
Southern Methodist University Southern Methodist University 

SMU Scholar SMU Scholar 

Electrical Engineering Theses and Dissertations Electrical Engineering 

Fall 2019 

Leveraging Geographical and Spectral Information for Efficient Leveraging Geographical and Spectral Information for Efficient 

Cellular Systems Cellular Systems 

Matthew Tonnemacher 
Southern Methodist University, mtonnemach@smu.edu 

Follow this and additional works at: https://scholar.smu.edu/engineering_electrical_etds 

 Part of the Systems and Communications Commons 

Recommended Citation Recommended Citation 
Tonnemacher, Matthew, "Leveraging Geographical and Spectral Information for Efficient Cellular Systems" 
(2019). Electrical Engineering Theses and Dissertations. 34. 
https://scholar.smu.edu/engineering_electrical_etds/34 

This Dissertation is brought to you for free and open access by the Electrical Engineering at SMU Scholar. It has 
been accepted for inclusion in Electrical Engineering Theses and Dissertations by an authorized administrator of 
SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. 

https://scholar.smu.edu/
https://scholar.smu.edu/engineering_electrical_etds
https://scholar.smu.edu/engineering_electrical
https://scholar.smu.edu/engineering_electrical_etds?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/engineering_electrical_etds/34?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/


LEVERAGING GEOGRAPHICAL AND SPECTRAL INFORMATION FOR

EFFICIENT CELLULAR SYSTEMS

Approved by:

Dr. Joseph Camp
Dissertation Committee Chairperson

Dr. Dinesh Rajan

Dr. Carlos Davila

Dr. Ping Gui

Dr. James Dunham



LEVERAGING GEOGRAPHICAL AND SPECTRAL INFORMATION FOR

EFFICIENT CELLULAR SYSTEMS

A Dissertation Presented to the Graduate Faculty of the

Lyle School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Electrical Engineering

by

Matthew Tonnemacher

M.S., Electrical Engineering, Southern Methodist University
B.S., Electrical Engineering, Southern Methodist University

December 21, 2019



Copyright (2019)

Matthew Tonnemacher

All Rights Reserved



ACKNOWLEDGMENTS

I have so much thanks to give to the friends, family members, professors, and peers, without

which this achievement would not have been possible.

My advisor, Dr. Joseph Camp, has guided my growth as a graduate student through the entirety

of this research. He has been both a role model and a friend. Likewise, I would like to thank Dr.

Dinesh Rajan for his beyond invaluable insight and advice. I would also like to thank my colleague

Rita Enami for the helpful discussions related to the work in Chapter 2.

Chance Tarver, my colleague and frequent co-author, has also helped me tremendously in my

work. Specifically, I would like to thank him for his help with the hardware implementation in

Chapter 2, editing and figure generation for Chapters 3 and 4, and frequent back-and-forth brain-

storming sessions that helped inspire many other aspects of this work.

My family, especially my mother, have been a major source of support throughout my entire

college career thus far and have my utmost appreciation. Most of all, I would like to thank my

wife, Michelle, the love of my life who has stood by me through the good and bad alike.

iv



Tonnemacher, Matthew M.S., Electrical Engineering, Southern Methodist University, 2013
B.S., Electrical Engineering, Southern Methodist University, 2011

Leveraging Geographical and Spectral Information for Efficient Cellular Systems

Advisor: Dr. Joseph Camp

Doctor of Philosophy conferred December 21, 2019

Dissertation completed January 9, 2020

With the unprecedented increase in mobile data demand and limited usable spectrum to pro-

vide for it, a paradigm shift towards spectrum sharing is a promising solution. However, there

are many challenges that limit current spectrum sharing practices. One challenge is that proper

spectrum sharing requires engaging devices to have an understanding of the impact they have on

the ecosystem while transmitting in terms of spacial interference footprint and the implications to

devices in their interference range. Another is that operators, especially licensed ones, have strict

quality of service requirements for their subscribers, discouraging them from allowing unlicensed

access of their purchased spectrum unless the sharing scheme can guarantee minimal impact to

their systems. This dissertation seeks to address these challenges across three distinct works.

First, we used geographical features of a region to reduce in-field propagation experimentation

by predicting the number of measurements required to accurately characterize its path loss, which

can then be used to model coverage of arbitrarily positioned base stations. By exploiting the

relationship between terrain feature complexity and measurement requirements, we found that the

number of measurements collected to achieve a certain path loss accuracy over the entire region

can be reduced by up to 58% in a high density drive testing scenario.

Next, we looked at applying Listen-Before-Talk (LBT) schemes in Citizens Broadband Radio

Service (CBRS) networks for increasing the spatial reuse at secondary users while minimizing

the interference footprint on incumbent and primary users. We used a novel Q-learning scheme

to adapt the contention EDT to the changing network topology and traffic conditions, providing

up to 350% gains in average secondary node user perceived throughput (UPT) in certain difficult

v



topologies with merely a 4% reduction in primary node UPT.

Finally, we studied channel selection in unlicensed Long-Term Evolution (LTE) cellular sys-

tems. We propose a mechanism for unlicensed LTE channel selection that not only takes into

account interference to and from Wi-Fi access points but also considers other LTE operators in

the unlicensed band. By collecting channel utilization statistics and sharing this information pe-

riodically with other unlicensed LTE base stations (eNBs), each eNB can improve their channel

selection given their limited knowledge of the full topology via a proposed statistical and machine

learning approach. We simulate operation in the unlicensed band using our channel selection algo-

rithm and show how Wi-Fi load and inter-cell interference estimation can jointly be used to select

transmission channels for all eNBs in the network.
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Chapter 1

Introduction

Mobile communication networks today are all enabled by a single, vital resource: spectrum.

Like any resource, proper management of the accessible electromagnetic spectrum is necessary to

enable coexistence between the myriad of technologies that seek to use it. In the United States,

spectrum is managed by the Federal Communications Commission (FCC) to ensure that every

commercial, military, medical, and all other applications have some place in the spectrum where

they can operate with assurance to meet their operating requirements. Historically, spectrum has

been a plentiful resource, able to meet the demands of all applications that require use of the

medium. In the past couple of decades, however, the amount of practical spectrum has been

stretched thin due, primarily due to the ever increasing media demands of mobile device users

and the arrival of Internet of Things (IoT) applications. To keep up with this demand, an increas-

ing volume of spectrum is being made available for mobile data, spanning each generation of

communications technology (3G, 4G, and now 5G).

This scaling, however, is unsustainable. While spectrum is infinite in theory, the reality is that

not all spectrum is created equal. Physical properties such as propagation, material penetration,

and transceiver hardware requirements vary wildly at different frequencies, leading to bands of

spectrum being selectively useful for different applications. In general, for large-scale mobile com-

munications, frequencies below 6 GHz are significantly more useful than those over 6 GHz, thus

making the practical use spectrum limited. With the resource limited and bandwidth demands on

the rise, the generally accepted solution is to enable smarter spectrum sharing policies to improve

the efficiency of its use. This thought is further driven by the fact that large chunks of licensed

and unlicensed spectrum remain underutilized, blocked off from other technologies’ access. The

general idea is to have spectrum starved technologies access these spectrum holes in such a way

that the impact to incumbent systems is limited.

Despite the elegance of the shared spectrum solution, there has yet to be widespread practice
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of spectrum sharing policies. There are many reasons for this gap between idea and implemen-

tation. One major reason is that proper spectrum sharing requires engaging devices to have an

understanding of the impact they have on the ecosystem while transmitting in terms of spacial

interference footprint and the implications to devices in their interference range. Another is that

operators, especially licensed ones, have strict quality of service requirements for their subscribers,

discouraging them from allowing unlicensed access of their purchased spectrum unless the sharing

scheme can guarantee minimal impact to their systems. In this dissertation, these challenges in

spectrum sharing are addressed across three separate works.

Ensuring cellular coverage and spacial frequency isolation is an important consideration for

carriers when trying to enable efficient spectrum sharing. Frequency boundaries of cells, espe-

cially in higher density, lower power deployments, is of utmost importance to manage interference

footprints in a network. However, landscapes are complex and can change over time, making

maintaining accurate mappings a costly concern for carriers due to the expense of in-field experi-

mentation (i.e., drive testing). With the ubiquity of smartphones, apps, and social media, there has

been an explosion of crowdsourcing to understand a vast array of trends and topics at a minimal

cost to the organization. While cellular carriers might seek to replace the expensive act of drive

testing with the nearly cost-free crowdsourcing, questions remain as to: (i) the accuracy of crowd-

sourcing, considering the lack of user control, (ii) the detection of when drive testing might still be

required, and (iii) the quantification of how many additional in-field measurements to perform for

a certain accuracy level. In the first chapter of the dissertation, we use geographical features of a

region to reduce in-field propagation experimentation by predicting the number of measurements

required to accurately characterize its path loss. In particular, we study the path loss prediction

accuracy of drive testing and crowdsourcing by taking millions of measurements in a suburban and

downtown region. We then use statistical learning to build a relationship between these geographi-

cal features and the measurements required. In doing so, we find that the number of measurements

collected to achieve a certain path loss accuracy over the entire region can be reduced by up to 58%

in a high density drive testing scenario.

The upcoming deployments of devices on the new 3.5 GHz, Citizens Broadband Radio Service

(CBRS) is expected to enable spectrum sharing innovation by lowering the barrier to entry into LTE

and other technologies. With a three-tiered spectrum-sharing solution, the CBRS band promises
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to allow coexistence of federal incumbent users, priority licensees, and general users. While there

have been many works studying cellular traffic offloading to unlicensed bands (e.g., Licensed As-

sisted Access) or minimizing interference in Cognitive Radio Networks, there has been compar-

atively little work on maximizing spatial reuse of spectrum in a shared spectrum CBRS network.

In the second chapter of this dissertation, listen-before-talk (LBT) schemes are used in a CBRS

network framework for increasing the spatial reuse at secondary (general) users while minimizing

the interference footprint on higher-tier (incumbent) users. We propose LBT schemes that allow

opportunistic access to licensed, CBRS spectrum and test our LBT schemes on a custom testbed

with multiple software-defined radios and a real-time signal analyzer. We find that by allowing

LBT spectrum sharing in a two carrier, two eNB scenario, we see upwards of 50% user perceived

throughput (UPT) gains for both eNBs. Furthermore, we examine the use of Q-learning to adapt

the energy-detection threshold (EDT), combating problematic topologies such as hidden and ex-

posed nodes. When adapting the EDT of opportunistically transmitting nodes, we see up to 350%

gains in average secondary node UPT in certain difficult topologies with merely a 4% reduction in

primary node UPT.

As mentioned earlier, due to the ever increasing mobile data demand, cellular providers have

been investing into high-density, low coverage small cell deployments, enabling greater spatial fre-

quency reuse. Additionally, unlicensed industrial, scientific, and medical (ISM) bands are seen as a

potential bandwidth extension to increase capacity. The desire to utilize unlicensed bandwidth for

cellular data has prompted several standardization efforts for LTE operation in the unlicensed band

such as LTE-U and Licensed Assisted Access. The major concern for these efforts has been coex-

istence with existing devices, however we found the research into inter-cell interference between

these unlicensed LTE small cells, especially in the presence of heterogeneous Wi-Fi contention

between nearby cells, to be lacking. In the third chapter, We propose a mechanism for unlicensed

LTE channel selection that not only takes into account interference to and from Wi-Fi access points

but also considers other LTE operators in the unlicensed band. By collecting channel utilization

statistics and sharing this information periodically with other unlicensed LTE eNBs, each eNB

can improve their channel selection given their limited knowledge of the full topology. Moreover,

we expand on our statistical channel selection formulation to include reinforcement learning and

show that the addition of reinforcement learning can augment channel selection in cases where
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there is high similarity in channel utilization for neighboring nodes. We simulate operation in the

unlicensed band using our channel selection algorithm and show how Wi-Fi load and inter-cell

interference estimation can jointly be used to select transmission channels for all small cells in the

network. Our approaches lead to an increase in user-perceived throughput and spectral efficiency

across the entire band when compared to the greedy channel selection.

This dissertation is organized as follows. In the first chapter, we present GeoRIPE, a framework

under which we can reduce the cost of cellular network drive testing. In the second chapter, we

propose a novel spectrum sharing methodology for CBRS networks based off of popular listen

before talk solutions. In the third and final chapter, we study channel selection in unlicensed LTE

networks, specifically considering heterogeneous Wi-Fi interference between cells.
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Chapter 2

GeoRIPE: Efficiently Harvesting Field Measurements for Map-Based Path Loss Modeling

2.1 Introduction

To address multi-fold increases in cellular demand, carrier cell sizes are shifting downwards

to maximize network capacity. In doing so, the accurate and fine-grained coverage estimation of

coverage becomes a critical issue for spatial reuse, inter-cell interference, and smooth handoffs

between cells. Historically, in-field experimentation (i.e., drive testing) has been used to estimate

the cellular propagation of a given region, which is costly for network operators due to the man-

power and equipment required. The emergence of smartphones and their apps have offered a far

cheaper alternative, recording in-field network observations directly from the cellular users (i.e.,

crowdsourcing). Crowdsourcing can allow network observations to be recorded in areas to which

in-field testers may not have access.

Despite the availability of crowdsourced measurements, network providers continue to use

extensive drive-testing to validate network coverage and quality of service metrics. One of the main

goals in supplementing crowdsourced measurements with drive testing measurements is to fill in

the gaps of crowdsourcing. However, the drive testing process can be costly and time consuming,

creating a market for network drive testing reports. Thus, collecting these measurements in an

efficient manner is a high priority. The most direct approach would be to minimize the number of

measurements that needs to be collected to achieve the accuracy requirements set. In this work,

we attempt to reduce the number of measurements required for accurate path loss characterization

throughout a given region by understanding and exploiting the variation in geographical features.

In order for this to happen, several questions need to be answered:

1. What are the relationships between geographical features and signal strength measurement

requirements?

2. Can the number of measurements required to achieve a particular accuracy level be deter-
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mined for a specific area?

3. How can these spatial differences be exploited to reduce the total number of measurements

required to meet a particular regional path loss characterization accuracy?

In this work, we use geographical features of a region to more efficiently collect signal strength

measurements, thereby reducing the amount of time spent on in-field propagation experimenta-

tion. To do this, we first introduce GeoRIPE, a statistical learning framework to situationally

predict the number of measurements required to meet a specified path loss characterization preci-

sion. With this framework, geographical feature distribution input is used to suggest measurement

collection requirements in a grid-like fashion over the target region. Then, we developed and de-

ployed an Android application to gather signal strength measurements from real users throughout

the world. We use a specially modified version of this application to collect high-density drive

testing measurements from two distinct region types in a major metropolitan area. By using com-

mercially available smartphones, measurements gathered are comparable to those gathered using

purely crowdsourcing. Next, we explore the effect of land use on path loss characterization, show-

ing how geographical feature diversity plays a large role in determining regional measurement re-

quirements. We show especially strong correlation between the number of measurements required

to accurately characterize the path loss in a region and the geographical feature ratio of small,

medium, and large buildings, foliage and free space in an area. Finally, we validate the framework

by comparing GeoRIPE to uniform measurement collection approach. We show that when fixing

the accuracy requirement in path loss evaluation over the entire region, using the GeoRIPE frame-

work can significantly reduce the required number of measurements that need to be taken to meet

it.

2.2 GeoRIPE Framework

To illustrate the GeoRIPE1 framework of using geographical features to reduce in-field propa-

gation experimentation, we have depicted an aerial view of a region’s terrain in the left-most image

in Figure 2.1 with north on the top of the image. The terrain is classified into the following geo-

graphical features: buildings, dense foliage, and free space. Since in-field testing is expensive, our
1As a mnemonic for this work, consider that fruit should be in the field the appropriate amount of time before har-

vested (i.e., to be ripe). Similarly, we seek to find the minimum amount of time necessary for in-field experimentation
to accurately predict the path loss of a region.
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Figure 2.1: GeoRIPE Framework: using geographical features of a region (left) to infer the number
of measurements required to predict path loss with a given accuracy level. The middle figure shows
minimum measurements required (light is high, dark is low) of the same spatial distribution as the
left-most figure. The right figure is a 3-D version of the middle figure.

goal is to predict the least number of propagation measurements required to characterize the path

loss in the region according to a specified level of accuracy. For example, the path loss of a region

which has entirely free space (e.g., a desert) could be characterized with very few measurements.

However, a diverse metropolitan region would require far more measurements to characterize.

The middle and right images of Figure 2.1 depict the end result of the GeoRIPE framework.

The middle image depicts a two-dimensional overlay of the measurement density required to char-

acterize the region shown in the left-most image. The southwest portion of the region is the lightest

color, which means that it requires the greatest number of measurements to characterize due to the

high concentration of buildings. In contrast, the northwest portion of the region is the darkest,

which means that it requires the least number of measurements to characterize due to sparse build-

ing placement and less foliage. A three-dimensional version of the same figure can be seen in the

right-most image to show the quantity of measurements required in each portion of the region.

A similar analysis could be done for a given region by an excessive amount of in-field testing

and finding when each portion of the terrain converged to a particular level of path loss prediction

accuracy. However, such an approach, by definition precludes any in-field testing reduction. While

we take a very large number of measurements in certain regions in our work, we do so to train a

statistical learning decision structure to infer the number of in-field measurements required. As

a result, for any mix of such terrain features, we can avoid the two in-field testing extremes of:

(i) too few measurements, resulting in an inaccurate path loss estimate, or (ii) too many measure-

ments, resulting in excessive experimentation costs. We can then evaluate the viability of using

crowdsourcing to lower the drive testing cost.

