science and Engineering

Spring 5-11-2024

Beyond the Horizon: Exploring Anomaly Detection Potentials with Beyond the Horizon: Exploring Anomaly Detection Potentials with

Federated Learning and Hybrid Transformers in Spacecraft Federated Learning and Hybrid Transformers in Spacecraft

Telemetry Telemetry

JUAN RODRIGUEZ
Southern Methodist University, juanjose@smu.edu

Follow this and additional works at: https://scholar.smu.edu/engineering_compsci_etds

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
RODRIGUEZ, JUAN, "Beyond the Horizon: Exploring Anomaly Detection Potentials with Federated Learning
and Hybrid Transformers in Spacecraft Telemetry" (2024). Computer Science and Engineering Theses and
Dissertations. 37.
https://scholar.smu.edu/engineering_compsci_etds/37

This Dissertation is brought to you for free and open access by the Computer Science and Engineering at SMU
Scholar. It has been accepted for inclusion in Computer Science and Engineering Theses and Dissertations by an
authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu.

https://scholar.smu.edu/
https://scholar.smu.edu/engineering_compsci_etds
https://scholar.smu.edu/engineering_compsci_etds
https://scholar.smu.edu/engineering_compsci
https://scholar.smu.edu/engineering_compsci_etds?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/engineering_compsci_etds/37?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

Beyond the Horizon: Exploring Anomaly Detection Potentials with Federated Learning and

Hybrid Transformers in Spacecraft Telemetry

Approved by:

Prof. Eric Larson
Professor of Computer Science

Prof. Frank Coyle
Associate Professor of Computer Science

Prof. Jia Zhang
Professor of Computer Science

Prof. Theodore Manikas
Associate Professor of Computer Science

Prof. Jennifer Dworak
Professor of Electrical Engineering

Prof. Sukumaran Nair
Professor of Computer Science

Beyond the Horizon: Exploring Anomaly Detection Potentials with Federated Learning and

Hybrid Transformers in Spacecraft Telemetry

A Praxis Presented to the Graduate Faculty of the

Lyle School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Engineering

with a

Major in Software Engineering

by

Juan Jose Rodriguez

M.S.E., Software Engineering, Pennsylvania State University
B.S., Applied Math, Arizona State University

April 23, 2024

Copyright (2024)

Juan Rodriguez

All Rights Reserved

iv

ACKNOWLEDGMENTS

I extend heartfelt gratitude to my wife Jenna, children Danielle and Joaquin, my parents Sergio

and Ana Rodriguez, and my mother-in-law Patricia for their unwavering support during my

dissertation journey. Jenna's encouragement and sacrifices have been invaluable, as have my

children's patience and understanding. I am thankful to my parents for instilling in me the value

of education and perseverance, which motivates me daily. Patricia's support has been

instrumental in facilitating my pursuit of this goal, and I am deeply grateful for her contributions.

Additionally, I appreciate the mentorship and guidance of my advisor, Dr. Frank Coyle, whose

support has been pivotal in my academic growth. This dissertation is dedicated to my family,

Patricia, and Dr. Coyle, whose unwavering belief in me made this achievement possible. Thank

you for standing by me every step of the way.

v

Rodriguez, Juan M.S.E., Software Engineering, Pennsylvania State University, 2017

B.S., Applied Math, Arizona State University, 2015

Beyond the Horizon: Exploring Anomaly Detection Potentials with Federated Learning and
Hybrid Transformers in Spacecraft Telemetry

Advisor: Professor Frank Coyle

Doctor of Engineering conferred May 11, 2024

Praxis completed May 10, 2024

Telemetry sensors play a crucial role in spacecraft operations, providing essential data on

efficiency, sustainability, and safety. However, identifying irregularities in telemetry data can be

a time-consuming process that risks the success of missions. With the rise of CubeSats and

smallsats, telemetry data has become more abundant, but concerns about privacy and scalability

have resulted in untapped data potential. To address these issues, we propose a new approach to

anomaly detection that utilizes machine learning models at data sources. These models solely

transmit weights to a centralized server for aggregation, resulting in improved dataset

performance with a single global model. We have also incorporated self-attention into the

federated process to further enhance anomaly detection performance. Our experiments with real-

world telemetry data have demonstrated that our approach is state-of-the-art in that we can

construct a single model to address multiple telemetry channels while still adhering to the

constraints typically seen in space missions. Our framework streamlines anomaly detection,

promoting operational efficiency, sustainability, and safety. It facilitates collaborative insights

while abiding by mission security constraints and reducing the risk of accidents and downtime,

ensuring sustainability.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

CHAPTER 1: Introduction ... 1

1.1 Background ... 2

1.2 Federated Learning Basics .. 4

1.3 Research Motivation ... 5

1.4 Thesis Statement ... 6

1.5 Research Objectives .. 7

1.6 Research Questions and Hypothesis ... 8

1.7 Scope of Research ... 9

1.8 Limitations .. 10

1.9 Organization of Praxis .. 11

CHAPTER 2: Previous Work .. 13

2.1 Machine Learning in Spacecraft Anomaly Detection ... 13

2.2 Federated Learning and its Applicability .. 14

2.3 Transformers ... 15

CHAPTER 3: Methodology ... 17

3.1 Introduction ... 17

vii

3.2 Data Sources and Datasets .. 17

3.3 Descriptive Statistics ... 20

3.4 Model Selection and Description .. 21

3.5 Reconstruction Error in Federated Learning ... 32

3.6 Simulation Testbed Design ... 37

3.7 Experimental Design ... 39

3.8 Metrics .. 42

CHAPTER 4: Results ... 44

4.1 Simple Federated Anomaly Detection Experiment (RQ1) ... 44

4.2 Hybrid Model Anomaly Detection Experiment (RQ2) .. 49

CHAPTER 5: Discussion and Conclusion ... 52

5.1 Discussion ... 52

5.2 Conclusion .. 55

CHAPTER 6: APPENDIX ... 58

CHAPTER 7: BIBLIOGRAPHY ... 64

viii

LIST OF FIGURES

Figure 3-1 Example of data used in this experiment showing actual telemetry value and

corresponding metadata (Hundman et al, 2018) ... 18

Figure 3-2 Sample LSTM architecture used in this study. .. 23

Figure 3-3 Anatomy of an LSTM layer. ... 24

Figure 3-4 Sample CNN architecture used in this study. .. 26

Figure 3-5 Sample CNN-LSTM architecture used in this study. .. 28

Figure 3-6 Dot product Attention and transformer encoder. .. 29

Figure 3-7 Sample Transformer architecture used in this study. .. 30

Figure 3-8 Sample Transformer architecture used in RQ2, the front half of hybrid-transformer. 31

Figure 3-10 Container level overview of Testbed. ... 38

Figure 3-11 Data flow diagram of FL Testbed. .. 39

Figure 5-1 Shap plot of RF regressor targeting F1 scores for LSTM(Blue) and Hybrid-

Transformer (Red) on AD task. .. 53

ix

LIST OF TABLES

Table 3-1 Summary of two data sources used in this study SMAP at 55 and MSL 27 channels

respectively. .. 19

Table 3-2 Descriptors used in this study and their definitions. ... 20

Table 3-3 Summary statics of descriptors 1 of 2. ... 21

Table 3-4 Summary statics of descriptors 2 of 2. ... 21

Table 3-5 Hyperparameters varied in this study. .. 41

Table 3-6 Hyperparameters held constant in this study. ... 42

Table 4-1 Precision, recall and F1-Scores by architecture on 25 feature data only. (*note: unique

model per channel data in centralized setting) .. 48

Table 4-2 Precision, recall and F1-Scores by architecture for 25 and 55 feature data. (*Note:

Unique model per channel data in a centralized setting. .. 49

Table 4-3 Comparison of Mini-fitting Parameters across and impact on AD performance. 51

Table 5-1 Mission critical metrics of onboard deployment for models in this study. 54

1

CHAPTER 1: Introduction

An integral part of space missions is the ability of the spacecraft to communicate data

streams of each onboard instrument. This enables mission operators to capture payload data and

critical engineering data regarding the health of the spacecraft. This process is called telemetry

monitoring. Once in orbit, the spacecraft constantly sends telemetry data back to Earth, which

contains valuable information about the performance and status of the spacecraft's numerous

systems and instruments.[20]. The volume and generation of this data is determined by mission

complexity, duration, onboard instruments, and spacecraft automation [42]. Throughout the

operational phase of a mission, the amount of telemetry data generated can vary depending on

the type of instrument and how frequently measurements are taken. For instance, an instrument

that measures the temperature of a spacecraft's battery might only produce a handful of data

points each minute, while a camera capturing images of a planet could yield several gigabytes of

data daily [8]. One critical activity for telemetry monitoring is to observe for anomalies referred

to as anomaly detection. Mission planners and designers assume certain states of the spacecraft

when in orbit and need to be notified when the spacecraft is in an aberrant state enabling

operators to return the spacecraft to a nominal state through a series of corrective telecommands.

The history of spacecraft anomaly detection dates back to the early days of space

exploration. In the early days of manned spaceflight, astronauts or ground-based personnel often

detected anomalies and manually corrected them through teleoperation or other means [28].

However, the need for more advanced and automated anomaly detection techniques became

2

apparent as spacecraft missions became more complex and sophisticated. One of the earliest

examples of automated anomaly detection in spacecraft occurred during the Apollo 11 mission in

1969. The spacecraft's guidance computer encountered an error during the descent to the lunar

surface, triggering an alarm. However, the astronauts were able to override the error and

complete the landing successfully manually. After the mission, the error was traced to a faulty

switch, and new procedures were implemented to prevent a recurrence of the problem. In the

following decades, researchers continued developing and refining techniques for automated

anomaly detection in spacecraft telemetry data. Early approaches focused on statistical methods,

such as hypothesis testing and regression analysis, to detect anomalies in spacecraft data.

However, these methods had limited accuracy and required extensive human involvement to

interpret the results [49]. With the increase in the utilization of machine learning and data mining

techniques seen in the 1990s, researchers began to explore these methods for anomaly detection

in spacecraft telemetry data. For example, NASA's Jet Propulsion Laboratory researchers

developed the Autonomous Sciencecraft Experiment, which used machine learning algorithms to

detect and classify anomalies in Mars rover telemetry data [53]. Since then, research in

spacecraft anomaly detection has continued to advance. New techniques and approaches have

been developed to address the challenges of detecting anomalies in increasingly complex and

diverse spacecraft systems.

1.1 Background

The ever-changing landscape of today's world has highlighted the need for adaptable and

resilient systems that can function effectively in both expected and unforeseen circumstances.

Deep learning (DL) or the subset of machine learning that uses multi-layered neural networks as

function approximators, has emerged as a powerful technology that allows systems to learn rules

3

from vast amounts of data [18]. This approach has proved to be more effective than relying

solely on prescriptive rules defined by engineers across a wide range of domains [30].

The resurgence of AI(Artificial Intelligence) in recent years has been remarkable, and deep

learning has played a significant role in its success, especially in tasks such as image recognition.

