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In system reliability, practitioners may be interested in testing the homogeneity of the

component lifetime distributions based on system lifetimes from multiple data sources

for various reasons, such as identifying the component supplier that provides the most

reliable components.

In the first part of the dissertation, we develop distribution-free hypothesis testing pro-

cedures for the homogeneity of the component lifetime distributions based on system life-

time data when the system structures are known. Several nonparametric testing statistics

based on the empirical likelihood method are proposed for testing the homogeneity of two

or more component lifetime distributions. The computational approaches to obtain the

critical values of the proposed test procedures are provided. The performances of the

proposed empirical likelihood ratio test procedures are evaluated and compared to the

nonparametric Mann-Whitney U test and some parametric test procedures. The simu-

lation results show that the proposed test procedures provide comparable power perfor-

mance under different sample sizes and underlying component lifetime distributions, and

they are powerful in detecting changes in the shape of the distributions.

In collecting system lifetime data, censoring is often adopted due to time and bud-

get constraints. In the second part of the dissertation, we consider the situation where

v



the system lifetime data from two different kinds of systems are subjected to Type-II cen-

soring, and we are interested in testing the homogeneity of distributions of component

lifetimes from Type-II censored system lifetime data with known system structures. Based

on the Mann-Whitney U test and empirical likelihood ratio tests developed for testing the

homogeneity of distributions of component lifetimes with complete system lifetime data,

we propose different non-parametric test procedures using the idea of permutation of the

censored system lifetimes. We consider a restricted assumption on the equality of the

censored lifetimes to reduce the permutations required in the computation. The com-

putational approaches to obtain the critical values of the proposed test procedures are

provided using the Monte Carlo method. A practical example is used to illustrate the pro-

posed test procedures. Then, the power performances of the proposed test procedures

are evaluated and compared using a Monte Carlo simulation study. The simulation re-

sults show that the proposed test procedures provide good power performance for Type-II

censored system lifetime data under different scenarios.

Finally, summaries of the major contributions of the thesis and concluding remarks are

provided. Some possible future research directions are also discussed.

vi



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPTER

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Problem of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Coherent System and System Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Censoring in Life Testing Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. Parametric Lifetime Distributions and Likelihood Inference . . . . . . . . . . . . . . . 7

1.4.1. Some useful lifetime distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2. Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.3. Parametric likelihood ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5. Empirical Likelihood Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1. Empirical Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.2. Empirical Likelihood Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6. Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. Empirical Likelihood Ratio Tests for Homogeneity of Component Lifetime
Distributions Based on System Lifetime Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2. Tests for Homogeneity Based on System Lifetime Data . . . . . . . . . . . . . . . . . . 20

2.2.1. Parametric Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1.1. Asymptotic Tests Under Exponential Distributed Com-
ponent Lifetimes Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1.2. Parametric Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2. Nonparametric Mann-Whitney U Statistic . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3. Proposed Test Procedures Based on Empirical Likelihood Ratio . . . . . . . . . 25

vii



2.4. Null Distributions of ZK , ZA, and U Based on Monte Carlo Method . . . . . . . 30

2.5. Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6. Monte Carlo Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3. Empirical Likelihood Ratio Tests for Homogeneity of Component Lifetime
Distributions Based on Type-II Censored System Lifetime Data . . . . . . . . . . . 53

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2. Extensions to Type-II Censored System Lifetime Data . . . . . . . . . . . . . . . . . . . 54

3.3. Null Distributions of the Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4. Practical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5. Monte-Carlo Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1. Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.2. Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4. Concluding Remarks and Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1. Summaries and Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.1. Summary of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.2. Summary of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2. Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1. Extensions to Other Censoring Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.2. Extension to Situations with Unknown System Structures . . . . . . . . . 96

4.2.3. Consider Other Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

APPENDIX

A. APPENDIX of CHAPTER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B. APPENDIX of CHAPTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

viii



BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

ix



LIST OF FIGURES

Figure Page

1.1 A 3-component parallel-series system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A 3-component series system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 The nonparametric MLE of the SF of the component lifetime distribution
FX1 based on T1 from Eq. (2.8) (denoted as ˆ̄FX1), the nonparametric
MLE of the SF of the component lifetime distribution FX2 based on T2

from Eq. (2.8) (denoted as ˆ̄FX2), the average of ˆ̄FX1 and ˆ̄FX2, and
the nonparametric MLE of the component lifetime distribution based
on the pooled data (T1, T2) under H0 : FX1 = FX2 by maximizing Eq. (2.9) 35

2.2 PDFs of the distributions considered in the Monte Carlo simulation stud-
ies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Simulated power curves of the parametric and nonparametric test for
ln θ1 = 0 and ln θ2 = −1.6 (0.1) 1.6 with M1 = M2 for exponential
components from systems s1 = (0, 0, 0, 1) and s2 = (1, 0, 0) (i.e., [D1]
with system structures [S1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Simulated power curves of the parametric and nonparametric test for γ1 =
1 and γ2 = 0.5 (0.1) 1.5, λ1 = λ2 = 1 with M1 = M2 for Weibull
components from systems s1 = (0, 0, 0, 1) and s2 = (1, 0, 0) (i.e., [D2]
with system structures [S1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Simulated power curves of the parametric and nonparametric test for
µ1 = µ2 = 0, σ1 = 2 and σ2 = 1 (0.1) 3 with M1 = M2 for lognor-
mal components from systems s1 = (0, 0, 0, 1) and s2 = (1, 0, 0) (i.e.,
[D3] with system structures [S1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Simulated power curves of the parametric and nonparametric test for
λ1 = 2.5 and λ2 = 1.5 (0.1) 3.5, γ1 = γ2 = 5 with M1 = M2 for
Weibull components from systems s1 = (0, 0, 0, 1) and s2 = (1, 0, 0)
(i.e., [D4] with system structures [S1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

x



2.7 Simulated power curves of the parametric and nonparametric test for
λ1 = 2.5 and λ2 = 1.5 (0.1) 3.5, γ1 = γ2 = 5 with M1 = M2 for Weibull
components from systems s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0)
(i.e., [D4] with system structures [S2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Simulated power curves of the parametric and nonparametric test for
λ1 = 2.5 and λ2 = 1.5 (0.1) 3.5, γ1 = γ2 = 5 with M1 = M2 for Weibull
components from systems s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4)
(i.e., [D4] with system structures [S3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.9 Differences between the simulated power values of the test procedures
based on U statistic and ZK , and the test procedures based on U
statistic and ZA for Weibull distribution with M1 = M2 = 30. . . . . . . . . . . . . . . 50

2.10 Differences between the simulated power values of the test procedures
based on U statistic and ZK , and the test procedures based on U
statistic and ZA for µ1 = µ2 = 0, σ1 = 2 and σ2 = 1 (0.1) 3 with
M1 = M2 for lognormal distributed components from systems s1 =
(0, 0, 0, 1) and s2 = (1, 0, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 The 10 distinct possible permutations of the censored samples based on
the data presented in Table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 The Type-II censored system lifetime data presented in Table 3.1 and the
three distinct possible permutations of the censored samples under
the assumption that all the unobserved failure times from System i
(i = 1, 2) are close to each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Kaplan-Meier survival functions for System 1 and System 2 with the data
presented in Table 3.6 when censoring proportions are ρ1 = ρ2 = 0.5. . . . . 71

3.4 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0)), sample sizes M1 = M2 = 20, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions are Exp(1) and Exp(θ2), where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1]
with system structures [S1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 20, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions are Gamma(5, 2) for System 1 and Gamma(α2, 2) for System 2,
where α2=3 (0.2) 7 (i.e., [D2] with system structures [S1]). . . . . . . . . . . . . . . . 78

xi



3.6 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 20, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions are Gamma(5, 2) for System 1 and Gamma(5, β2) for System 2,
where β2 = 1 (0.1) 3 (i.e., [D3] with system structures [S1]). . . . . . . . . . . . . . . 79

3.7 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 20, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions are Weibull(2.5, 5) for System 1 and Weibull(λ2, 5) for System
2, where λ2 = 1.5 (0.1) 3.5 (i.e., [D4] with system structures [S1]). . . . . . . . . 80

3.8 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 20, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distri-
butions are Lognormal(0, 1) for System 1 and Lognormal(µ2, 1) for
System 2, where µ2 = −1.6 (0.1) 1.6 (i.e., [D5] with system structures
[S1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.9 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 20, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions distributions are Exp(1) for System 1 and Exp(θ2) for System 2,
where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1] with system structures [S2]). . . . . . . . 82

3.10 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 20, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distri-
butions Gamma(5, 2) for System 1 and Gamma(α2, 2) for System 2,
where α2 = 3 (0.2) 7 (i.e., [D2] with system structures [S2]). . . . . . . . . . . . . . . 83

3.11 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 20, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distri-
butions Gamma(5, 2) for System 1 and Gamma(5, β2) for System 2
where β2 = 1 (0.1) 3 (i.e., [D3] with system structures [S2]). . . . . . . . . . . . . . . 84

xii



3.12 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 20, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distri-
butions Weibull(2.5, 5) for System 1 and Weibull(λ2, 5) for System 2,
where λ2 = 1.5 (0.1) 3.5 (i.e., [D4] with system structures [S2]). . . . . . . . . . . 85

3.13 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 20, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions Lognormal(0, 1) for System 1 and Lognormal(µ2, 1) for System
2, where µ2=-1.6 (0.1) 1.6 (i.e., [D5] with system structures [S2]). . . . . . . . . 86

A.1 Simulated power curves of the parametric and nonparametric test for
α1 = 5 and α2 = 3 (0.2) 7, β1 = β2 = 2 with M1 = M2 for gamma
components from systems s1 = (0, 0, 0, 1) and s2 = (1, 0, 0) (i.e., [D5]
with system structures [S1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2 Simulated power curves of the parametric and nonparametric test for
β1 = 2 and β2 = 1 (0.1) 3, α1 = α2 = 5 with M1 = M2 for gamma
components from systems s1 = (0, 0, 0, 1) and s2 = (1, 0, 0) (i.e., [D6]
with system structures [S1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.3 Simulated power curves of the parametric and nonparametric test for
µ1 = 0 and µ2 = −1.6 (0.1) 1.6, σ1 = σ2 = 1 with M1 = M2 for
lognormal components from systems s1 = (0, 0, 0, 1) and s2 = (1, 0, 0)
(i.e., [D7] with system structures [S1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.4 Simulated power curves of the parametric and nonparametric test for
ln θ1 = 0 and ln θ2 = −1.6 (0.1) 1.6 with M1 = M2 for exponential com-
ponents from systems s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0)
(i.e., [D1] with system structures [S2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.5 Simulated power curves of the parametric and nonparametric test for γ1 =
1 and γ2 = 0.5 (0.1) 1.5, λ1 = λ2 = 1 with M1 = M2 for Weibull compo-
nents from systems s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0) (i.e.,
[D2] with system structures [S2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.6 Simulated power curves of the parametric and nonparametric test for
µ1 = µ2 = 0, σ1 = 2 and σ2 = 1 (0.1) 3 with M1 = M2 for lognormal
components from systems s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0)
(i.e., [D3] with system structures [S2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiii



A.7 Simulated power curves of the parametric and nonparametric test for
α1 = 5 and α2 = 3 (0.2) 7, β1 = β2 = 2 with M1 = M2 for gamma com-
ponents from systems s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0)
(i.e., [D5] with system structures [S2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.8 Simulated power curves of the parametric and nonparametric test for
α1 = α2 = 5, β1 = 2 and β2 = 1 (0.1) 3 with M1 = M2 for gamma com-
ponents from systems s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0)
(i.e., [D6] with system structures [S2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.9 Simulated power curves of the parametric and nonparametric test for
µ1 = 0 and µ2 = −1.6 (0.1) 1.6, σ1 = σ2 = 1 with M1 = M2 for
lognormal components from systems s1 = (0, 2/3, 1/3) and s2 =
(1/4, 1/4, 1/2, 0) (i.e., [D7] with system structures [S2]). . . . . . . . . . . . . . . . . . . 107

A.10 Simulated power curves of the parametric and nonparametric test for
ln θ1 = 0 and ln θ2 = −1.6 (0.1) 1.6 with M1 = M2 for exponential com-
ponents from systems s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4)
(i.e., [D1] with system structures [S3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.11 Simulated power curves of the parametric and nonparametric test for γ1 =
1 and γ2 = 0.5 (0.1) 1.5, λ1 = λ2 = 1 with M1 = M2 for Weibull compo-
nents from systems s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4) (i.e.,
[D2] with system structures [S3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.12 Simulated power curves of the parametric and nonparametric test for
µ1 = µ2 = 0, σ1 = 2 and σ2 = 1 (0.1) 3 with M1 = M2 for lognormal
components from systems s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4)
(i.e., [D3] with system structures [S3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.13 Simulated power curves of the parametric and nonparametric test for
α1 = 5 and α2 = 3 (0.2) 7, β1 = β2 = 2 with M1 = M2 for gamma com-
ponents from systems s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4)
(i.e., [D5] with system structures [S3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.14 Simulated power curves of the parametric and nonparametric test for
α1 = α2 = 5 and β1 = 2, β2 = 1 (0.1) 3 with M1 = M2 for gamma com-
ponents from systems s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4)
(i.e., [D6] with system structures [S3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.15 Simulated power curves of the parametric and nonparametric test for
µ1 = 0 and µ2 = −1.6 (0.1) 1.6, σ1 = σ2 = 1 with M1 = M2 for
lognormal components from systems s1 = (0, 2/3, 1/3) and s2 =
(0, 1/2, 1/4, 1/4) (i.e., [D7] with system structures [S3]). . . . . . . . . . . . . . . . . . . 113

xiv



B.1 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 10, censoring propor-
tions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying component
lifetime distributions are Exp(1) for System 1 and Exp(θ2) for System
2, where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1] with system structures [S1]). . . . . 115

B.2 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 10, censoring propor-
tions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying component
lifetime distributions are Gamma(5, 2) for System 1 and Gamma(α2, 2)
for System 2, where α2 = 3 (0.2) 7 (i.e., [D2] with system structures [S1]). 116