7



The GeoRIPE framework’s measurement distribution prediction is made with path loss accu-

racy in mind. So, before we evaluate the framework itself, we first need to give some background

on path loss models in general as well as what model we use for our analysis. Path loss models

attempt to predict the electromagnetic propagation as a function of distance. Many of these mod-

els rely on a priori information, using environmental details, a theoretical foundation, empirical

findings, or some combination of the three for their prediction [4–6]. Other techniques operate un-

der the assumption that a priori information is insufficient. These models supplement an existing

model with a correction factor or factors based on measurements collected throughout a region to

be modeled and tend to be more accurate than their a priori counterparts [7]. These active mea-

surement models consist of two fundamental components: (i) how the measurements are gathered,

and (ii) how they are incorporated into the model.

2.2.1 Path Loss Measurement and Supplemented Models

W. C. Lee studied the initial theoretical methodology of gathering active measurements for

modeling path loss [8]. Lee proposed arced measurements at incremental distances from the trans-

mitter while averaging measurements that fall within 20 to 40 wavelengths of each other, a claim

corroborated by Shin using IEEE 802.11b measurements some years later [9]. In practice, it is

often difficult to collect measurements strictly following the theoretically ideal guidelines due to

environmental inaccessibility. This can be due to permission limitations, such as access restricted

buildings or construction sites, or infrastructure limitations, where equipment setups are subject

to the same mobility freedoms as the vehicles in which they operate. With a crowdsourced ap-

proach, a greater access diversity can be achieved with the limitations of a lack of control over

data validity and input distribution. Due to these practical considerations, our work considers geo-

graphical complexity and its role in characterizing a region, both with vehicle-based drive testing

and app-enabled crowdsourcing.

One of the more recent path loss models utilizing collected measurements is one proposed by

Robinson et al. [10]. Using the Technology For All (TFA) network in Houston, TX, they utilized

a modified Flexible Path Loss Exponent model with a terrain correction factor derived iteratively

from collected measurements. The model is an extension of Friis’ fundamental study [4] and can
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be written as:

Prx =Ptx + 10α log(d)− 20 log(f)

− 20 log

(
4π

c

) (2.1)

Here, Ptx and Prx are the transmitted and received signal powers, respectively, α is the path loss

exponent, f is the transmit frequency, d is the distance from the transmitter, and c is the speed of

light. In their work, the authors use existing wireless mesh nodes and detailed terrain information

to determine sections that are likely to share a similar path loss exponent. They then incrementally

gather measurements around the borders of these sections in a push-pull algorithm to refine the

coverage estimate of the mesh node.

2.2.2 Obtaining a Path Loss Exponent

In our statistical learning approach, it is necessary to train a classifier with path loss exponent

observations derived from existing measurements to motivate predictions in areas that lack those

same measurements. We borrow the idea of a spatially-dependent path loss exponent from Robin-

son et al. without the push-pull measurement adjustment algorithm, a reference node, and detailed

terrain information (including material loss estimations). Instead, we use (2.1) in a square-shaped

moving window over the region, using linear regression to obtain a path loss exponent for each win-

dow. Since the measurements are obtained from many different towers distributed over the area,

each using potentially different transmit powers at different heights, we rely on a larger quantity

of data to average out these inconsistencies. However, the accuracy (which we define as inversely

proportional the standard deviation of obtained path loss exponents over several calculations using

orthogonal measurements) is increased, which we rely on more heavily for our statistical learning

framework. To calculate the metric of standard deviation on the path loss exponent, we divide the

data considered into several independent sets, calculate path loss exponent for each independent

set, and compute the standard deviation of the exponents derived. Again, this gives us a solid

metric for path loss precision, even if the exponents themselves are biased by the data collection

limitations.
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2.3 In-Field Wireless and Geographical Data

In this section, we present our Android-based measurement gathering platform, which will be

leveraged locally by us to gather a dense measurement set of wireless signal strengths in both a

downtown region and suburban region. We also introduce the geographical feature data set that we

use from the drive tested regions to establish a relationship between geodata and the attenuation

of wireless signals. By using a smartphone based collection platform, we can gather Received

Signal Strength Indicator (RSSI) measurements that relate more directly to user experience than

measurements collected with traditional network analyzing hardware.

2.3.1 Local Measurement Collection

Over the span of two weeks (over 30 in-car hours), we collected 6.7 million drive testing

measurements by placing LG Nexus 4 smartphones in a vehicle and thoroughly driving throughout

two regions in a snake like pattern, covering all available roads in each region. Since we are

using the measurements for studying region-based path loss characteristics, the specific cellular

technology used is less important. Therefore, the measurements were collected on GSM networks

as they are still the most prevalent. The measurements were obtained at a relatively constant speed

of 30 mph in two different areas of the Dallas metropolitan area. The first area is a suburban region

several miles north of the city center with lush greenery prevalent throughout and is predominantly

residential. The second area is in downtown, where there is far less vegetation, and the buildings

are far taller than the suburban structures with non-uniform heights. Our goal is to use these two

distinct regions to examine how differences in feature distribution affect the number of required

measurements to characterize path loss to a certain degree of accuracy in each region.

2.3.2 Received Signal Strength in Android API

Each cellular measurement contains an RSSI field for each visible cellular tower, a GPS loca-

tion, an accuracy reading, and physical speed of the device. While we now obtain RSSI readings

in terms of dBm, most of our measurements were taken when the API reported RSSI in terms of

Arbitrary Strength Units (ASU), an android specific quantized signal strength metric, which quan-

tizes obtained RSSI values for GSM to 32 different levels shown in the equation below from the
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Android API [11].

Prx(dBm) = 2 ∗ Prx(ASU)− 113 (2.2)

Prx(ASU) = [0, 31] (2.3)

We consider Prx(ASU) = 0 and 31 unusable since they correspond to SNR in an unlimited range;

an ASU value of 31 includes any RSSI value above −51 dBm. Not including these measure-

ments, however, clips the natural distribution of RSSI readings at locations with measurements

near the quantization limits. The lower and upper bounds set by omitting measurements where

Prx(ASU) = 31 and Prx(ASU) = 0, respectively, move the average RSSI at certain distances

from the tower. Distances closer to the tower that generally have higher RSSI measurements near

the upper bound may have a lowered average RSSI. Conversely, distances farther from that tower

that generally have lower RSSI measurements near the lower bound may have a heightened aver-

age RSSI. The bias in the movement of average RSSI near the boundaries could end up changing

(likely reducing) the value of the obtained path loss exponent. While the exact values of RSSI

and path loss exponents are likely affected by the quantization error, we are not evaluating abso-

lute path loss accuracy, only relative accuracy in our experiments, so the bias does not affect our

results.

2.3.3 Geographical Feature Data

In order to obtain geographical feature information, we utilized an open-access online resource,

Open Street Maps (OSM) [12], to identify, outline, and label specific regional features and output

them to an easily accessible data structure for parsing. To this end, we mapped hundreds of offices,

parks, houses, and other features in both the suburban and downtown regions and grouped them

into the feature category classes for our statistical learning system. With statistical learning, the

number of training observations necessary for accurate divisions scales up proportionally with the

number of features used in the training. Due to this so-called curse of dimensionality, as well as

the limited number of possible features to label in each region considered, it is necessary to divide

all possible geographical features into relatively few feature categories for processing. With this in
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mind, we selected five feature categories under which all features were labeled: small buildings,

medium buildings, large buildings, high foliage, and open space. In this system, we define small

buildings consist of buildings that are under 5 stories tall (ground footprint is not considered for the

category, but is implicitly considered when calculating feature distributions in a region). Similarly,

we define the range of medium buildings as being between 5 and 15 stories tall and large buildings

as being over 15 stories tall. These building height tiers were chosen to give each feature type

non-trivial representation in the learning algorithm. Finally, we consider high foliage areas in the

regions are areas with a large number of trees, and open space is the area defined by the complement

to the set of all other features combined and includes structures such as roads, parking lots, etc. It

is important to note that the feature set we consider is far from ideal; with more detailed geo-spatial

feature data that is currently unavailable to us (such as exact building and foliage canopy heights),

the GeoRIPE framework’s accuracy will only improve.

S. Build. (6%)

M. Build. (16%)

L. Build. (4%)

Foliage (5%)

Open Space (69%)

(a) Downtown

S. Build. (14%)

Foliage (6%)

Open Space (80%)

(b) Suburban

Figure 2.2: Regional Feature Distributions

The overall ratio of features in the downtown and suburban regions we examine are shown in

Figures 2.2a and 2.2b, respectively. These ratios represent the relative space occupied by each
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feature according the following equations:

s = [f1, f2, ..., f5] (2.4)

∑
i

si = 1 (2.5)

where s is a weighted vector for the normalized occupancy of each of the 5 features in the full

region in terms of total feature area. From this figure, we can see that the suburban area lacks

medium and large buildings and has a higher percentage of open space than the downtown region,

as anticipated. Ideally, we will be able to further differentiate and parse members of the open space

set to derive additional feature categories in the future.
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(b) Suburban

Figure 2.3: Regional Feature Distribution Deviation

Primarily, we want to examine how the features change over each region. To do this, we

calculated the ratio of features in a moving window over each region. Treating the percentage of

each feature in the windows as a random variable, we then compute the standard deviation, giving

us a picture of the feature variability as we move across each region. The standard deviation of

features can be seen for the downtown and suburban regions in Figures 2.3a and 2.3b, respectively.
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From these figures, we can see that the variance of features in the suburban region is, overall,

significantly smaller than in the downtown region. This is because, in the suburban region, the

grouping of features are polarized (ex: houses in half the region, foliage in the other half), while

the in the downtown region, neighboring areas have a higher diversity in their feature composition.

2.4 Density-Dependent Tiling of In-Situ Data

While we have examined the differences in geographical feature distribution of the two areas,

we have yet to explore the impact of changing the size of the subregion, or tile, used to group

measurements spatially. In this section, we explore the differences in path loss exponent changes

between these regions, their relative sub-regions, and the trade off between tile size, measurement

density, and measurement error in evaluating path loss.

2.4.1 Extreme 1: Highly-Sparse Crowdsourced Data

The first scenario is one in which the data set has very few measurements. In such a situation,

we need all the measurements we have to assign a single path loss exponent to characterize an

entire region, similar to the traditional approach. In other words, dividing the region into smaller

areas to have more path loss precision cannot occur because there is a lack of a sufficient number of

measurements to compose a path loss exponent estimate. The result here can be considered a rough

average of path loss over the entire region; however, accuracy at any given area depends on the

variability of the region itself. While a single exponent over an entire region may create a simpler

coverage calculation, it may not be accurate, especially in more diverse region types such as large

cities. When enough measurements are available, we can divide the region into independent tiles

for characterization based on measurement density and region type instead. Figure 2.4 shows the

suburban region is divided into 6 and 24 tiles for path loss evaluation, demonstrating the disparity

in derived path loss exponents for the same area using different tile sizes. While some smaller

tiles match the their large tile counterparts, others are different, alluding to diverse environmental

characteristics.
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(a) 6 Tiles (b) 24 Tiles

Figure 2.4: Suburban region path loss divided into a) 6 and b) 24 tiles.

2.4.2 Extreme 2: Highly-Dense Crowdsourced Data

We now examine the other extreme, when a very large number of measurements are avail-

able. In this case, the tile size is not limited by measurement density or acceptable error. With

highly-dense measurements (e.g., as the number of measurements approach infinity), tile size is

virtually unbounded, and the standard deviation of path loss approaches zero (orthogonal subsets

measurements would regress to the same exponent when evaluating as the subset size approaches

infinity). Instead, the variability of the terrain determines the effective lower bound on the terrain

characterization resolution, preventing the tile size from going to zero. In other words, decreasing

the title size resolution after a certain point does not provide any additional information about path

loss in the region.

Region Tiles Diff. Mean Diff. Variance

Downtown
6 0.0668 0.0040

24 0.0944 0.0059

Suburban
6 0.0742 0.0029

24 0.0464 0.0014

Table 2.1: Mean and variance of differences between neighboring tiles’ path loss.
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Depending on the nature of the region being analyzed, the mean and variance of the difference

between neighboring tiles changes with the tile size. Table 2.1 shows the mean and the variance

in path loss exponent calculation differences between neighboring tiles for both the downtown and

suburban regions of different tile sizes. As the tile size decreases, we observe different behavior

from the two region types. In the downtown region, the differential mean and variance increase

with a smaller tile size, while in the suburban region, the opposite is true. For more diverse regions

like downtown, using smaller tile sizes has a larger benefit in characterizing the spatial diversity

of path loss. In less diverse regions like homogeneous neighborhoods, the differential path loss

throughout the region does not require as high of a resolution; the path loss variability seen from

smaller tile sizes is below the noise floor in generating the path loss exponents. Thus, the measure-

ment density available along with the region type’s path loss variability must be jointly considered

in determining a minimum tile size for characterization.

2.4.3 General Case: In-Situ Tile Size Adaptation

In most cellular networks, it is likely that the set of available measurements is neither highly

sparse nor infinitely dense. Instead, the system is generally in a state between these two extremes.

Hence, choosing the tile size of the region becomes a critical issue since it is not initially clear if

the measurement density or the terrain heterogeneity will drive the tile size.
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Figure 2.5: Examining tile size versus measurement density over different land uses for a given
acceptable error.
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Given a set of measurements with a specific measurement density, a minimum tile size exists

that remains below the reliability threshold. In Figures 2.5a and 2.5b we set a standard deviation

threshold of 0.0125 for our path loss evaluation and examined the minimum tile size for different

measurement densities available. In these figures the lighter points are below the threshold and

darker, red dots are above the threshold. For both land use types, we see that as the measurement

density increases, the minimum tile size achievable under the threshold decreases, enabling a finer

grain resolution while maintaining the reliability we desired. However, the suburban region con-

sistently requires a lower measurement density to be below the error threshold than the downtown

region because the suburban region has a lower terrain variability. From these figures, we can

see that to achieve a tile size of 1 km2 under the error threshold, the suburban region requires a

measurement density of 500 measurements per km2 while the downtown region requires 800. This

relationship between the different land uses holds for each other tile size as well. The measurement

density required for a certain resolution of path loss increases with the heterogeneity of the region.

2.5 Experimentally Evaluating Map-Based Modeling

Despite that fact that there have been several works that suggest measurement distribution

and geographical features play an enormous role in the resulting path loss characterization of a

region, there has not been a study showing how these metrics can be used to quantify the number

of measurements required to characterize an area. In this section, we take a critical look at the

impact of measurement distribution and geographical feature components on path loss precision.

More specifically, we compare measurement distributions obtained from crowdsourcing versus

drive testing measurements, examine geographical feature components of our two metropolitan

region types, and correlate these feature distributions with both path loss exponents as well as the

number of measurements required to obtain a certain precision in characterization. Our goal is

to use regional geographical features to learn how to properly collect measurements, ensuring a

predetermined precision in path loss characterization.

2.5.1 Path Loss Metric and Geographical Feature Correlation

Using geographical features as a region specific identifier, we want to understand how specific

geographical features can be used to characterize path loss throughout a region. We now explore

four different path loss related metrics to determine which had the closest relationship, and there-

17



fore the highest suitability, to be used as the target for our geographical feature based statistical

learning approach. The four metrics we examine are path loss exponent (PLE), differential path

loss exponent (DPLE), number of measurements required (MR) for path loss convergence, and the

differential number of measurements required (DMR) for convergence. The MR and PLE metrics

are calculated for a given region using Algorithm 1, which is initialized with parameters listed in

Table 2.2. Algorithm 1 can be visualized as a sliding window filter moving across the region as il-

lustrated in Figure 2.6. In this algorithm, the first two loops control the moving window as it shifts

vertically and horizontally, respectively. For a given window at position v, h, we compute the path

loss exponent directly with all available data, giving the PLE metric. Following that, we divide the

data into G separate groups, calculate the path loss exponent in each group, and take the standard

deviation over all exponents. We increase the number of measurements in each of these groups

by S until the standard deviation is under a certain threshold (chosen to be whatever accuracy is

acceptable, we chose 0.03 because that was about the point that an a linear increase in the number

of measurements started to have diminishing returns). Additionally, When the standard deviation

falls under this threshold, we record the measurements in each group as the MR metric.

We use this algorithm to determine a map of the measurements required and path loss expo-

nent metrics over a region. With our feature data for the region, we can derive a similar map of

feature distributions using the same windowing method. The differential metrics, differential path

loss exponent and differential measurements required, can be easily derived from column and row

differentiation of the PLE and MR matrices, respectively. A corresponding differential feature dis-

tribution map can be derived in the same manner. With matching metric and feature maps, we can

correlate each metric with the corresponding feature map to obtain a sample Pearson correlation

Table 2.2: Spatial feature and path loss metric algorithm parameters.

Parameter Setting Description
W 1km2 Moving window area
V 20 Number of vertical shifts
H 40 Number of horizontal shifts
σ 0.03 Desired std. dev.
S 20 Measurement step size
G 30 Number of orthogonal groups
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Figure 2.6: Visualization of Algorithm 1.