Most DL methods assume a single machine will be dedicated to handling the computational task

of fitting the model to the data available in the training process, referred to as Centralized

Learning (CL) [16]. CL frameworks have been successful for technology companies with access

to extensive cloud-based data. However, this approach has its limitations, particularly in

situations where data cannot be easily transmitted to a central location due to factors such as

limited bandwidth, connectivity issues, privacy concerns, and resource constraints. In healthcare,

for example, strict privacy regulations make it challenging to pool data, while in IoT,

transmitting raw data can be energy-intensive. Pursuing a centralized learning strategy in these

scenarios can result in limited access to new data, leading to outdated decision-making criteria

and a decline in system performance over time. Federated Learning emerges as a solution for

such challenges. First introduced by [16], FL is defined as sub-field of machine learning focused

on settings in which multiple entities collaboratively train a single model without the sharing of

data but model parameters [16]. Unlike centralized learning, Federated Learning brings the

model to the data rather than vice versa. It is particularly relevant in situations where transmitting

raw on-device data is expensive or impractical. Federated Learning allows continuous training of

intelligent systems post-production, addressing the limitations of centralized learning. It is

especially useful in overcoming legal constraints in cases like the Health Insurance Portability

and Accountability Act (HIPAA), where patient data aggregation for medical research is

challenging. FL's ability to send model updates instead of bulk data minimizes data transmission

4

and respects privacy concerns. Google's application of FL in its Android operating system

showcases its potential benefits for cell phone users concerned about privacy, battery life, and

data usage. By communicating only model updates, FL reduces bandwidth usage and enhances

privacy, crucial considerations for both cell phones and IoT devices with limited resources [16].

In dynamic environments, users expect intelligent systems to adapt beyond the initial

training dataset. FL, by enabling distributed model training on various devices simultaneously,

allows systems to continually learn from local data during the Utilization & Support stages of the

system lifecycle. The federated learning architecture proposed provides a framework for ongoing

system training, overcoming the limitations of a traditional CL approach.

1.2 Federated Learning Basics

Federated learning is a machine learning approach that allows for model training across

multiple devices or servers while keeping the data localized [16]. Unlike traditional machine

learning methods where data is centralized in one location for training, federated learning

enables model training directly on the devices where the data is generated or stored, such as

smartphones, IoT devices, or edge servers [24]. This decentralized approach to training offers

several advantages, including increased privacy, reduced communication costs, and the ability to

leverage data that cannot be easily moved due to privacy concerns or regulatory restrictions.

In federated learning, the training process typically involves three main steps: local

training, aggregation, and global model update. During the local training phase, each device or

server trains the model using its local data without sharing the raw data. Once the local training

is complete, the updated model parameters are sent to a central server or aggregator. The

aggregator then combines these local updates to compute a global update for the model. This

5

global update is then sent back to the devices for further refinement, and the process iterates until

the model converges to an optimal state or a predefined stopping criterion is met [25].

One of the key benefits of federated learning is enhanced privacy protection. Since the raw

data remains on the local devices and only model updates are shared, sensitive information is less

exposed to potential breaches or unauthorized access. This makes federated learning particularly

well-suited for applications where data privacy is a primary concern, such as healthcare, finance,

and personalization services. Additionally, federated learning can also help reduce

communication costs by minimizing the amount of data transferred between devices and central

servers, making it more efficient for resource-constrained environments [57].

1.3 Research Motivation

The power of deep learning to enhance human understanding and automate spacecraft

telemetry analysis is clear. Machine learning, especially in deep learning, can surpass human

capabilities and identify subtle changes in complex data patterns. Automating the analysis of

telemetry data not only improves operational efficiency but also reduces the cognitive load on

personnel who monitor spacecraft data streams. Federated Learning (FL), a concept applicable to

both spacecraft telemetry and the Internet of Things (IoT), presents an avenue for intelligent

systems to continuously learn post-deployment in operational space environments. Diverging

from Centralized Learning (CL), FL proves effective in settings characterized by limited network

bandwidth and remote computing resources. This architectural approach is particularly suited for

pre-existing, constrained spacecraft networks, bringing about efficiency gains and substantial

cost savings by obviating the need to upgrade network capabilities. The diminished reliance on

extensive telemetry downlinks not only enhances system adaptability across various operational

environments, including deep space missions, but also fosters an overall increase in resilience.

6

Strategically implementing FL in telemetry systems allows mission planners to judiciously

reallocate precious network bandwidth to other critical spacecraft operations. This strategic

approach proves especially advantageous in scenarios involving both constrained networks and

computationally limited edge devices, as commonly encountered in spacecraft missions.

However, achieving these objectives in space missions necessitates the establishment of a

well-defined system architecture. This architecture serves as the cornerstone for designing FL

components and understanding their dependencies on the network and available edge resources.

A comprehensive grasp of tradeoff considerations in FL systems enables engineers, architects,

and mission planners to effectively scope, plan, and execute telemetry projects. In both IoT and

spacecraft telemetry applications, recognizing and navigating system limitations are integral to

making informed system design decisions. A federated learning architecture adeptly captures

these system dependencies, intricately linking them with the anomaly detection (AD) system’s

performance metrics. Tailoring the architecture to the specific operational environment facilitates

continuous learning even under sub-optimal conditions, ensuring the system's maintainability

and adaptability in the dynamic and challenging realm of space missions.

1.4 Thesis Statement

This research thesis explores the application of federated learning in spacecraft telemetry

anomaly detection, with a primary focus on evaluating its effectiveness in achieving or

surpassing state-of-the-art results in anomaly detection accuracy. Additionally, the study

aims to explore how hybrid transformer architecture can be used in personalizing

attention to each client’s data without compromising global performance. By addressing

these objectives, the thesis contributes to the advancement of anomaly detection systems

7

in the context of space exploration, offering insights into the practical implementation and

optimization of federated learning techniques.

1.5 Research Objectives

The objective of this research is to present a demonstrative application and blueprint for a

Federated Learning (FL) platform specifically for the task of onboard spacecraft anomaly

detection. The focus is primarily on developing a single DL model trained in the FL paradigm

capable of detecting anomalies across a wide range of telemetry channels while also

understanding the mission implications of our approach. Previous work in this domain has

generally taken the approach of building multiple models to address the problem, one unique

model for each data channel available. Furthermore, none of the work done before has

considered mission implications of doing an onboard approach, thereby demanding a large

centralized server to implement.

The unique constraints of these environments dictate a careful structuring of the FL system

to ensure its practicality and longevity. The research outcomes will serve to validate the

feasibility of employing FL to enhance the performance of telemetry anomaly detection. The

findings will be instrumental in evaluating whether the proposed federated learning architecture

outperforms centralized telemetry monitoring approaches. This comparative analysis is vital for

establishing the efficacy and advantages of the proposed FL system. By providing a clear

roadmap and addressing these key aspects, this research aims to contribute valuable insights to

the broader field of FL, edge computing, and telemetry monitoring.

8

1.6 Research Questions and Hypothesis

The principal aim of this research is to evaluate whether Federated Learning (FL) can

achieve performance levels comparable to established centralized techniques. Additionally, the

study explores the feasibility of applying FL across missions, emphasizing spacecraft

personalization instead of demanding maintainability requirements often associated with space

missions. If successful, this approach could offer mission planners a more cost-effective means

of developing intelligent and rapidly adaptive systems. The importance of spacecraft

personalization in space missions is paramount, ensuring sustained functionality, adaptability,

and reliability of mission-critical systems. A focus on effective personalization practices

guarantees the continued success and safety of spacecraft operations, communication, and

scientific data, contributing to the overall mission objectives. It's noteworthy that integrating

spacecraft personalization requirements with FL performance is still an emerging area in the

machine learning community.

The evaluation of updating machine learning models through a personalized system is

conducted both conceptually and through simulation to assess its feasibility, marking a

significant step in advancing the understanding of the coupling between personalization and FL

performance in the context of space missions.

RQ1: To what extent can a federated learning approach be effectively applied to

spacecraft telemetry anomaly detection, aiming to achieve or surpass state-of-the-art results in

anomaly detection accuracy?

RQ2: How can a hybrid transformer approach be strategically integrated into the

federated anomaly detection system to optimize local performance for individual spacecraft,

9

thereby advancing anomaly detection accuracy and contributing to the overall efficacy of the

framework?

H1: By leveraging the decentralized nature of federated learning, spacecraft telemetry

anomaly detection can benefit from the contributions of individual spacecraft components. The

implementation of this approach is expected to yield comparable results to existing state-of-the-

art methods, while enhancing the accuracy of anomaly detection. We hypothesize that this

federated learning model will prove to be a robust and effective method for improving the

accuracy of spacecraft telemetry anomaly detection, achieving comparable results to current

approaches.

H2: By strategically incorporating a hybrid transformer approach into the existing

federated anomaly detection system, we anticipate a significant boost in the performance of

individual spacecraft, resulting in a marked improvement in anomaly detection accuracy. This

innovative model is expected to exceed the baseline results obtained through standalone

federated learning, and potentially even surpass the performance of state-of-the-art techniques.

As such, it represents a potent and effective means of optimizing the overall efficacy of the

federated framework for spacecraft telemetry anomaly detection.

In the pursuit of addressing these inquiries, a set of best practices and sound assumptions

surfaces, providing valuable guidance for system designs in the formulation of similar systems

and model architectures.

1.7 Scope of Research

This research aims to evaluate the effectiveness of centralized and federated anomaly

detection methods implemented through TensorFlow software. Particular emphasis will be

10

placed on exploring diverse model architectures and potential strategies for adapting the system.

Furthermore, a systematic approach will be formulated to optimize these methods within the

framework of Federated Learning (FL). Considerations pertinent to mission planners will be

thoroughly deliberated upon and documented for the deployment of such an architectural

framework. Special attention will be dedicated to understanding the tight coupling of

dependencies inherent in the deep learning (DL) model algorithms. The variability of these

constraints will yield valuable insights into tailoring the proposed federated learning architecture

to suit the unique demands of spacecraft missions. The results obtained will quantitatively assess

the correlation between architectural modifications and the efficacy of telemetry anomaly

detection, contributing to a deeper understanding of the interplay between personalization and

anomaly detection methods within the context of space missions.

1.8 Limitations

While this research endeavors to make significant contributions to the field of spacecraft

telemetry anomaly detection through the application of federated learning, certain limitations

should be acknowledged. The primary constraint lies in the limited availability of data for

training and testing purposes. The scarcity of diverse and comprehensive datasets specific to

spacecraft telemetry anomalies may impact the generalizability of the proposed federated

learning framework. Additionally, the effectiveness of machine learning models, including

federated learning, heavily relies on the quality and quantity of data. The limited dataset may

pose challenges in achieving robust and highly accurate anomaly detection models. The scarcity

of real-world telemetry anomaly instances could potentially constrain the model's ability to adapt

to a wide range of scenarios and variations that might be encountered in actual space missions.

11

Furthermore, the scope of this research may be influenced by the constraints imposed by

the availability of resources, both in terms of computational power and time. These limitations

may impact the depth and breadth of the experimentation and analysis conducted within the

study. Despite these constraints, this research aims to provide valuable insights and establish a

foundation for future work in the domain of spacecraft telemetry anomaly detection with

federated learning. The findings, while recognizing these limitations, can still offer meaningful

contributions and guide further exploration in this evolving field.