B.3 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 10, censoring propor-
tions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying component
lifetime distributions are Gamma(5, 2) for System 1 and Gamma(5, β2)
for System 2, where β2 = 1 (0.1) 3 (i.e., [D3] with system structures [S1]). 117

B.4 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 10, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions are Weibull(2.5, 5) for System 1 and Weibull(λ2, 5) for System
2, where λ2 = 1.5 (0.1) 3.5 (i.e., [D4] with system structures [S1]). . . . . . . . . 118

B.5 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 10, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distri-
butions are Lognormal(0, 1) for System 1 and Lognormal(µ2, 1) for
System 2, where µ2 = −1.6 (0.1) 1.6 (i.e., [D5] with system structures
[S1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.6 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 30, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions distributions are Exp(1) for System 1 and Exp(θ2) for System 2,
where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1] with system structures [S1]). . . . . . . . 120

xv



B.7 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 30, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions distributions are Gamma(5, 2) for System 1 and Gamma(α2, 2)
for System 2, where α2 = 3 (0.2) 7 (i.e., [D2] with system structures [S1]). 121

B.8 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 30, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions distributions are Gamma(5, 2) for System 1 and Gamma(5, β2)
for System 2, where β2 = 1 (0.1) 3 (i.e., [D3] with system structures [S1]). 122

B.9 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 30, censoring propor-
tions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distributions
distributions are Weibull(2.5, 5) for System 1 and Weibull(λ2, 5) for
System 2, where λ2 = 1.5 (0.1) 3.5 (i.e., [D4] with system structures [S1]). 123

B.10 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0), sample sizes M1 = M2 = 30, censoring propor-
tions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distributions
distributions are Lognormal(0, 1) for System 1 and Lognormal(µ2, 1)
for System 2, where µ2 = −1.6 (0.1) 1.6 (i.e., [D5] with system struc-
tures [S1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.11 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 10, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions distributions are Exp(1) for System 1 and Exp(θ2) for System 2,
where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1] with system structures [S2]). . . . . . . . 125

B.12 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 10, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distri-
butions Gamma(5, 2) for System 1 and Gamma(α2, 2) for System 2,
where α2 = 3 (0.2) 7 (i.e., [D2] with system structures [S2]). . . . . . . . . . . . . . . 126

xvi



B.13 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 10, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distri-
butions Gamma(5, 2) for System 1 and Gamma(5, β2) for System 2
where β2 = 1 (0.1) 3 (i.e., [D3] with system structures [S2]). . . . . . . . . . . . . . . 127

B.14 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 10, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distri-
butions Weibull(2.5, 5) for System 1 and Weibull(λ2, 5) for System 2,
where λ2 = 1.5 (0.1) 3.5 (i.e., [D4] with system structures [S2]). . . . . . . . . . . 128

B.15 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 10, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions Lognormal(0, 1) for System 1 and Lognormal(µ2, 1) for System
2, where µ2= −1.6 (0.1) 1.6 (i.e., [D5] with system structures [S2]). . . . . . . . 129

B.16 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 30, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distribu-
tions distributions are Exp(1) for System 1 and Exp(θ2) for System 2,
where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1] with system structures [S2]). . . . . . . . 130

B.17 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 30, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distri-
butions Gamma(5, 2) for System 1 and Gamma(α2, 2) for System 2,
where α2 = 3 (0.2) 7. (i.e., [D2] with system structures [S2]). . . . . . . . . . . . . . 131

B.18 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 30, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distri-
butions Gamma(5, 2) for System 1 and Gamma(5, β2) for System 2
where β2 = 1 (0.1) 3 (i.e., [D3] with system structures [S2]). . . . . . . . . . . . . . . 132

xvii



B.19 Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and
s2 = (0, 1/2, 1/4, 1/4), sample sizes M1 = M2 = 30, censoring pro-
portions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the underlying distri-
butions Weibull(2.5, 5) for System 1 and Weibull(λ2, 5) for System 2
where λ2 = 1.5 (0.1) 3.5 (i.e., [D3] with system structures [S2]). . . . . . . . . . . 133

xviii



LIST OF TABLES

Table Page

1.1 Six possible orderings of the three component lifetimes in a 3-component
series-parallel system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Simulated 90-th, 95-th, and 99-th percentage points of the null distribu-
tions of ZK and ZA with s1 = (0, 0, 0, 1) (i.e., n1 = 4) and s2 = (1, 0, 0)
(i.e., n2 = 3) for different sample sizes of M1 = M2. . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Simulated 0.5-th, 2.5-th, 5-th, 95-th, and 99-th percentage points of the null
distributions of U with s1 = (0, 0, 0, 1) (i.e., n1 = 4) and s2 = (1, 0, 0)
(i.e., n2 = 3) for different sample sizes M1 = M2 . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Simulated lifetime data from System 1 and System 2 with M1 = M2 = 20 . . . . . 34

2.4 Simulated rejection rates of the asymptotic parametric test under the ex-
ponentially distributed component lifetimes assumption when the null
hypothesis is true at 5% significant level for different underlying com-
ponent lifetime distributions and different sample sizes. . . . . . . . . . . . . . . . . . . 37

3.1 Simulated lifetime data for systems with signatures s1 = (0, 2/3, 1/3) and
s2 = (1/4, 1/4, 1/2, 0) with sample sizes M1 = M2 = 10 and number
of observed failures r1 = r2 = 8 (+ indicates right-censoring). . . . . . . . . . . . . 58

3.2 Simulated percentage of equality of the maximum and minimum of the
test statistics based on two permutation methods for different sys-
tems with sample sizes M1 = M2 = 10 and r1 = r2 = 8 based on
10, 000 simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Number of permutations required for conducting all permutations (Nc)
and restricted permutations (Nr) with censored sample sizes ci (i =
1, 2) and number of observed system failures L between the last ob-
served failures for two systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xix



3.4 Simulated critical values and the related randomization probabilities for
the test procedures based on test statistics ZK,min, ZK,max, ZK,mean,
ZA,min, ZA,max, and ZA,mean with system signatures s1 = (0, 2/3, 1/3)
(i.e., n1 = 3) and s2 = (1/4, 1/4, 1/2, 0) (i.e., n2 = 4), sample sizes
M1 = M2 = 10, and censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4. 68

3.5 Simulated upper and lower critical values and the related randomization
probabilities for the test procedures based on test statistics Umax,
Umin, and Umean with system signatures s1 = (0, 2/3, 1/3) (i.e., n1 = 3)
and s2 = (1/4, 1/4, 1/2, 0) (i.e., n2 = 4), sample sizes M1 = M2 = 10
and censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4. . . . . . . . . . . . . . . . 69

3.6 Simulated lifetime data from System 1 and System 2 with M1 = M2 = 20 . . . . . 71

3.7 The proposed test statistics for Type-II censored data obtained from the
data set in Table 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 Simulated critical values for the test statistics with sample size M1 =
M2 = 20, r1 = M1(1−ρ1), r2 = M2(1−ρ2), n1 = 8, s1 = (0, 1/4, 11/28, 2/7, 1/14, 0, 0, 0),
n2 = 4, s2 = (1/4, 1/4, 1/2, 0), and significance level α = 5%. . . . . . . . . . . . . . 73

3.9 Total computation time (in minutes) for the test statistics based on ZK ,
ZA, and U for 5000 simulations for different settings . . . . . . . . . . . . . . . . . . . . . . 76

xx



I dedicate this dissertation to my family.



CHAPTER 1

Introduction

1.1. Problem of interest

In evaluating the reliability of systems, life-testing experiments are usually conducted

to gather information on the lifetime characteristics of the system of interest. In addition

to assessing the reliability of systems, in many circumstances, practitioners may also be

interested in evaluating and comparing the lifetime characteristics of the components that

made up those systems. For example, when there are multiple suppliers of the compo-

nents in a system, the manufacturer of the system is interested in comparing the lifetime

performance of components from different suppliers and select the one with the best reli-

ability characteristics.

Comparing the lifetime characteristics of the components that made up the systems

becomes challenging when the system structures are different, especially when the com-

parisons can only be made based on system lifetime data. There are many situations

where the comparison of component lifetime characteristics can only be made based on

system lifetime data, such as when the performance of components varies in different sys-

tems. For example, the lifetimes of single-cell cylindrical dry batteries can be very different

when used in high-drain devices (e.g., digital cameras, radio-controlled toys, etc.) com-

pared to using in low-drain devices (e.g., clocks, remote controls). Suppose one wants

to compare the lifetime characteristics of single-cell cylindrical dry batteries when they

are used in high-drain devices and low-drain devices. In this case, the life testing exper-
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iments can be done when the batteries are used in the devices (systems) and based on

the system lifetimes. Another example is that if the life test involves fielded systems, the

information on which component leads to the system failure cannot usually be accessed

because the experimenters often do not have the need or capability to measure the failed

component one by one or the whole system may be discarded after failure. Therefore,

the development of statistical inference for the lifetime distribution of components based

on system-level lifetime data is of interest.

In the past decades, numerous research papers have been published in developing

statistical inference of the component lifetime characteristics based on system lifetime

data. For example, early literature involving this topic is based on “masked data," which

assumes that only partial information is available on the component failures that lead to

the failure of the system. Under this framework, Meilijson (1981) and Bueno (1988) es-

timated the component lifetime distribution based on system failure times together with

autopsy information on the components in the system. Miyakawa (1984) discussed para-

metric and nonparametric estimation methods for component reliability in two-component

series system under competing risks with incomplete data. Boyles and Samaniego (1987)

derived the nonparametric maximum likelihood estimator of component reliability based

on nomination sampling in parallel systems. Usher and Hodgson (1988) explored a gen-

eral method for estimating component reliability from a J-component series system life-

time data. Guess et al. (1991) extended Miyakawa’s work and treated a broader class

of estimation problems based on masked data. More recent work includes the paper by

Bhattacharya and Samaniego (2010) in which the authors estimated component reliability

from system failure data using the known system signature. Given the coherent systems

with known system structures described by system signature, statistical inferences are

developed for component lifetime distributions based on complete or censored system

lifetime data. Eryilmaz et al. (2011) discussed reliability properties of m-consecutive-k-

out-of-n systems with exchangeable components. Balakrishnan et al. (2011a,b) devel-

oped the exact nonparametric method to measure some characteristics of the component
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lifetime distribution based on complete and censored system lifetime data, respectively.

A general method was derived by Navarro et al. (2012) for inference on the scale pa-

rameter of the component lifetime distribution from system lifetime data. Ng et al. (2012)

discussed parametric statistical inference for the component lifetime distributions from the

system lifetimes when the component lifetimes follow a proportional hazard rate model.

While most previous works dealt with system lifetimes from systems with the same system

signature, recently Hall et al. (2015) developed a novel nonparametric estimator of com-

ponent reliability function by maximizing the combined system likelihood function when

the systems have different known system signatures. Then, Jin et al. (2017) extended the

work to the situation that the system signatures are unknown.

In this dissertation, we study the problem of testing the homogeneity of component life-

time distributions based on system-level lifetime data from multiple data sources. Based

on the empirical likelihood method, we develop distribution-free statistical inferential method

for complete data and then generalize the inferential method for Type-II censored data.

The proposed test procedures are compared to those existing parametric and nonpara-

metric tests for homogeneity of component lifetime distributions based on complete and

Type-II censored system-level lifetime data.

1.2. Coherent System and System Signature

In reliability theory, an n-component system is said to be coherent if each component

is relevant and its structure function is non-decreasing in each vector argument. In this

dissertation, we assume that the systems are coherent and contain n independent and

identically distributed (i.i.d.) components. For the structure of system, we consider the

system signature proposed by Samaniego (1985) as an index that characterizes a system

under the assumption of i.i.d. components. The system signature characterizes a system

without using a complex structure function.
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Suppose T is the system lifetime and Xℓ:n is the ℓ-th order statistic out of n component

lifetimes in an n-component system. The system signature of an n-component system is

an n-dimensional probability vector defined as s = (s1, s2, · · · , sn), where

sℓ = Pr(system fails upon the failure of the ℓ-th component)) = Pr(T = Xℓ:n) (1.1)

where sℓ, ℓ = 1, 2, . . . , n are non-negative real numbers in [0, 1] that do not depend on the

component lifetime distribution FX with
∑n

ℓ=1 sℓ = 1.

System signatures can be calculated using a combinatorial method which is a well-

organized method. Suppose the random variables X1, X2, · · · , Xn represent the failure

times of the n components in a system. Since the n components are i.i.d., the per-

mutations of these n failure times are equally likely. The i-th element of signature s,

si = Pr(T = Xi:n), can be obtained as the ratio of the number of orderings for which the

i-th component failure caused the system failure, to the total possible orderings of the

n component lifetimes n!. For example, consider a 3-component series-parallel system

presented in Figure 1.1. There are six possible orderings of the three component life-

times (see Table 1.1). In the first two cases, the system lifetime T = X1:3, which gives

s1 = Pr(T = X1:3) = 2/6. In the last four cases, the system lifetime T = X2:3, hence,

s2 = Pr(T = X2:3) = 4/6, and then we have s3 = Pr(T = X3:3) = 0. Therefore, the

signature for the 3-component series-parallel system is (2/6, 4/6, 0) = (1/3, 2/3, 0).

X1

X3

X2

Figure 1.1: A 3-component parallel-series system
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Table 1.1: Six possible orderings of the three component lifetimes in a 3-component
series-parallel system

Orderings System Lifetime T

X1 ≤ X2 ≤ X3 X1:3

X1 ≤ X3 ≤ X2 X1:3

X2 ≤ X1 ≤ X3 X2:3

X2 ≤ X3 ≤ X1 X2:3

X3 ≤ X1 ≤ X2 X2:3

X3 ≤ X2 ≤ X1 X2:3

Another example is the 3-component series system presented in Figure 1.2. Since

the series system fails when the first component failure occurs, the lifetime of the system

T = min{X1, X2, X3} = X1:3 and the signature is s = (1, 0, 0). In practice, many real n

component systems contain n i.i.d. components that can be described by system signa-

ture. For example, Bhattacharya and Samaniego (2010) pointed out that the batteries in a

lighting device, chips or wafers in a digital computer, heating elements in a broiler, and the

subsystem of spark plugs are some practical systems that contain n i.i.d. components.