Data: measurements (M )
Result: V by H PLE and MR matrices
Initialize Parameters;
for v ← 1 to V do

for h← 1 to H do
PLE(v, h)← ComputeExponent(∀M ∈ W );
group(1..G)← ∀M ∈ W split into G sets;
Psize ← 0;
while σtemp ≥ σ do

σtemp ←∞;
Psize ← Psize + S;
for g ← 1 to G do

P ← Psize elements ∈ group(g);
exponent(g)← ComputeExponent(P );

end
σtemp ← ComputeStdDev(exponent(1..G));

end
MR(v, h)← Psize;
W ← W horizontally shifted by 1;

end
W ← W vertically shifted by 1;

end
Algorithm 1: Algorithm for computing PLE and MR metrics.
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coefficient (the standard equation for correlating discrete groups) using Equation 2.6.

rij =

∑n
k=1(xik − x̄i)(yjk − ȳj)√∑n

k=1(xik − x̄i)2
∑n

k=1(yjk − ȳj)2
(2.6)

In this equation, n is the number of samples, xik is sample k of feature i, yjk is the sample k of

path loss metric j, and x̄i and ȳj are the average distribution of feature i and the average of path

loss metric j, respectively.

We want to select a path loss metric to use as a training class for the statistical learning frame-

work that has the highest correlation coefficients with the feature set to provide clear decision

boundaries. The correlation coefficients for each of the path loss metrics in the downtown and

suburban regions are shown Tables 2.3 and 2.4, respectively.

We can see that the MR metric has the highest overall correlation coefficient magnitude and

is likely the best contender for a simple decision tree based learning algorithm. Interestingly,

we see that for the suburban region in particular, the correlation coefficient for the MR metric

are negative with small buildings and positive with foliage, while positive with both for the PLE

metric. This suggests that while increased buildings and foliage contribute to a larger path loss

exponent (as expected), the number of measurements required to drop below the 0.03 path loss

exponent standard deviation increases only with the percentage of foliage.

From this result, we can see that while the small buildings feature increases the path loss ex-

ponent, it decreases received power variability, while the foliage feature increases received power

variability. This trend is visualized for the downtown and suburban areas in Figures 2.7a and 2.7b.

To understand how each terrain feature affects the measurement requirements individually, we

Table 2.3: Downtown metric-feature correlation coefficients.

Metric S. Building M. Building L. Building Foliage Open Space
PLE -0.23 0.02 -0.05 0.17 0.18

DPLE -0.05 -0.03 0.02 -0.04 0.07
MR -0.32 0.34 0.49 -0.10 -0.23

DMR -0.06 0.05 0.03 0.01 -0.02
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Table 2.4: Suburban metric-feature correlation coefficients.

Metric S. Building M. Building L. Building Foliage Open Space
PLE 0.36 NA NA 0.31 -0.38

DPLE -0.15 NA NA 0.05 0.05
MR -0.53 NA NA 0.44 -0.27

DMR -0.06 NA NA 0.01 0.04
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Figure 2.7: Average feature distributions for different MR tiers.
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Figure 2.8: Feature trends for increasing measurement requirements.
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examined the trends of each feature distribution as the number of required measurements increases

in Figure 2.8. From this figure, we can see that in the suburban region, the individual feature

impact is quite clear; increases in the percentage of foliage and decreases in the percentage of small

buildings increases the number of measurements required, while the open space component doesn’t

fluctuate much at all. Conversely, we cannot induce distinct trends from the downtown region.

We see in the suburban region, there are only two features driving the increase in measurement

requirements, thus trends can be easily seen. In the downtown region, however, each feature apart

from open space has an effect on the measurements, thus trends from individual factors cannot be

so easily derived.

2.5.2 Classifier Training for MR Prediction

To validate the GeoRIPE framework, we divide the MR results for the downtown and suburban

regions into 6 same-sized class bins. As seen in Figure 2.9, the class groupings are not homoge-

neous for either of the regions. Unsurprisingly, the downtown region class distribution has a higher

mean number of required measurements than the suburban region due to its higher geographical

complexity.
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Figure 2.9: Regional MR Class Distributions
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Under these class groupings, the input terrain feature distributions used each measurement

class grouping are shown in Figure 2.7. In reference to Figure 2.9, we see that the majority of the

regional features fall into groups centered around 940 and 540 measurements for the downtown

and suburban regions, respectively. Thus, these bins will have a higher weight under the learning

framework.

To train each the decision tree classifier, it is important to allow equal training weights per class

as much as possible to balance the tree and not over-fit the data. For this, we randomly selected an

equal number of observations for resulting in each class to balance the observations per bin. We

further divided this set of observations into two separate training and validation observation sets,

again being sure to have equal class representation in each set. We then trained the decision tree

classifier with the training set and predicted MR classes with the validation set.

Due to the linear relationship between the MR metric and class, it is important to look at not

only the prediction accuracy in choosing the correct class, but also the distribution of predicted

class offsets (how many classes away from the correct class) when the correct class is not chosen.

This is because a lower average offset between the predicted and correct MR class is nearly as

important as the accuracy in choosing the correct class. For example, predicting the adjacent class

is not as detrimental to the measurement number estimation as predicting multiple classes away.
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Figure 2.10 shows the class prediction offset magnitudes for using feature prediction to choose

a class and choosing a random class (according to the frequency of occurrence). This result shows

that for both the downtown and suburban region, the average predicted class offset is significantly

lower using the feature prediction than choosing a class at random, even if there may not be a very

high accuracy in actually predicting the correct class.

2.5.3 Uniform Drive Testing Comparison

Using our trained and validated decision tree classifier, we wanted to compare GeoRIPE to

uniform drive testing in two scenarios. First is a dense uniform drive testing scenario, in which

measurements are gathered according to the requirements of the subregion (window from Algo-

rithm 1) with the highest geographical variability. More specifically, we experimentally found the

number of measurements required in the worst case subregion to meet the accuracy threshold and

uniformly take that number of measurements over every subregion. The other is a sparse uniform

drive testing scenario, in which measurements are gathered according to the measurement require-

ments of the subregion with the lowest geographical variability. In this experiment, the goal is to

stay under a predetermined path loss exponent standard deviation (corresponding to an accuracy

that a network provider would require) while using the lowest amount of measurements. To do

this, we divided the regions into several uniformly sized tiles and gathered several orthogonal sets

of measurements from each tile according to the sparse, dense, and GeoRIPE predicted number

of measurements. For each orthogonal set in each scheme, we calculated the path loss exponent

and took the standard deviation over all exponents for each of the three techniques. By doing

this, we can compare the path loss exponent accuracy and the number of measurements required

for each technique. For this experiment, we trained the GeoRIPE classifier to predict the mea-

surements required for the standard deviation of 0.03 using half of the region, and predicted the

number of measurements required for the for the other half. We repeated this experiment for both

the downtown and suburban regions, and the results can be seen in Table 2.5.

From this table, we can see that the sparse drive testing does not meet the required standard

deviation of below 0.03 that we set at the start of the experiment. The dense drive testing does stay

under the standard deviation requirement, using the minimum number of measurements to do so

over all areas. Using GeoRIPE, the standard deviation requirement is also met, but it requires 58%
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Table 2.5: GeoRIPE Standard Deviation and Measurements Compared to Sparse and Dense Uni-
form Drive Testing Scenarios

Technique Region Average σ Avg. Meas. per km2

GeoRIPE Downtown 0.0286 194
GeoRIPE Suburban 0.0284 186

Sparse Downtown 0.0631 40
Sparse Suburban 0.0440 80
Dense Downtown 0.0205 400
Dense Suburban 0.0188 440

fewer measurements than uniform dense drive testing to get all subregions below the threshold.

From the GeoRIPE results, the effect of geographical complexity can be clearly seen; a lower

standard deviation of path loss exponents is obtained using fewer measurements in the suburban

region than the geographically more complex downtown region.

In addition to meeting the accuracy requirements using the least number of measurements,

we wanted to evaluate the benefits of using the GeoRIPE framework over a uniform distribution

that uses the same number of total measurements. To do this, we used measurements from the

GeoRIPE distribution given by Equation 2.7.

px =
Mx∑X
x̂ Mx̂

(2.7)

Here, x is a single section in the set of all tilesX , px is the fraction of measurements to be collected

in section x, and Mx is the set of predicted MR values of tile x. We collected several orthogonal

subsets of measurements in each tile for an increasing number of total measurements in each

region and compared the accuracy of the two techniques. For each orthogonal subset in each tile,

we calculated a path loss exponent and computed the standard deviation of the path loss exponents

in each tile. The standard deviation for all tiles was averaged at each number of total measurements

and the results were organized by standard deviation. For selected standard deviation, each of the

techniques required a different number of measurements per km2, resulting in Table 2.6.

From this table, we see that as the threshold for standard deviation is lowered, measurements

required increases approximately 10% ’faster’ using uniform drive testing. So, while the true

value in using the GeoRIPE framework is predicting the number of measurements required over
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Table 2.6: GeoRIPE versus Uniform Drive Testing Measurements to Achieve a Fixed σ

σ GeoRIPE # Meas. Uniform # Meas.
0.050 64 64
0.045 80 84
0.040 96 108
0.035 128 138
0.030 178 196
0.025 252 276
0.020 400 436

a region to meet a certain path loss exponent accuracy, the normalized GeoRIPE distribution also

achieves the desired path loss accuracy with proportionally fewer measurements than the uniform

counterpart. This result, however, only analyzes the average path loss over the entire region. Using

a similar windowing method previously described, we wanted to see how many measurements it

took to bring the standard deviation of the path loss exponent in all the windows to fall below

these thresholds. We found that while the number of measurements for the GeoRIPE framework

to accomplish this is similar to the numbers in Table 2.6, uniform drive testing required an average

of 20% more measurements than the listed numbers. The biggest difference in this experiment

is alluded to in Table 2.5, wherein GeoRIPE requires 58% fewer measurements to go below the

standard deviation threshold than uniform drive testing.

2.6 Related Work

Measurement Collection Approaches. Due to the low cost of crowdsourcing from smart-

phones, the technique has been used by many other groups to collect data about wireless networks.

In a study by Huang et al. [13], LTE performance data was collected by creating an Android appli-

cation named 4GTest. This application gained 3,000 users during 2 months of data collection and

collected data that focused on media streaming by mobile clients. With this data, [13] was able to

show that with the download speed increase seen with LTE networks, the traffic bottleneck shifted

from the network to the processing power of the mobile devices. In [14], an Android application

was again used to capture network speed data. This study focused on comparing the speeds of

802.11 networks to the speeds of LTE networks in major cities around the globe. Neidhardt et

al. used a crowdsourced infrastructure to provide an open source and more accurate base station
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location and coverage estimation system [15]. While they had promising results on the base station

localization aspect, they concede that cellular coverage estimation was lacking with their purely

crowdsourced measurements, especially in urban environments with diverse terrain features. Our

work focuses on the minimum measurement requirements according to different geographical fea-

tures of a given region.

Measurement-Driven Path Loss Evaluation. There have been several measurement studies

that strive to more accurately characterize path loss in specific region types. Hata et al. [6] and

Okumura et al. [16] specifically focus on accurate characterization in urban regions. Using mea-

surements gathered by [16] in Tokyo, Japan, Hata et al. empirically derived a path loss prediction

formula with correction factors for various region types such as large-city urban, small-city urban,

suburban, and open areas. Additionally, the Hata model considers base station transmitter height.

Similar to the path loss prediction curves found by [16] in Japan, Allsebrook et al. [17] evaluated

path loss prediction curves for three British cities: Birmingham, Bath, and Bradford. Akimoto et

al. [18] derived a model based on gathered measurements in a rural area using the 2 and 5 GHz

bands. Similarly, [19] studied measurements collected in a suburban neighborhood at 5.7 GHz as

did [20] with measurements taken in Istanbul in the GSM-900 band. More recently, Robinson et al.

sought to minimize the number of measurements necessary to accurately characterize mesh node

coverage in the TFA network in Houston [10]. Their work uses an online push-pull measurement

gathering approach, taking very few active measurements on an existing deployment based on ter-

rain features in the area. Additionally, Sayrac et al. [21] and several others [22–24] try to reduce

the number of drive testing measurements required for coverage evaluation via Baysian kriging,

showing how their techniques can be used to detect coverage holes. However, their analysis replies

on the spatial correlation between the measurements themselves to detect coverage holes from

existing transmission infrastructure. In contrast, our approach aims to analyze geographical fea-

tures of a region and predict the number of measurements required to obtain an accurate estimate

of path loss throughout, including from transmission sources that do not yet exist, by tying the

measurement requirements to the terrain itself.
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2.7 Conclusion

In this chapter, we built the GeoRIPE framework which predicts the minimum number of in-

field measurements required to accurately characterize the path loss of a region according to that

region’s geographical features. To find if such measurements would be sufficient for a given area,

we gathered millions of signal strength measurements along with geographical feature ratios in

both a downtown and suburban region. Using this data, we correlated several distinct geographical

features with different metrics for path loss evaluation complexity. We found that, together, these

features are correlated with the number of measurements required to achieve a fixed path loss

accuracy. We also evaluated the merit of using area bounded path loss metrics. By abstracting

propagation loss parameters away from specific paths and binding them to a specific area, we

are able to evaluate path loss for arbitrary paths through the area. We found that the size of the

individual path loss evaluation areas should be selected based on the complexity of the terrain

features residing in each area. In general, the more complex the area, the smaller the evaluation area

should be. Finally, to validate our work, we compared drive testing using our GeoRIPE framework

to uniform drive testing in each region. We found that our technique, as opposed to spatially

uniform drive testing, required fewer measurements to achieve a similar path loss characterization

accuracy.
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Chapter 3

Enabling a “Use-or-Share” Framework for PAL–GAA Sharing in CBRS Networks via

Reinforcement Learning

3.1 Introduction

Additional spectrum availability and increased efficiency in the use of existing resources are

needed to accommodate the rapidly increasing density and subsequent data demands of wireless

devices around the world. The United States government recognized this need in 2010 and put into

motion what would ultimately become the Citizens Broadband Radio Service (CBRS) [2].

In the standard CBRS architecture, there is a three-tiered system managed by a dynamic

database called the Spectrum Access System (SAS), illustrated in Fig. 3.1. The top tier consists of

incumbent users, the second tier consists of Priority Access Licenses (PALs), and the bottom tier

is for General Authorized Access (GAA). Many users will likely operate in a pseudo-unlicensed

fashion on the GAA tier, and in competitive markets, some carriers may choose to purchase a PAL

license to ensure a minimum QoS. For more background on the CBRS band, see the Appendix.

At the same time that the federal government is opening up new bands for shared use, there is

increasing congestion on the unlicensed bands. For example, 802.11 Wi-Fi and Bluetooth devices

densely occupy the unlicensed 2.4 GHz and 5 GHz industrial, scientific and medical (ISM) radio

bands. Cell providers are increasingly interested in using free, unlicensed spectrum to supplement

their licensed networks, exacerbating this crowding. The idea of using unlicensed bands to supple-

ment licensed networks has been pushed to multiple standards such as 3rd Generation Partnership

Project (3GPP) Licensed Assisted Access (LAA) [25], LTE-U [26], and MulteFire [27].

It is clear that spectrum sharing will become more prevalent in future medium access policies.

The cornerstone of these policies is the requirement for a way to manage the sharing. Spectrum

sharing is traditionally done through contention-based protocols such as a listen-before-talk (LBT)

scheme like Carrier-Sense Multiple Access (CSMA) for 802.11 devices. In these schemes, the
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Figure 3.1: Structure of the CBRS band. Three tiers of different priorities share the band, and a
central database called the SAS dynamically manages the users. PAL users are licensed through
auction while GAA users may use any spectrum not reserved for a higher tier [2].

channel must be determined to be unoccupied for a certain amount of time before it is accessed.

In the current release of the CBRS standard, there is no formal mechanism for GAA users

to access PAL allocated channels. Instead, it is framed such that “use-or-share” [28] policies

should be adopted to prevent spectrum warehousing by allowing PAL–GAA sharing but without

any explanation for how it should be done. We propose a method to address this with the following

contributions.

3.1.1 Contributions

In this paper, we present and compare two LTE-based LBT schemes for use in the CBRS in-

frastructure to allow the GAA users to access licensed PAL spectrum when available. Specifically,

we analyze the trade-off between GAA user gain and PAL user interference through simulations

where we aggregate results over many random user topologies and packet arrival rates. Moreover,

we test our LBT schemes on a custom testbed with multiple software-defined radios and a real-

time signal analyzer to show the feasibility on real hardware. In doing so, we make the following

five contributions:

1. We design and evaluate two LBT schemes to be used in CBRS networks for PAL–GAA

30



spectrum sharing.

2. We show that while one scheme has higher performance, both schemes significantly improve

GAA UPT with a minor decrease in PAL UPT.

3. We find that the decreased PAL UPT is a function of PAL traffic load and problematic net-

work topologies between PAL–GAA users.

4. To reduce the negative consequences of spectrum sharing on the PAL, we formulate a novel

Q-learning algorithm that adjusts GAA opportunistic access via learning an improved energy-

detection threshold (EDT) for carrier sensing.

5. By using average and differential PAL buffer occupancy as the environmental observations,

we find the detriment to PAL UPT from spectrum sharing can be greatly reduced.