1.9 Organization of Praxis

This praxis is centered on a thorough exploration of the implementation of Federated

Learning (FL) in the unique context of spacecraft missions. The initial phase involves a review

of foundational research, with a specific emphasis on guiding principles for selecting model

architectures suitable for FL in spacecraft telemetry. Subsequently, the focus shifts to the

introduction of methods crafted to encompass various aspects of a personalized system within

the FL framework, particularly through the exploration of hybrid transformers. The ensuing

discussion addresses the inherent limitations associated with existing architectural designs,

offering insights into how these constraints can be effectively addressed through strategic

refactoring techniques.

As the praxis progresses, it transitions into delineating the practical methodologies involved

in model training within a federated learning framework, considering the intricacies of spacecraft

telemetry. The culmination of the praxis is dedicated to the assessment of anomaly detection

(AD) accuracy within the FL model, utilizing relevant performance metrics. The conclusive

section consolidates the outcomes of the praxis, including the exploration of hybrid transformers,

architectural considerations, and implications to a system design.

12

Within this concluding framework, tailored recommendations are presented, specifically

aimed at mission planners contemplating the integration of FL with hybrid transformers into

their space systems. This offers a roadmap for informed decision-making in the dynamic and

challenging realm of spacecraft missions.

13

CHAPTER 2: Previous Work

2.1 Machine Learning in Spacecraft Anomaly Detection

Recent research has witnessed the integration of deep learning techniques, these

advancements have shown promise in capturing spatial and temporal dependencies and

enhancing anomaly detection capabilities. Moreover, several state-of-the-art anomaly detection

methods have emerged in recent years, each contributing to the diverse landscape of anomaly

detection techniques. KitNet [32] is recognized as the pioneering work that utilizes auto-

encoders, both with and without ensembles(using multiple ML methods), for online anomaly

detection. OmniAnomaly [46] introduces a novel approach by employing a variational auto-

encoder with gated recurrent units, specifically tailored for multivariate time series anomaly

detection. GAN-Li [36] and MAD-GAN [37] present unsupervised multivariate anomaly

detection methods based on Generative Adversarial Networks (GANs), leveraging LSTM-RNNs

as both generator and discriminator models to capture the temporal correlations in time series

distributions. Furthermore, LSTM-VAE [4] focuses on fusing signals and reconstructing their

expected distribution using Variational Auto-Encoders (VAEs) with Long Short-Term Memory

(LSTM) networks. LSTM-NDT [21] introduces a univariate time series detection method based

on LSTMs, incorporating a novel nonparametric anomaly thresholding approach suitable for

NASA datasets. DAGMM [17] employs a deep auto-encoder to generate an error sequence,

which is then fed into a Gaussian Mixture Model (GMM) for anomaly detection. MTAD-GAT

[39] takes a different approach by jointly optimizing a forecasting-based model and a

reconstruction-based model to capture time relationships and variable dependencies. GTA [33]

presents a novel framework for multivariate time series anomaly detection, involving the

automatic learning of a graph structure, graph convolution, and modeling of temporal

14

dependencies using a Transformer-based architecture. Moreover, while these state-of-the-art

anomaly detection methods have made significant contributions to the field, it is worth noting

that, to the best of our knowledge, the exploration of these advanced techniques within a

federated learning domain, particularly in the context of spacecraft anomaly detection, remains

relatively unexplored. As such, there is a notable gap in the literature regarding the application of

these methods in federated settings, presenting an opportunity for future research to bridge this

gap and explore the potential implications and challenges of deploying such techniques in

federated environments, particularly in the context of space system design.

2.2 Federated Learning and its Applicability

Federated Learning (FL) is a burgeoning paradigm in machine learning that introduces a

decentralized approach to model training. This section provides a literature review on Federated

Learning and its applicability across various domains. A foundational work by [16] establishes

the concept of Federated Learning, emphasizing its potential to address privacy concerns in

distributed learning scenarios. The study introduces the idea of training models across

decentralized devices, enabling learning without raw data leaving individual devices. This

privacy-preserving aspect of FL has spurred its adoption in applications where data security and

confidentiality are paramount. Further exploration of FL's applicability is found in [23], which

investigates its effectiveness in scenarios with massive datasets distributed across different

geographical locations. The study demonstrates how FL can significantly reduce communication

costs and alleviate privacy concerns while maintaining model performance in scenarios

characterized by diverse data sources.

In the healthcare domain, [30] explores the use of Federated Learning for collaborative

model training across multiple healthcare institutions. The study highlights FL's potential to

15

build robust models without compromising patient data privacy, making it an attractive approach

for collaborative medical research and personalized healthcare applications. Moreover, [22]

delves into the challenges and opportunities of applying Federated Learning in edge computing

environments. The study explores how FL can enhance model training on resource-constrained

devices, making it suitable for Internet of Things (IoT) applications and edge computing

scenarios. Addressing the scalability of FL, [55] investigates techniques for federated

optimization that can efficiently handle large-scale and dynamic datasets. The study contributes

insights into the scalability challenges of FL and proposes methodologies to improve its

applicability in scenarios involving vast and evolving data sources.

2.3 Transformers

Transformers have emerged as a groundbreaking architecture in the field of natural

language processing (NLP) and machine learning. Introduced by [59], transformers have

revolutionized various applications, including language understanding, translation, and image

processing. The core idea of transformers lies in their attention mechanism, enabling the model

to focus on different parts of the input sequence when making predictions. The architecture

eliminates the sequential nature of recurrent neural networks (RNNs) and the fixed context

window of convolutional neural networks (CNNs), allowing for more effective capture of long-

range dependencies. The self-attention mechanism is a fundamental component of transformers.

It allows the model to weigh different parts of the input sequence differently, capturing

relationships between words regardless of their positions. This mechanism contributes to the

model's ability to handle variable-length sequences and has proven to be crucial for tasks like

language modeling and machine translation.

16

Bidirectional Encoder Representations from Transformers (BERT), introduced by [60],

marked a significant advancement. BERT and subsequent pre-trained models like GPT-3 have

demonstrated the power of transfer learning in NLP. These models are pre-trained on large

corpora and fine-tuned for specific tasks, achieving state-of-the-art results in various

benchmarks. While transformers gained prominence in NLP, their success has extended to other

domains. Vision Transformer (ViT) introduced by [61], showcased the applicability of

transformers in computer vision, challenging the dominance of convolutional neural networks

(CNNs). Transformers have also been successfully applied in speech processing and

reinforcement learning. Despite their success, transformers come with computational challenges

due to their quadratic self-attention complexity, limiting their scalability. Researchers have

explored techniques like attention pruning and approximations to address these issues.

Additionally, advancements like the Longformer model have aimed to extend the reach of

transformers to even longer sequences [62]. The concept of hybrid transformers, combining

transformer architectures with other neural network structures, has gained attention. This

approach aims to capture the strengths of transformers while mitigating their limitations. For

example, models combining transformers with convolutional layers or recurrent components

have shown promise in certain tasks.

17

CHAPTER 3: Methodology

3.1 Introduction

Our study endeavors to assess diverse deep learning models within the context of our

federated framework, specifically focusing on their effectiveness in spacecraft anomaly detection

and their influence on real-time communication and system resource utilization. Employing a

multifaceted approach, we combine a quantitative evaluation of anomaly detection performance

with a system-level analysis. The dataset utilized encompasses information from two distinct

sources, namely SMAP and MSL, incorporating alterations. The research leverages federated

learning, exploring its suitability in real-time scenarios. Our selection of models considers not

only their anomaly detection capabilities but also their impact on resource efficiency. This

comprehensive methodology ensures practical insights into both model performance and their

real-world applicability in the context of space missions.

3.2 Data Sources and Datasets

In this section, we provide an overview of the datasets utilized in our research for anomaly

detection within the context of spacecraft systems, specifically from the Mars Science

Laboratory (MSL) and Soil Moisture Active Passive (SMAP) missions. The dataset contains 82

normalized telemetry channels of data labeled with 105 anomalies, lending itself to be evaluated

in a federated setting. A summary of the characteristics of our data pool is provided in in table 3-

1. These datasets have been curated and annotated by the International Society of Automation

(ISA) and serve as the foundation for our study. The selection of these datasets is crucial in

addressing the unique challenges of spacecraft operations, including both planetary exploration

18

and Earth observation, and ensuring the relevance of our research to the field of aerospace

engineering.

The datasets used in this research have been obtained from ISA, a recognized authority in

the field of automation and industrial processes. ISA's expertise in standardization and system

monitoring makes their annotated datasets particularly valuable for anomaly detection within

spacecraft systems, whether in the demanding conditions of planetary exploration (MSL) or

Earth observation (SMAP).

Figure 3-1 Example of data used in this experiment showing actual telemetry value and
corresponding metadata (Hundman et al, 2018)

The datasets provided by ISA encompass a wide range of telemetry and sensor data from

both the MSL and SMAP missions. For the MSL mission, these datasets capture the intricate

telemetry related to the exploration of Mars, covering aspects such as rover mobility, scientific

instrument operations, and environmental conditions. For the SMAP mission, the datasets

include Earth observation telemetry related to soil moisture levels and environmental factors. An

19

essential aspect of these datasets is the detailed annotations provided by ISA. Figure 3-1

visualizes the general nature of the data and how we intend to use it for the task of anomaly

detection, in that a single channel is a multivariable time series data where the first variable is the

measurement of the channel while the remain variables are Booleans denoting a command event.

Table 3-1 Summary of two data sources used in this study SMAP at 55 and MSL 27 channels
respectively.

These annotations specify the occurrence and characteristics of anomalies within the

telemetry data for both the MSL and SMAP missions. ISA's expertise in anomaly detection and

their access to domain knowledge ensures that the annotations are accurate and informative. The

presence of these annotations is invaluable for the supervised learning approach we adopt in our

research, as they serve as ground truth labels for training and evaluating our machine learning

models. The utilization of ISA-annotated datasets from both the MSL and SMAP missions

enhances the credibility and reliability of our research while addressing the specific challenges of

planetary exploration and Earth observation. By leveraging these datasets, we can develop and

20

assess machine learning models that are tailored to the unique demands of both missions, with a

focus on accurate anomaly detection and minimal false alarms.

3.3 Descriptive Statistics

Something we have not seen in similar work are corresponding descriptive statistics

outside of the number of features and corresponding sequence lengths. In having these

descriptors, we will have a more meaningful way to discuss any result anomaly detection

metrics. The data in its raw state has already been normalized using the min-max technique so

we know all values for the measurement reading will be in the range of -1 to 1. Commonly

discussed in previous works are sequence length and number of features which we also

incorporated. In a manual inspection of the data, we felt the best approach to incorporate some

common signal descriptors in both the time and frequency domain summarized in Table 3-2.

Table 3-2 Descriptors used in this study and their definitions.

21

Table 3-3 Summary statics of descriptors 1 of 2.

Table 3-4 Summary statics of descriptors 2 of 2.