Hence, the methodology developed in this thesis can be used in many cases.

X1 X2 X3

Figure 1.2: A 3-component series system

We denote the cumulative distribution function (CDF), survival function (SF), and prob-

ability density function (PDF) of the lifetimes of System i (i.e., Tij) by FTi
, F Ti

, and fTi
, for

i = 1, 2, and the CDF, SF, and PDF of the lifetimes of the components in System i (i.e.,

Xijk) by FXi
, FXi

, and fXi
, for i = 1, 2. Based on the notion of system signature, the SF

of the system lifetime T can be written in terms of the SF of the component lifetime X as
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Kochar et al. (1999); Samaniego (2007)

F T (t) =
n∑

ℓ=1

sℓ

ℓ−1∑
k=0

(
n

k

)
[1− FX(t)]

k[FX(t)]
n−k

∆
= h(p(t)), (1.2)

where p(t) = FX(t) and h(p(t)) is a polynomial function in terms of component SF p(t).

We further denote the inverse function of h as

h−1(q(t)) = p(t),

where q(t) = F T (t). Navarro et al. (2011) stated that the polynomial h(p) is strictly in-

creasing for p ∈ (0, 1), with h(0) = 0 and h(1) = 1, hence, its inverse function h−1 in (0, 1)

exists and is also strictly increasing in (0, 1) with h−1(0) = 0 and h−1(1) = 1. The reliability

polynomial h(p) works as a bridge between system and component survival functions,

which means that given the system SF or the component SF, the other SF can be ob-

tained from solving Eq. (1.2) when the system structure is known. Take the 3-component

series system in Figure 1.2 as an example. Suppose the three components are i.i.d. with

SF p(t), then from Eq. (1.2), the reliability function of a 3-component series system is

h(p) = p3. If the component in this 3-component series system follow Exp(1) i.i.d., then

the SF of this system is h(p) = p3 = (exp(−t))3 = exp(−3t).

Moreover, the PDF of the system lifetime Tj can be expressed in terms of fXi
(t) and

pi(t) = FXi
(t) as

fTi
(t) =

ni∑
k=1

sik

(
ni

k

)
kfXi

(t)[1− pi(t)]
k−1[pi(t)]

ni−k. (1.3)
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1.3. Censoring in Life Testing Experiments

In survival and reliability analysis, censoring occurs when incomplete information is

available about the lifetime of some experimental units. It usually arises when the exper-

imental units are not observed for the full duration of time to failure. The possible reason

for censoring data may be a loss, early termination, death, or other causes. Censoring

can be pre-planned to save time and the cost of the life-testing experiment.

There are different types of censored data in survival and reliability analysis, such as

left-censored, right-censored, and interval-censored data. For right-censored data, there

are various censoring schemes have been proposed for different purposes. Among these

censoring schemes, Type-I and Type-II censorings are two commonly used censoring

schemes in life testing procedures.

For Type-I censoring, the life-testing experiment will be terminated at a prefixed time

c. Then, only the failures until time c will be observed, and the units that are not failed

at time c are right-censored. The data obtained from such a restrained life test will be

referred to as a Type-I censored sample. Note that the number of failures observed here

is random and has a binomial distribution with parameters M and probability of “success"

F (c), where M is the number of experimental units placed on the life-testing experiment

and F (·) is the CDF of the experimental units.

For Type-II censoring, the life-testing experiment with M experimental units will be

terminated as soon as the r-th failure is observed, where r < M is a prefixed number.

Then, only the first r failures out of M units under test will be observed. The data obtained

from such a restrained life test will be referred to as a Type-II censored sample. In contrast

to Type-I censoring, the number of failures observed is fixed (i.e., r) while the duration of

the experiment is a random variable (Xr:M ).
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1.4. Parametric Lifetime Distributions and Likelihood Inference

1.4.1. Some useful lifetime distributions

In this section, we review several commonly used lifetime distributions which will be

used to evaluate the performance of test statistics in this thesis.

1. Exponential distribution (Exp(θ))

The PDF and SF of exponential distribution with scale parameter θ > 0, denoted as

Exp(θ), are

f(t; θ) =
1

θ
e−

t
θ , for t ≥ 0;

F (t; θ) = e−
t
θ , for t ≥ 0,

respectively. The mean and variance of a random variable follows Exp(θ) are θ and

θ2, respectively.

2. Gamma distribution (Gamma(α, β))

The PDF of gamma distribution with shape parameter α > 0 and rate parameter

β > 0, denoted as Gamma(α, β), is

f(t;α, β) =
βα

Γ(α)
tα−1e−βt, for t ≥ 0.

When α = 1, the gamma distribution becomes Exp(1/β). The mean and variance

of a random variable follows Gamma(α, β) are α/β and α/β2, respectively.

3. Weibull distribution (Weibull(λ, k))

The PDF of Weibull distribution with scale parameter λ > 0 and shape parameter
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k > 0, denoted as Weibull(λ, k), is

f(t;λ, k) =
k

λ

(
t

λ

)k−1

exp

[
]−
(
t

λ

)k
]
, for t > 0. (1.4)

The mean and variance of a random variable follows Weibull(λ, k) are λΓ(1 + 1/k)

and λ2[Γ(1 + 2/k)− Γ(1 + 1/k)2], respectively, where Γ(k) =
∫∞
0

xk exp(−x)dx is the

gamma function.

4. Lognormal distribution (Lognormal(µ, σ))

The PDF of lognormal distribution with scale parameter exp(µ) > 0 and shape pa-

rameter σ > 0, denoted as Lognormal(µ, σ2), is

f(t;µ, σ) =
1

tσ
√
2π

exp

[
−(log t− µ)2

2σ2

]
, for t > 0.

The mean and variance of a random variable follows Lognormal(µ, σ) are exp(µ+ σ2

2
)

and [exp(σ2)− 1] exp(2µ+ σ2), respectively.

1.4.2. Maximum likelihood estimation

In statistics, maximum likelihood estimation method is a commonly used estimation

method for the parameters in a probability model given the observed data. The likelihood

function is the function of the model parameters based on the observed data. Suppose

T = (T1, · · · , TM) is a random sample of size M and Tj follows a probability distribution

with PDF f(t;θ) and CDF F (t;θ), where θ is the parameter vector, then the likelihood

function based on T can be expressed as

L(θ|T ) =
M∏
j=1

Lj(θ|Tj),

9



where Lj(θ|Tj) is the contribution of the j-th observation to the total likelihood. For com-

pletely observed failure times, the contribution of the j-th observation to the likelihood is

Lj(θ|Tj) = f(Tj;θ). For right-censored observations, the contribution of the j-th censored

observation to the likelihood is

Lj(θ|Tj) =

∫ ∞

Tj

f(t;θ)dt = 1− F (Tj;θ).

Suppose we have a data set T = ((T1, δ1), · · · (TM , δM)), where Tj is the observed time

and δj is the indicator of censoring defined in the following:

δj =


0, if Tj is the censoring time;

1, if Tj is the failure time.

The likelihood function for the whole data set is

L(θ|T ) =
M∏
j=1

(f(Tj;θ))
δj(1− F (Tj;θ))

1−δj . (1.5)

The maximum likelihood estimate (MLE) of the parameter vector θ can be obtained by

maximizing the likelihood function L(θ|T ) with respect to θ. The logic of maximum likeli-

hood is both intuitive and flexible, and as such the method has become a very important

means of statistical inference.

In some cases, the MLEs of the model parameters can be obtained in a closed form.

For example, the distribution of Tj is assumed to be Exp(θ). Based on the sample T =

((T1, δ1), · · · (TM , δM)), the likelihood function in Eq. (1.5) can be expressed as
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L(θ|T ) =
M∏
j=1

[f(Tj; θ)]
δj [1− F (Tj; θ)]

1−δj

=
M∏
j=1

[
1

θ
exp

(
−Tj

θ

)]δj [
exp

(
−Tj

θ

)]1−δj

.

Maximizing the above likelihood function with respect to θ, the MLE of θ based on

right-censored data is

θ̂ =
M∑
j=1

Tj

/ M∑
j=1

δj.

For complete data without any censoring, we have
M∑
j=1

δj = M , which yields θ̂ =
1

M

M∑
j=1

Tj.

However, for distributions with more than one parameter (e.g., Gamma and Weibull dis-

tributions) or more complicated probability models, no closed-form solutions exist for the

MLEs, therefore numerical methods are required to maximize the likelihood function in

terms of parameter θ.

1.4.3. Parametric likelihood ratio test

The likelihood ratio test (also known as the Wilks test), which dates back to Wilks

(1938), is one of the classical approaches for hypothesis testing. The likelihood ratio test

assesses the goodness of fit of two competing statistical models by the ratio of their like-

lihood functions. The two likelihood functions are found by maximizing over the entire

parameter space and maximizing over a restricted parameter space under some con-

straints. If the observed data support the constraints under the null hypothesis, then the

two likelihood functions should not differ much. Therefore, the likelihood ratio test evalu-

ates if these two models are significantly different from each other in the test procedure.
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Suppose we are interested in testing the hypotheses

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ \Θ0,

where θ is the parameter of interest, Θ0 is the restricted parameter space under the null

hypothesis, and Θ is the parameter space of the probability model.

Suppose the observed data is T , the parametric likelihood ratio statistic is defined as

λLR = −2 ln

[
sup

H0:θ∈Θ0
L(θ|T )

sup
H1:θ∈Θ L(θ|T )

]
.

By the Wilk’s theorem (Wilks, 1938), the asymptotic null distribution of the likelihood ratio

statistic λLR follow chi-square distribution with degrees of freedom ν, where ν is the differ-

ence in dimensionality of θ ∈ Θ0 and θ ∈ Θ. The p-value of the parametric likelihood ratio

test based on test statistic λLR can be calculated as Pr(χ2
ν > λLR) where χ2

ν is a random

variable follows the chi-square distribution with degrees of freedom ν. When the sample

size is small, the distribution of the likelihood ratio test statistic may not follow the asymp-

totic results, the Monte Carlo resampling simulation approach may be used to calculate

the p-value.

1.5. Empirical Likelihood Method

The empirical likelihood method is a nonparametric method for statistical inference

which shares many of the merits of the parametric likelihood method.

1.5.1. Empirical Likelihood
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Thomas and Grunkemeier (1975) proposed the idea of empirical likelihood by invert-

ing a nonparametric version of the likelihood ratio test to obtain confidence intervals.

Efron (1981) showed that nonparametric statistical inference can be conducted by ap-

plying parametric techniques to suitable distributions supported on the data. Based on

these ideas, Owen (1990, 1988) formally introduced the empirical likelihood to construct

confidence regions in for nonparametric inference and mentioned that the empirical like-

lihood method has several advantages over the other nonparametric methods such as

rank-based methods and bootstrap method.

After the empirical likelihood method was introduced, DiCiccio et al. (1991) obtained

some significant results on high-order asymptotics including the Bartlett correctability.

Then, Qin (1993) deals with a creative problem formulation in mixing empirical likeli-

hood and parametric likelihood and combining multiple biased samples. Qin and Law-

less (1994) established the link between estimating functions/equations and empirical

likelihood and developed methods of combining information about parameters. Mykland

(1995) applied the empirical likelihood method to improve the accuracy in inference with

a martingale setting. For interval estimation, Chen and Hall (1993) proposed smoothed

empirical likelihood confidence intervals for quantiles, and Chen and Qin (2000) devel-

oped the empirical likelihood confidence intervals for local linear smoothers. Chen (1996)

discussed several applications of empirical likelihood in nonparametric density estimation

and regression function estimation. Empirical likelihood approaches for censored and

truncated data were developed by Li (1995a,b) and Murphy and van der Vaart (1997);

Murphy and Van Der Vaart (1999); Murphy and Van der Vaart (2000). Kitamura (1997)

studied the large deviations properties of empirical likelihood and investigated the connec-

tions between empirical likelihood and modern econometrics. Jing et al. (2009) developed

the Jackknife empirical likelihood method. The idea of empirical likelihood has been ap-

plied to different areas of statistics such as time series analysis (Nordman and Lahiri,

2014), survival analysis (Zhou, 2019), longitudinal data analysis (Nadarajah et al., 2014),

and regression analysis (Chen and Keilegom, 2009). For comprehensive reviews on the
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theory and applications of the empirical likelihood method, one may refer to the books

written by Owen (2001) and Zhou (2019).

For the methods proposed in this thesis, we introduce the following results in the em-

pirical likelihood approach. Suppose X1, X2, · · · , Xn is a random sample of size n from

a population distribution with CDF F , which is assumed to be unknown. The empirical

likelihood function based on the random sample X1, X2, · · · , Xn is defined as

EL(F ) =
n∏

j=1

PF (X = Xj) =
n∏

i=1

pj (1.6)

where pj = PF (X = Xj) = F (Xj)− F (Xj−).

The following theorem shows that nonparametric likelihood is maximized by the em-

pirical likelihood function. Thus, the value that maximizes the empirical likelihood function

denoted as the empirical CDF (ECDF), is the nonparametric maximum likelihood estimate

(NPMLE) of the CDF F .

Theorem 1 (Owen (2001)): Let X1, · · · , Xn ∈ R be a random sample with a common CDF

F . Let Fn be their ECDF, and F0 be any CDF. If F0 ̸= Fn, then the likelihood function

EL(F0) < EL(Fn).