3.1.2 Related Work

Many works in the cognitive radio and dynamic spectrum access literature deal with sharing

between a higher priority Primary Node (PN) and a lower priority Secondary Node (SN). Some

recent investigations also consider this while adopting machine learning with promising results.

In [29], the authors use Q-learning for dynamically choosing the channel for cells as opposed to

static assignments. In [30], a decentralized Q-learning scheme is used for reducing the interference

seen by 802.22 PN users. Although Q-learning has been considered for power allocations and

channel assignments, it has not been used, to the best of the authors’ knowledge, for adapting a

dynamic EDT for SNs in a shared spectrum environment.

Overall, CBRS is still an emerging standard, but we can learn from similar experiences on other

bands. When considering the coexistence of GAA users, there are many similarities to unlicensed

bands which have been studied extensively. Notably, there is substantial work that has been done

for the coexistence of LTE and Wi-Fi nodes in unlicensed bands for LAA [31–34] with [35] using

reinforcement learning to alter the duty cycle of the LTE nodes and [36] using Q-learning to adjust

the channel occupancy time of the LAA nodes.

Given that CBRS is a new band, the case of LTE nodes coexisting with another LTE node that

has a higher priority is a new area. Much of the previously mentioned LTE–LAA works are not
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sufficient as the higher-tiered node does not necessarily engage in LBT. There have not yet been

extensive studies for CBRS-specific performance improvements; so far, there are only initial proof

of concept demonstrations reported. In [37], a field trial of CBRS devices (CBSDs) working with

the SAS was shown where they suggest improvements to the SAS protocol based on their results,

and recently Verizon has deployed a CBRS network in Florida [38].

The rest of the paper is organized as follows. We present our new listen-before-talk schemes

for sharing the spectrum amongst LTE devices on the CBRS band in Section II. In Section III,

we give an overview of the reinforcement learning scheme we apply. We additionally provide Q-

learning simulation results in Section III and then conclude the paper in Section IV. Following the

conclusion is an appendix devoted to the state of the CBRS band.

3.2 Listen Before Talk

Although the CBRS band allows for spectrum sharing between multiple tiers and encourages

such “use-or-share” frameworks, there is currently no mechanism to facilitate this sharing, a defi-

ciency that we address here.

Throughout the analysis in the remainder of the paper, we adopt the conventional spectrum

sharing terminology of primary and secondary nodes. In most scenarios, the PAL acts as a PN

which will transmit whenever it has traffic for a connected user in what is called “On/Off" mode.

The GAA acts as an SN which will need to contend for access to the PAL’s channel via LBT.

However, we also present a mutual sharing scenario in Section 3.2.3 where two PAL operators

may use each other’s spectrum as GAA users. In this case, an operator would be a PN on its

licensed PAL spectrum and an SN on other operators’ spectrum.

When it comes to opportunistic random access, LBT schemes are a proven method that can

be used to allow GAA users to access PAL spectrum opportunistically. Wi-Fi, one of the most

popular random access schemes available, has used LBT in the form of CSMA for sharing the

spectrum between multiple users to great success. A version of LBT is essential in any shared-

spectrum environment and is legally required in the European Union and Japan for operation on an

unlicensed band. Ideally, under such a scheme, the secondary GAA nodes (SNs) gain additional

spectrum resources, increasing throughput, while the primary PAL nodes (PNs) are unaffected.

While it is impossible to achieve such perfect coordination due to the inability for secondary nodes
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Figure 3.2: Comparison of two proposed LBT schemes for CBRS. In End-of-subframe LBT, the
SN uses the last 40 µs of a subframe for a CCA, leading to a 50% duty cycle but relatively easier
implementation. In Beginning-of-subframe LBT, the 1st symbol of a subframe acts as the CCA
leading to a higher, 93% duty cycle at the cost of a more complex implementation.

to predict future PN packet arrival, it is possible for LBT to adequately allow LTE nodes to coexist

with marginal harm to the PN.

LBT has already been adopted in some LTE standards, for example, 3GPP’s LAA specification.

The LBT scheme used in LAA is as follows. Whenever a device needs to transmit, it needs an

initial clear-channel assessment (CCA). It must sense that the channel is idle for at least 34 µs. If

so, it can transmit for the length of one transmit opportunity (TXOP). If there is additional traffic

to send, an exponential random backoff mechanism is used, similar to Wi-Fi [33].

However, in the context of CBRS Alliance LTE devices, it is possible to further tailor the LBT

scheme specifically for LTE devices. Although there could be many ways for performing LBT,

we develop and compare the performance of two schemes that seem to be the natural choices:

sensing at the end or sensing at the beginning of a subframe. These are shown in Fig. 3.2, and

each is evaluated below. Similar schemes have also been considered for LTE/Wi-Fi coexistence

in [34]. For the developed LBT schemes, we consider only the downlink, assuming that devices

are operating similarly to LAA in Release 13 of LTE where the CBRS carrier is considered as

a supplemental downlink carrier [33]. For more information on the typical structure of an LTE

33



frame, see [39] and the references therein.

3.2.1 End-of-subframe LBT

In end-of-subframe LBT, an entire subframe functions as a contention window for the SN with

the last 40 µs in a subframe used for the CCA. If the channel is determined to be idle, the SN

uses the next subframe for transmission. Using this scheme has an advantage of not altering the

structure of a subframe. However, it results in, at most, a 50% transmission duty cycle. Moreover,

the scheme could measure the channel to be idle during the contention window only for the primary

node to start transmitting on the next subframe, leading to a collision. As this is a tiered access

system, collisions with the PN need to be avoided at all costs.

3.2.2 Beginning-of-subframe LBT

In beginning-of-subframe LBT, the potential transmitter always senses in the first symbol of

every subframe. If successful, the SN transmits in the remaining 13 symbols of the subframe.

This LBT scheme has the advantage of sensing at the time that a PN would start a transmission,

reducing the likelihood of a collision, given synchronization of subframe boundaries between PN

and SN. Moreover, this scheme sacrifices a single symbol out of each subframe, a 93% duty cycle.

However, LTE uses the first symbol for a control channel, so this scheme may require altering the

subframe structure, though this omission of the control channel may be inconsequential in cases

where SN’s use cross-carrier scheduling.

3.2.3 LBT Scheme Comparison

There are apparent differences between the LBT schemes by construction. Given that the

best-case duty cycle for end-of-subframe LBT and beginning-of-subframe LBT are 50% and 93%,

respectively, beginning-of-subframe LBT is preferable. However, there is a tradeoff between per-

formance and implementation complexity between the two schemes. With end-of-subframe LBT,

we do not require any modification to the subframe structure, but beginning-of-subframe LBT

would require proposing a change to the relevant standards. This change to the standards could

be done through the CBRS Alliance, but since it may modify the subframe this change may also

require 3GPP efforts, resulting in higher implementation complexity. Such a proposal would be a

lengthy effort. Ultimately, after further study, there would need to be a mechanism to allow the
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control channel information to be sent on any symbol, or there would need to be a requirement

of cross-carrier scheduling for LBT Scheme 2. However, standardization efforts are beyond the

scope of the paper. Instead, we merely present our interpretation of the most likely scenario for the

benefits that these LBT schemes could have for coexistence purposes.

To evaluate the performance of these LBT schemes in a CBRS-like framework, we first sim-

ulate their operation in various scenarios. In Fig. 3.3, we show each scenario considered to help

understand the effect of the LBT scheme on both the PN and SN. For a baseline, we consider in

Fig. 3.3a, Scenario 1, where two operators are operating on their carriers without any sharing. They

operate in an “On/Off” mode without contention. In Fig. 3.3b, Scenario 2, we test the result when

both operators engage in mutual sharing onto each other’s carrier. In Fig. 3.3c, Scenario 3, we

consider the case that a single operator is on its carrier and performs LBT on another carrier that

is entirely unoccupied. This case represents an upper bound on gains for an SN. In Fig. 3.3d, Sce-

nario 4, sharing is performed on a single component carrier to see the realistic gains for operator 2

(Op. 2) when sharing and the effect it has on the PN, operator 1 (Op. 1). Due to the nature of the

band, PAL–GAA sharing will likely require an agreement between two operators on a secondary

market. Considering this case, more complicated topologies with many operators and carriers are

not likely to be realistic, and hence, the simulation scenarios in Fig. 3.3 give a realistic insight to

potential sharing scenarios.

For the sake of comparing the performance of each LBT scheme, we considered the scenarios

with no sharing (Scenario 1) and sharing with a PN (Scenario 4) from Figs. 3.3a and 3.3d as before

and after cases. We report the change in the user-perceived throughput (UPT) for Op. 1 and Op. 2.

In this figure, UPT is given by

UPT =
1

N

N∑
i=1

1

Ptotal

[
Pserved∑
j=1

M · rij
tij

+
bi

tserving,i

]
(3.1)

where N is the number of UEs served by the eNB, and i indexes the UEs. Ptotal is the total number

of packets, elaborated by Ptotal = Pserved + Pserving, where Pserved and Pserving are the number of

packets served and being served, respectively. M is the number of bits per packet, rij is the ratio

of successfully transmitted bits over all bits in the packet to UE i for packet j, and tij is the time

taken to send the same packet. bi is the number of bits sent to UE i as a partial packet still in flight,

35



and tserving,i is the time spent by the packet.

We simulated our spectrum-sharing scheme using MATLAB by reusing the 3GPP LAA eval-

uation assumptions for an indoor scenario [3]. Fig. 3.4 shows this topology, and the rest of the

simulation settings are as follows:

• Two operators with four small cells each in a single floor building (Fig. 3.4)

• 18 dBm TX power

• 10 randomly distributed UEs per operator

• -72 dBm EDT

• 20 MHz system bandwidth

• 10 independent simulations with random positioning of the UEs

• 20,000 subframes per simulation.

Fig. 3.5 shows the simulation results. For each test, we show the mean, 5th percentile, median,

and 95th percentile to illustrate the variance across all simulations. In Fig. 3.5a, we see a maximum

increase in UPT for the SN of 40%. However, for the same case, there can be a 10% reduction

in UPT for the PN. In Fig. 3.5b, we see a nearly 80% increase in performance for the SN with a

similar drop in performance for the PN. Overall, beginning-of-subframe LBT performed signifi-

cantly better for both the PN and SN. So, in the next subsection, we select this scheme for use in

additional simulations to determine the possible spectrum-sharing gain. Although throughout the

paper we show

3.2.4 Simulations with Static EDT

Fig. 3.6 shows the results for simulating beginning-of-subframe LBT across different spectrum

sharing scenarios for two different traffic arrival rates to see the effect on UPT. In Fig. 3.6a, the

average traffic arrival rate was 0.5 MB/s for PNs and SNs. The first cluster of results is the Scenario

1 baseline from Fig. 3.3a, where both operators are on their carriers without sharing the spectrum.

The second cluster of results shows Scenario 2 from Fig. 3.3b, where each operator mutually shares
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Op. 1

Op. 2

Carrier 1 Carrier 2

On/Off

On/Off
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(a) Scenario 1 – No Sharing

Op. 1

Op. 2

Carrier 1 Carrier 2

On/Off LBT

On/OffLBT

f

(b) Scenario 2 – Mutual Sharing

Op. 1

Op. 2

Carrier 1 Carrier 2

On/OffLBT

f

(c) Scenario 3 – Sharing without PN

Op. 1

Op. 2

Carrier 1 Carrier 2

On/Off

On/OffLBT

f

(d) Scenario 4 – Sharing with PN

Figure 3.3: Simulation scenarios considered throughout the paper. Simulations using these sce-
narios give us a performance baseline, a possible gain when two carriers mutually share their
spectrum, an approximate best case SN gain when sharing, and an expected PN loss.

120 m

5
0
 m

1-1 2-1 1-2 2-2 1-3 2-3 1-4 2-4

Figure 3.4: 3GPP indoor scenario for LAA coexistence evaluations with two operators and four
nodes per operator [3]. This standard scenario provides an industry agreed-upon simulation sce-
nario for our LBT evaluations.
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(a) UPT change when secondary node uses end-of-subframe LBT.

(b) UPT change when secondary node uses beginning-of-subframe LBT

Figure 3.5: Performance of each LBT scheme for different traffic loads. In the results, a low-traffic
load corresponds to a traffic arrival rate per UE of 0.5MB/s, the medium is 0.75 MB/s, and the high
is 1.05 MB/s.
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(a) UPT for spectrum-sharing scenarios when both operators use a relatively slow average traffic
arrival rate of 0.50 MB/s.

(b) UPT for spectrum-sharing scenarios when both operators use a relatively fast average traffic
arrival rate of 1.05 MB/s, similar to each user streaming a 1080p video.

Figure 3.6: Performance of LBT for two different average traffic arrival rates.
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its primary spectrum with the other operator. Here, we can see that each operator experiences an

increase in the mean UPT by about 25%.

The third cluster shows Scenario 3 from Fig. 3.3c, which provides a (coarse) upper bound on

the maximum achievable spectrum sharing gain. Here, we can see that an operator can achieve a

maximum of 133% gain when adopting a spectrum sharing scheme.

The simulation is repeated for the case of a higher-traffic arrival rate of 1.05 MB/s in Fig. 3.6b,

which is similar to each user streaming a 1080p video using the H.264 codec. Similar to the

results for the slower traffic rate, when each operator engages in a mutual sharing as in Scenario 2,

each operator sees an improvement in UPT. For the higher traffic case, the gains are doubled with

approximately 50% increase in UPT for both operators.

We then use beginning-of-subframe LBT and consider the performance for various EDTs. In

Fig. 3.7a, we show the results when we consider different EDTs for Scenario 2 from Fig. 3.3b.

Here, we see that there is an “optimal” EDT around -52 dBm. These results highlight that for

different scenarios, there may be different “ideal” EDTs.

In Fig. 3.7b, we plot the UPT vs. EDT for Scenario 4 from Fig. 3.3d. In this figure, we can see

the effect of a higher EDT. Here, a higher EDT at Op. 2 implies more frequency of channel access

at the expense of increased downlink interference at Op. 1. As the EDT increases, the UPT of Op.

1 decreases, and the UPT of Op. 2 increases.

It is worth noting that the UPT decreases for the PN are significantly smaller in the low-traffic

load case and more significant in the high-traffic load case for both schemes. Ideally, in situations

where the PN has a high-traffic load, the SN would behave more passively when on the PN’s

carrier. In Section 3.3, we will explore the use of machine learning in adjusting SN EDT to improve

LBT performance in hidden and traffic-heavy node scenarios. Using our algorithm, we show that

scenario-specific, poor-LBT performance can be significantly reduced.

3.2.5 Multiple Secondary Nodes

In many cases where PAL–GAA sharing may occur, it is likely that a sharing arrangement

between the two will need to be formed on a secondary market [28]. In this case, there would be

only two operators, and the operator on the GAA tier would perform its cell planning so that it

would not experience significant self interference.
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(a) Mutual sharing on two carriers, Scenario 2.

(b) Sharing on one carrier, Scenario 4.

Figure 3.7: Median UPT vs. EDT for tests with a 20 MHz system bandwidth and a traffic arrival
rate of 1.05 MB/s.
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In the case where multiple GAA tier operators attempt to use the same PAL spectrum, the

LBT scheme could be modified to accommodate this. One simple way would be to apply random

back-off in the unit of subframes whenever an SN experiences a collision. Another possibility is to

enforce a Maximum Channel Occupancy Time (MCOT) to limit the number of subframes an SN

can transmit on consecutively.

3.2.6 Shared-Spectrum Testbed

To further evaluate the LBT schemes outlined so far, we developed a shared-spectrum testbed

shown in Fig. 3.8. The testbed consists of the following:

• 4 USRP SDRs with the possibility of including more for more extensive tests with many

nodes and UEs.

• Ideal ethernet backhaul via python/UDP for statistics

• Real-time spectrum analyzer.

The nodes of the testbed can be arranged to emulate various topologies such as hidden/exposed

nodes with additional possibilities of including mobility, allowing us to see how well the LBT

schemes behave under real channel conditions where there may be a rich, multipath environment

that changes quickly.

We modified the National Instruments LTE Application Framework to implement our LBT

schemes. Fig. 3.9 shows an example result from the real-time signal analyzer spectrogram. Here,

we use end-of-subframe LBT where the SN uses a subframe for contention and a subframe for

transmission. We show Scenario 2, where each operator can engage in spectrum sharing. In this

case, Op. 2 is under heavy load while Op. 1 is not. Op. 2 augments its services by aggregating

onto Op. 1’s spectrum while Op. 1 has no traffic. For this demo, we restrict each operator to

occupy only half of each 20-MHz carrier so that we can easily distinguish between the operators

on the spectrogram. In this figure, red represents high measured power for the corresponding

time/frequency unit, and green represents low power. We can see that Op. 2 is using Carrier 1 with

a 50% duty cycle as it is the SN on this carrier and must perform end-of-subframe LBT. We can

also see that when Op. 1 begins using its primary spectrum, Op. 2 detects the presence of the PN

and waits for the carrier to become available again before transmitting.
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Figure 3.8: Photograph of the shared-spectrum testbed. Four USRPs connected to host PCs running
LabVIEW Communications with a real-time signal analyzer.