3.4 Model Selection and Description

The heart of our research lies in the selection, development, and description of the deep

learning models used for anomaly detection in the MSL and SMAP mission datasets. In this

22

section, we present an overview of the selected models, their specific characteristics, and how

they are tailored to address the unique challenges of each mission. For our research, we have

chosen a suite of machine learning models known for their effectiveness in anomaly detection.

These models have been selected based on their adaptability to the complex telemetry data and

their capacity to operate in real-time conditions. The following models have been chosen for this

study.

3.4.1.1 Long Short-Term Memory (LSTM) Networks:

LSTM networks are a type of recurrent neural network (RNN) known for their ability to

capture sequential dependencies in data. We employ LSTM networks to model temporal

dependencies within the telemetry data, making them ideal for capturing anomalies that manifest

over time.

23

Figure 3-2 Sample LSTM architecture used in this study.

LSTMs are a type of neural network that can handle long sequences without facing issues

like vanishing or exploding gradient problems. This is possible due to a more memory

mechanism that incorporates several key components such as the cell state, input gate, forget

gate, and output gate. These components work together to regulate the flow of information

within the network, allowing it to retain or discard information over time. The cell state acts like

24

a conveyor belt that runs through the entire sequence, enabling LSTMs to maintain long-term

dependencies by preserving information across many time steps.

Figure 3-3 Anatomy of an LSTM layer.

The input gate plays a crucial role in the LSTM network by controlling the flow of new

information into the cell state. It analyzes the current input and the network's internal state to

decide which parts of the input should be stored in the cell state and which parts should be

discarded. This adaptive filtering capability allows LSTMs to selectively retain relevant

information. Various studies in spacecraft anomaly detection have demonstrated their suitability

for this problem [21].

25

3.4.1.2 1D Convolutional Neural Networks (1D CNNs)

1D CNNs are well-suited for detecting patterns within one-dimensional data, which is

characteristic of many telemetry features. These models excel at feature extraction and are

crucial for identifying localized anomalies within the datasets. One-dimensional Convolutional

Neural Networks (1D CNNs) are neural network architectures specifically designed for

processing one-dimensional sequential data, such as time series or sequences of text. Unlike

traditional 2D CNNs used for image processing, which operate on two-dimensional grids of

pixels, 1D CNNs apply convolutions across the temporal dimension of the input. In a 1D CNN,

the convolutional layers slide one-dimensional filters (kernels) along the input sequence,

extracting local patterns and features. These filters capture relationships between adjacent

elements in the sequence, enabling the network to learn hierarchical representations of the input

data. Our implementation is motivated by attempting to capture the temporal components of the

data with a series of convolutional networks with a minimal about of parameters to facilitate an

onboard deployment, shown in figure 3-4.

26

Figure 3-4 Sample CNN architecture used in this study.

By stacking multiple convolutional layers followed by pooling layers, 1D CNNs can capture

increasingly abstract and complex patterns in the input sequence. Pooling layers reduce the

dimensionality of the feature maps while preserving the most relevant information, helping to

prevent overfitting and improve computational efficiency. 1D CNNs are commonly used in

27

various sequential data tasks, including natural language processing (NLP), speech recognition,

and time series analysis. They have shown effectiveness in tasks such as sentiment analysis,

named entity recognition, and anomaly detection, often achieving competitive performance with

simpler architectures compared to recurrent neural networks (RNNs) and long short-term

memory (LSTM) networks. With their ability to automatically learn hierarchical representations

from sequential data, 1D CNNs offer a powerful tool for capturing patterns and extracting

features in a wide range of applications including spacecraft anomaly detection [29].

3.4.1.3 CNN-LSTM Models

Combining the strengths of both 1D CNNs and LSTMs, CNN-LSTM models offer a holistic

approach to anomaly detection. They extract spatial and temporal features from the data, making

them particularly effective in recognizing complex patterns that may indicate anomalies [63].

28

Figure 3-5 Sample CNN-LSTM architecture used in this study.

3.4.1.4 Transformers

Transformers are a neural network architecture that has changed the field of natural language

processing (NLP) significantly. They introduced the self-attention mechanism, which is different

from traditional sequential models like recurrent neural networks (RNNs) and convolutional

29

neural networks (CNNs). These models process input data sequentially or with fixed-size

receptive fields, whereas transformers use a self-attention mechanism. Transformers consist of

multiple layers of self-attention and feed-forward neural networks, often stacked on top of each

other. These layers enable the model to learn hierarchical representations of the input data,

capturing both local and global patterns.

Figure 3-6 Dot product Attention and transformer encoder.

Additionally, transformers use positional encoding to provide the model with information about

the order of tokens in the input sequence, as the self-attention mechanism alone does not

inherently capture sequential information.

30

Figure 3-7 Sample Transformer architecture used in this study.

Transformers have shown great success in multiple natural language processing (NLP) tasks,

such as machine translation, text generation, and sentiment analysis. They have also been used

for spacecraft anomaly detection, as highlighted in a study by [49]. In our research, we employed

two variations of this approach. For answering RQ1 or simply employing the model in the

31

vanilla federated averaging implementation, we utilized a series of multi-head attention layers,

followed by a dense layer. In RQ2 we looked at augmenting the federated averaging process to

operate on a disjointed model, we devised a composite model to separate the two components

across different stages of training shown in figure 3-8.

Figure 3-8 Sample Transformer architecture used in RQ2, the front half of hybrid-transformer.

32

Anticipating the integration of a hybrid transformer, our model selection spans a variety of deep

learning models highlighted in the literature review for their established relevance to spacecraft

anomaly detection. Each of these models is specifically tailored to address distinct facets of

anomaly detection within our federated framework. Together, they provide a comprehensive

approach to identifying anomalies in telemetry data, effectively addressing the diverse challenges

inherent in both planetary exploration and Earth observation missions.

3.5 Reconstruction Error in Federated Learning

As there are dozens of telemetry anomaly detection methods, we limit our design to focus on

gradient-based reconstruction error implementations, representative of most modern DL AD

systems, where the goal is to translate the classical approximation function, equation 1, into one

where the objective is to reconstruct the original input space as closely as possible, equation 2.

 𝐹(𝑥, 𝑤) 	≅ 	𝑦 (1)

 𝐹(𝑥, 𝑤) 	≅ 	 �̅� (2)

The difference between the original input and the reconstructed output can then be used to

measure how familiar the approximator is with the sample given and thereby linearly equate to

how atypical each input is.

 𝑒! 	= 	 |𝑥! 	− 	𝑥"/| (3)

33

In a centralized setting, the objective is to find the set weights that define an algorithm such that

it minimizes the error between an output and a given input along with a set of weights, equations

4 and 5.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	#

$
4𝑒!

$

!%#

(4)

𝐹(𝑤) ≝ 	 #

$
4𝑓!(𝑤)𝑠𝑡. 𝑓!(𝑤) = 𝑙𝑜𝑠𝑠(𝑥! , 𝑥"/ ,𝑤)	
$

!%#

	
(5)

To determine the most effective combination of weights, a training process can utilize a gradient

method such as stochastic gradient descent. This method involves selecting a random subset of

samples, or mini-batches, from a dataset at each epoch to calculate a gradient, which is then used

to update the model weights in the following training step. The process of updating is repeated

over multiple epochs until the optimal set of weights is obtained. To determine the most effective

combination of weights, a training process can utilize a gradient method such as stochastic

gradient descent. This method involves selecting a random subset of samples, or mini-batches,

from a dataset at each epoch to calculate a gradient, which is then used to update the model

weights in the following training step. The process of updating is repeated over multiple epochs

until the optimal set of weights is obtained.

 𝑤&'# ← 𝑤𝑡 − 	𝜂∇𝑓(𝑤&; 𝑥(, 𝑥(@@@)	 (6)

34

Building upon this notion, the goal of our design becomes to enable the discovery of a function

that minimizes the reconstruction error as an aggregate of k models trained on their own

respective datasets or more formally, equation 7.

𝑤!

"#$ 	= 	𝑤!
" 	− 	𝜂𝛻𝑓(𝑤!

") = 	𝑤!
" − 	𝜂*

𝑛%
𝑛

&

%'$

𝑔% , 𝑠𝑡. 𝑔% =	∇𝐹%(𝑤")
(7)

Once the reconstruction error is generated, the subsequent step is to establish a threshold value

that separates normal and anomalous data points. Due to the likelihood of false positives when

using reconstruction error-based techniques, we have adopted a dynamic threshold approach

based on the research by [21], as detailed in equations 8 and 9. This approach is used during

post-processing to assist with the detection process.

 𝜖	 = 	𝜇	(ℯ() 	+ 	𝑧𝜎(ℯ()

(8)

 𝜖(= 	
𝛥𝜇(𝑒()/𝜇(𝑒() 	+ 	𝛥𝜎		(𝑒()/𝜎		(𝑒()

|𝑒)| 	+	 |𝐸|*

such that 𝑒) 	= {𝑒(∈ 	 𝑒(|𝑒(> 	𝜖}	,

𝛥𝜇(𝑒𝑖) = 𝜇(𝑒𝑖) 	− 	𝜇({𝑒𝑖 ∈ 	 𝑒𝑖	|𝑒𝑖	 < 	𝜖}),

𝛥𝜎(𝑒𝑖) = 𝜎(𝑒𝑖) − 	𝜎({𝑒𝑖 ∈ 	 𝑒𝑖	|𝑒𝑖	 < 	𝜖}), 𝑎𝑛𝑑

 𝐸 = 𝑠𝑒𝑡	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔𝑠	𝑜𝑓	𝑒)

(9)

35

Having these formulations, algorithm 1 FedAvg can then be implemented, with the specific task

of anomaly detection.

Algorithm 1: FedAvg

𝑆𝑒𝑟𝑣𝑒𝑟	𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑠:	

1. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒	𝑤-!
2. 𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑟𝑜𝑢𝑛𝑑	𝑡	 = 	1,2, . . . , 𝑑𝑜

i. 𝑚	 ← 	𝑚𝑎𝑥(𝐶	 ∗ 	𝐾, 1)
ii. 𝑆"	 ←	(𝑟𝑎𝑛𝑑𝑜𝑚	𝑠𝑒𝑡	𝑜𝑓	𝑚	𝑐𝑙𝑖𝑒𝑛𝑡𝑠)
iii. 𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑐𝑙𝑖𝑒𝑛𝑡		𝑘	 ∈ 𝑆"	𝑖𝑛	𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙	𝑑𝑜	

i. 𝑤"#$% ← 	𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑘, 𝑤"!)
3. 𝑤"#$! ←	∑ .!

.
&
%'$ 	𝑤"#$% 	

𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑘, 𝑤):

1. 𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑙𝑜𝑐𝑎𝑙	𝑒𝑝𝑜𝑐ℎ	𝑖	𝑑𝑜
i. 𝑓𝑜𝑟	𝑏	 ∈ 𝐶𝑙𝑖𝑒𝑛𝑡′𝑠	𝑑𝑎𝑡𝑎		𝑑𝑜

i. 𝑤% 	← 	𝑤	 − 	𝜂𝛻𝑙(𝑤; 	𝑏)
2. 𝑟𝑒𝑡𝑢𝑟𝑛	𝑤% 	𝑡𝑜	𝑠𝑒𝑟𝑣𝑒𝑟

For research question 2, we shift our focus from building a unified model to one that can be

trained and personalized simultaneously. To do this, algorithm 1 is modified to incorporate a

model that can be split in two and reunited as needed while optimizing for the two objectives.