We now define empirical SF given data X1, · · · , Xn as following

ˆ̄Fn(Xj) =
n∑

j=1

I(x,∞)(Xj), (1.7)

where

IA(b) =


1, if b ∈ A,

0, otherwise.
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The empirical SF ˆ̄Fn defined in Eq. (1.7) maximizes the empirical likelihood function. The

empirical SF in Eq. (1.7) is equivalent to the Kaplan–Meier estimator (Kaplan and Meier,

1958) which is a non-parametric estimator for the survival function based on lifetime data.

The Kaplan–Meier estimator of the SF F̄ (t) is given by:

F̄ (t) =
∏

j: xj≤t

(
1− dj

nj

)
,

where xj is a time when at least one event happened, dj is the number of events (e.g.,

failure) that happened at time xj, and nj is the number of individuals known to have

survived (have not yet had an event or been censored) up to time xj (i.e., the number of

observations at risk at time xj). The Kaplan–Meier curve can provide a nonparametric

estimate of the SF by taking right-censoring into account.

1.5.2. Empirical Likelihood Ratio

In Section 1.4.3, we discussed the parametric likelihood ratio test for hypothesis test-

ing. If the likelihood under the null hypothesis is much smaller than the likelihood under

the alternative hypothesis, then there is enough evidence to reject the null hypothesis. A

similar idea can be applied in nonparametric inference in which the ratio of the nonpara-

metric maximum likelihood values can be used as a basis for hypothesis testing. The

empirical likelihood ratio is defined as (Owen, 1990)

R(F ) =
EL(F )

EL(F̂n)
,

where F̂n is the ECDF that maximizes the empirical likelihood function EL(F ).

Suppose F belongs to a set of distributions F and we are interested in testing T (F ) = δ

for some function T of the distribution F , then using the empirical likelihood ratio R(F ),

the hypothesis that T (F ) = δ is rejected if δ /∈ {T (F )|R(F ) ≥ r0}, where r0 is a critical
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value. Here, δ /∈ {T (F )|R(F ) ≥ r0} can be interpreted as there is no distribution F under

the hypothesis T (F ) = δ has an empirical likelihood EL(F ) greater than or equal to r0

times the maximum empirical likelhood (i.e., r0EL(Fn)).

It is known that the empirical likelihood ratio behaves like an ordinary parametric like-

lihood ratio (Wilks, 1938), such as the asymptotic chi-square distribution for the empirical

likelihood ratio test statistic. Based on the idea of the empirical likelihood ratio, Zhang

(2002) proposed a new approach of parameterization to construct a general goodness-

of-fit test based on the likelihood ratio. He proposed several test statistics and showed

that these tests are more powerful than the Kolmogorov-Smirnov, the Cramér-von Mises,

and the Anderson-Darling tests. Later on, Zhang (2006) proposed a new non-parametric

statistic for testing the homogeneity of distributions based on empirical likelihood ratio and

showed that the proposed statistic provides better power performance compared to those

traditional tests such as the two-sample Kolmogorov-Sminov test.

1.6. Scope of Thesis

Suppose there are two different coherent systems, System 1 and System 2, with n1

and n2 i.i.d. components and system signatures s1 = (s11, · · · , s1n1) and s2 = (s21, · · · , s2n2),

respectively. The system lifetime data are obtained based on putting M1 System 1 and

M2 System 2 on a life test. We denote the system lifetimes for System i as Ti =

(Ti1, Ti2, . . . , TiMi
), and the lifetimes of the components in the j-th System i (Tij) as Xij =

(Xij1, Xij2, . . . , Xijni
), i = 1, 2, j = 1, 2, . . . ,Mi. The cumulative distribution function (CDF),

survival function (SF), and probability density function (PDF) of the lifetimes of System i

(i.e., Tij) are denoted by FTi
, F Ti

, and fTi
, and the CDF, SF, and PDF of the lifetimes of

the components in System i (i.e., Xijk) are denoted by FXi
, FXi

, and fXi
, for i = 1, 2

respectively.

In this thesis, based on the system lifetime data Ti, i = 1, 2, we are interested in
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testing the homogeneity of the component lifetime distributions, which can be formulated

as a hypothesis testing problem as testing

H0 : FX1(t) = FX2(t), for all t ∈ (0,∞)

versus H1 : FX1(t) ̸= FX2(t), for some t ∈ (0,∞). (1.8)

In Chapter 2, we develop distribution-free testing procedures for the homogeneity of

the component lifetime distributions in Eq. (1.8) based on completed system lifetime data

when the system structures are known. Several non-parametric testing statistics based

on the empirical likelihood method are proposed for testing the homogeneity of two or

more component lifetime distributions. The computational approaches to obtain the criti-

cal values of the proposed test procedures are provided. A Monte Carlo simulation study

is used to evaluate the performances of the proposed empirical likelihood ratio test pro-

cedures and to compare with the non-parametric Mann-Whitney U test, the parametric

likelihood ratio test, and asymptotic tests based on exponentially distributed component

lifetimes. The simulation results show that the proposed test procedures provide compa-

rable power performance under different sample sizes and underlying component lifetime

distributions.

In Chapter 3, we generalize the empirical likelihood methods for testing the homogene-

ity of the component lifetime distributions when the system lifetime data are censored. We

consider the case that the system lifetime data are Type-II censored. We proposed test-

ing procedures to handle the Type-II censored data using the empirical likelihood methods

developed based on complete system lifetime data. The critical values for the test proce-

dures based on the censoring data are obtained by the Monte Carlo method. The power

performances of the proposed empirical likelihood ratio tests are studied and compared
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to different non-parametric and parametric tests by means of Monte Carlo simulation. We

consider different sample sizes, censoring proportions, and underlying component lifetime

distributions in the Monte Carlo simulation study.

Finally, in Chapter 4, we summarize the contributions of the thesis and present some

concluding remarks. Furthermore, we discuss several possible future research directions.
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CHAPTER 2

Empirical Likelihood Ratio Tests for Homogeneity of Component Lifetime Distributions
Based on System Lifetime Data

2.1. Introduction

In this chapter, based on the empirical likelihood ratio, we propose two nonparametric

test procedures for testing the homogeneity of component lifetime distributions given the

system lifetimes and the system signatures.

The rest of this chapter is organized as follows. In Section 2.2, we introduce the math-

ematical notations and formulate the homogeneity test as a statistical hypothesis testing

problem. We also review the existing parametric and nonparametric testing procedures

for the homogeneity of component lifetime distributions based on system-level data. Sec-

tion 2.3 introduces the two proposed test procedures based on the empirical likelihood

ratio. Then, the computational approach to obtain the null distributions of the nonpara-

metric test statistics by means of the Monte Carlo method is described in Section 2.4. In

Section 2.5, A numerical example is used to illustrate the methodologies proposed in this

chapter. Monte Carlo simulation studies are used to evaluate the performances of those

parametric and nonparametric test procedures in Section 2.6. Finally, concluding remarks

are provided in Section 2.7.
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2.2. Tests for Homogeneity Based on System Lifetime Data

In this section, we introduce the mathematical notations and formulate the homogene-

ity test as a statistical hypothesis testing problem. Then, we review some existing para-

metric and nonparametric test procedures.

Suppose there are two different coherent systems, System 1 and System 2, with n1

and n2 i.i.d. components following the same lifetime distribution, respectively. The system

lifetime data are obtained based on putting M1 System 1 and M2 System 2 on a life test.

We denote the system lifetimes for System i as Ti = (Ti1, Ti2, . . . , TiMi
), and the lifetimes

of the components in the j-th System i (Tij) as Xij = (Xij1, Xij2, . . . , Xijni
), i = 1, 2,

j = 1, 2, . . . ,Mi. Suppose system signatures are si = (si1, · · · , sini
) for System i, i = 1, 2.

In addition to the system signatures, Navarro et al. (2007) noted that the SF of the

system lifetime Ti can be expressed in terms of the SF of k-component series system

lifetimes, Xi,1:k = min(Xi1, Xi2, . . . , Xik), k = 1, 2, . . . , ni:

F̄Ti
(t) =

ni∑
k=1

aikF̄Xi,1:k
(t),

where F̄Xi,1:k
(t) is the SF of a k-component series system lifetime, for some non-negative

and negative integers ai1, ai2, . . . , aini
, that do not depend on the component lifetime dis-

tribution with
∑ni

k=1 aik = 1 (see also, Ng et al., 2012). The vector ai = (ai1, ai2, . . . , aini
) is

called the minimal signature of System i.

Based on the system lifetime data Ti, i = 1, 2, given system signatures, we are in-

terested in testing the homogeneity of the component lifetime distributions, which can be

formulated as a hypothesis testing problem as testing
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H0 : FX1(t) = FX2(t), for all t ∈ (0,∞)

versus H1 : FX1(t) ̸= FX2(t), for some t ∈ (0,∞). (2.1)

2.2.1. Parametric Test Procedures

For comparative purposes, we consider here two parametric tests – an asymptotic test

under the assumption of exponentially distributed component lifetimes and a parametric

likelihood ratio test – for testing the hypotheses in Eq. (2.1) based on system lifetime data

Ti, i = 1, 2.

2.2.1.1. Asymptotic Tests Under Exponential Distributed Component Lifetimes Assump-

tion

We consider the asymptotic parametric test developed in Zhang et al. (2015) based on

the assumption that the underlying lifetimes of components follow an exponential distri-

bution. Specifically, we assume that the lifetimes of components from System i (i = 1, 2)

follow an exponential distribution with scale parameter θi > 0 (denoted as Exp(θi)) with

PDF

fXi
(t) =

1

θi
exp

(
− t

θi

)
, for t ≥ 0. (2.2)
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To estimate the scale parameter θi using the system lifetime data Ti, i = 1, 2, we use

the method of moments estimator (MME) (Ng et al., 2012) defined as

θ̃i =

∑Mi

j=1 Tij

Mi∆i

,

where Tij is the j-th system lifetime of System i and ∆i =
∑ni

k=1(aik/k). The MME esti-

mator θ̃i is an unbiased estimator and the variance of θ̃i is

V ar(θ̃i) =
θ2i
Mi

(
2∆

(2)
i

∆i

−∆i

)
,

where ∆
(2)
i =

∑ni

k=1(aik/k
2).

Under the assumption of exponentially distributed component lifetime, testing the hy-

potheses of homogeneity in Eq. (2.1) is equivalent to testing

H∗
0 : θ1/θ2 = 1 versus H∗

1 : θ1/θ2 ̸= 1. (2.3)

We consider the test statistic based on the logarithm transformation of R = θ̃1/θ̃2 as

follows:

ZL =
lnR√

V ar(lnR)
=

ln θ̃1 − ln θ̃2√
V ar(ln θ̃1) + V ar(ln θ̃2)

,

where V ar(ln θ̃i) can be approximated by the delta method as V ar(ln θ̃i) ≈ V ar(θ̃i)/θ̃
2
i for

i = 1, 2. Under the null hypothesis H∗
0 in Eq. (2.3), the test statistic ZL is asymptotically

standard normally distributed. Therefore, the p-value of the asymptotic test based on test

statistic ZL can be calculated as 2(1 − Φ(|ZL|) where Φ(·) is the CDF of the standard

normal distribution.
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2.2.1.2. Parametric Likelihood Ratio Test

Suppose that the component lifetime distributions for the components in System 1 and

System 2 follow the same parametric family of distributions with PDF fXi
(t;θi) i = 1, 2

with parameter vector θ1 and θ2, then testing the hypotheses of homogeneity in Eq. (2.1)

is equivalent to testing

H∗∗
0 : θ1 = θ2 versus H∗∗

1 : θ1 ̸= θ2. (2.4)

From Eq. (1.3), the likelihood function based on System i lifetime data

Ti = (Ti1, Ti2, · · · , TiMi
), i = 1, 2, is

Li(θi|Ti) =

Mi∏
j=1

fTi
(Tij;θi)

=

Mi∏
j=1

ni∑
k=1

sik

(
ni

k

)
kfXi

(Tij;θi)[FXi
(Tij;θi)]

k−1[F̄Xi
(Tij;θi)]

ni−k.

The MLE of θi based on Ti = (Ti1, Ti2, · · · , TiMi
) alone, denoted as θ̂i, can be obtained by

maximizing Li(θi|Ti) with respect to the θi.

Under the null hypothesis H∗∗
0 : θ1 = θ2 = θ in Eq. (2.4), the likelihood function based

on (T1,T2) can be expressed as

L12(θ|T1,T2) = L1(θ|T1)L2(θ|T2)
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and the MLE of θ based on the pooled data (T1,T2), denoted as θ̂, can be obtained

by maximizing L12(θ|T1,T2) with respect to θ. The parametric likelihood ratio statistic is

defined as

λLR = −2 ln

[
supH∗∗

0
L12(θ|T1,T2)

supH∗∗
1
L1(θ1|T1)L2(θ2|T2)

]

= −2 ln

[
L12(θ̂|T1,T2)

L1(θ̂1|T1)L2(θ̂2|T2)

]
.

By the Wilk’s theorem (Wilks, 1938), the asymptotic distribution of the likelihood ratio

statistic λLR under null hypothesis is chi-square with degrees of freedom ν, where ν is

the difference in dimensionality of θ and (θ1,θ2). The p-value of the parametric likelihood

ratio test based on test statistic λLR can be approximated as Pr(χ2
ν > λLR) where χ2

ν is a

random variable following the chi-square distribution with degrees of freedom ν.