Figure 3.9: Real-time signal analyzer spectrogram for end-of-subframe LBT, Scenario 2 from the
testbed. Each operator is restricted to half of the full carrier to allow for visual distinction on the
spectrum analyzer — Op. 2 transmits on the outer resource blocks, and Op. 1 transmits on the
inner resource blocks. Here, Op. 2 has high traffic while Op. 1 has low traffic. On Carrier 2 where
Op. 2 is the PN, Op. 2 continuously transmits as indicated by the orange color representing higher
measured power. It can aggregate onto Carrier 1 while Op. 1 has no traffic. Whenever Op. 1 does
transmit, Op. 2 can sense and avoid until the channel is free again.
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Figure 3.10: Downlink throughput result from the testbed. Here, the green represents the through-
put achieved on Op. 2’s main carrier where it does not need to perform LBT. The red represents
the throughput on its secondary carrier where it performs end-of-subframe LBT to avoid collisions
with Op. 1. Periodically, Op. 2 is able to get an additional 50% throughput by utilizing the other
carrier opportunistically.
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Fig. 3.10, which shows an example output from the GUI corresponding to the custom receiver

design, shows the downlink performance for this example. Here, Op. 2 is under high traffic. It

fully utilizes its main carrier to achieve approximately 22 Mbps UPT. To enhance performance, it

performs end-of-subframe LBT on Op. 1’s carrier. Throughout the experiment, Op. 2 is able to

aggregate opportunistically onto Op. 1’s primary spectrum. At times where Op. 1 has nearly no

traffic, Op. 2 can get an additional 50% throughput.

In this testbed, the SN synchronizes with the timing of the PN of a channel. Using the existing

LTE synchronization signals, the SN detects the subframe boundaries, measures the energy in the

channel at the appropriate time, and then if the SN determines the PN not to be transmitting, the

SN transmits to its users during the available TXOP. This result highlights the feasibility for the

SN to sync to a PN for performing LBT in real-time. Moreover, Fig. 3.10 highlights what the

throughput gain for the SN may realistically be as the PN transmits with a low traffic-arrival rate.

In this testbed, the SN synchronizes with the timing of the PN of a channel. The SN detects

the primary synchronization signal (PSS) of the PN every 5 ms. It then uses this to estimate the

subframe boundaries so that it can measure the energy in the channel at the appropriate time. If

the SN determines the PN not to be transmitting, the SN transmits to its users during the available

TXOP. This result highlights the feasibility for the SN to sync to a PN for performing LBT in

real-time. Moreover, Fig. 3.10 highlights what the throughput gain for the SN may realistically be

as the PN transmits with a low traffic-arrival rate.

3.3 Reinforcement Learning

While LBT schemes have been successfully implemented in 802.11 standards to great effect,

certain network situations can result in poor performance. While other applications of LBT may

have ways of reducing network problems in topologies that include hidden and exposed terminals,

shown in Fig. 3.11 [40], such as the collision avoidance in CSMA, similar schemes are not applica-

ble when applying LBT to the CBRS tiered architecture as the primary node does not necessarily

engage in LBT behavior. In this section, we mitigate this issue by proposing a novel reinforce-

ment Q-learning technique to adapt an energy-detection threshold (EDT) for secondary nodes in a

shared spectrum environment. We show that by using machine learning, we can increase both SN

and PN gains over LBT schemes that use a static EDT.

45



PN User

SN User

Primary Node Secondary Node

EDT < Optimum EDT

(a) Exposed node case with a Primary Node (PN) inside the sensing range of a Secondary
Node (SN). Here, the energy detection threshold (EDT) is too sensitive, so whenever the PN
transmits, the SN defers to avoid possible collisions with the PN’s users. However, given the
positions of the users, the SN could transmit without interference. This wasted opportunity
could be remedied with a higher EDT.
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(b) Hidden terminal case where a PN user is impacted by SN interference, despite PN being
outside of SN sensing range. This collision could be avoided with a lower EDT.

Figure 3.11: Example primary node (PN)–secondary node (SN) topologies where an adaptive EDT
could benefit the network.
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3.3.1 Reinforcement Learning Primer

We first review the general reinforcement-learning strategy. Roughly speaking, reinforcement

learning addresses the general problem of learning from interactions to achieve a goal [41]. The

learner and decision maker is called the agent. Everything outside the agent that the agent interacts

with is called the environment.

Agents interact with the environment via actions. For each action, α, that the agent executes,

it influences the state of the environment and receives an evaluative feedback, or reward, r. This

reward is used to learn/adapt its subsequent actions, should it encounter the same state in a subse-

quent time slot. We define periodic time intervals, t = 0, T, 2T, ..., in which each agent represents

its observation, o, of the surrounding environment at time t as a state s ∈ S, where S designates a

finite set of environmental states. In summary, at each step t:

The agent:

• Executes action αt

• Receives observation αt of st

• Receives reward rt

The environment:

• Receives action αt

• Emits observation ot+1 of st+1

• Emits scalar reward rt+1

At each time step, the agent implements a mapping from states to probabilities of selecting

each possible action. This mapping is called the agent’s policy πt, where πt(s, α) is the probability

that αt = α if st = s. Reinforcement learning methods specify how the agent changes its policy

as a result of its experience. The agent’s goal is to maximize the total amount of reward it receives

over the long term.

One popular reinforcement-learning algorithm is Q-learning [41]. This model-free learning

strategy can be used to learn an optimal decision policy for any Markov decision process. We adopt
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Q-learning with the objective to minimize interference at an incumbent or PN due to spectrum

sharing with an opportunistic SN. In this scenario, each SN acts as an agent adapting its action in

response to the reward obtained for its previous action.

3.3.2 Target Improvement Areas

Our objective is to use reinforcement learning to assist the SN in harvesting unused bandwidth

from the PN in an efficient fashion. Specifically, we leverage Q-learning to dynamically adjust the

SN’s EDT to maximize network UPT while subsequently minimizing the impact on PN UPT. We

identify two scenarios in which EDT adjustment can mitigate poor LBT performance:

Hidden/Exposed Terminals In hidden or exposed terminal topologies illustrated in Fig. 3.11

an adaptive EDT can benefit network performance. For example, in the hidden node case, a UE

served by the primary node potentially sees a significant interference if a secondary node transmits

at the same time. If the queue size at the PN increases, a possible reason is because of interference

from a (hidden) SN. In this scenario, the network would benefit if the SN had a more conservative

EDT.

Load Adaptation The SN node opportunistically adapts to fluctuations in offered traffic at

PNs. If the PN traffic load is low, it may be able to use lower modulation and coding schemes

(MCS) while maintaining a similar quality of service. By using more robust coding, higher inter-

ference can be tolerated without an increase in packet loss. Thus, the SN EDT can be reduced,

allowing for more aggressive SN behavior, depending on the distance of the PN. Alternatively, if

the PN traffic load is high, the SN EDT should be increased to prevent interference, even if the PN

is further away, allowing higher PN MCS schemes to be used.

With these scenarios in mind, we now present our Q-learning algorithm followed by scenario-

specific results.

3.3.3 Q-Learning Algorithm Description

In designing the reinforcement-learning algorithm, our objective is to determine a policy (se-

quence of state/action pairs) by which the agent (SN eNB) adapts its EDT based on observations

taken during the latest epoch to maximize long-term rewards. In our setup, we assume that the PN

shares transmit buffer occupancy/queue length information with the overarching CBRS network

architecture, making this information available to the SN. In turn, the SN uses this information as
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the environmental observation for the reinforcement learning.

Our assumption of the PAL sharing its buffer occupancy and queue lengths is not currently part

of the CBRS Alliance standard. However, the topic of PAL–GAA coexistence is also not addressed

in the current standard. PAL–GAA coexistence is expected to be addressed in a future version. The

standard is actively evolving, and such information could be added to the measurement reports that

currently exist between CBSDs, SASs, and the CBRS Alliance Coexistence Manager (CxM) [42].

In fact, the governing bodies are actively considering new measurements to include in these reports.

We believe that buffer occupancy and queue length should be considered as they could be, as we

demonstrate in this paper, useful tools to improve coexistence in future standards.

The buffer occupancy and queue length are helpful in facilitating coexistence because they,

in part, provide a snapshot of the interference observed by the PN. The buffer occupancy is a

percentage of the time in the previous epoch that the eNB had data in the buffer waiting to be sent.

The queue length is the instantaneous amount of data in bytes to be sent at the end of each training

epoch. The choice of buffer occupancy is a result of it being able to capture partial observations of

three key factors in the environment: physical interference topology of the entire network, traffic

load at the PN, and the virtual topology (sensing topology based on the EDT). Effectively, the

buffer occupancy can be seen as a function of both the PN traffic arrivals and the inconsistencies

between the interference topology and virtual topology (collisions). Since the goal of the EDT

adjustment is to alter the transmission aggressiveness of the SN based on the PN traffic load and to

make the virtual topology match the interference topology, this makes buffer occupancy the most

appropriate metric to use.

The basic Q-learning implementation is as follows. Let epoch m, with duration T , refer to

time interval mT ≤ t < (m + 1)T. The epoch duration, T , needs to be long enough (e.g., 10s -

100s of sub-frames) to avoid adapting to short-lived flows. At time t = mT , the agent chooses an

action which maximizes its Q-table. At time t = (m + 1)T , the agent receives the observation of

the environment state from its last action, receives the associated reward, updates the Q-table, and

then chooses an action αm+1 for epoch m+ 1. Fig. 3.12 depicts this iterative process.

Given state space S, the environment lies in one of two states s ∈ {1, 2} defined in Table 3.1.

Here, Lm is the instantaneous PN transmit queue size at the end of epoch m, and γ1 is a threshold

used to differentiate high and low traffic loads. γ1 selection can be used to adjust the relative
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Initialize Q(s,�), � s � S, � � � A

Collect reward, r(sm,�m)

Q(sm,�m) = (1-�) x Q(sm,�m) + � x r(sm,�m)

Set �m+1 = arg max Q(sm+1,�)

Observe state sm+1 for Q-step m+1

� � A

Figure 3.12: Overview of Q-learning algorithm. In each epoch, an action is taken based on the
state and learned “quality” of each state/action pair. Based on the change in environment from our
action, the quality of the previous action is updated.
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weight between PN and SN users. We define these states such that there are binary light/heavy

traffic conditions to reduce variables in our performance evaluation. However, this definition can

easily be extended to multiple states if it is necessary to define more nuanced packet load conditions

by defining multiple thresholds.

The agent is rewarded or punished according to the intuitive guidelines listed in Table 3.2.

Table 3.3 elaborates on this by showing specifically provide rewards in our Q-learning algorithm.

In general, a positive reward is given if the PN’s state improves or if a higher EDT threshold is

chosen at the SN without a negative impact on the PN. Consequently, a negative reward is given in

cases where the PN transitions to a worse state or if the SN chooses a low EDT value without any

benefits. More specifically, we define numerical rewards according to the state transition and the

average buffer occupancy over the previous epoch, Bm. Each γ in Table 3.3 is a tunable parameter

outlined in Table 3.4. Each can help control the Q-learning to better tailor it for various goals

and constraints. Zm can be considered as a soft reward when outcomes are between actionable

thresholds.

As mentioned earlier, the selection of γ1 plays a critical role in how the learning algorithm be-

haves between the thresholded values, with higher values allowing the SN to be more responsive to

changes in the PN queue length. These threshold values need to be tuned experimentally for differ-

ent deployments, as there is no absolute rule for how they should be set. In general, each threshold

contributes in one way or another to how quickly the algorithm adapts to changes. Depending on

the specific situation, more or less rapid responses could be advantageous.

The agent updates the Q-table after each action according to (3.2). Here, θ ∈ (0, 1) is a discount

factor that is used to control the importance of the current reward, rm, in terms of updating the Q-

function. Larger θ values will prioritize longer-term reward, while a lower θ applies more weight

to the next iteration reward. The learning rate is controlled by β ∈ (0, 1) which is a weighted

Table 3.1: States for the Q-Learning

State Average Primary Node Queue Size Comment
1 0 ≤ Lm < γ1 Primary node traffic load is light
2 Lm ≥ γ1 Primary node traffic load is heavy
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Table 3.2: Reward intuition

Reward Conditions
Positive • The average primary node queue

length is low (state 1), and the
last action was to choose a high
EDT value (e.g. -62 dBm).

• The average primary node queue
length goes from high to low
(state 2 to 1) following the last
epoch.

Negative • The average primary node queue
length is low (state 1), but the
last action was to choose a low
EDT value (e.g. -77 dBm).

• The average primary node queue
length goes from low to high
(state 1 to 2) following the last
epoch, and the buffer occupancy
is large.

Table 3.3: Rewards for the Q-Learning

(sm, sm+1) Reward rm
(1, 1) • γ4, if Bm ≤ γ2 and αm ≥ γ3

• −γ4, if Bm ≤ γ2 and αm < γ3

• Zm, otherwise

(1, 2) • γ4, if Bm ≤ γ2 and αm ≥ γ3

• −γ4, if Bm ≤ γ2 and αm < γ3

• −γ4, if Bm > γ2

(2, 1) • 0, if Bm ≤ γ2

• γ4, otherwise

(2, 2) • 0, if Bm ≤ γ2

• Zm, otherwise
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Table 3.4: Tunable Parameters for the Q-Learning

Parameter Description Units
γ1 Low/high traffic state

boundary
Bytes

γ2 Buffer occupancy thresh-
old

∈ (0, 1)

γ3 EDT setting threshold dBm
γ4 Standard reward value Scalar
ε Exploration parameter ∈(0,1)
θ Discount factor ∈(0,1)
β Learning Rate ∈(0,1)

average between the previous value of the Q-table for a state/action pair. This affects the tradeoff

between convergence time and the relative stability of the entries.

Q(sm, αm)← (1− β)Q(sm, αm) + β
(
rm + θmax

α
Q(sm+1, α)

)
(3.2)

The next action is chosen at each epoch according to the probability distribution in (3.3).

P (αm+1) =

1− ε, arg maxα∈AQ(sm+1, α)

ε, rand(α ∈ A)

(3.3)

Here, ε ∈ [0, 1] is an exploration parameter, allowing for occasional random actions to be taken.

In general, allowing for exploration prevents the learning algorithm from getting locked into sub-

optimal operation by filling in more of the Q-table than would occur otherwise. Furthermore, the

exploration probability can be reduced over time as more iterations of the algorithm have occurred.

Although it is possible that PN queue length could increase due to factors besides SN inter-

ference such as increased MAC-layer contention, the Q-learning can be resilient to these factors

as the Q-table is updated after an epoch consisting of 100s of subframes. Moreover, to further

minimize the effects of non-interference caused changes to the PN queue length, the learning rate

of the Q-learning algorithm, β, can be chosen to be small. The combination of large epochs and

a low learning rate has the effect of "averaging out" most non-interference caused changes to the

queue.
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3.3.4 Simulations with Adaptive EDT

To evaluate the performance of the adaptive EDT, we perform system simulation in MATLAB.

We examine several distinct scenarios to examine how the performance of LBT compares with and

without the Q-learning based adaptive EDT.

3.3.4.1 Hidden Node – Mitigating Interference

For the first simulation, we consider the topology shown in Fig. 3.13. All of the PN UEs

are placed equidistant from the PN and SN so that if the SN is transmitting, the SINR that they

would receive would be approximately 0 dB. This simulation emulates a hidden-node case, where

the distance between the PN and SN is far greater than the distance between the SN and the PN

UEs. In Fig. 3.14, we compare PN UPT with a fixed, -62 dBm EDT to the adaptive EDT using

Q-learning. In this figure, the upper bound on PN transmission is the situation in which there is

no secondary user; thus, the PN can transmit interference free. We can see that when using a fixed

EDT, the PN UPT drops drastically as expected in a hidden node scenario. However, by allowing

the EDT to increase in response to the detection of increasing buffer occupancy at the PN, the

penalty received by the PN is greatly reduced.

3.3.4.2 Exposed Node – Exploiting Spatial Reuse

For this simulation, we consider the topology shown in Fig. 3.15. All of the PN UEs are placed

at the cell edge opposite of the SN so that they are not susceptible to interference from the SN.

This simulation emulates an exposed-node case, where the distance between the PN and SN is

far less than the distance between the SN and the PN UEs. In Fig. 3.16, we compare PN UPT

with two fixed EDTs to the adaptive EDT using Q-learning. In this figure, the upper bound on

PN transmission is the situation in which there is no secondary user; thus, the PN can transmit

interference free. We can see that no matter what the EDT of the SN is, the PN UPT remains

nearly constant.

For the SN, we see in Fig. 3.17 that by allowing an adaptive EDT, the SN UPT is 2.8 times

greater than the case in which the SN uses a static -72 dBm EDT. However, when the SN uses a

static EDT of -62 dBm, the average UPT is 7.4 Mbps. Although the SN with an adaptive EDT

achieves 76% of the performance of the static -62 dBm case, we see an impressive gain in the UPT

over the -72 dBm EDT. It is important to choose parameters such as γ1 to balance the possible
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PN

240 meters

SN

Figure 3.13: Hidden node test topology where the PN UEs are equidistant from the PN and SN.
Here, the PN users experience 0 dB SINR and are susceptible to collisions from the SN. The SN
needs to adjust its EDT to be more sensitive to PN transmissions.

Figure 3.14: PN performance when its UEs are hidden terminals to the SN. An adaptive EDT in
the SN allows the SN to reduce its interference to the PN.

55



losses in hidden node cases with the possible gains in exposed node cases. In this particular

simulation, the PN is in a high traffic state with an average queue length of 38,294 bytes. The

γ1 parameter for the Q-learning is chosen to be 75,000 bytes. By choosing a higher γ1, it would be

possible to achieve a greater UPT for the Adaptive EDT in this example at the possible expense of

generality for the algorithm, tailoring it too much for one specific scenario.