36

Algorithm 2: Hybridized FedAvg

𝑺𝒆𝒓𝒗𝒆𝒓	𝒆𝒙𝒆𝒄𝒖𝒕𝒆𝒔:	

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒	𝑤-! 	𝑎𝑛𝑑	∅-
𝑎𝑝𝑝𝑒𝑛𝑑	𝑤-!𝑡𝑜	∅-	𝑡𝑜	𝑑𝑒𝑓𝑖𝑛𝑒	∅-!
𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑟𝑜𝑢𝑛𝑑	𝑡	 = 	1,2, . . . , 𝑑𝑜

𝑚	 ← 	𝑚𝑎𝑥(𝐶	 ∗ 	𝐾, 1)
𝑆"	 ←	(𝑟𝑎𝑛𝑑𝑜𝑚	𝑠𝑒𝑡	𝑜𝑓	𝑚	𝑐𝑙𝑖𝑒𝑛𝑡𝑠)
𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑐𝑙𝑖𝑒𝑛𝑡		𝑘	 ∈ 𝑆"	𝑖𝑛	𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙	𝑑𝑜

𝑤"#$% ← 	𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑘, ∅"!)

𝑤"#$! ←	*
𝑛%
𝑛

&

%'$

	𝑤"#$%

𝑪𝒍𝒊𝒆𝒏𝒕𝑼𝒑𝒅𝒂𝒕𝒆(𝒌, ∅):

𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑙𝑜𝑐𝑎𝑙	𝑒𝑝𝑜𝑐ℎ	𝑖	𝑑𝑜
𝑓𝑜𝑟	𝑏	 ∈ 𝐶𝑙𝑖𝑒𝑛𝑡′𝑠	𝑑𝑎𝑡𝑎		𝑑𝑜

∅% 	← 	∅	 − 	𝜂𝛻𝑙(∅; 	𝑏)

𝑒𝑥𝑡𝑟𝑎𝑐𝑡	𝑤%𝑓𝑟𝑜𝑚	∅% 	
𝑟𝑒𝑡𝑢𝑟𝑛	𝑤% 	𝑡𝑜	𝑠𝑒𝑟𝑣𝑒𝑟

37

3.6 Simulation Testbed Design

The design of our testbed aims to achieve scalable simulations while also enabling

transitioning quickly to a deployment setting, addressing the rigor demanded by any flight

system. In that, we initially started exploring a virtual machine approach but found that the

overhead incurred was a detriment to the system’s performance and suitability for embedded

devices, generally representative of onboard flight computers.

Containers are lightweight and standalone executable software package that includes everything

needed to run an application, such as code, libraries, system tools, and settings [11]. A container

is isolated from the underlying host operating system and other containers, providing a consistent

runtime environment for the application regardless of the underlying infrastructure [11].

Containers are often used to deploy and run applications in a portable and efficient manner.

38

Figure 3-9 Container level overview of Testbed.

They can be easily moved between computing environments such as development, testing, and

production. Moreover, containers can be configured with communications ports, available

memory, and CPU limits [11]. Communication between worker nodes and the aggregator is done

with RabbitMQ, an AMPQ (advance message passing queuing) protocol implementation [31]. A

wrapper was implemented to enable customized functionality, including additional tunable

security measures and a rule engine object to facilitate adaptability and futurization. The

aggregator and worker nodes are decedents of the communication class; thus, both instantiate a

base rule engine as an aggregate object, which the aggregator can then modify during runtime. In

doing so, each party implicitly agrees upon a uniform set of rules and corresponding actions.

39

Figure 3-10 Data flow diagram of FL Testbed.

3.7 Experimental Design

In addressing Research Question 1 (RQ1), which delves into the effectiveness of federated

learning (FL) for spacecraft telemetry anomaly detection using various deep learning (DL)

models, our experiment seeks to elucidate the performance dynamics within the federated

learning paradigm. Structured to evaluate the suitability of different DL models for real-world

deployment on edge devices in spacecraft telemetry, the experiment commences with 30

simulations for each model, resulting in a total of 120 simulation runs using SMAP data

exclusively. Each simulation randomly allocates 10 channels for global model assessment and

40

distributes the remaining SMAP channels among clients, capped at 30. Hyperparameters are

randomly selected from predefined ranges specific to each model architecture shown in tables 3-

5 and 3-6. The experiment proceeds with 5 client epochs per batch of data, with the current

global model computing an average reconstruction loss on holdout data at each federation step,

terminating after 5 divergence steps are noted.

Baseline federated learning performance for each model is established using vanilla

federated averaging, employing fixed numbers of local epoch architecture-specific

hyperparameters. Simulations run until a patience value is exceeded, involving training and

evaluation of DL models on decentralized fragments of the SMAP dataset. Metrics such as

reconstruction loss across clients over federation steps, reconstruction error for the global model

against a holdout dataset, number and size of messages, and CPU usage for training and

inference serve as benchmarks for subsequent comparisons and form the basis for evaluating the

41

impact of the federated learning paradigm. Incorporation of MSL data, with an additional 30

features, follows a similar protocol.

Table 3-5 Hyperparameters varied in this study.

Throughout the federated learning process, continuous monitoring and recording of

reconstruction loss for anomaly detection, quantification of communication overhead through

message exchange, determination of the number of federation steps required for convergence,

and measurement of local training time on each edge device are emphasized. Adherence to

resource constraints, including message size and CPU time capped at 2GB, is paramount. The

experiment also involves repeating a truncated version with both SMAP and SOIL datasets,

forcing the system to handle varying input spaces for all models and adding a padding step to the

preprocessing pipeline. Research Question 2 (RQ2) is further explored using both SMAP and

MSL datasets in a similar protocol, incorporating the rapid adaptation component where the

model is given a small sample of available training data for each channel before commencing the

anomaly detection component.

42

Table 3-6 Hyperparameters held constant in this study.

Having a collection of globally trained models from these protocols the experimentation

continues by examining them for their AD performance by applying each of the models to the

entire test dataset using the equation 9 to make the determination of anomalies detected.

3.8 Metrics

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(10)

 𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(11)

 𝐹1 = 	
2	 × 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 	𝑅𝑒𝑐𝑎𝑙𝑙

(12)

43

We assessed the effectiveness of various methods using the commonly employed metrics in

anomaly detection, namely Precision, Recall, and F1 scores, where TP, FP, and FN represent the

counts of true positives, false positives, and false negatives, respectively. The definitions for

precision, recall, and F1 are provided in equations 10, 11, and 12 respectively. Consistent with

the evaluation approach outlined in [21], we employed point-wise scoring. In real-world

scenarios, anomalies in time series data typically manifest as contiguous abnormal segments.

Anomaly alerts may be triggered at any subset within the actual anomaly window. Thus, the

entire anomalous segment is considered correctly detected if the model identifies any single time

point as an anomaly.

44

CHAPTER 4: Results

4.1 Simple Federated Anomaly Detection Experiment (RQ1)

In this work, we set out to investigate the viability of employing a federated learning

architecture for the task of spacecraft anomaly detection. As described in our experimental

design section, we used a collection of previous works to derive the minimal target threshold of

approximately 0.2 RMSE in the reconstruction error phase of our system before any meaningful

anomaly detection can commence. Using only the channel data with 25 features, figure 4-1

shows the average loss at each federation step for each of the architectures evaluated when tested

on each client’s data available at that time step. All architectures were able to achieve this goal

before the study limit of 100 steps with the fastest being the CNN-LSTM model which reached

the 0.2 target at 35 steps followed by the transformer and LSTM model at approximately 45

steps.

Figure 4-1 Distribution of reconstruction error of client models across all simulations categorized
by model architecture using only 25 feature data.

45

Figure 4-2 Average reconstruction error of global model across all simulations categorized by
model architecture on 25 feature data.

To assess the viability of deploying these models on unseen data, the global model is tested with

10 additional channels worth of hold-out data progressing at a similar cadence with the client

data. Figure 4-2 shows that with unseen data, only the LSTM and CNN-LSTM are able to reach

the target threshold while the CNN and transformer model settle around a loss of 0.28 upon the

study limit of 100 steps.

46

Figure 4-3 Distribution of reconstruction error of client models across all simulations categorized
by model architecture using both 25 and 55 feature data.

47

Figure 4-4 Distribution of reconstruction error of Global models across all simulations
categorized by model architecture using both 25 and 55 feature data.

To further understand the behavior of the federated learning approach in a deployment

setting we reran the simulations with incorporating the datasets of 55 channels each along with

the original set. Figures 4-4 and 4-5 show the reconstruction performance respectively for the

client and global models, yielding a similar result to the 25 features-only experiment where all

models were able to reach the target loss before the study limit on client data and the CNN-

LSTM and LSTM models being the only two to achieve this milestone for the global data which

was also supplemented with sets of 55 feature data.

48

Table 4-1 Precision, recall and F1-Scores by architecture on 25 feature data only. (*note: unique
model per channel data in centralized setting)

 Having a collection of fitted global models, we proceeded to evaluate their anomaly

detection abilities using equations 8 and 9 across all 82 channels worth of test data yielding

tables 4-1 and 4-2 for the 25 feature only and 25 and 55 feature data respectively. For both

experiments, the performance in reconstruction error linearly maps directly to the anomaly

detection performance. Regarding the 25-feature experiment, all models reached a precision of

0.8 or greater however struggled with recall averaging around 0.49.

49

Table 4-2 Precision, recall and F1-Scores by architecture for 25 and 55 feature data. (*Note:
Unique model per channel data in a centralized setting.

The best-performing model was the CNN-LSTM reached an F1 Score of 0.702

surpassing the performance of the channel-specific transformer models of [49] but still not

besting the channel-specific LSTM models by [21]. In the 25 and 55 feature data, our best was

also the CNN-LSTM model reaching an F1 score of 0.65 and a precision value of 0.91

surpassing both the channel-specific LSTM and transformer models however failed to do so

when comparing recall.

4.2 Hybrid Model Anomaly Detection Experiment (RQ2)

As part of our efforts to answer research question 2, which aims to enhance the

performance of anomaly detection by customizing the head component of our model for each

channel while creating a universal model that can be used for new problems, we have been

focusing on developing a distinct model. This model consists of a self-attention head and an

LSTM tail. Our objective was to optimize this composite model on each of the client's data, with

the resultant global module serving as the tail portion. The experimentation protocol was similar

50

in that we evaluated the performance in terms of reconstruction error on both the client and

global data pools shown in Figure 4-6. With this configuration, the target loss is reached with 30

steps on average with the client’s data while the global target never reaches the target value

within the study limit however a correlation can be used to infer the performance when re-

appending the head component.

Figure 4-5 Comparison of Global vs client reconstruction error across federation steps.