2.2.2. Nonparametric Mann-Whitney U Statistic

To test the hypotheses in Eq. (2.1), Zhang et al. (2015) proposed a nonparametric test

procedure based on the Mann-Whitney U test, also called the Mann–Whitney–Wilcoxon

test (Mann and Whitney, 1947; Wilcoxon, 1992), which is a nonparametric test for compar-

ing two component lifetime distributions. Based on the system lifetime data from System

1 and System 2, we define the indicator function between the two systems as

Dj1,j2 =


1, if T1j1 < T2j2 ,

0, otherwise,

24



for j1 = 1, 2, . . . ,M1 and j2 = 1, 2, . . . ,M2. The U statistic for testing the homogeneity of

component lifetime distributions is defined as

U =

M1∑
j1=1

M2∑
j2=1

Dj1,j2 =

M2∑
j=1

(M2 − j + 1)Rj, (2.5)

where Rj is the number of ordered observations from sample T1 which are in between

the (j − 1)-th and j-th order statistics from sample T2. The support of the statistic U is

{0, 1, . . . ,M1M2} and the null hypothesis in Eq. (2.1) is rejected if U is too large or too

small. Here, we reject the null hypothesis in Eq. (2.1) at α level if U ≤ cU1 or U ≥ cU2,

where cU1 and cU2 are critical values and can be determined by Pr(U ≤ cU1|H0) ≤ α/2 and

Pr(U ≥ cU2|H0) ≤ α/2, respectively. The exact p-value can be calculated as presented

in Zhang et al. (2015). Since the computation of the exact p-value requires the numerical

evaluation of integration which can be computationally intensive, we consider using the

Monte Carlo method to obtain the null distribution of U under different scenarios in this

chapter. The procedure to get the simulated null distribution of U is described in Section

2.4 below.

2.3. Proposed Test Procedures Based on Empirical Likelihood Ratio

In this section, we develop test procedures based on empirical likelihood ratio to test

the hypotheses in Eq. (2.1) nonparametrically. From Hall et al. (2015), the empirical

likelihood function for System i based on Ti only (i = 1, 2) can be expressed as

LTi
(t) =

(
Mi

Yi(t)

)
hi(pi(t))

Yi(t)[1− hi(pi(t))]
Mi−Yi(t), (2.6)

25



where Yi(t) =
∑Mi

j=1 I(t,∞)(Tij), i = 1, 2, and I(t,∞)(Tij) is the indicator function and can be

defined as

IA(b) =


1, if b ∈ A,

0, otherwise.

The empirical likelihood function LTi
(t) in Eq. (2.6) is maximized at

p̂i(t) = h−1
i (1− F̂Ti

(t)), (2.7)

where F̂Ti
(t) is the empirical CDF of FTi

(t) defined as

F̂Ti
(t) = 1− 1

Mi

Mi∑
j=1

I(t,∞)(Tij). (2.8)

That is, based on Ti,

sup{LTi
(t)} =

(
Mi

Yi(t)

)
hi(p̂i(t))

Yi(t)[1− hi(p̂i(t))]
Mi−Yi(t).

Under the null hypothesis that FX1(t) = FX2(t) (or equivalently p1(t) = p2(t) = p(t)),

we can pool the samples from System 1 and System 2 into an ordered sample of size

M = M1 +M2, denoted as T ∗ = (< T ∗
(1) < T ∗

(2) < · · · < T ∗
(M)). Following Hall et al. (2015)
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and the idea of Kaplan-Meier estimator (Kaplan and Meier, 1958), the empirical likelihood

function based on the pooled data is

L∗
T (t) =

∏
i=1,2

(
Mi

Yi(t)

)
hi(p(t))

Yi(t)[1− hi(p(t))]
Mi−Yi(t). (2.9)

The nonparametric MLE of p(t), denoted as p̂(t), can be obtained by maximizing L∗
Ti
(t)

with respect to p(t), i.e.,

sup{L∗
T (t)} =

∏
i=1,2

(
Mi

Yi(t)

)
hi(p̂(t))

Yi(t)[1− hi(p̂(t))]
Mi−Yi(t).

Since a closed-form solution p̂(t) cannot be obtained, the maximization can be approxi-

mated by numerical methods such as the Newton-Raphson method. The nonparametric

MLE p̂(t) can be written as

p̂(t) =


1, t < T ∗

(1);

qj, t ∈ [T ∗
(j), T

∗
(j+1));

0, t ≥ T ∗
(M).

where qj maximizes the likelihood function in Eq. (2.9) for t in [T ∗
(j), T

∗
(j+1)), j = 1, 2, . . . ,M−

1. For the initial values of qj (denoted as q
(0)
j ) of the iterative maximization algorithm, for

t ∈ [T ∗
(j), T

∗
(j+1)), we consider a weighted function of p̂i(t), i = 1, 2, in Eq. (2.7)

q
(0)
j =

M1p̂1(t) +M2p̂2(t)

M
, j = 1, 2, . . . ,M − 1.
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The empirical likelihood ratio at time t is

RT (t) =
sup{L∗

T (t) : p1(t) = p2(t)}
sup{LT1(t)} sup{LT2(t)}

.

Then, we obtain the log empirical likelihood ratio as

lnRT (t) = ln

{
sup{L∗

T (t) : p1(t) = p2(t)}
sup{LT1(t)} sup{LT2(t)}

}
= ln

{ ∏
i=1,2

(
Mi

Yi(t)

)
hi(p̂(t))

Yi(t)[1− hi(p̂(t))]
Mi−Yi(t)∏

i=1,2

(
Mi

Yi(t)

)
hi(p̂i(t))Yi(t)[1− hi(p̂i(t))]Mi−Yi(t)

}

=
2∑

i=1

{
Yi(t) ln

[
hi(p̂(t))

hi(p̂i(t))

]
+ (Mi − Yi(t)) ln

[
1− hi(p̂(t))

1− hi(p̂i(t))

]}
.

Based on the log empirical likelihood ratio, we define

G2
t = 2 lnRT (t)

= 2
2∑

i=1

{
Yi(t) ln

[
hi(p̂(t))

hi(p̂i(t))

]
+ (Mi − Yi(t)) ln

[
1− hi(p̂(t))

1− hi(p̂i(t))

]}
,

which is a function of time t. We consider two functions based on G2
t :

Z∗ = sup
t∈(0,∞)

[G2
t × w(t)], (2.10)

Z =

∫ ∞

0

G2
tdw(t), (2.11)
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where w(t) is a weight function. Following Zhang (2006), we propose two test statistics

for testing the hypotheses in Eq. (2.1) with different weight functions:

1. Take w(t) = 1 in Eq. (2.10), we obtain the test statistic

ZK
∆
= sup

t∈(0,∞)

[G2
t ] (2.12)

= max
1≤k≤M

{
2

2∑
i=1

Yi(T
∗
(k)) ln

[
hi(p̂i(T

∗
(k)))

hi(p̂(T ∗
(k)))

]
+ (Mi − Yi(T

∗
(k))) ln

[
1− hi(p̂i(T

∗
(k)))

1− hi(p̂(T ∗
(k)))

]}
.

2. We denote the maximum likelihood estimator of component CDF for the pooled data

as F̂X(t) and define F̂X(T
∗
(0)) = 0. Then, F̂X(t) = 1 − p̂(t). In Eq.(2.11), take the

weight function

dw(t) =
1

F̂X(t)(1− F̂X(t))
dF̂X(t).

Then, the test statistic can be written as

ZA
∆
=

∫ ∞

0

G2
t

1

F̂X(t)(1− F̂X(t))
dF̂X(t)

= 2
M∑
k=1

p̂(T ∗
(k))− p̂(T ∗

(k−1))

p̂(T ∗
(k))(1− p̂(T ∗

(k)))
× (2.13){

2∑
i=1

[
Yi(T

∗
(k)) ln

hi(p̂i(T
∗
(k)))

hi(p̂(T ∗
(k)))

+ (Mi − Yi(T
∗
(k))) ln

1− hi(p̂i(T
∗
(k)))

1− hi(p̂(T ∗
(k)))

]}
.

Large values of ZK and ZA support the alternative hypothesis in Eq. (2.1), which leads to

the rejection of the null hypothesis in Eq. (2.1).
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2.4. Null Distributions of ZK , ZA, and U Based on Monte Carlo Method

Since the distributions of ZK and ZA are intractable theoretically in general, even under

the null hypothesis, we rely on the Monte Carlo method to obtain the null distributions of

ZK and ZA.

We simulate the lifetimes of M1 systems for System 1 and the lifetimes of the M2

systems for System 2 from any component lifetime distribution FX with FX1 = FX2 = FX

for given n1, n2, M1, M2, and system signatures s1 and s2. The statistics ZK and ZA are

computed from the simulated lifetimes.

In practice, we can simulate the null distributions of ZK , ZA, and U by choosing FX

as a distribution that is easy to simulate (e.g., standard exponential distribution, Exp(1))

with a large number of Monte Carlo simulations (say, 1, 000, 000 times). For example, the

simulated 90-th, 95-th, and 99-th percentage points for ZK and ZA with s1 = (0, 0, 0, 1) (i.e.,

n1 = 4) and s2 = (1, 0, 0) (i.e., n2 = 3) based on 1, 000, 000 simulations with FX ∼ Exp(1)

are presented in Table 2.1.

Table 2.1: Simulated 90-th, 95-th, and 99-th percentage points of the null distributions of
ZK and ZA with s1 = (0, 0, 0, 1) (i.e., n1 = 4) and s2 = (1, 0, 0) (i.e., n2 = 3) for different
sample sizes of M1 = M2.

ZK ZA

Sample sizes 90% 95% 99% 90% 95% 99%

M1 = M2 = 10 4.2826 6.2433 10.0858 4.2609 6.6789 13.4692

M1 = M2 = 15 5.7377 6.6794 10.2433 4.7174 7.0945 13.4382

M1 = M2 = 20 7.6502 7.6502 10.7033 5.1977 7.1561 13.2830

M1 = M2 = 30 6.9730 7.7890 11.4753 5.9456 7.6422 13.4232

M1 = M2 = 50 7.1904 8.7383 11.8581 6.5791 8.3773 13.6362

For the null distribution of the Mann-Whitney U statistic, since U is discrete and the
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number of possible values of U can be small when the sample sizes M1 and M2 are

small, the actual percentage when U equals to or less than the critical value might be

much larger than the nominal significance level. Therefore, instead of using the exact

distribution presented in Zhang et al. (2015), we propose to use a Monte Carlo simulation

method to obtain the approximated percentage points of the null distribution and use a

randomization procedure to obtain a test procedure based on U with the required sig-

nificance level. To illustrate the procedure for obtaining the critical values, we consider

the following example with parallel and series systems with signatures s1 = (0, 0, 0, 1) and

s2 = (1, 0, 0), respectively. In Table 2.2, we present the critical values of the Mann-Whitney

statistic U and the corresponding simulated probability that U is more extreme than or

equal to the critical value for different significance levels and sample sizes. The values

in Table 2.2 are generated based on 1, 000, 000 simulations. For illustrative purposes, we

consider the case of M1 = M2 = 10 to demonstrate how to conduct the hypothesis test at

5% significance level.

Table 2.2: Simulated 0.5-th, 2.5-th, 5-th, 95-th, and 99-th percentage points of the null
distributions of U with s1 = (0, 0, 0, 1) (i.e., n1 = 4) and s2 = (1, 0, 0) (i.e., n2 = 3) for
different sample sizes M1 = M2

Sample Size

Percentage
0.5% 2.5% 5%

M1 = M2 cU1 Pr(U = cU1) Pr(U ≤ cU1) cU1 Pr(U = cU1) Pr(U ≤ cU1) cU1 Pr(U = cU1) Pr(U ≤ cU1)

10 0 0.3254 0.3254 0 0.3254 0.3254 0 0.3254 0.3254

15 0 0.1483 0.1483 0 0.1483 0.1483 0 0.1483 0.1483

20 0 0.0648 0.0648 0 0.0648 0.0648 0 0.0648 0.0648

30 0 0.0114 0.0114 2 0.0110 0.0301 4 0.0149 0.0571

50 8 0.0013 0.0062 17 0.0034 0.0280 23 0.0051 0.0548

Sample Size

Percentage
95% 97.5% 99.5%

M1 = M2 cU2 Pr(U = cU2) Pr(U ≥ cU2) cU2 Pr(U = cU2) Pr(U ≥ cU2) cU2 Pr(U = cU2) Pr(U ≥ cU2)

10 0 0.3254 0.3254 0 0.3254 0.3254 0 0.3254 0.3254

15 0 0.1483 0.1483 0 0.1483 0.1483 0 0.1483 0.1483

20 0 0.0648 0.0648 0 0.0648 0.0648 0 0.0648 0.0648

30 0 0.0114 0.0114 2 0.0110 0.0301 4 0.0149 0.0571

50 8 0.0013 0.0062 17 0.0034 0.0280 23 0.0051 0.0548

From Table 2.2, for α = 0.05, the critical values are cU1 = 0 and cU2 = 12 and we have
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the following probability

Pr(U ≤ 0) = 0.3254, Pr(U ≥ 12) = 0.02520.

If we use the critical values cU1 = 0 and cU2 = 12 directly, the significance level will be

0.3254 + 0.0252 = 0.3506, which is much higher than the 5% level. Therefore, we use

the simulated null distribution with a randomization procedure to control the significance

level of the test based on U . For example, to control Pr(reject H0 when U is too small|H0)

≤ 0.025, we do not reject H0 if the observed value of U is greater than 0 and less than 12.

If the observed value of U is 0, we reject H0 with probability 0.025/0.3254, i.e.,

Pr(reject H0 when U is too small|H0) = Pr(U ≤ 0|H0)(0.025/0.3254) = 0.025.

Similarly, to control Pr(reject H0 when U is too large|H0) ≤ 0.025, we do not reject H0 if

the observed value of U is less than 12 and reject H0 if the observed value of U is larger

than 12. If the observed value of U is 12, we reject H0 with probability

(0.025 − Pr(U > 12)/Pr(U = 12) = (0.025 − (Pr(U ≥ 12) − Pr(U = 12))/Pr(U = 12) =

0.9737, i.e.,

Pr(reject H0 when U is too large|H0)

= Pr(U > 12|H0) + Pr(U = 12|H0)

[
0.025− Pr(U > 12|H0)

Pr(U = 12|H0)

]
= (Pr(U ≥ 12|H0)− Pr(U = 12|H0)) + Pr(U = 12|H0)× 0.9737

= 0.025.

Obviously, when Pr(U ≤ cU1) = 0.025 and Pr(U ≥ cU2) = 0.025, no randomization pro-

cedure is needed. Following this procedure, we can obtain approximate p-values of the
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two-sided U test under H0 for α = 0.01, 0.05, 0.1 using the critical values cU1 and cU2 and

the corresponding values of Pr(U ≤ cU1) and Pr(U ≥ cU2) when these probabilities are

not equal to α/2.