3.3.4.3 Adapting to PN Load

In the next set of simulations, we have four nodes with two operators in a shared-carrier topol-

ogy, as shown in Fig. 3.18. In this scenario, the PN load is effectively doubled, as each SN needs to

defer to two different PNs. The UE distribution for each node is randomized in proximity around

each node. We present the simulation results in Fig. 3.19. We can see that there is not a significant

change in the PN UPT for any scheme, as they all approach the upper bound. For the case with

no secondary node and the case with a -72 dBm fixed EDT, this is to be expected, as the SNs

will be able to sense the PN and defer for nearly every PN transmission. However, when using

an adaptive EDT, the SN UPT is increased by a factor of four. This is because the reinforcement

learning can adaptively shrink when buffer occupancy remains low at the PN, by taking advantage

of momentarily light traffic loads and/or transmissions to UEs located further away from the SN.

PN

240 meters

SN

120 meters

Figure 3.15: Exposed node test topology where the PN UEs are at the cell edge opposite of the
SN. Here, the PN users experience a low SINR but are not susceptible to collisions from the SN.
The SN needs to adjust its EDT to be less sensitive to PN transmissions.
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Figure 3.16: PN performance when the SN is an exposed node. An adaptive EDT in the SN allows
the SN to reduce its interference to the PN.

Figure 3.17: SN performance for the exposed node topology. An adaptive EDT allows the node to
learn that a higher EDT is acceptable with negligible effect on the PN.
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Figure 3.18: Four-node test topology with two SNs and two PNs.

3.3.4.4 Delayed Feedback Scenario

One concern when using PN network statistics to drive the adaptive EDT algorithm is the effect

of non-real-time buffer occupancy reports on Q-learning training. In any real system, sharing of

data cannot be instantaneous, so we investigate the effect of system delay in PN buffer occupancy

reporting in this simulation and measure the performance degradation. Fig. 3.20 shows changes in

primary and secondary node UPT as system delay increases for both hidden nodes and normally-

distributed UE topologies. As the delay in the reporting of PN statistics increases, there is only a

minor drop in performance of the adaptive EDT algorithm showing the resilience of the Q-learning

to latency in PN buffer occupancy and queue length reports. Even with significant network delays,

the PN performance with an adaptive EDT is shown to be significantly better than the static -62

dBm EDT. We do not evaluate delays greater than 200 ms, as we consider this to be a rough

upper bound of the intra-network latency experienced by a real deployment. However, even when
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(a) PN UPT for the case where the SN adapts to PN load.

(b) SN UPT for the case where the SN adapts to PN load.

Figure 3.19: Performance of PN and SN with adaptive versus fixed EDTs.
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reaching the upper end of this range, standard user mobility would not drive considerable changes

to the network topology or traffic load in such a short time window. Therefore, these results are

more a reflection of the increased convergence time to a static scenario rather than measuring

adaptability to change. With that in mind, we initialized this simulation with a more aggressive

EDT of −62 dBm and limited the experiment to 5 seconds to amplify the impact of the initial

convergence time.

In the results, we can see that the normally-distributed topology converges to acceptable EDT

values quickly even with delay, resulting in no perceived UPT loss for SN or PN. In the hidden

node topology, however, the primary UPT experiences a slight inverse relationship with the system

delay as a result of the extended convergence time. These results show that the Q-learning based

adaptive EDT is resilient to cases where the PN buffer occupancy reports may not be exactly real

time.

3.3.4.5 Effect of the State Transition Boundary, γ1

In the next set of simulations, we have two nodes with two operators, a subset of the scenario

in Fig. 3.18. We perform the simulation with two different γ1 settings for the Q-learning, 25,000

bytes and 75,000 bytes. The choice in γ1 is notable in that it governs the division between states 1

and 2 in the Q-learning algorithm. A transition from state 1 to 2 causes a negative reward for the

action that caused the state transition.

Fig. 3.21 shows these simulation results. In Fig. 3.21a, we show the UPT of the PN. In the case

of a fixed EDT of -62 dBm, our highest considered EDT, we see the lowest performance for the

PN as the SN will not as readily defer to the PN. Inversely, for a fixed EDT of -72 dBm, our lowest

considered EDT, the SN will defer heavily to the PN, resulting in a performance similar to the

case where there is no secondary node. When using an adaptive EDT, by changing the value of γ1,

we can balance the performance of the SN and PN. In Fig. 3.21b, we can see the complementary

performance of the SN. This result shows that tuning of the γ1 parameter can be used to balance

the tradeoff between PN interference and SN channel access.

3.3.4.6 Scaling State Space

To better understand the impact of state space selection, we examined UPT performance when

using different numbers of Q-learning states. We repeated this experiment for normal, hidden
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(a) Normal distribution of UEs simulation.

(b) Hidden node simulation.

Figure 3.20: Spectrum sharing with a simulated network latency in PN reports. The solid line
with markers represents the results with the adaptive EDT using Q-learning, and the dashed line
represents the baseline, static -62 dBm EDT without Q-learning.
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(a) PN UPT with differing γ1 values.

(b) SN UPT with differing γ1 values.

Figure 3.21: Spectrum sharing with different Lm threshold values.
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node, and exposed node topologies to see if perhaps different state space sizes would be preferable

in specific situations. Our results are catalogued in Table 3.5. From this table, we can see that

there is not a large difference between state size and performance for PN traffic, however there

is a slight advantage for using only 2 states in terms of SN UPT in the hidden and exposed node

scenarios and using more than 2 states in the normally distributed topology. Ideally, a more nu-

anced state space could help better select an EDT for SN use, however we found that in the hidden

and exposed node cases, the buffer tends to fill and empty very quickly, resulting in most of the

state representation lying at the boundaries, with only brief occurrences in the load states between.

Additionally, in those problematic topologies, the ideal EDT is min-maxed regardless of current

UE transmissions. In the normal distribution, different combinations of UE traffic can result in

different instantaneous optimal EDTs, causing convergence time to increase. It is also important to

note that if the simulation relies on longer, averaged buffer occupancy’s for state assignment, this

result could be slightly different.

3.3.4.7 Alternative Sharing Strategies

In this set of simulations, we explore two alternative spectrum sharing strategies, comparing

performance to our proposed solution.

For the first alternative spectrum sharing strategy, we consider a simple control system in which

the SN directly adapts its EDT according to changes in the PN buffer occupancy. When the PN

buffer occupancy increases, the SN EDT decreases by one stage. Similarly, when the PN buffer

occupancy decreases, the SN EDT increases by one stage. If the PN buffer occupancy remains the

same or the EDT is at the boundary of the action set and cannot be increased/decreased, no EDT

Table 3.5: Parameter Tuning - Number of States

Normal Hidden Exposed

States PN SN PN SN PN SN
2 29.88 6.23 17.38 2.17 17.84 2.05
3 30.28 6.88 17.39 1.81 17.56 1.84
4 30.15 6.88 17.70 1.77 17.61 1.91
5 29.76 6.69 17.53 1.80 17.93 1.87
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change is made.

The second alternative spectrum sharing strategy we consider to be a "perfect" sharing strategy.

We want to see what the prospective performance could be if the SN could access the spectrum with

complete noninterference with the PN. To achieve this, the SN is provided perfect knowledge of

the PN’s upcoming transmission information and channel conditions. The SN only transmits when

it will not result in a PN CRC failure, resulting in no PN performance loss despite SN channel

access. This algorithm is meant to provide an upper bound on sharing performance and is not

feasible for implementation.

The results can be seen in Figures 3.22 and 3.23, where we show PN UPT relative to the case

where no PN is present and SN UPT relative to the minimum EDT (-62 dBm) in both hidden and

exposed node scenarios. We find that the adaptive Q-learning approach consistently outperforms

the simple control system across all scenarios.

3.3.4.8 Multi-Node Scenario

In our final set of simulations, we use the LAA indoor scenario as outlined previously (shown

in Fig. 3.4). Fig. 3.24 shows the benefit of Q-learning for the case where Op. 1 has at first a low,

0.125 MB/s average traffic arrival rate and then a high, 1.05 MB/s one while the SN traffic is kept

high at 1.05 MB/s. For the low-traffic case, there is only about a 5% gain in UPT when using Q-

learning because the SNs were already exploiting the many spectrum holes created by the limited

traffic activity at PNs. However, when Op. 1 has a higher traffic load, the SN significantly benefits

from Q-learning where the adaptive EDT leads to a median UPT improvement of over 30%.

3.4 Conclusions

In this chapter, we examine the challenges of using LBT for PAL–GAA spectrum sharing in

CBRS networks by evaluating two different LBT schemes and showing that they can be used to

improve significantly the SN UPT with a minor decrease in PN UPT. To reduce the negative con-

sequences of spectrum sharing on the PN, we presented a novel, Q-learning algorithm that adjusts

SN opportunistic access via learning an EDT for carrier sensing. We showed that by using average

and differential PN buffer occupancy as the environmental observations, the SN can improve their

throughput by up to 350% with only marginal losses to the PN UPT (4%). In future work, we

can extend the intelligence globally from the local learning framework presented in this work, to
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(a) PN UPT relative to performance with no SN.

(b) SN UPT relative to performance using highest available EDT.

Figure 3.22: EDT selection algorithm comparison in a hidden node scenario.
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(a) PN UPT relative to performance with no SN.

(b) SN UPT relative to performance using highest available EDT.

Figure 3.23: EDT selection algorithm comparison in an exposed node scenario.
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Figure 3.24: Change in UPT for Op. 1 and Op. 2 when Op. 1 has a 0.125 MB/s (Low) and a 1.05
MB/s (High) average traffic arrival rates while Op. 2 always has a 1.05 MB/s traffic arrival rate.
Here, each bar shows the change in the mean or corresponding percentile when Q-learning is used
to alter the EDT of the SN.

jointly optimize within and across different shared-spectrum deployments, and examine how this

work can scale to situations with multiple SNs.
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Chapter 4

Machine Learning Enhanced Channel Selection for Unlicensed LTE

4.1 Introduction

Deployment of LTE technology on unlicensed bands allows new spectrum opportunities for

cellular-based mobile broadband. This new spectrum helps to improve downlink data rates, in-

crease network capacity, and, being free for use, allows for new use cases such as neutral host.

Moreover, the low-power small/femto cells promise low spatial radio footprints that enable mul-

tiplicative capacity gains via frequency reuse. However, being unlicensed, it is possible to face

significant interference from incumbent Wi-Fi devices and other unlicensed LTE operators.

Many other works have studied Wi-Fi coexistence with specific implementations of unlicensed

LTE (generically referred to as uLTE hereafter), such as LTE-U and its sister technology, Licensed

Assisted Access (LAA), and found that LTE can coexist with Wi-Fi better than Wi-Fi can coexist

with itself [3, 43, 44]. As operator deployment on the unlicensed band ramps up [45, 46], it is nec-

essary to turn our attention to studying coexistence between LTE cells operating in the unlicensed

band, which is largely neglected by past works.

Figure 4.1 shows a simple illustration of the challenges we face on unlicensed spectrum. In

dense deployments, there may be many uLTE eNBs from many operators, uLTE user equipments

(UEs) communicating with uLTE Evolved Node Bs (eNBs), Wi-Fi access points (APs), and Wi-Fi

clients operating on the same or adjacent channels potentially causing interference.

There are two obvious ways to attempt to improve spectrum sharing: improve sharing in the

time-domain via improved channel contention mechanisms, or improve sharing in the frequency

domain via improved channel selection. There has been no shortage of papers on the issue of im-

proving time-domain sharing via contention and Listen Before Talk (LBT) schemes [47]. However,

the LBT mechanism is difficult to optimize for since there are many competing regulatory require-

ments. Alternatively, channel selection is not as burdened by such issues, and improvements to the
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Op. 1 Op. 2

LTE-U Downlink

Inter-Cell Interference

LTE-U/Wi-Fi Interference

LTE-U Downlink

LTE-U UE

LTE-U eNB

Figure 4.1: Unlicensed band deployment scenario. In practice, there may be many incumbent Wi-
Fi devices, new uLTE eNBs from multiple operators (Ops), and their clients all possibly causing
interference with each other. Some sort of interference/collision avoidance mechanism will be
necessary to maintain a minimum QoS on the band.

channel selection procedure can yield concrete gains, agnostic to any specific contention protocol.

Therefore, in this chapter, we seek to improve channel selection. To do this, we utilize statistical

modeling of channel utilization over time.

We make the following observation and seek to exploit it in this work. If the full unlicensed

band channel utilization at each small cell can be estimated and shared with other small cells, a

statistical model can be built for each cell selecting the best channel to transmit such that expected

network capacity is maximized. This has the effect of not only improving uLTE/Wi-Fi coexistence,

but also improving uLTE inter-operator coexistence. We first present a framework that allows uLTE

small cells to collect and share their estimated local channel utilizations with neighboring cells.

Next, we propose a novel reinforcement algorithm in which each small cell can leverage channel

utilization information provided by neighboring cells to select the best operating channel. Finally,

we implement, simulate, and compare the performance of our proposed algorithm against the few

existing state-of-the-art schemes. We find that by leveraging shared information and reinforcement
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learning techniques for proper channel selection, aggregate eNB performance is improved for both

random scenarios and ones with a high degree of spectral congestion from Wi-Fi devices.

The rest of the chapter is organized as follows. In Section 4.2, we present a mathematical

model of the problem and then develop our channel selection algorithm. We simulate and compare

our channel selection algorithm to existing and other proposed solutions in Section 4.3. Finally,

we review related works in Section 4.4 and conclude this work in Section 4.5.

4.2 Channel Selection Algorithm Overview

In this section, we outline various algorithms that could be used for channel selection strategies.

However, before doing so, we first provide details relating to our system model.

We consider a field of operation in which there are three types of entities deployed: eNBs oper-

ating in the unlicensed band, Wi-Fi APs, and UE devices connected to the eNBs. We lump Wi-Fi

device behavior into that of the Wi-Fi AP, as we are only looking at the downlink channel and are

not directly considering Wi-Fi performance in this dissertation, as it is a well-studied topic. Most

unlicensed LTE protocols require or at least have some form of LBT available. In our formulation,

we consider an abstracted form of LBT between cells and Wi-Fi APs, in which transmission op-

portunities are slotted. In each slot, eNB transmission requires a clear channel assessment (CCA)

be performed to determine whether or not the medium is idle. Since this work focuses primarily

on inter-cell coexistence, we do not specifically model Wi-Fi MAC layer operation, instead as-

suming that Wi-Fi APs capture the channel according to Poisson arrival process with independent

uniformly distributed random access duration bounded by the CSMA protocol. Each eNB only

contends for the channel in slots where Wi-Fi traffic is absent; channel access for the slot is then

randomized between all contending eNBs for each slot. By modeling our setup in this way, we can

abstract away from specific protocol implementations (allowing for this work to extend towards

future spectrum sharing protocol design) and reduce overall variability between simulations. We

define eNBs that exist within contention range of any given eNB as its neighbors. The neighbor

set will be used to simplify much of our analysis.

The major objective of this work is to provide an improved methodology for selecting an un-

licensed channel for transmission, such that each eNB can the best quality of service for their

connected UEs. In order to do so, we modify the fixed-channel operation of LTE and adapt it
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Figure 4.2: MAC system overview. With a period of every M slots (or 1 epoch), the eNB will
operate on a DL channel. The eNB will scan the channel and average utilization statistics over a
window of the last N scans.
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time (slots)
M · · ·

N scans occured

Share with neighbors

· · ·

Figure 4.3: Time domain representation of eNB behavior. An eNB scans all channels for one slot
to measure the energy in each channel (shown in blue). Using this info, the eNB chooses a DL
channel to operate on for the next M slots (yellow). This process repeats for a total of N scans
before the utilization statistics are reported to neighboring cells.

to our slotted transmission system. The channel selection is done periodically according to the

following steps.

1. Each eNB scans the band for 1 full slot to measure the power in each channel.

2. Based on this, it will choose its DL channel to operate on for the next M slots based on the

channel selection algorithm implemented.

3. After M slots have passed, the eNB will re-scan the set of channels. We call this duration of

M an epoch.

4. After N scan cycles have completed, the eNB will share its current channel utilization statis-

tics with neighboring eNBs before the channel selection.

A flow chart of the overall system algorithm is shown in Figure 4.2, and a time domain depiction

of basic operation is shown in Figure 4.3. We note that the 1 slot scanning duration is considered a

silent period for the eNB in that it is unable to transmit throughout. Additionally, we assume silent

periods are done simultaneously between all eNBs. The primary reason for this is to allow each

eNB to capture the Wi-Fi utilization without the addition of inter-cell interference. While this is

not strictly necessary due to the ease in which an eNB could differentiate between Wi-Fi and LTE

transmissions, it is convenient for notation and simulation implementation.

Since each scanning period is limited in duration by design, we track the utilization over time

via an exponentially weighted moving average as:

ui ← αûi + (1− α)ui. (4.1)
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Here, the moving average for eNB i, ui ∈ [0, 1]|K|, is updated by using its past value and most

recent measurement ûi, both being vectors representing the utilization on each channel, k, in the

set of channels, K. The scalar α ∈ [0, 1] is a weight that balances recent measurements versus past

measurements. If, for example, eNB i measures channel k to be fully utilized by Wi-Fi devices in

its most recent measurement, then uik = 1. The moving-average formulation strikes a reasonable

balance of prioritizing recent measurements while maintaining a long-term history and having low

implementation complexity.