In comparing the performance of anomaly detection, the previous protocol underwent a

shift by incorporating a mini-fit step before running the AD testing protocol. This mini-fit step

exposed each model to a small fraction of the available data, varying batch size, learning rate,

number of steps, and epochs. The findings, as summarized in Table 4-3, reveal that optimal

precision was achieved at 0.8501 with a batch size of 70, a learning rate of 0.05, 1 epoch, and 10

steps. However, this came at the cost of recall, which was 0.6545. Regarding the F1 scores, the

51

optimal configuration was noted to be a batch size of 50, a learning rate of 0.02, 5 epochs, and 5

steps, resulting in an F1 score of 0.7531. This score surpassed the channel-specific transformers

models from [49] of 0.72. Lastly, in terms of recall, the optimal configuration was a batch size of

50, a learning rate of 0.02, 40 epochs, and 2 steps, which yielded a value of 0.7090.

Table 4-3 Comparison of Mini-fitting Parameters across and impact on AD performance.

52

CHAPTER 5: Discussion and Conclusion

5.1 Discussion

In this study, we aimed to explore the potential of federated learning (FL) for onboard

spacecraft detection and to enhance anomaly detection (AD) performance through the use of

hybrid-transformer architecture. Our investigation into research question 1 involved simulating

various FL processes across multiple deep-learning architectures. While some architectures

showed promising results, the conventional centralized approach using a single model per

channel consistently outperformed the FL implementations. Regarding research question 2, we

found that employing a hybrid transformer framework alongside a multi-head attention module

significantly improved AD performance with minimal initial data. In interpreting the results for

research question 1, we observed that CNN-LSTM and LSTM models achieved superior

performance, emphasizing the importance of temporal components in telemetry channels. These

models demonstrated proficiency in capturing and utilizing temporal information inherent in

telemetry data, owing to their ability to handle sequential dependencies and long-term patterns.

Conversely, 1DCNN and multi-head attention models performed poorly compared to CNN-

LSTM and LSTM models, likely due to their limitations in capturing temporal dynamics and

handling varying lengths of sequential data.

All FL models struggled with the recall metric, indicating the vast variability across

different channel data that a single model failed to capture adequately for onboard deployment.

For research question 2, we achieved competitive AD performance by exposing a hybrid

architecture to the FL process, allowing for the development of a global understanding of

underlying patterns. Leveraging the transformer module's normalization effect and multi-head

53

attention mechanism, the hybrid model captured temporal intricacies and channel-specific

patterns, resulting in robust performance in AD tasks.

Figure 5-1 Shap plot of RF regressor targeting F1 scores for LSTM(Blue) and Hybrid-
Transformer (Red) on AD task.

Despite the effectiveness of the hybrid-transformer approach, it did not surpass the

performance of the channel-specific LSTM model. To understand this, we analyzed the impact

of descriptors on model performance using Shapley Additive Explanation analysis. We found

that the waveform-replicate error descriptor had the largest impact on both LSTM and hybrid-

transformer models, with simple reconstruction tasks contributing to higher F1 values. The

distribution of the events per 100 timesteps descriptor had a more negative impact on the

channel-specific LSTM model compared to the hybrid model, indicating the latter's ability to

incorporate temporal data effectively.

54

Table 5-1 Mission critical metrics of onboard deployment for models in this study.

Regarding mission implications, our findings suggest the viability of employing FL

onboard small satellites for AD, potentially opening up precious downlink bandwidth. However,

considerations such as message size and computational resource consumption need to be

addressed. We recommend the hybrid-transformer model for its superior performance and

minimal message size, although missions with more conservative computing budgets may find

the CNN-LSTM model suitable with further AD performance refinements. Future research

should focus on optimizing computational resources and refining AD performance for practical

deployment.

55

5.2 Conclusion

In conclusion, our investigation into federated learning for onboard telemetry anomaly

detection highlights the intricate balance between model performance, computational resources,

and practical deployment considerations. Our study aimed to address two key questions: the

feasibility of utilizing a federated learning approach for onboard telemetry anomaly detection

and the potential of a hybrid transformer architecture to achieve state-of-the-art results. To

answer these questions, we developed a container-based simulation framework with its own

communication and scheduling mechanism. Our findings reveal that while federated learning

processes generally yield decently performing models in terms of anomaly detection precision,

further refinement is necessary due to underwhelming recall scores. Additionally, our

exploration of the hybrid transformer architecture, while comparable to state-of-the-art methods,

comes with slower training times that may impact mission resource considerations. Notably, the

integration of the multi-head attention component was found to enhance the capture of

communication events in telemetry channels even when compared to channel-specific

implementations.

An analysis of mission-critical metrics suggests that the hybrid transformer implementation

is the most promising option, albeit requiring significantly more budget for onboard compute

resources. For future work, we propose porting our implementation onto a collection of boards

used in cube and nanosat missions to validate our findings. Furthermore, we aim to refine the

CNN-LSTM implementation with a similar paradigm as the hybrid transformer, modularizing

the CNN component for personalization. Using the findings of the SHAP analysis can also be

studied further as means for identifying channel categories and stratifying results. Additionally,

we are interested in integrating a large-scale foundational model into the server side for further

56

enhancement of anomaly detection performance. By addressing these avenues for future research

and considering the practical implications of our findings, we aim to contribute to advancements

in telemetry anomaly detection and pave the way for more efficient and effective onboard

spacecraft detection systems.

57

58

CHAPTER 6: APPENDIX

59

6.1.1.1 F1 Comparison of LSTM[21] and our hybrid transformer

60

6.1.1.2 Wall-times for each model in our study across ranging batch size.

61

6.1.1.3 Comparison of SOTA results

6.1.1.4 Descriptor functions python code.
from numpy.fft import fft, ifft
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import find_peaks
def snr(x:pd.DataFrame):
 axis=0
 ddof=0
 a = x[0].to_numpy()
 a = np.asanyarray(a)
 m = a.mean(axis)
 sd = a.std(axis=axis, ddof=ddof)
 return np.where(sd == 0, 0, m/sd)

def get_harmonics(x:pd.DataFrame, d:int):
 sr =1
 ts = len(x[0])/sr
 t = np.arange(0,ts,1)
 # Perform FFT
 X = fft(x[0])

 # Perform peak detection
 peaks, _ = find_peaks(np.abs(X), distance=d)
 freqs = np.fft.fftfreq(len(X), 1)
 peak_freqs = freqs[peaks]
 if not len(peak_freqs):
 return 0

 # Assuming the first peak corresponds to the fundamental frequency
 fundamental_frequency = peak_freqs[0]
 harmonic_numbers = np.round(peak_freqs / fundamental_frequency)
 harmonic_freqs = fundamental_frequency * harmonic_numbers

 fundamental_frequency = peak_freqs[0] # Assuming the first peak corresponds to the fundamental frequency
 harmonic_numbers = np.round(peak_freqs / fundamental_frequency)
 return len(harmonic_numbers)

def waveform_replicate(x:pd.DataFrame, size:int):
 #sample first n timesteps
 sample = x[0].head(size).values
 #get total number of timesteps
 dsize = x[0].shape[0]
 #determine number of replicates needed
 nsamples = int(np.ceil(dsize/size))
 #create replicates in 2D
 repeats = np.array([sample for _ in range(nsamples)])
 #compute rmse between original data and replicates 1D

62

 return np.sqrt(mean_squared_error(repeats.flatten()[:dsize],x[0]))

def get_len(x:pd.DataFrame):
 return x[0].shape[0]

def get_des(x:pd.DataFrame):
 return x[0].mean(),x[0].std(),x[0].min(), x[0].max()

def count_events(x:pd.DataFrame):
 #get columns in data, exclude telemetry point 0
 cs = [*list(x.columns)]
 cs.pop(0)
 #create array of sum of sums across both axis for every 100 steps
 sums = [x[cs][i:i+100].sum().sum() for i in np.arange(0,x.shape[0],100)[:-1]]
 #return average
 return np.mean(sums)/x.shape[1]
def dsp_metrics(x,l):
 #average out transitent spikes by l
 y = x[0].rolling(l).mean()
 if not y.std():
 return 0,0,0
 #init prev, spans array, amps array and previous direction
 prev = y[0]
 spans = []
 span = 1
 amps = [0]
 amp = 0
 prev_direction = False

 #for each sample, get delta from previous then compute direction
 for i in y[1:]:
 dt = (i-prev)
 direction = dt >= 0
 #if nonzero direction change, store length and amplitude
 if prev_direction != direction and dt != 0:
 spans.append(span)
 amps.append((np.abs(amp-i)))
 amp = 0
 span =1
 #else increment
 else:
 span += 1
 prev_direction = direction
 prev = i
 size = y.shape[0]
 return np.mean(np.array(spans)), len(spans)/size*100, np.mean(amps)

6.1.1.5 Sample rule engine for Hybrid experiment

class GT_fedAvgh_Engine(GT_fedAvg_Engine):
 def __int__(self, connection_handler):
 super().__init__(connection_handler)

 def start_train(self, data):
 x, y = next(self.ch.idata)
 x = padd(x)
 tl = 0
 t1 = time.time()
 if self.ch.train_steps:
 LOGGER.warning("Time since last train {:.2f} seconds".format(t1 - self.last_train))
 for _ in range(self.ch.cfg['epochs']):
 tl = self.step(x, y)
 LOGGER.warning(f"loss: {tl}")
 t2 = time.time()
 self.last_train = t2
 LOGGER.warning("Elapsed time: {:.2f} seconds".format(t2 - t1))
 msg = {'id': self.ch.QUEUE, 'loss': tl.numpy().tobytes().hex(),
 'step': self.ch.train_steps}
 for i in range(len(self.ch.model.layers[1].trainable_variables)):
 msg[i] = self.ch.model.layers[1].trainable_variables[i].numpy().tobytes().hex()
 self.ch.add_msg_to_q(self.ch.wt, self.ch.QUEUE, dumps(msg), 'train_metrics')
 self.ch.train_steps += 1

 def process_metrics_job(self, data):
 dct = loads(data)
 self.ch.buffer[dct['step']].append(dct)
 ids = set(map(lambda x: x['id'], self.ch.buffer[self.ch.step]))
 if (len(ids.intersection(self.ch.C)) == len(self.ch.C) and
 self.ch.round != 0) or (self.ch.round == 0 and len(ids) >= 10):
 data = {}
 for d in self.ch.buffer[self.ch.step]:
 data[f"{d['id']}-step"] = d['step']

63

 data[f"{d['id']}-loss"] = float(np.ndarray(1, dtype=np.float32, buffer=bytes.fromhex(d['loss']))[0])

 for i in range(len(self.ch.tail.trainable_variables)):
 update = np.zeros(self.ch.tail.trainable_variables[i].numpy().shape)
 vals = list(map(lambda x: x[str(i)], self.ch.buffer[self.ch.step]))
 for v in vals:
 update += np.ndarray(self.ch.tail.trainable_variables[i].numpy().shape, dtype=np.float32,
 buffer=bytes.fromhex(v))
 update = update / len(self.ch.comm_metrics)
 self.ch.tail.trainable_variables[i].assign(update)

 scores = []
 for id in self.ch.idata:
 x, y = next(id)
 x = padd(x)
 yhat = self.ch.tail.predict(x)
 scores.append(mse(yhat, y).numpy())
 data['global-loss'] = float(np.mean(scores))

 if int(self.ch.step) > 1:
 less_than = bool(self.ch.last_target_score > data['global-loss'])
 if less_than and self.ch.cfg['direction_min']:
 self.ch.tail.save(os.path.join(self.ch.run_metrics_location, "tail.h5"))
 self.ch.g_min = data['global-loss']
 self.ch.patience_test = 0
 else:
 self.ch.patience_test += 1
 self.ch.run_data.append(data)
 save_file = open(os.path.join(self.ch.run_metrics_location, "training.json"), "w")
 json.dump(self.ch.run_data, save_file, indent=6)
 save_file.close()