2.5. Illustrative Example

To illustrate the test procedures developed in this chapter, we analyze a data set based

on the example presented in Yang et al. (2016) and Frenkel and Khvatskin (2006). The

example given in Yang et al. (2016) and Frenkel and Khvatskin (2006) described the

phosphor acid filter system as a real-life prototype of a consecutive 2-out-of-n system. For

a consecutive 2-out-of-n system, the system fails when any 2 adjacent components fail.

For illustrative purposes, we consider that System 1 is a consecutive 2-out-of-8 system

with system signature s1 = (0, 1/4, 11/28, 2/7, 1/14, 0, 0, 0) and component lifetimes follow

a Birnbaum-Saunders distribution (Birnbaum and Saunders, 1969) with CDF

FX(t; a, b) = Φ

[
1

a

((
t

b

)1/2

−
(
b

t

)1/2
)]

, t > 0,

where the shape parameter is a = 1 and scale parameter b = 1 and System 2 is a 4-

component with system signature s2 = (1/4, 1/4, 1/2, 0) and component lifetimes follow

a Weibull(3, 2) distribution. The system lifetime data for System 1 and System 2 with

sample sizes M1 = M2 = 20 are presented in Table 2.3.

The lifetime data is listed in the following table. A hypothesis test is conducted to de-

termine if the components from two different systems follow the same lifetime distribution.
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Table 2.3: Simulated lifetime data from System 1 and System 2 with M1 = M2 = 20

j 1 2 3 4 5 6 7 8 9 10

T1j 0.2598 0.2803 0.3329 0.4172 0.4532 0.459 0.5541 0.5769 0.5842 0.7784

T2j 0.5890 0.6423 0.7774 0.9879 1.0754 1.1200 1.1685 1.2410 1.2412 1.2642

j 11 12 13 14 15 16 17 18 19 20

T1j 0.7917 0.8565 0.8895 0.9186 0.9348 1.1130 1.2049 1.3938 1.4406 1.6351

T2j 1.4164 1.4401 1.4924 1.5415 1.6912 2.0695 2.4374 2.5627 2.6197 2.7791

The nonparametric MLE of the SF of the component lifetime distribution FX1 based on

T1 from Eq. (2.8) (denoted as ˆ̄FX1), the nonparametric MLE of the SF of the component

lifetime distribution FX2 based on T2 from Eq. (2.8) (denoted as ˆ̄FX2), the average of ˆ̄FX1

and ˆ̄FX2 , and the nonparametric MLE of the component lifetime distribution based on the

pooled data (T1, T2) under H0 : FX1 = FX2 by maximizing Eq. (2.9), are plotted in Figure

2.1.

To test the hypotheses in Eq. (2.1), using the nonparametric Mann-Whitney U test

and the two proposed empirical likelihood ratio tests at 1% level of significance for the

data set in Table 2.3, we obtain the critical values based on the procedures described in

Section 2.4 with 1, 000, 000 simulations. The critical values for the empirical likelihood ratio

tests based on ZK and ZA are 12.6394 and 18.4978, respectively, and the 0.5% and 99.5%

percentile of the Mann-Whitney U statistic are 172 and 314, respectively.

For the data presented in Table 2.3, we can compute the test statistics ZK = 13.5608,

ZA = 22.0917, and U = 334. We observe that all these test statistics are larger than their

corresponding critical value at a 1% level of significance. Therefore, we reject the null

hypothesis in Eq. (2.1) at 1% level with p-value of 2 × 10−6 based on test statistics ZA

and ZK and p-value of 0.01 based on the test statistic U . These results agree with our

expectation since the component lifetimes in System 1 are simulated from a Birnbaum-

Saunders distribution, and the component lifetimes in System 2 are simulated from a

Weibull distribution.
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Figure 2.1: The nonparametric MLE of the SF of the component lifetime distribution FX1

based on T1 from Eq. (2.8) (denoted as ˆ̄FX1), the nonparametric MLE of the SF of the
component lifetime distribution FX2 based on T2 from Eq. (2.8) (denoted as ˆ̄FX2), the av-
erage of ˆ̄FX1 and ˆ̄FX2, and the nonparametric MLE of the component lifetime distribution
based on the pooled data (T1, T2) under H0 : FX1 = FX2 by maximizing Eq. (2.9)

2.6. Monte Carlo Simulation Studies

In this section, Monte Carlo simulation studies are used to evaluate the performances

of those parametric and nonparametric test procedures described in Sections 2.2 and 2.3

for testing the hypotheses in Eq. (2.1).

In the first simulation study, we conduct parametric tests to examine how the Type-I

error rates vary when the underlying distributions are misspecified. We consider apply-
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ing the asymptotic parametric test under exponentially distributed component lifetimes

assumption presented in Section 2.2.1.1 to cases when the component lifetimes follow

different statistical distributions described above. The PDFs of the distributions consid-

ered in the first simulation study are plotted in Figure 2.2. We consider that System 1 is

a 4-component parallel system and System 2 is a 3-component series system with sys-

tem signatures s1 = (0, 0, 0, 1) and s2 = (1, 0, 0), respectively, with different sample sizes

M1 = M2 = 10, 15, 20, 30, and 50. The simulated rejection rates of the asymptotic para-

metric test based on 10, 000 simulations under the null hypothesis that the components

in System 1 and System 2 have the same distribution with 5% level of significance are

presented in Table 2.4.
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Figure 2.2: PDFs of the distributions considered in the Monte Carlo simulation studies.
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Table 2.4: Simulated rejection rates of the asymptotic parametric test under the expo-
nentially distributed component lifetimes assumption when the null hypothesis is true at
5% significant level for different underlying component lifetime distributions and different
sample sizes.

True Dist.

Sample Size
M1 = M2 = 10 M1 = M2 = 15 M1 = M2 = 20 M1 = M2 = 30 M1 = M2 = 50

Exp(1) 0.0531 0.0527 0.0491 0.0524 0.0482

Exp(0.1) 0.0531 0.0523 0.0499 0.0525 0.0492

Gamma(5, 2) 0.9707 0.9998 1.0000 1.0000 1.0000

Gamma(1.1, 1) 0.0465 0.0487 0.0546 0.0547 0.0617

Gamma(1.5, 1) 0.0949 0.1374 0.1918 0.2949 0.5014

Gamma(1.1, 2) 0.0465 0.0487 0.0546 0.0547 0.0617

Weibull(1, 1.1) 0.0474 0.0535 0.0639 0.0730 0.1058

Weibull(2.5, 1.5) 0.2466 0.4061 0.5563 0.7691 0.9621

Weibull(2.5, 5) 1.0000 1.0000 1.0000 1.0000 1.0000

Lognormal(0, 1) 0.0406 0.0437 0.0457 0.0461 0.0490

Lognormal(1, 2) 0.8821 0.9448 0.9740 0.9930 0.9993

Table 2.4 shows that the asymptotic parametric test developed under the exponen-

tial assumption inflates the simulated type-I error rates when the underlying component

lifetime distributions deviate from the exponential, such as Gamma(5, 2), Weibull(2.5, 5),

and Lognormal(1, 2) (see Figure 2.2). On the other hand, the simulated Type-I error rates

are close to the nominal level of 5% when the underlying component lifetime distribu-

tions are exponential or similar to the exponential distribution, such as Gamma(1.1, 1),

Weibull(1, 1.1) and Lognormal(0, 1) (see Figure 2.2). These results indicate that those

parametric tests for homogeneity of component lifetime distributions may not be appropri-

ate, especially when the underlying distribution is unknown.

In the second simulation study, we evaluate the power performances of the proposed

empirical likelihood ratio tests ZK and ZA, and the Mann-Whitney U test and compare

them with the parametric tests by assuming that the underlying distributions agree with

the distributions the data are generated from.
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For the parametric likelihood ratio test with a two-parameter distribution, we assume

that both FX1 and FX2 are from the same class of distributions and the two parameters

are unknown, but one of the parameters in FX1 and FX2 are the same under the alterna-

tive hypothesis. For example, in the simulation where the component lifetimes follow the

Weibull distribution, FX1 and FX2 are Weibull(λ1, γ1) and Weibull(λ2, γ2), respectively, we

use the hypotheses

H∗∗
0 : λ1 = λ2 and γ1 = γ2

versus H∗∗
1 : λ1 ̸= λ2 and γ1 = γ2.

As shown in the first simulation study, the asymptotic parametric test developed under the

exponentially distributed components assumption may not be appropriate for distributions

other than exponential distribution; we only consider the asymptotic parametric test when

the data are generated from an exponential distribution. In this simulation study, we con-

sider the following settings for the system structures of System 1 and System 2 (Navarro

et al., 2007):

[S1] System 1: 4-component parallel system with system signature s1 = (0, 0, 0, 1);

System 2: 3-component series system with system signature s2 = (1, 0, 0).

[S2] System 1: 3-component system with system signature s1 = (0, 2/3, 1/3);

System 2: 4-component system with system signature s2 = (1/4, 1/4, 1/2, 0).

[S3] System 1: 3-component system with system signature s1 = (0, 2/3, 1/3);

System 2: 4-component system with system signature s2 = (0, 1/2, 1/4, 1/4).

For comparative purposes, we also consider the nonparametric test procedures based

on complete component-level data, i.e., all nkMk component lifetimes are observed for
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System k. This is equivalent to considering System 1 and System 2 to be 1-component

systems such that the lifetime of the component is equal to the lifetime of the system.

Since this is an ideal scenario with complete information on the component lifetimes, we

denote this case as “Full data". Note that the power performance of the test procedures

based on complete component-level data can be served as a benchmark for the power

comparisons since this is the case that all the n1M1 + n2M2 component lifetimes are

observed. The critical values of nonparametric tests are obtained from the simulation

mentioned in Section 2.4 based on 1, 000, 000 simulation times.

The component lifetimes are generated from the following distribution settings:

[D1] Exponential distributions with changes in the scale parameter:

System 1: Exp(θ1) with θ1 = 1 (i.e., ln θ1 = 0);

System 2: Exp(θ2) with ln θ2 varies from −1.6 to 1.6 with increment 0.1 (denoted by

−1.6 (0.1) 1.6);

[D2] Weibull distributions with changes in the shape parameter:

System 1: Weibull(λ1, γ1) with λ1 = 1 and γ1 = 1;

System 2: Weibull(λ2, γ2) with λ2 = 1 and γ2 varies from 0.5 to 1.5 with increment

0.1 (denoted by 0.5(0.1)1.5);

[D3] Lognormal distributions with changes in the standard deviation on the log-scale (i.e.,

change in the shape parameter):

System 1: Lognormal(µ1, σ1) with µ1 = 0 and σ1 = 2;

System 2: Lognormal(µ2, σ2) with µ2 = 0 and σ2 varies from 1 to 3 with increment

0.1 (denoted by 1(0.1)3).

[D4] Weibull distributions with changes in the scale parameter:

System 1: Weibull(λ1, γ1) with λ1 = 2.5 and γ1 = 5;

System 2: Weibull(λ2, γ2) with λ2 varies from 1.5 to 3.5 with increment 0.1 (denoted

by 1.5(0.1)3.5) and γ2 = 5;
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[D5] Gamma distribution with changes in the shape parameter:

System 1: Gamma(α1, β1) with α1 = 5 and β1 = 2;

System 2: Gamma(α2, β2) with α2 varies from 3 to 7 with increment 0.2 (denoted by

3(0.2)7) and β2 = 2;

[D6] Gamma distribution with changes in the rate parameter:

System 1: Gamma(α1, β1) with α1 = 5 and β1 = 2;

System 2: Gamma(α2, β2) with α2 = 5 and β2 varies from 1 to 3 with increment 0.1

(denoted by 1(0.1)3);

[D7] Lognormal distributions with changes in the mean on the log-scale (i.e., change in

the scale parameter):

System 1: Lognormal(µ1, σ1) with µ1 = 0 and σ1 = 1;

System 2: Lognormal(µ2, σ2) with µ2 varies from −1.6 to 1.6 with increment 0.1 (de-

noted by −1.6(0.1)1.6) and σ2 = 1.

The rejection rates with significance level 5% under different settings are estimated

based on 10, 000 simulations. For the sake of saving space, we present here the simulated

power curves for setting [D1] with [S1] in Figure 2.3, the simulated power curves for

setting [D2] with [S1] in Figure 2.4, the simulated power curves for setting [D3] with [S1],

and the simulated power curves for settings [D4] with [S1], [S2], and [S3] in Figures

2.6–2.8, respectively. We present the simulated power curves for each figure under the

sample sizes M1 = M2 = 10, 15, 20, 30, and 50. The simulated power curves for other

settings, including [D5]–[D7] with system structures [S1]–[S3] are presented in Figures

A.1–A.15 in Appendix A.

The simulated power curves centered at the simulated rejection rates under the null

hypothesis (i.e., FX1 = FX2), which are expected to be close to the nominal significance

level of 5%. When the differences between the parameters increase (i.e., moving away

from the center), we expect the simulated power values to increase. The closer the power
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values are to one, the better the performance of the test procedure. As mentioned above,

the simulated power curves with “Full data" can serve as benchmarks for comparisons as

the power values based on complete component-level data are larger than those based on

system-level data. Moreover, we expect that the power values for the parametric likelihood

ratio tests under the correct model specification of underlying distributions are better than

those of nonparametric tests.
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Figure 2.3: Simulated power curves of the parametric and nonparametric test for ln θ1 = 0
and ln θ2 = −1.6 (0.1) 1.6 with M1 = M2 for exponential components from systems s1 =
(0, 0, 0, 1) and s2 = (1, 0, 0) (i.e., [D1] with system structures [S1]).
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Figure 2.5: Simulated power curves of the parametric and nonparametric test for µ1 =
µ2 = 0, σ1 = 2 and σ2 = 1 (0.1) 3 with M1 = M2 for lognormal components from systems
s1 = (0, 0, 0, 1) and s2 = (1, 0, 0) (i.e., [D3] with system structures [S1]).
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From Figures 2.3 and 2.4, we observe that for the extreme setting [S1] with System

1 being a parallel system and System 2 being a series system, when the sample sizes

are small (say, M1 = M2 ≤ 20), the power values are low when the mean lifetime of

components in System 1 is smaller than the mean lifetime of components in System 2

(i.e., the left-hand side of the power curve) for the nonparametric tests. As pointed out

by Zhang et al. (2015), it is due to the nature of the problem since we are comparing the

worst component in one system to the best component in another system to determine if

the lifetime characteristics of the components are the same.