4.2.1 Greedy channel selection

With a greedy channel selection algorithm, each eNB seeks to optimize its throughput by

choosing the channel with the lowest utilization in the previous scan. This is similar to how many

uLTE base stations currently operate [48–50]. The idea is to pick the least occupied channel pos-

sible, thus minimizing the impact on existing Wi-Fi networks in the area and maximizing channel

access for the eNB. This is shown in Equation 4.2 where kj is the channel for eNB j, t is the current

epoch, and uj,k is the most recent measured utilization by eNB j for channel k.

kj(t+ 1) = arg min
k∈K

uj,k (4.2)

The greedy channel selection algorithm has the benefit of being completely decentralized with

each eNB making decisions based only on local measurements. However, this simple algorithm

may suffer in scenarios where there are many eNBs in close proximity as all eNBs would collide

on the channel with the lowest utilization.

4.2.2 SOPI — Stochastic Optimization with Partial Information

To improve on the greedy approach, we present two different algorithms that each consider

not only local channel utilization measurements but also neighboring measurements. In both of

these algorithms, each eNB locally calculates the expected capacity for the network given its local

sensing of the unlicensed channels and neighboring reports of their sensing. For the first algorithm,

we use a statistical approach to leverage local and neighboring channel utilization measurements

to optimize sum capacity. We consider this an optimization with partial information, as the only

information shared from neighbors is the Wi-Fi utilization. This algorithm is performed indepen-
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dently at each eNB. The process of each eNB is to first estimate the expected network capacity for

each channel, then select the channel that maximizes this estimated capacity. To properly calcu-

late the expected capacity, we first estimate the joint probability of channel selection between all

neighboring eNBs and each combination’s respective capacity.

We begin by estimating the probability that an eNB is able to capture the channel for transmis-

sion. Each eNB, i, measures the utilization of channel k, uik given from Eq. 4.1. For each eNB,

we can derive the probability of access, Pa, to channel k as:

Pa(i, k) = 1− uik. (4.3)

Let eNB i have a set of neighbors, N . We define a subset of neighbors simultaneously operating

on the same channel as J ⊆ N . We also define binary indicator vector, y, of length |J | where

each element represents the instantaneous channel availability for eNB j ∈ J . All combinations

of J ⊆ N must be iterated through to calculate the expected network capacity. We can then define

the probability of eNB i capturing channel k for a slot given the subset of neighbors J also choose

k as:

Pcapt.(i, k, J) =
∑
y∈Y

∏
j∈J ((1− Pa(j, k))ȳj · (Pa(j, k))yj)

w(y) + 1
(4.4)

Here, w(y) is the Hamming weight of binary indicator vector y, ȳ is the binary complement of y,

and Y = Z|J |
2 is a set containing all realizations of y. This channel capture probability is based

on the premise that the channel can only be captured when the same channel neighbors either do

not have access to the channel for the slot, or they do have access to the channel, and eNB i wins

contention against them. With the channel capture probability found, we calculate the channel

capacity for eNB i with contending set J on channel k as:

Ci(k, J) = Pa(i, k)Pcapt.(i, k, J)Ci,max (4.5)

Here, the probability of transmission is scaled by both the access probability, Pa, for node i from

Eq. 4.3 and the capture probability, Pcapt. from Eq. 4.4, since the channel needs to be available

before it can be contended for. We define Ci,max as the unimpeded channel capacity estimated by
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i based on the average SNR experienced over all connected UEs as W log2(1 + SNRi). Using a

similar method, eNB i estimates the expected capacity of neighboring eNB j by assuming that j’s

only neighbor is i and that average SNR for j is identical to its own.

Cj(k, J) = Pa(j, k)Pcap(j, k, i)Ci,max (4.6)

Now that we have found both the local and neighboring expected capacities for all k and J , we can

begin calculating the overall expected network capacity given eNB i selects channel k.

For eNB i, we can estimate the probability that a neighboring eNB j ∈ N will have access to

channel k by converting the channel availability of each eNB to a probability distribution given as:

Ps(j, k) =
1− ujk∑

γ∈K (1− ujγ)
(4.7)

While ideally, we would perform a joint optimization over all channels, our model assumes eNB i

only has local Wi-Fi utilization of its neighbors and nothing else. Thus, this estimate is subject to

error based on discrepancies in actual access probabilities, even if all neighboring eNBs are using

identical channel selection strategies. We address this problem in more detail later on.

Next, we derive the probability that multiple neighbors, denoted by the set J ⊆ N , will access

the single channel k. To calculate this, we multiply the individual probabilities that a neighbor in

J accesses the channel by the probabilities that other neighbors access any other channel. This is

given as:

Ps(J, k) =
∏
j∈J

Ps(j, k) ·
∏

j∈N\J

(1− Ps(j, k)) (4.8)

The total capacity experienced by the network when eNB i with the subset of neighbors J

transmits on channel k is given by:

Ci,net(J, k) =(1− uik)Ci(J, k)

+
∑
γ∈N

(1− uγk) (xγCγ(J, k) + x̄γCi,max) (4.9)

Here, xγ is an indicator. Namely, 1 if γ ∈ J and 0 for all other cases. The variable x̄γ is an
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indicator that is the complement to xγ .

The expected network capacity if eNB i chooses channel k is given by summing the probability

that a subset of neighboring eNBs, J , transmit on the channel multiplied by the network capacity

in such a scenario over all possible combinations of eNBs in the neighboring set,N , which is given

by the power set, P(N ).

Ĉi,net(k) = E [Ci,net(J, k)] (4.10)

=
∑

J∈P(N )

Ps(J, k)Ci,net(J, k) (4.11)

The channel chosen by eNB i for epoch t + 1 should therefore be selected such that the expected

network capacity is maximized according to:

ki(t+ 1) = arg max
k∈K

Ĉi,net(k) (4.12)

The result of this algorithm, then, is to select a channel that maximizes the expected sum

capacity in the network. However, because the second-order neighbors (neighbors of each neighbor

to a given eNB i) are unknown, the only second order neighbor we can assume exists is eNB

i itself. Without a full neighbor graph, the neighbor channel access probabilities estimated by

Ps(J, k) can differ from reality. Unfortunately, in the case where channel utilization statistics are

similar across all eNBs for each channel, each eNB will have a high probability of selecting the

same channel despite any attempted avoidance due to all eNBs operating under the same channel

selection policy. An eNB following the same policy with the same information will necessarily

make the same decision in a hard-decision maximization.

In such a situation, the issue of channel selection is a game-theoretical problem. The algorithm

performance can be expected to be worse than the greedy selection algorithm under the premise

that at least the greedy selection algorithm will lead to mass collisions on the channel with the

lowest measured Wi-Fi occupation, whereas the partial information in the SOPI algorithm can

drive eNBs to all simultaneously select a busier channel, degrading performance further.

We can partially mitigate the damage in this situation by converting the vector of expected net-

work capacities for each channel, Ĉi,net(k), to a probability distribution, where Pc(i, k) represents
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the probability of eNB i selecting channel k given by:

Pc(i, k) =
Ĉi,net(k)∑

γ∈K

(
Ĉi,net(γ)

) (4.13)

However, such a solution is not ideal as the result-per-game is memory-less and does not converge

to a Nash equilibrium over time, resulting in a pseudo-random collision behavior.

4.2.3 Romero-Q — Reinforcement learning using throughput from [1]

In [1] the authors adapt reinforcement learning for uLTE channel selection. We detail their

algorithm along with a brief introduction to reinforcement learning below.

Reinforcement learning is an iterative interaction between the agent (which hosts the algorithm)

and the environment used in many fields. Agents interact with the environment via actions. Each

action performed by the agent impacts the environment in some way, causing the environment to

emit an observation and reward. The observation and reward are used to refine the decision-making

function, or policy, of the agent. Reinforcement learning methods specify how the agent changes

its policy as a result of its experience. The agent’s goal is to maximize the total amount of reward

it receives over the long term.

In [1], a subcategory of reinforcement learning called Q-learning is used. The quality Qi(k) of

eNB i taking the action to select channel k based on the number of available channels, k ∈ K, is

defined by:

Qi(k)← (1− αL) ·Qi(k) + αL · ri(k) (4.14)

Here, αL is the learning rate and ri(k) is the reward the agent received from the environment for

selecting channel k. They derive the reward is determined based on the achieved throughput seen

on channel k and the final decision is probabilistic based on the soft-max policy described in [51].

This decision is given as:

PQi(k) =
exp

(
Qi(k)
τ

)
∑

γ∈K exp
(
Qi(γ)
τ

) (4.15)

77



4.2.4 RLPI — Reinforcement Learning with Partial Information

In order to properly manage situations with similar channel utilizations across neighboring

eNBs, we propose a novel reinforcement learning algorithm that combines prior work for LTE-U

channel selection from a purely game-theoretical perspective [1] with our analytical model that

includes both local and neighboring channel utilization information.

Rather than allocate reward based on achieved throughput as done in [1], we prefer to measure

the average SINR over the past epoch and calculate the reward directly using how successful the

eNB was at transmitting on the chosen channel. Directly using a notion of contention is a natural

choice as throughput is a function of many parameters such as UE placement, modulation and

coding scheme (MCS), and inter-cell interference. The reward used in this work is given as:

ri(k) =
mcap(i)

M
, (4.16)

Here,mcap(i) is the number of slots successfully transmitted on by eNB i in the previous epoch, and

M is the number of slots in each epoch. By using a unit-less reward, we can abstract away many

of the dynamic aspects of the system, such as interference, channel fluctuations, UE scheduling,

and modulation/coding scheme selection.

We define a metric for similarity, S, based on the Jensen-Shannon divergence between all

normalized channel utilizations. This normalization is given by:

Pu(j) =
ujk∑

k′∈K ujk′
. (4.17)

Using these normalized channel utilization distributions, we define the channel utilization similar-

ity for eNB i as:

Si =
1−

∑
j∈J JSD(Pu(i)|Pu(j))1/ω

|J |
(4.18)

Here, JSD(Pu(i)|Pu(j)) is the Jensen-Shannon divergence between the normalized channel uti-

lization experienced by eNB i and neighbor j. We normalize by the cardinality of J to bound the

similarity between [0, 1], where a value of 1 indicates the channel utilization between the eNB i and

all of its neighbors is identical, and a value of 0 indicates all neighboring channel utilizations di-
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verge from the locally measured channel utilization. We add an ω exponent as a tun-able parameter

that functions to scale how aggressively the algorithm relies on the net capacity estimates over the

Q-value. Unless specified otherwise, we set ω = 2, which commonly used as the Jensen-Shannon

distance [52].

Similar to Romero-Q, RLPI performs channel selection through a soft-decision function based

on the soft-max policy [51] combined with the estimated channel capacities. The probability for

eNB i to select channel k via the modified soft-max decision is given by:

PQi(k) =
exp

(
Si

˜Qi(k)+S̄iC̃i,net(k)

τ

)
∑

γ∈K exp
(
Si

˜Qi(γ)+S̄iC̃i,net(γ)

τ

) (4.19)

Here, S̄i is the complement to Si given by S̄i = 1 − Si, ˜Qi(k) and C̃i,net(k) are the scaled sets

of eNB i’s Q values and expected network capacities for each channel k ∈ K, such that the

maximum value in the set is 1 and other members of the set are scaled relative to it. This scaling

to unit values allows the Q values and expected network capacities to be compared on the same

relative scale. τ is the temperature, which is a function of the number of epochs experienced by the

algorithm as τ = τ0
log(1+t)

. The temperature is used as a way to increasingly polarize the selection

probabilities the longer the algorithm runs [1]. Consequently, more exploration will occur during

the earlier epochs, decreasing as time goes on. The value of τ0, or the initial temperature, should

be set to tune the exploration. Equation 4.19 aims to strike a balance between past performance

represented by the Q value and the expected network capacity for a given channel selection. When

the similarity is high, the selection will be primarily based on past behaviors to avoid group-think

between all eNBs by using the experience-driven Q-value as the primary selection metric. When

the similarity is low, the selection will be primarily based on the relative expected network capacity

between selected channels, exploiting the shared information between eNBs.

4.2.5 SOFI — Stochastic Optimization with Full Information

To provide a reasonable upper bound for performance, we evaluate a fully-informed algorithm

in which the channel selection for each eNB is performed jointly. This algorithm operates as an

exhaustive search over all possible combinations assuming the decision is made for all jointly.

While this is not possible in a distributed cellular network, it would be possible with centralized
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base-band processing across all nodes in a cloud-RAN architecture. The SOFI algorithm operates

as follows.

Let k ∈ {1, . . . , |K|}|X | be a vector where each element denotes the channel selected for the

eNB with the corresponding index. This vector encapsulates the channel selection for all eNBs in

the system, which is denoted by the set X . The idea here is to choose the k̂ that maximizes the net

capacity, i.e., we globally assign each eNB a channel instead of having them independently select

their channel. This optimization is given by:

k = arg max
k̂

Cnet(k̂) (4.20)

To accomplish this, we calculate the resulting expected network capacity for all channel se-

lection vectors k. Pa(j, kj) is the probability that eNB j can access the channel assigned in the

scenario (Eq. 4.3). Lj ⊆ X is the set of eNBs on the same channel as eNB j.

Cnet(k) =

|X |∑
j=1

Pa(j, kj)

1 + |Nj ∩ Lj|
Cj,max (4.21)

For a channel selection scenario, this equation sums the product of the probability that a node will

access the channel, the probability it will win contention, and its max capacity if it were to win

contention. The probability of winning contention is given by assuming that all neighboring nodes

on the same channel are equally likely to win contention.

This global channel selection is done by explicitly calculating the expected network capacity

over all possible vectors k, which may be a large search space in cases when there are many

channels and many nodes. This model is a reasonable approximation of an upper bound. However,

it is not a true upper bound in the sense that we are unaware of future UE and Wi-Fi traffic.

4.3 Simulation Results

In this section, we compare the relative performance of each algorithm in a system level simu-

lator we developed to model generalized uLTE operation. We first present details of our simulation

environment. Using our simulator, we compare the performance of the five presented channel

selection algorithms in a randomly generated topology with fixed parameters. We then evaluate

algorithm performance for both high and low average similarity, S, across all deployed eNBs. We
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further split the high average similarity result into low and high overall Wi-Fi utilization to see the

impact of abundant and sparse transmit opportunity availability, respectively, for each algorithm.

Finally, we examine the channel selection performance relative to topology scaling, including the

number of eNBs, channels, and WiFi APs.

4.3.1 Simulation Environment

We test the algorithm in MATLAB where we design a simulator that randomly places eNBs and

UEs, models interference using the ITU-INH channel model, and unique traffic being requested by

UEs at each TTI according to a fixed traffic rate. TTIs can be equated to slots from our previous

formulation, and have a duration of a single LTE subframe, 1 ms. Based on user positions, an

appropriate MCS is chosen. If the UE see severe interference, the cyclic redundancy check (CRC)

on their transmission may fail, prompting a re-transmission. We evaluate and update performance

metrics upon successful packet reception, which can take several TTIs. In this simulator, we only

model the downlink traffic using a 20 MHz, FDD LTE-based signal. As the scope of this work is

focused on uLTE performance, the Wi-Fi traffic is modeled as transmissions that occur according

to a regular traffic rate without modeling the individual Wi-Fi clients, their detailed MAC behavior,

or their throughputs.

The optimization from Equation 4.12 is performed through a brute-force search. This is not

unreasonable given the relatively small, discrete space that can explicitly be calculated. However,

this space does grow exponentially with the number of available channels and the number of neigh-

bors. In this case, heuristics or advanced optimization techniques can be explored, however such

analysis is outside the scope of our current work.

To quantify performance, we use the user perceived throughput (UPT). The UPT is a metric of

the throughput experienced by each individual user after accounting for the total time, including

re-transmissions, taken for the complete packet to be received by the user. Using this metric has

several beneficial consequences for analysis. UPT is significantly impacted by temporary outages

in service. For our application, this amplifies the impact of poor channel selection, as the buffered

data for transmission grows. From a UE perspective, UPT is also impacted by fairness and latency.

This allows it to be used as a general quality of service metric, something unachievable when
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comparing throughput alone. We formally define UPT in Equation 4.22.

UPT =
1

N

N∑
i=1

1

Ptotal

[
Pserved∑
j=1

M · rij
tij

+
bi

tserving,i

]
(4.22)

Here, N is the number of UEs served by the eNB, and i indexes the UEs. Ptotal is the total number

of packets, elaborated by Ptotal = Pserved + Pserving, where Pserved and Pserving are the number of

packets served and being served, respectively. M is the number of bits per packet, rij is the ratio

of successfully transmitted bits over all bits in the packet to UE i for packet j, and tij is the time

taken to send the same packet. bi is the number of bits sent to UE i as a partial packet still in flight,

and tserving,i is the time spent by the packet.

4.3.2 Overall Performance

Using our simulation environment, we first evaluate performance over many different random

topologies. By doing so, we can gain an understanding of how each algorithm can be expected to

perform in a generalized scenario. For this evaluation, we employ Monte Carlo simulation over

many different “drops", or realizations of random simulation parameters. These drop-randomized

parameters include eNB, Wi-Fi AP, and UE deployment locations, initial channel assignments, and

data traffic realizations.