 LOGGER.warning(f"TEST UPDATE: {data['global-loss']}")
 weights = {}
 for i in range(len(self.ch.tail.trainable_variables)):
 weights[i] = self.ch.tail.trainable_variables[i].numpy().tobytes().hex()
 # send broadcast signal to update_weights as long patience is within tolerance
 if self.ch.patience_test < self.ch.cfg['patience']:
 self.post_agg_processing(weights)
 else:
 print("***Patience exceeded, experiment terminated!***\n\n\n")
 q_items = list(self.ch.comm_metrics.keys())
 for prty in q_items:
 self.ch.add_msg_to_q(prty, self.ch.QUEUE, "blank", 'reset')
 self.ch.comms_enabled = False
 self.ch.last_target_score = data['global-loss']
 self.ch.round += 1
 self.ch.step += 1
 self.ch.buffer[self.ch.step] = []
 else:
 self.ch.add_msg_to_q(dct['id'], self.ch.QUEUE, "standbye", 'info')

 def update_weights_job(self, data):
 dct = loads(data)
 for i in range(len(self.ch.model.layers[1].trainable_variables)):
 weights = np.ndarray(self.ch.model.layers[1].trainable_variables[i].numpy().shape, dtype=np.float32,
 buffer=bytes.fromhex(dct[str(i)]))
 self.ch.model.layers[1].trainable_variables[i].assign(weights)
 self.ch.add_msg_to_q(self.ch.wt, self.ch.QUEUE, self.ch.QUEUE, 'train_req')

64

CHAPTER 7: BIBLIOGRAPHY

[1] T. Stibor, J. Timmis, and C. Eckert, “A Comparative Study of Real-Valued Negative
Selection to Statistical Anomaly Detection Techniques,” in Artificial Immune Systems, C. Jacob,
M. L. Pilat, P. J. Bentley, and J. I. Timmis, Eds., in Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2005, pp. 262–275. doi: 10.1007/11536444_20.

[2] M. Abdallah, N. An Le Khac, H. Jahromi, and A. Delia Jurcut, “A Hybrid CNN-LSTM
Based Approach for Anomaly Detection Systems in SDNs,” in Proceedings of the 16th
International Conference on Availability, Reliability and Security, Vienna Austria: ACM, Aug.
2021, pp. 1–7. doi: 10.1145/3465481.3469190.

[3] D. Park, Y. Hoshi, and C. C. Kemp, “A Multimodal Anomaly Detector for Robot-Assisted
Feeding Using an LSTM-Based Variational Autoencoder,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 1544–1551, Jul. 2018, doi: 10.1109/LRA.2018.2801475.

[4] “A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based
Variational Autoencoder | IEEE Journals & Magazine | IEEE Xplore.” Accessed: Mar. 29, 2024.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8279425

[5] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated learning,”
Computers & Industrial Engineering, vol. 149, p. 106854, Nov. 2020, doi:
10.1016/j.cie.2020.106854.

[6] P. P. Shinde and S. Shah, “A Review of Machine Learning and Deep Learning Applications,”
in 2018 Fourth International Conference on Computing Communication Control and
Automation (ICCUBEA), Aug. 2018, pp. 1–6. doi: 10.1109/ICCUBEA.2018.8697857.

[7] Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural Networks: LSTM Cells
and Network Architectures,” Neural Computation, vol. 31, no. 7, pp. 1235–1270, Jul. 2019, doi:
10.1162/neco_a_01199.

[8] M. M. Khan, S. Hossain, P. Mozumdar, S. Akter, and R. H. Ashique, “A review on machine
learning and deep learning for various antenna design applications,” Heliyon, vol. 8, no. 4, p.
e09317, Apr. 2022, doi: 10.1016/j.heliyon.2022.e09317.

https://doi.org/10.1007/11536444_20
https://doi.org/10.1145/3465481.3469190
https://doi.org/10.1109/LRA.2018.2801475
https://ieeexplore.ieee.org/abstract/document/8279425
https://doi.org/10.1016/j.cie.2020.106854
https://doi.org/10.1109/ICCUBEA.2018.8697857
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1016/j.heliyon.2022.e09317

65

[9] P. Kairouz et al., “Advances and Open Problems in Federated Learning,” MAL, vol. 14, no.
1–2, pp. 1–210, Jun. 2021, doi: 10.1561/2200000083.

[10] G. Biswas, H. Khorasgani, G. Stanje, A. Dubey, S. Deb, and S. Ghoshal, “An Approach To
Mode and Anomaly Detection with Spacecraft Telemetry Data,” International Journal of
Prognostics and Health Management, vol. 7, no. 4, Art. no. 4, 2016, doi:
10.36001/ijphm.2016.v7i4.2467.

[11] B. Bashari Rad, H. Bhatti, and M. Ahmadi, “An Introduction to Docker and Analysis of its
Performance,” IJCSNS International Journal of Computer Science and Network Security, vol.
173, p. 8, Mar. 2017.

[12] Q. Li, X. Zhou, P. Lin, and S. Li, “Anomaly detection and fault Diagnosis technology of
spacecraft based on telemetry-mining,” in 2010 3rd International Symposium on Systems and
Control in Aeronautics and Astronautics, Jun. 2010, pp. 233–236. doi:
10.1109/ISSCAA.2010.5633180.

[13] D. Li, D. Chen, J. Goh, and S. Ng, “Anomaly Detection with Generative Adversarial
Networks for Multivariate Time Series.” arXiv, Jan. 15, 2019. doi: 10.48550/arXiv.1809.04758.

[14] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput.
Surv., vol. 41, no. 3, p. 15:1-15:58, Jul. 2009, doi: 10.1145/1541880.1541882.

[15] X.-H. Le, H. V. Ho, G. Lee, and S. Jung, “Application of Long Short-Term Memory
(LSTM) Neural Network for Flood Forecasting,” Water, vol. 11, no. 7, Art. no. 7, Jul. 2019, doi:
10.3390/w11071387.

[16] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-
Efficient Learning of Deep Networks from Decentralized Data.” arXiv, Jan. 26, 2023. doi:
10.48550/arXiv.1602.05629.

[17] B. Zong et al., “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly
Detection,” presented at the International Conference on Learning Representations, Jan. 2023.
Accessed: Apr. 28, 2023. [Online]. Available: https://openreview.net/forum?id=BJJLHbb0-

https://doi.org/10.1561/2200000083
https://doi.org/10.36001/ijphm.2016.v7i4.2467
https://doi.org/10.1109/ISSCAA.2010.5633180
https://doi.org/10.48550/arXiv.1809.04758
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.3390/w11071387
https://doi.org/10.48550/arXiv.1602.05629
https://openreview.net/forum?id=BJJLHbb0-

66

[18] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep Learning for Anomaly Detection: A
Review,” ACM Comput. Surv., vol. 54, no. 2, p. 38:1-38:38, Mar. 2021, doi: 10.1145/3439950.

[19] R. Chalapathy and S. Chawla, “Deep Learning for Anomaly Detection: A Survey.” arXiv,
Jan. 23, 2019. doi: 10.48550/arXiv.1901.03407.

[20] “Detecting anomalies in spacecraft telemetry using evolutionary thresholding and LSTMs |
Proceedings of the Genetic and Evolutionary Computation Conference Companion.” Accessed:
Apr. 26, 2023. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/3449726.3459411

[21] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom, “Detecting
Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding,” in
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, Jul. 2018, pp. 387–395. doi: 10.1145/3219819.3219845.

[22] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning: Challenges, Methods,
and Future Directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, May 2020,
doi: 10.1109/MSP.2020.2975749.

[23] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
“Federated Learning: Strategies for Improving Communication Efficiency.” arXiv, Oct. 30,
2017. doi: 10.48550/arXiv.1610.05492.

[24] C. He et al., “FedML: A Research Library and Benchmark for Federated Machine
Learning.” arXiv, Nov. 08, 2020. doi: 10.48550/arXiv.2007.13518.

[25] Y. Liang, Y. Guo, Y. Gong, C. Luo, J. Zhan, and Y. Huang, “FLBench: A Benchmark Suite
for Federated Learning,” in Intelligent Computing and Block Chain, W. Gao, K. Hwang, C.
Wang, W. Li, Z. Qiu, L. Wang, A. Zhou, W. Qian, C. Jin, and Z. Zhang, Eds., in
Communications in Computer and Information Science. Singapore: Springer, 2021, pp. 166–176.
doi: 10.1007/978-981-16-1160-5_14.

[26] M. H. Garcia, A. Manoel, D. M. Diaz, F. Mireshghallah, R. Sim, and D. Dimitriadis,
“FLUTE: A Scalable, Extensible Framework for High-Performance Federated Learning
Simulations.” arXiv, Nov. 14, 2022. doi: 10.48550/arXiv.2203.13789.

https://doi.org/10.1145/3439950
https://doi.org/10.48550/arXiv.1901.03407
https://dl.acm.org/doi/abs/10.1145/3449726.3459411
https://doi.org/10.1145/3219819.3219845
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.48550/arXiv.1610.05492
https://doi.org/10.48550/arXiv.2007.13518
https://doi.org/10.1007/978-981-16-1160-5_14
https://doi.org/10.48550/arXiv.2203.13789

67

[27] D. Sculley et al., “Hidden Technical Debt in Machine Learning Systems,” in Advances in
Neural Information Processing Systems, Curran Associates, Inc., 2015. Accessed: Nov. 17,
2023. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-
Abstract.html

[28] S. Fuertes, G. Picart, J.-Y. Tourneret, L. Chaari, A. Ferrari, and C. Richard, “Improving
Spacecraft Health Monitoring with Automatic Anomaly Detection Techniques,” in SpaceOps
2016 Conference, Daejeon, Korea: American Institute of Aeronautics and Astronautics, May
2016. doi: 10.2514/6.2016-2430.

[29] J. Hong, C.-C. Liu, and M. Govindarasu, “Integrated Anomaly Detection for Cyber Security
of the Substations,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1643–1653, Jul. 2014,
doi: 10.1109/TSG.2013.2294473.

[30] A. Ukil, S. Bandyoapdhyay, C. Puri, and A. Pal, “IoT Healthcare Analytics: The Importance
of Anomaly Detection,” in 2016 IEEE 30th International Conference on Advanced Information
Networking and Applications (AINA), Mar. 2016, pp. 994–997. doi: 10.1109/AINA.2016.158.