From Figures 2.3–2.8, the power values of the nonparametric tests with complete

component-level data and the parametric tests under the correct specification of the un-

derlying component lifetime distribution are larger than the power values of the nonpara-

metric tests based on system-level data. We observe that the proposed empirical like-

lihood ratio tests provide comparative power performance in most cases compared to

the Mann-Whitney U test. After considering the upper bound of the Monte Carlo er-

ror
√
(0.5)(1− 0.5)/10000 = 0.005, the proposed empirical likelihood ratio tests are more

powerful for small sample sizes on the right-hand side. Between the two empirical likeli-

hood ratio tests, the test based on ZA tends to have better power performance than the

test based on ZK in most cases.

For comparative purposes, the differences between the simulated power values of

the test procedures based on U statistic and ZK , and the test procedures based on U

statistic and ZA for Weibull distribution with M1 = M2 = 30 and for lognormal distribution

with different sample sizes are plotted in Figures 2.9 and 2.10, respectively. Negative

values of the differences indicate that the proposed tests based on ZA and ZK provide

better power performance than the Mann-Whitney U test. We also included the lines

for plus and minus three Monte Carlo errors (±3MCE) to indicate if the differences are

significant.

When the mean lifetime of the component lifetime distribution of System 2 is larger
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than the mean lifetime of the component lifetime distribution of System 1, the proposed

empirical likelihood ratio test based on ZA provides better power values among the three

nonparametric tests considered here. The advantage of the test based on ZA is more sig-

nificant when the two systems are extremely different (i.e., setting [S1]). When the mean

lifetime of the component lifetime distribution of System 2 is smaller than the mean life-

time of the component lifetime distribution of System 1, the Mann-Whitney U test provides

better power values among the three nonparametric tests considered here.

The proposed nonparametric tests outperform when the shape of the component life-

time distributions are different (i.e., settings [D2] and [D3]). For example, from the top left

panel of Figure 2.9 and Figure 2.10 show that the proposed empirical likelihood ratio tests

provide better power performance than the Mann-Whitney U test in detecting changes in

the shape parameters. Despite the alteration of the shape parameter in setting [D5] (see

Figures A.1, A.7, and A.13 in Appendix A), the proposed tests do not outperform the U

test, which may be due to the deviations in the shape of the gamma distributions being

minor.
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Figure 2.6: Simulated power curves of the parametric and nonparametric test for λ1 = 2.5
and λ2 = 1.5 (0.1) 3.5, γ1 = γ2 = 5 with M1 = M2 for Weibull components from systems
s1 = (0, 0, 0, 1) and s2 = (1, 0, 0) (i.e., [D4] with system structures [S1]).
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Figure 2.7: Simulated power curves of the parametric and nonparametric test for λ1 = 2.5
and λ2 = 1.5 (0.1) 3.5, γ1 = γ2 = 5 with M1 = M2 for Weibull components from systems
s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0) (i.e., [D4] with system structures [S2]).
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Figure 2.8: Simulated power curves of the parametric and nonparametric test for λ1 = 2.5
and λ2 = 1.5 (0.1) 3.5, γ1 = γ2 = 5 with M1 = M2 for Weibull components from systems
s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4) (i.e., [D4] with system structures [S3]).
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Figure 2.9: Differences between the simulated power values of the test procedures based
on U statistic and ZK , and the test procedures based on U statistic and ZA for Weibull
distribution with M1 = M2 = 30.
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Figure 2.10: Differences between the simulated power values of the test procedures
based on U statistic and ZK , and the test procedures based on U statistic and ZA for
µ1 = µ2 = 0, σ1 = 2 and σ2 = 1 (0.1) 3 with M1 = M2 for lognormal distributed compo-
nents from systems s1 = (0, 0, 0, 1) and s2 = (1, 0, 0).
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2.7. Concluding Remarks

In this chapter, we studied the problem of testing the homogeneity of component life-

time distributions based on system-level data, which can be applied to many practical

situations in life testing procedures involving systems with known structures. We showed

that those existing parametric test procedures might suffer from the inflation of Type-I

error rates when the underlying probability distributions of the component lifetimes are

misspecified. To address this issue, we focus on developing nonparametric statistical test

procedures for the homogeneity of component lifetime distributions based on system-level

data. We proposed two empirical likelihood ratio tests based on the empirical likelihood

ratio and the nonparametric estimation of component lifetime distributions. We provided

the computational algorithms for obtaining the null distributions of the test statistics using

the Monte Carlo method. Our simulation results show that the proposed nonparametric

procedures provide comparative power values with those existing tests. These proposed

test procedures have advantages in power performance when the two systems are very

different.
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CHAPTER 3

Empirical Likelihood Ratio Tests for Homogeneity of Component Lifetime Distributions
Based on Type-II Censored System Lifetime Data

3.1. Introduction

In this chapter, we focus on Type-II censoring, in which the life-testing experiment will

be terminated as soon as a prefixed number of failures are observed. In this situation,

the number of observed failures is prefixed while the duration of the experiment is a ran-

dom variable. For right-censored survival data, the log-rank test (Mantel, 1966; Peto and

Peto, 1972) is one of the most commonly used test procedures for testing the equality of

two lifetime distributions. The log-rank test has been proven to be asymptotically most

efficient under the proportional hazards alternatives (Aalen, 1978; Fleming et al., 1987).

However, the log-rank test cannot be applied to test the equality of two component lifetime

distributions based on system lifetime data. Although nonparametric tests for the homo-

geneity of component lifetime distributions based on complete system lifetime data have

been discussed, test procedures for the same purpose based on Type-II censored data,

which is a more practical situation, have not been developed. Therefore, we develop sev-

eral nonparametric procedures for testing the homogeneity of component lifetimes based

on Type-II censored system lifetime data with known system structures.

In this chapter, we develop several nonparametric procedures for testing the homo-

geneity of component lifetimes based on Type-II censored system lifetime data with known

system structures. The rest of the chapter is organized as follows. In Section 3.2, we ex-
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tend the nonparametric test procedures based on complete system lifetime data to Type-II

censored system lifetime data by considering the permutations of the censored system

lifetimes. Due to the numerous number of permutations that can be involved in the compu-

tation when the number of censored systems is large, in order to reduce the computation

burden, we propose the test statistics under a restrictive assumption on the equality of

the censored system lifetimes. In Section 3.3, the Monte Carlo method is used to approxi-

mate the null distributions of the proposed test statistics. The simulated critical values and

the randomization procedure to control the type-I error rate at the desired level are also

presented in Section 3.3. In Section 3.4, a practical example is presented to illustrate the

proposed nonparametric test procedures. Then, in Section 3.5, a Monte Carlo simulation

study is used to evaluate and compare the performance of proposed testing procedures

under different scenarios. Discussions of the simulation results are also provided in Sec-

tion 3.5. Finally, in Section 3.6, concluding remarks are provided.

3.2. Extensions to Type-II Censored System Lifetime Data

In this section, we extend upon the nonparametric test procedures discussed in Chap-

ter 2 for testing the hypotheses in Eq. (1.8) based on Type-II censored system lifetime

data. The life-testing experiment is performed on Mi experimental systems for Sys-

tem i and is terminated as soon as the ri-th failure is observed, where ri is a prede-

termined number such that ri ≤ Mi. Any remaining systems beyond the ri-th failure

are considered right-censored. We denote the ordered observed system lifetimes as

TO
i = (Ti,(1) < Ti,(2) < . . . < Ti,(ri)), the unobserved ordered Type-II censored system

lifetimes as T C
i = (Ti,(ri+1) < . . . < Ti,(Mi)), and the censoring proportion for System i as

ρi = ri/Mi, i = 1, 2.

To conduct the Mann-Whitney U test in Section 2.2.2 and the empirical likelihood ratio

tests in Section 2.3, it is essential that the ordering of all the system lifetimes from System
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1 and System 2 are known. Due to the nonparametric nature of the test procedures con-

sidered in Chapter 2.3, the actual values of the failure times are not required but the ranks

of the failure times. For Type-II censored data, the complete ranking information of the

censored data is missing. To handle this situation, one possible approach is to consider

all possible ranks of the censored data by arranging the unobserved censored samples

T C
1 and T C

2 . For each possible arrangement of the unobserved censored samples T C
1 and

T C
2 , we can determine the rankings of the system lifetime data for System 1 and System

2, and the corresponding test statistics can be calculated. Then, test procedures based

on going through all the possible permutations of the unobserved censored samples T C
1

and T C
2 can be developed. The following proposition gives the formula for calculating the

number of unique permutations for different M1, M2, r1, r2 and observed number of failure

occurs in between the observed system failures for System 1 (T1,(r1)) and for System 2

(T2,(r2)).

Proposition 3.2.1. Suppose Ti = (T1,(1), · · · , Ti,(ri)) denotes the observed Type-II censored

system lifetimes for System i and the remaining (Mi − ri) failures are censored (i = 1, 2),

and let L be the number of observed system failures that occur between the last observed

failure for System 1 (T1,(r1)) and the last observed failure for System 2 (T2,(r2)), the number

of all permutations, denoted Nc, is given by

Nc =



M1−r1∑
k=0

(
L+k
k

)(
M1−r1+M2−r2−k

M2−r2

)
, T1,(r1) < T2,(r2),

M2−r2∑
k=0

(
L+k
k

)(
M1−r1+M2−r2−k

M1−r1

)
, T1,(r1) > T2,(r2),(

M1−r1+M2−r2
M2−r2

)
, T1,(r1) = T2,(r2).

(3.1)

For the special case M1 = M2 = M and r1 = r2 = r, then Eq. (3.1) simplifies to:
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Nc =


M−r∑
k=0

(
L+k
k

)(
2M−2r−k

M−r

)
, T1,(r1) ̸= T2,(r2),(

M1−r1+M2−r2
M2−r2

)
, T1,(r1) = T2,(r2).

(3.2)

Proof. For the case when T1,(r1) < T2,(r2), the number of permutations for the (M1 − r1)

unobserved censored failures from System 1, and the (M2 − r2) censored failures from

System 2, is given by (
M1 − r1 +M2 − r2

M2 − r2

)
.

For the case when T1,(r1) < T2,(r2), this implies that the L observed failures occur in be-

tween T1,(r1) and T2,(r2) are from System 2, i.e., T1,(r1) < T2,(r2−L) < T2,(r2−L+1) < . . . <

T2,(r2−1) < T2,(r2).

To enumerate the number of permutations of the unobserved censored failures, among

the M1− r1 unobserved failures from System 1, we consider k of them occur before T2,(r2)

and the remaining M1 − r1 − k of them occur after T2,(r2), k = 0, 1, . . . , (M1 − r1). Since

the M2 − r2 unobserved censored failures from System 2 must be greater than T2,(r2),

there are (M2 − r2) + (M1 − r1 − k) unobserved failures after T2,(r2) and the number of

permutations for these (M2 − r2) + (M1 − r1 − k) unobserved failures is

(
M1 − r1 +M2 − r2 − k

M2 − r2

)
. (3.3)

The number of permutations for allocating k failures before T2,(r2) can be calculated by
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treating the problem as placing k balls into L+ 1 boxes.

(T1,(r1), T2,(r2−L)], (T2,(r2−L), T2,(r2−L+1)], . . . , (T2,(r2−1) < T2,(r2)].

Hence, the number of permutations for those k failures allocate before T2,(r2) is given by

(
k + (L+ 1)− 1

(L+ 1)− 1

)
=

(
L+ k

L

)
. (3.4)

From Eqs. (3.3) and (3.4), the number of permutations for the unobserved censored

failures when T1,(r1) < T2,(r2) is

M1−r1∑
k=0

(
L+ k

L

)(
M1 − r1 +M2 − r2 − k

M2 − r2

)
.

Following the same argument, the number of permutations for the unobserved censored

failures when T1,(r1) > T2,(r2) can be obtained as

M2−r2∑
k=0

(
L+ k

L

)(
M1 − r1 +M2 − r2 − k

M1 − r1

)
.
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When the stopping times of the two samples are different, which is a more practi-

cal situation, the situation becomes more complex and the number of permutations can

increase significantly. Hence, going through all the possible permutations can be compu-

tationally expensive.

For the purpose of illustrating the idea of going through all the permutations of the

censored samples, we consider a simulated data set for System 1 with system signature

s1 = (0, 2/3, 1/3) and System 2 with system signature s2 = (1/4, 1/4, 1/2, 0), with sample

sizes M1 = M2 = 10 and the number of observed failures r1 = r2 = 8. In other words, the

Type-II censored lifetimes Ti,(9) and Ti,(10), i = 1, 2, are unobserved. The simulated data

set is presented in Table 3.1. The stopping times for System 1 and 2 are T1 = 0.88 and

T2 = 1.08, respectively. Based on the data set in Table 3.1, from Proposition 3.1, since

T1,(8) < T2,(8) and L = 0, the number of permutations is

2∑
k=0

(
k

0

)(
2 + 2− k

2

)
=

2∑
k=0

(
4− k

2

)
=

(
4

2

)
+

(
3

2

)
+

(
2

2

)
= 6 + 3 + 1 = 10.

The 10 distinct scenarios are illustrated in Figure 3.1. For each arrangement, we have the

information equivalent to the complete system lifetime data and hence, the test statistics

presented in Section 2.3 can be computed.