In Figure 4.4a, we show an example random realization of the network topology or “drop."

Here, the four eNBs and eight Wi-Fi APs are uniformly randomly distributed in a 240×240 meter

space. Each eNB has ten connected UEs uniformly distributed in a sixty meter radius around it.

For this simulation, we set the parameters as shown in Table 4.1 and then perform a Monte

Carlo simulation. We simulate 100 unique drops with random topologies which are run for 5,000

TTI, or 5 seconds. The relatively short simulation duration functions as a snapshot of performance

within the physical network topology, and traffic sources are unlikely to change significantly. Our

further assumption is that the performance of these algorithms over this duration is extendable to

multiple subsequent durations with incremental time-dependent changes to the topology. We plot

the average UPT for each algorithm in Figure 4.5.

We find, over an extensive series of random topologies, an example of which is shown in Fig-

ure 4.4a, the Greedy algorithm has the worst performance, while RLPI performs the best. It is
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(b) Example realization of the fixed
topology used for generating a low
dependence scenario.
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Figure 4.4: Example experimental topologies with four separate eNBs each with ten clients and
eight Wi-Fi APs. The colors (blue, green, cyan, and magenta) represent an eNB and its clients. The
eNBs and the Wi-Fi APs are uniformly randomly distributed in a room that is 240×240 meters.
The UEs are distributed randomly in a 60-meter fixed radius around their eNB.
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Table 4.1: Parameters used for overall performance simulation.

Parameter Value in Simulation
Number of Channels, |K| 4
Number of uLTE eNBs, |X | 4
Number of Wi-Fi APs 8
Scan Period, M 20 TTI
Update Period, N 100 TTI
Deployment Area 240m x 240m
Drops 100
eNB TX Power 18 dBm
Wi-Fi AP TX Power 14 dBm
ED Threshold -62 dBm
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Figure 4.5: Overall algorithm performance, averaged across 100 random drops over 5,000 TTI to
gauge the relative performance of each algorithm in generalized circumstances.
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Figure 4.6: Algorithm performance in a low similarity scenario.
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Figure 4.7: Algorithm performance in a high similarity scenario with low average Wi-Fi utilization.
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Figure 4.8: Algorithm performance in a high similarity scenario with high average Wi-Fi utiliza-
tion: saturated channel conditions where improvements are critical
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Figure 4.9: Algorithm performance in a high similarity scenario with independent channel access
probabilities.
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Figure 4.10: Algorithm performance in a high similarity scenario with fully dependent channel
access probabilities.
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interesting to note that both of the reinforcement algorithms outperform both SOPI and SOFI algo-

rithms. One explanation for this is the partial and full optimization algorithms in SOPI and SOFI

only considers channel selection with regards to channel and Wi-Fi utilization, while remaining

oblivious to well known hidden factors such as exposed/hidden terminals between eNBs. Rein-

forcement learning performs exceptionally well in environments with hidden influences, allowing

it to out-perform others in the general case. However, these factors alone may not account for

such a discrepancy in performance over a large number of simulation iterations. In the next set of

experiments, we isolate the utilization similarity metric, dependence between channel access prob-

abilities, and Wi-Fi traffic load to better explain the underlying causes of performance differences

between these algorithms.

4.3.3 Utilization Similarity, Dependence, and Load

For our RLPI algorithm, we introduced a similarity metric, S, to balance the Q-value impact

and expected network capacity when calculating channel selection probabilities. This similarity

metric can be thought of as the relative difference in channel availability an eNB and its neighbors.

In other words, a high similarity indicates the Wi-Fi occupancy is roughly the same between an

eNB and its neighbors for each channel, and a low similarity indicates the opposite.

However, we can also think of similarity as a metric of how correlated the channel access

probabilities between each eNB. For example, if two eNBs share a common Wi-Fi AP nearby on

channel k, the access probabilities for the two eNBs on channel k as defined in Equation 4.3 are

not strictly independent, distorting the calculation for capture probabilities in Equation 4.4. This

interaction between instantaneous channel availability correlation and similarity is not straightfor-

ward. For example, while a high dependence between channel access probabilities implies a high

similarity metric, a high similarity can be realized with completely independent channel access

probabilities between neighbors. This relationship strictly depends on whether an eNB neighbor-

hood shares common Wi-Fi APs (high dependence) or if they do not share APs, but the utilization

happens to be the same (low dependence). Unfortunately, the eNBs and, by extension, the channel

selection algorithm they employ are unable to differentiate the access probability dependence and

must rely on the similarity metric alone.

Thus, we need to explicitly quantify the impact of similarity on the performance for each
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algorithm. To do so, we first define an average similarity metric, Savg as the average similarity for

a simulation as:

Savg =
∑
i∈X

Si
|X |

(4.23)

For our analysis, we categorize similarities into two extreme scenarios: low average similarity,

Savg < 0.5, and high average similarity, Savg > 0.9. The results for similarity values in-between the

high and low can be considered the general case, which represents the majority of drop outcomes

in the Monte Carlo simulation. To elucidate these thresholds, we have designed representative

scenarios for each.

Low similarity To properly analyze low similarity, we modify our simulation environment to

provide a more deterministic topology for study. We fix the positions of 4 eNBs in a square pattern

such that each eNB is considered a neighbor to the two closest eNBs, creating a unique neighbor

set for each eNB. Four Wi-Fi APs are distributed near each eNB such that other eNBs are not

impacted. This creates completely independent Wi-Fi interference sources for each of the eNBs.

An example deployment under this fixed topology constraint is shown in Figure 4.4b.

To achieve the desired similarity for simulation, we randomly select channels and generate

traffic for the Wi-Fi APs constrained such that Savg < 0.5. We show the resulting algorithm

performance for the low similarity scenario in Figure 4.6.

We find that in a low similarity scenario, the greedy selection algorithm and SOFI end up

performing particularly well. This is because a low similarity metric is generally only achievable

when the Wi-Fi channel occupancy tends to be vastly different between neighboring eNBs across

channels and the channel with the lowest Wi-Fi occupancy in each eNB will tend to be different

from its neighbors. In such a situation, the best channel for each eNB ends up being the one with

the lowest measured Wi-Fi occupancy locally, which is ideal for the greedy algorithm and easily

discovered by SOFI as well. However, SOPI ends up under-performing due to the probabilistic

selection, since SOPI lacks sufficient information to guarantee neighboring eNBs will select the

channel with the most local availability. Romero-Q’s performance is below greedy simply because

of the learning ramp-up.
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High similarity For the high similarity scenario, we modify the fixed topology from the low

similarity analysis such that all Wi-Fi APs are deployed in a small radius around the environment

center. This placement results in a high dependence between channel access probabilities, as each

Wi-Fi AP placed has a high probability of impacting multiple eNBs. We reduce the total number

of Wi-Fi APs to better control average channel utilization while still randomizing traffic and Wi-Fi

AP channel assignments. An example deployment under this fixed topology constraint is shown in

Figure 4.4c.

Additionally, we simulate the high similarity scenario with two different sub-conditions: low

and high average Wi-Fi utilization. We label the simulation realization as having a low average

Wi-Fi utilization when the average utilization experienced at each eNB over all channels is under

10%. Conversely, we label the simulation realization as having a high Wi-Fi utilization when the

average utilization is over 50%. We show the resulting algorithm performance for both low and

high Wi-Fi utilization settings in Figures 4.7 and 4.8.

When the Wi-Fi utilization is not a factor due to low occupancy, none of the eNBs have trou-

ble offloading all their traffic. This is true even if there is some frequency overlap between them.

This situation can be considered an abundance of spectral resources, and thus the UPT is similarly

high across all channel selection algorithms. However, as licensed cellular providers and a myr-

iad of new Internet of Things (IoT) devices pop up in unlicensed spectrum, the more likely (and

important) situation is one in which the spectrum is saturated.

When spectral resources are scarce in the high Wi-Fi utilization case, proper channel selection

becomes vital to achieving serviceable performance. In this situation, slight differences in channel

availability between channels can have a significant impact on expected capacity. The SOPI, RLPI,

and SOFI algorithms can evaluate and exploit these differences to great effect. Our results show

that these algorithms significantly outperform Romero-Q and Greedy, demonstrating one of the

major benefits of sharing the Wi-Fi utilization information between eNBs.

When considering the impact of Wi-Fi utilization similarities between nodes, we can further

differentiate between those that are similar due to interference from the same Wi-Fi APs and those

that have different Wi-Fi APs, but similar traffic statistics. The impact of these differences is most

noticeable in the channel access probability and the resulting channel capacity calculation of the

SOPI algorithm in Equations 4.4 and 4.5. The presented equation assumes independent channel
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access probabilities between each eNB and its neighbors, which is achievable when different Wi-Fi

APs within the sensing range of each eNB. However, when the Wi-Fi APs are shared, the neighbor-

ing channel access probabilities should instead be conditioned on i. This error leads to a differential

in capture probability and subsequent capacity calculation depending on the dependence between

neighboring eNB access probabilities. The impact of this error can be seen in Figures 4.9 and

4.10, where we compare the performance of each channel access algorithm given fully dependent

or fully independent channel access probabilities between eNBs. We generate the independent

access probability scenario using the topology shown in Figure 4.4b and dependent access prob-

ability scenario using the topology in Figure 4.4c. Both scenarios are crafted with random Wi-Fi

traffic generation.

In the fully dependent scenario, the SOPI and SOFI algorithms overestimate their channel

capture probabilities due to the assumption of independence and end up being overshadowed by

the reinforcement based algorithms. Conversely, the SOFI algorithm ends up outperforming all

other algorithms when the access probabilities are independent, and the joint optimization between

eNBs can accurately calculate expected capacities.

Overall, we see that while the context-reliant algorithms are all impacted by the access prob-

ability dependencies, the reinforcement learning algorithms remain unaffected. Alternatively,

context-reliant algorithms perform better when spectral resources are scarce. Our proposed RLPI

algorithm balances these two approaches and achieves high performance across each of the sce-

narios studied, and results in improved performance in the general case as well.

4.3.4 Scalability

In this series of experiments, we examine the scalability by testing each algorithm for various

numbers of channels, eNBs, and Wi-Fi APs.

4.3.4.1 Number of Channels

We consider the cases of 2, 4, 6, and 8 unlicensed channels available in the band. The results

are plotted in Figure 4.11a. We average the UPT across all the connected UEs in a drop. Across

all ten drops, we plot the average, median, and fifth-percentile for the UPT seen versus the number

of unlicensed channels available in the system. For scenarios with a fewer number of channels, the

UPT is lower as the many eNBs, UEs, and Wi-Fi APs all must contend across the available chan-
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Figure 4.11: Scalability experiments. For each algorithm, we test performance as we vary the
number of unlicensed channels, Wi-Fi nodes, and uLTE eNBs.
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nels. As the number of channels increases, we see that the UPT increases as the traffic is able to be

divided across more channels leading to fewer collisions. However, the greedy algorithm consis-

tently is less able to take advantage of the new channels as eNBs that measure similar utilizations

will likely collide. SOPI is able to perform better than greedy throughout. The two reinforcement

learning algorithms behave similarly throughout the experiment. SOFI also performs comparably

to the Q-learning is able to

4.3.4.2 Number of Wi-Fi APs

We consider the case of 4, 8, 12, 16, and 20 Wi-Fi APs operating across 4 channels. The results

are plotted in Figure 4.11b. For this result we see that UPT consistently falls as more Wi-Fi APs

are added to the topology.

4.3.4.3 Number of uLTE eNBs

We consider the case of 2, 4, 6, and 8 eNBs operating across 4 channels with 16 Wi-Fi APs.

The results are plotted in Figure 4.11c. For this result we see that UPT consistently falls as more

eNBs are added to the topology.

4.4 Related Work

Many works in the literature are concerned with the general topic of LTE on unlicensed spec-

trum [1, 3, 43–50, 53–59]. However, comparatively few are concerned with channel selection or

LTE to LTE coexistence on unlicensed spectrum. In this section, we discuss other works that

investigate this problem.

In [1] and [56], the authors focus on channel selection and propose a Q-learning, reinforcement

algorithm with [1] originally formulating the algorithm and [56] expanding on it for non-stationary

environments. However, their Q-learning is based entirely on past throughput that each small

cell achieves on the channel, neglecting the utilization of the channel. Moreover, throughput is

realistically a function of more than interference levels, i.e., traffic rates, MCS, number of users,

etc. This could cause the Q-Learning to take unnecessary actions depending on the instantaneous

status of the other settings, especially in a dynamic environment. It will also take a long time to

explore the entire Q-table and will not be able to adapt to rapid fluctuations in utilizations across

the channels. Moreover, the authors do not place Wi-Fi devices in any of their simulations. The

92



authors later also considered a game theory based approach and found it to converge faster than

their Q-learning method [55]. One notable strength in all of their work is that their methods are

entirely decentralized with each small cell making decisions based on their own throughput.

An alternative approach is taken in [57] where the authors instead consider a joint optimiza-

tion of the channel selection and the frame scheduling to improve coexistence in the frequency

and time domains. Fairness to Wi-Fi devices is included in the optimization as a constraint while

maximizing LTE throughput. However, this work relies on a complicated cloud radio access net-

work (RAN) scenario which would be unlikely to account for multiple operators.

Deep reinforcement learning was used in [58]. This work is also entirely distributed. Although

their results are promising, the training data may be prohibitive as multiple days of Wi-Fi utiliza-

tions and neighboring eNBs traffic loads are required. Moreover, online training to continuously

update traffic models may be too computationally complex to do for each small cell in a network.

The Wi-Fi loads dataset used in this work for training and evaluating their method is from a 2003

dataset that polls for AP activity every five minutes. It is unclear how their method would perform

in modern and likely less predictable traffic patterns where there are many more Wi-Fi APs and

clients in a region.

4.5 Conclusions

In this chapter, we examine uLTE coexistence with other uLTE eNBs in the presence of spa-

tially heterogeneous Wi-Fi utilization. While other similar works consider uniform Wi-Fi behavior

or ignore Wi-Fi presence entirely, our work uses knowledge of Wi-Fi incumbency to outperform

existing solutions. To do so, we first formulate a framework under which neighboring eNBs can

share Wi-Fi utilization estimates with each other. Next, we present a unique algorithm in which

deployed eNBs exploit the shared utilization estimates to select an optimal transmission channel.

We then combine this analytical model with state-of-the-art reinforcement learning techniques and

present a novel reinforcement learning approach that leverages the shared utilization statistics. Fi-

nally, we simulate five relevant channel selection algorithms, showing significant improvements in

performance in both general random deployments and scenarios with high spectral congestion.

For future work, we would like to study the convergence characteristics of our presented re-

inforcement learning algorithm, especially in the presence of dynamic changes to the simulation
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environment.
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Chapter 5

Future Research

Wireless spectrum sharing is a considerably large topic that changes drastically over time with

new wireless technology generations, deployments, and use-cases. In this dissertation, we have

primarily focused on simulation-based scenarios in regards to unlicensed spectrum access between

similar technologies.

One future direction would be to test these algorithms in real systems, in which both technology

and user behavior will likely diverge from presumed models. Currently, live CBRS deployments

are up in several locations around the United States and could potentially be used to implement and

fine-tune using buffer occupancy statistics to better adjust GAA behavior. Similarly, private uLTE

nodes operating with LTE-U or LAA could be used in evaluating the channel selection algorithms

presented in this work. Alternatively, software defined radios such as the ones we used in the CBRS

evaluation can be utilized to build up larger-scale test networks for a more controlled evaluation

using real hardware.

Another direction would be to expand and refine existing simulation models to include more

sophisticated wireless techniques such as directional beamforming, MIMO configurations, and

dynamic mobility models. Each of these additions would add a new dimension to the evaluation

of these algorithms, and brings them closer to behavior in a real deployment.
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Chapter 6

Conclusion

In this dissertation, three distinct works were presented in the area of spectrum sharing in

cellular networks, with the aim of moving the state of the art closer to realizing efficient spectrum

usage throughout sub-6 GHz frequency bands.

First, we used geographical features of a region to reduce in-field propagation experimentation

by predicting the number of measurements required to accurately characterize its path loss, which

can then be used to model coverage of arbitrarily positioned base stations. By exploiting the

relationship between terrain feature complexity and measurement requirements, we found that the

number of measurements collected to achieve a certain path loss accuracy over the entire region

can be reduced by up to 58% in a high density drive testing scenario.

Next, we looked at applying LBT schemes in CBRS networks for increasing the spatial reuse at

secondary users while minimizing the interference footprint on incumbent and primary users. We

used a novel Q-learning scheme to adapt the contention EDT to the changing network topology and

traffic conditions, providing up to 350% gains in average secondary node UPT in certain difficult

topologies with merely a 4% reduction in primary node UPT.

Finally, we studied channel selection in unlicensed LTE systems, proposing a mechanism for

unlicensed eNBs to share statistical channel occupancy information with neighboring cells. By

collecting channel utilization statistics and sharing this information periodically with other unli-

censed LTE eNBs, each eNB can improve their channel selection given their limited knowledge of

the full topology via a proposed statistical and machine learning approach. We simulate operation

in the unlicensed band using our channel selection algorithm and show how Wi-Fi load and inter-

cell interference estimation can jointly be used to select transmission channels for all eNBs in the

network.
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