[31] P. Dobbelaere and K. S. Esmaili, “Kafka versus RabbitMQ: A comparative study of two
industry reference publish/subscribe implementations: Industry Paper,” in Proceedings of the
11th ACM International Conference on Distributed and Event-based Systems, in DEBS ’17. New
York, NY, USA: Association for Computing Machinery, Jun. 2017, pp. 227–238. doi:
10.1145/3093742.3093908.

[32] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An Ensemble of
Autoencoders for Online Network Intrusion Detection.” arXiv, May 27, 2018. doi:
10.48550/arXiv.1802.09089.

[33] Z. Chen, D. Chen, X. Zhang, Z. Yuan, and X. Cheng, “Learning Graph Structures With
Transformer for Multivariate Time-Series Anomaly Detection in IoT,” IEEE Internet of Things
Journal, vol. 9, no. 12, pp. 9179–9189, Jun. 2022, doi: 10.1109/JIOT.2021.3100509.

[34] S. K. Ibrahim, A. Ahmed, M. A. E. Zeidan, and I. E. Ziedan, “Machine Learning Methods
for Spacecraft Telemetry Mining,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 55, no. 4, pp. 1816–1827, Aug. 2019, doi: 10.1109/TAES.2018.2876586.

https://proceedings.neurips.cc/paper_files/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://doi.org/10.2514/6.2016-2430
https://doi.org/10.1109/TSG.2013.2294473
https://doi.org/10.1109/AINA.2016.158
https://doi.org/10.1145/3093742.3093908
https://doi.org/10.48550/arXiv.1802.09089
https://doi.org/10.1109/JIOT.2021.3100509
https://doi.org/10.1109/TAES.2018.2876586

68

[35] S. Omar, A. Ngadi, and H. H. Jebur, “Machine Learning Techniques for Anomaly
Detection: An Overview,” IJCA, vol. 79, no. 2, pp. 33–41, Oct. 2013, doi: 10.5120/13715-1478.

[36] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, “MAD-GAN: Multivariate Anomaly
Detection for Time Series Data with Generative Adversarial Networks,” in Artificial Neural
Networks and Machine Learning – ICANN 2019: Text and Time Series, I. V. Tetko, V. Kůrková,
P. Karpov, and F. Theis, Eds., Cham: Springer International Publishing, 2019, pp. 703–716. doi:
10.1007/978-3-030-30490-4_56.

[37] D. Li, D. Chen, L. Shi, B. Jin, J. Goh, and S.-K. Ng, “MAD-GAN: Multivariate Anomaly
Detection for Time Series Data with Generative Adversarial Networks.” arXiv, Jan. 15, 2019.
doi: 10.48550/arXiv.1901.04997.

[38] K.-H. Lee et al., “Multi-Game Decision Transformers”.

[39] H. Zhao et al., “Multivariate Time-series Anomaly Detection via Graph Attention
Network.” arXiv, Sep. 04, 2020. doi: 10.48550/arXiv.2009.02040.

[40] “Multivariate Time-Series Anomaly Detection via Graph Attention Network | IEEE
Conference Publication | IEEE Xplore.” Accessed: Mar. 29, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9338317

[41] M. Wetherholt, “NASA’s Approach to Software Assurance,” Sep. 01, 2015. Accessed: Nov.
17, 2023. [Online]. Available: https://ntrs.nasa.gov/citations/20150015579

[42] B. Lal, K. Calvin, L. M. Barbier, A. K. Kludze, and E. L. Mclarney, “NASA’s Responsible
AI Plan.” Sep. 19, 2022. Accessed: Nov. 17, 2023. [Online]. Available:
https://ntrs.nasa.gov/citations/20220013471

[43] D. Chen, D. Gao, W. Kuang, Y. Li, and B. Ding, “pFL-Bench: A Comprehensive
Benchmark for Personalized Federated Learning.” arXiv, Oct. 13, 2022. doi:
10.48550/arXiv.2206.03655.

[44] V. Mugunthan, A. Peraire-Bueno, and L. Kagal, “PrivacyFL: A Simulator for Privacy-
Preserving and Secure Federated Learning,” in Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, in CIKM ’20. New York, NY, USA:

https://doi.org/10.5120/13715-1478
https://doi.org/10.1007/978-3-030-30490-4_56
https://doi.org/10.48550/arXiv.1901.04997
https://doi.org/10.48550/arXiv.2009.02040
https://ieeexplore.ieee.org/abstract/document/9338317
https://ntrs.nasa.gov/citations/20150015579
https://ntrs.nasa.gov/citations/20220013471
https://doi.org/10.48550/arXiv.2206.03655

69

Association for Computing Machinery, Oct. 2020, pp. 3085–3092. doi:
10.1145/3340531.3412771.

[45] A. Jeffery, H. Howard, and R. Mortier, “Rearchitecting Kubernetes for the Edge,” in
Proceedings of the 4th International Workshop on Edge Systems, Analytics and Networking, in
EdgeSys ’21. New York, NY, USA: Association for Computing Machinery, Apr. 2021, pp. 7–
12. doi: 10.1145/3434770.3459730.

[46] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust Anomaly Detection for
Multivariate Time Series through Stochastic Recurrent Neural Network,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, in KDD
’19. New York, NY, USA: Association for Computing Machinery, Jul. 2019, pp. 2828–2837.
doi: 10.1145/3292500.3330672.

[47] R. Muddinagiri, S. Ambavane, and S. Bayas, “Self-Hosted Kubernetes: Deploying Docker
Containers Locally With Minikube,” in 2019 International Conference on Innovative Trends and
Advances in Engineering and Technology (ICITAET), Dec. 2019, pp. 239–243. doi:
10.1109/ICITAET47105.2019.9170208.

[48] S. K. Khatri, D. Kumar, A. Dwivedi, and N. Mrinal, “Software Reliability Growth Model
with testing effort using learning function,” in 2012 CSI Sixth International Conference on
Software Engineering (CONSEG), Sep. 2012, pp. 1–5. doi: 10.1109/CONSEG.2012.6349470.

[49] H. Meng, Y. Zhang, Y. Li, and H. Zhao, “Spacecraft Anomaly Detection via Transformer
Reconstruction Error,” in Proceedings of the International Conference on Aerospace System
Science and Engineering 2019, Z. Jing, Ed., in Lecture Notes in Electrical Engineering.
Singapore: Springer, 2020, pp. 351–362. doi: 10.1007/978-981-15-1773-0_28.

[50] L. Liu, L. Tian, Z. Kang, and T. Wan, “Spacecraft Anomaly Detection with Attention
Temporal Convolution Network.” arXiv, Mar. 13, 2023. Accessed: Jan. 18, 2024. [Online].
Available: http://arxiv.org/abs/2303.06879

[51] L. Liu, L. Tian, Z. Kang, and T. Wan, “Spacecraft Anomaly Detection with Attention
Temporal Convolution Network.” arXiv, Mar. 13, 2023. doi: 10.48550/arXiv.2303.06879.

https://doi.org/10.1145/3340531.3412771
https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1109/ICITAET47105.2019.9170208
https://doi.org/10.1109/CONSEG.2012.6349470
https://doi.org/10.1007/978-981-15-1773-0_28
http://arxiv.org/abs/2303.06879
https://doi.org/10.48550/arXiv.2303.06879

70

[52] Z. Zeng, G. Jin, C. Xu, S. Chen, and L. Zhang, “Spacecraft Telemetry Anomaly Detection
Based on Parametric Causality and Double-Criteria Drift Streaming Peaks over Threshold,”
Applied Sciences, vol. 12, no. 4, Art. no. 4, Jan. 2022, doi: 10.3390/app12041803.

[53] S. Baireddy et al., “Spacecraft Time-Series Anomaly Detection Using Transfer Learning,”
presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 1951–1960. Accessed: Apr. 26, 2023. [Online]. Available:
https://openaccess.thecvf.com/content/CVPR2021W/AI4Space/html/Baireddy_Spacecraft_Time-
Series_Anomaly_Detection_Using_Transfer_Learning_CVPRW_2021_paper.html

[54] M. Khorasani, M. Abdou, and J. Hernández Fernández, “Streamlit Use Cases,” in Web
Application Development with Streamlit: Develop and Deploy Secure and Scalable Web
Applications to the Cloud Using a Pure Python Framework, M. Khorasani, M. Abdou, and J.
Hernández Fernández, Eds., Berkeley, CA: Apress, 2022, pp. 309–361. doi: 10.1007/978-1-
4842-8111-6_11.

[55] N. Rieke et al., “The future of digital health with federated learning,” npj Digit. Med., vol.
3, no. 1, Art. no. 1, Sep. 2020, doi: 10.1038/s41746-020-00323-1.

[56] C. W. Johnson, “The Natural History of Bugs: Using Formal Methods to Analyse Software
Related Failures in Space Missions,” in FM 2005: Formal Methods, J. Fitzgerald, I. J. Hayes,
and A. Tarlecki, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2005,
pp. 9–25. doi: 10.1007/11526841_3.

[57] L. Lyu, H. Yu, and Q. Yang, “Threats to Federated Learning: A Survey.” arXiv, Mar. 04,
2020. doi: 10.48550/arXiv.2003.02133.

[58] K. Bonawitz et al., “Towards Federated Learning at Scale: System Design,” Proceedings of
Machine Learning and Systems, vol. 1, pp. 374–388, Apr. 2019.

[59] A. Vaswani et al., “Attention Is All You Need.” arXiv, Aug. 01, 2023. doi:
10.48550/arXiv.1706.03762.

https://doi.org/10.3390/app12041803
https://openaccess.thecvf.com/content/CVPR2021W/AI4Space/html/Baireddy_Spacecraft_Time-Series_Anomaly_Detection_Using_Transfer_Learning_CVPRW_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021W/AI4Space/html/Baireddy_Spacecraft_Time-Series_Anomaly_Detection_Using_Transfer_Learning_CVPRW_2021_paper.html
https://doi.org/10.1007/978-1-4842-8111-6_11
https://doi.org/10.1007/978-1-4842-8111-6_11
https://doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1007/11526841_3
https://doi.org/10.48550/arXiv.2003.02133
https://doi.org/10.48550/arXiv.1706.03762

71

[60] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding.” arXiv, May 24, 2019. doi:

10.48550/arXiv.1810.04805.

[61] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image

Recognition at Scale.” arXiv, Jun. 03, 2021. doi: 10.48550/arXiv.2010.11929.

[62] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The Long-Document Transformer.”

arXiv, Dec. 02, 2020. doi: 10.48550/arXiv.2004.05150.

[63] M. Abdallah, N. An Le Khac, H. Jahromi, and A. Delia Jurcut, “A Hybrid CNN-LSTM

Based Approach for Anomaly Detection Systems in SDNs,” in Proceedings of the 16th

International Conference on Availability, Reliability and Security, Vienna Austria: ACM, Aug.

2021, pp. 1–7. doi: 10.1145/3465481.3469190.

https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.2004.05150
https://doi.org/10.1145/3465481.3469190

	Beyond the Horizon: Exploring Anomaly Detection Potentials with Federated Learning and Hybrid Transformers in Spacecraft Telemetry
	Recommended Citation

	tmp.1714424739.pdf.5fQuf