Table 3.1: Simulated lifetime data for systems with signatures s1 = (0, 2/3, 1/3) and s2 =
(1/4, 1/4, 1/2, 0) with sample sizes M1 = M2 = 10 and number of observed failures r1 =
r2 = 8 (+ indicates right-censoring).

j 1 2 3 4 5 6 7 8 9 10

T1(j) 0.25 0.33 0.35 0.38 0.43 0.81 0.82 0.88 0.88+ 0.88+

T2(j) 0.03 0.06 0.08 0.14 0.18 0.44 0.48 1.08 1.08+ 1.08+
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Permutation 1

0 0.88 1.08

Censored Example with All Permutations

 

Permutation 2

0 0.88 1.08

Permutation 3

0 0.88 1.08

Permutation 4

0 0.88 1.08

 

Permutation 5

0 0.88 1.08

 

Permutation 6

0 0.88 1.08

 

Permutation 7

0 0.88 1.08

 

Permutation 8

0 0.88 1.08

 

Permutation 9

0 0.88 1.08

 

Permutation 10

0 0.88 1.08

Observed in Sys 1 Observed in Sys 2 Censored in Sys 1 Censored in Sys 2

Figure 3.1: The 10 distinct possible permutations of the censored samples based on the
data presented in Table 3.1
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It is worth mentioning that if the last observed failures of the two samples are not fol-

lowing each other, the number of possible permutations can increase significantly. In this

example, we observe that even for a simple case with only two censored system lifetimes

in each sample and the last observed failures of the two samples following each other,

going through all the possible permutations can be complex. To reduce the computational

burden, we propose to simplify the procedure by grouping all the unobserved censored

lifetimes in each system together, i.e., making an assumption that all the unobserved

failure times from System i are close to each other such that none of the unobserved cen-

sored lifetimes from the other sample can occur in between them. As an example, for the

data set in Table 3.1, there are three possible permutations under this assumption (see,

Figure 3.2). This assumption reduces the number of possible permutations one needs to

go through, and the number of possible permutations does not depend on the numbers

of censored systems (M1 − r1) and (M2 − r2). Therefore, this assumption simplifies the

calculation of corresponding test statistics for testing the hypotheses in Eq. (2.1).

The following proposition provides the number of unique possible permutations based

on the assumption that all the unobserved failure times from System i are the same, for

i = 1, 2.

Proposition 3.2.2. Suppose L is the number of observed system failures (from System 1 and

System 2) between the last observed failure for System 1 (T1,(r1)) and the last observed failure

for System 2 (T2,(r2)), i.e., T2,(r2−ℓ) ∈ (T1,(r1), T2,(r2)), ℓ = 1, 2, . . . , L, and T2,(r2−L−1) < T1,(r1).

Assume that all the unobserved failure times from System i are close to each other and none

of the censored lifetimes from another system occurs between them. Under this assumption,

for i = 1, 2, the number of possible unique permutations, denoted as Nr, is given by

Nr =


L+ 3, T1,(r1) ̸= T2,(r2),

2, T1,(r1) = T2,(r2).

(3.5)
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Proof. For T1,(r1) = T2,(r2), given the assumption stated in the condition, there are two

permutations C1 > C2 and C1 < C2.

Without loss of generality, suppose T1,(r1) < T2,(r2), it follows that the L failures that

occur in the interval (T1,(r1), T2,(r2)) must be from System 2. Under the assumption that all

the unobserved failure times from System i are close each other that none of the failures

from the other system can occur between them, we have C1 > T1,(r1) and C2 > T2,(r2) >

T1,(r1). Then, we consider the following two cases:

Case 1: C1 > T2,(r2): There are two possible permutations in this case:

(1) C1 > C2;

(2) C2 > C1.

Case 2: C1 < T2,(r2): There are L+ 1 possible permutations in this case:

(1) C1 ∈ (T1,(r1), T2,(r2−L)) and C2 > T2,(r2);

(2) C1 ∈ (T2,(r2−L), T2,(r2−L+1)) and C2 > T2,(r2));
...

(L+ 1) C1 ∈ (T2,(r2−1), T2,(r2)) and C2 > T2,(r2).

Therefore, the number of possible unique permutations Nr = L+3. The result for T1,(r1) >

T2,(r2) can be obtained in a similar manner and the proof follows.

From Proposition 3.2, since the maximum value of L is max{r1−1, r2−1}, the maximum

number of permutations under the assumption that all the unobserved failure times from

System i (i = 1, 2) are the same is max{r1 − 1, r2 − 1}+ 3.

To develop test procedures based on the statistics presented in Section 2.3, for the

h-th permutation (h ∈ 1, . . . , Nr), after we set the values of C1 and C2 based on the

permutation, we can treat the data as complete system lifetime data and compute the
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test statistics U in Eq. (2.5), ZK in Eq. (2.12), and ZA in Eq. (2.14), denote as U (h),

Z
(h)
K , and Z

(h)
A , respectively. This process generates Nr test statistics based on the Type-II

censored system lifetime data, namely U (h), Z(h)
K , and Z

(h)
A for h ∈ {1, . . . , Nr}. Then, we

propose to consider the following functions of the statistics as test statistics for testing the

hypotheses in Eq. (2.1):

Umin = min{U (1), . . . , U (Nr)}, Umax = max{U (1), . . . , U (Nr)}, Umean =
Nr∑
h=1

U (h)/Nr,

(3.6)

ZK,min = min{Z(1)
k , . . . , Z

(Nr)
k }, ZK,max = max{Z(1)

k , . . . , Z
(Nr)
k }, ZK,mean =

Nr∑
h=1

Z
(h)
k /Nr,

(3.7)

ZA,min = min{Z(1)
A , . . . , Z

(Nr)
A }, ZK,max = max{Z(1)

A , . . . , Z
(Nr)
A }, ZA,mean =

Nr∑
h=1

Z
(h)
A /Nr.

(3.8)

Based on the property of U , ZK , and ZA, larger values of ZK,min, ZK,max, ZK,mean,

ZA,min, ZA,max, and ZA,mean lead to the rejection of the null hypothesis in Eq. (2.1), while

large or small values of Umin, Umax and Umean lead to the rejection of the null hypothesis in

Eq. (2.1).

For the data set presented in Table 3.1, L = 0 and there are (L + 3) = 3 possible

permutations of the unobserved censored system lifetimes under the assumption that

that all the unobserved failure times from System i (i = 1, 2) are the same. The three

possible permutations under the restriction are presented in Figure 3.2.
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Time

Restricted Permutation 1

0 0.88 1.08

System 1

System 2

Censored Example with Restricted Permutations

Time

Restricted Permutation 2

0 0.88 1.08

System 1

System 2

Time

Restricted Permutation 3

0 0.88 1.08

System 1

System 2

Observed in Sys 1 Observed in Sys 2 Censored in Sys 1 Censored in Sys 2

Figure 3.2: The Type-II censored system lifetime data presented in Table 3.1 and the three
distinct possible permutations of the censored samples under the assumption that all the
unobserved failure times from System i (i = 1, 2) are close to each other.

To justify the propriety to consider the restricted permutations, we conducted a simu-

lation study comparing the maximum and minimum values of the test statistics U , ZA, and

ZK among all the possible permutations and all the restricted permutations. We consider

different systems, and the underlying component lifetime distributions are exponential dis-

tributions with sample sizes M1 = M2 = 10 and r1 = r2 = 8. In Table 3.2, we report the

percentages of cases where the minimum and maximum test statistics were the same for

all possible permutations and restricted permutations in 10, 000 simulated data sets.

From Table 2, except for the minimum of test statistic ZA, the majority of test statistics

obtained based on the restricted permutations are equivalent to the test statistics obtained

based on going through all the possible permutations.
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Table 3.2: Simulated percentage of equality of the maximum and minimum of the test
statistics based on two permutation methods for different systems with sample sizes M1 =
M2 = 10 and r1 = r2 = 8 based on 10, 000 simulations.

System Zk ZA U

System (i) Signatures FXi Min. Max. Min. Max. Min. Max.

1 s1 = (0, 2/3, 1/3) Exp(1)
88.15% 100% 0% 100% 100% 100%

2 s2 = (1/4, 1/4, 1/2, 0) Exp(1)

1 s1 = (0, 2/3, 1/3) Exp(1)
99.88% 100% 0% 100% 100% 100%

2 s2 = (1/4, 1/4, 1/2, 0) Exp(0.2)

1 s1 = (0, 2/3, 1/3) Exp(1)
95.47% 100% 0% 100% 100% 100%

2 s2 = (0, 1/2, 1/4, 1/4) Exp(1)

1 s1 = (0, 2/3, 1/3) Exp(1)
100% 100% 0% 100% 100% 100%

2 s2 = (0, 1/2, 1/4, 1/4) Exp(0.2)

1 s1 = (0, 0, 0, 1) Exp(1)
22.90% 100% 5.43% 100% 100% 100%

2 s2 = (1, 0, 0) Exp(1)

1 s1 = (0, 0, 0, 1) Exp(1)
0.08% 100% 0% 100% 100% 100%

2 s2 = (1, 0, 0) Exp(0.2)

On the other hand, conducting all permutations is often unrealistic due to the large

number of unique permutations required. To illustrate the amount of computational effort

that can be saved by considering the restricted permutations, we present the number of

permutations required for going through all permutations (Nc) and restricted permutations

(Nr) with different censored sample sizes Mi − ri (i = 1, 2) and the number of observed

system failures L between the last observed failures for two systems in Table 3.3. From

Table 3.3, we observe that the number of unique permutations required for conducting all

permutations (Nc) increases dramatically as the size of censored data increases. How-

ever, considering the restriction on the censoring observations requires a much smaller

number of permutations (Nr), which reduces the computational effort for computing the

test statistics in Eqs. (3.6), (3.7), and (3.8). Tables 3.2 and 3.3 show that considering

the restricted permutations results in similar minimum and maximum of the test statistics

while requiring significantly less computation effort. Therefore, we consider the restricted

permutations in this chapter and investigate the performance of the proposed test proce-
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dures in the subsequent sections.

Table 3.3: Number of permutations required for conducting all permutations (Nc) and
restricted permutations (Nr) with censored sample sizes ci (i = 1, 2) and number of ob-
served system failures L between the last observed failures for two systems.

Parameters Number of Permutations

L M1 − r1 = M2 − r2 Nc Nr

L = 0

2 10 3

4 126 3

6 1716 3

8 24310 3

10 352716 3

L = 1

2 15 4

4 210 4

6 3003 4

8 43758 4

10 646646 4

L = 2

2 21 5

4 330 5

6 5005 5

8 75582 5

10 1144066 5

L = 3

2 28 6

4 495 6

6 8008 6

8 125970 6

10 1961256 6

L = 4

2 36 7

4 715 7

6 12376 7

8 203490 7

10 3268760 7
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3.3. Null Distributions of the Test Statistics

In Section 3.2, we introduced different test statistics based on the statistics U , ZK ,

and ZA with the permutations of the Type-II censored observations. Since the theoretical

distributions of these statistics under the null hypothesis that FX1 = FX2 = FX cannot be

determined in general, and the null distributions do not depend on the underlying distribu-

tion FX , Monte Carlo simulation method can be used to approximate the null distributions.

Specifically, for specified values of M1, M2, r1(= [M1(1 − ρ1)]), r2(= [M2(1 − ρ2)]), n1

and n2, and system signatures s1 and s2, where ρ1 and ρ2 are the censoring proportions

for System 1 and System 2, respectively, and [a] is the integer part of a, we simulate

the ordered Type-II censored system lifetimes from System 1 and System 2 based on

component lifetime distribution FX .

To approximate the null distribution based on the Monte Carlo simulation method,

we use the standard exponential distribution (denoted as Exp(1)) with CDF FX(x) =

1− exp(−x), x > 0 as it is easy to simulate. For each simulated Type-II censored system

lifetimes data for System 1 and System 2, we compute the test statistics in Eqs. (3.6),

(3.7), and (3.8) and approximate the null distribution using 200, 000 simulations.

For a specific level of significance α, based on the simulated null distributions, the crit-

ical values and the related probabilities for performing the test procedures based on test

statistics Umin, Umax, Umean, ZK,min, ZK,max, ZK,mean, ZA,min, ZK,max, and ZA,mean. Since the

test statistics considered here depend on ordering the failures from System 1 and System

2 and the number of possible orderings is finite, the test statistics can take on a limited

number of values. Therefore, to control the significance level of α, we consider using

a randomization procedure. In Table 3.4, we present the critical values and the related

randomization probabilities for the test procedures based on test statistics ZK,min, ZK,max,

ZK,mean, ZA,min, ZA,max, and ZK,mean with α = 0.05, system signatures s1 = (0, 2/3, 1/3)

(i.e., n1 = 3) and s2 = (1/4, 1/4, 1/2, 0) (i.e., n2 = 4), sample sizes M1 = M2 = 10, and
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censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4.

To illustrate the proposed test procedure with randomization, we use the test statistic

ZK,min with censoring proportions ρ1 = ρ2 = 0.1 as an example. For α = 0.05, the critical

value, denoted as Cmin
ZK

, is 8.0230 from Table 3.4, which means that we reject the null

hypothesis in Eq. (2.1) when the test statistic ZK,min is greater than or equal to 8.0230.

However, the type-I error rate (significance level) will be

Pr(ZK,min ≥ 8.0230|H0) = Pr(ZK,min > 8.0230|H0) + Pr(ZK,min = 8.0230|H0)

= 0.047420 + 0.005650 = 0.05307,

which is greater than the nominal level α = 0.05. To control the type-I error rate at α = 0.05,

we use a randomization procedure in which we generate a Bernoulli random variate with

the probability of success equal to q to determine if the null hypothesis is rejected when

ZK,min = Cmin
ZK

, where q can be obtained as

q =
0.05− Pr(ZK,min > Cmin

ZK
|H0)

Pr(ZK,min = Cmin
ZK

|H0)
=

0.05− Pr(ZK,min > 8.0230)

Pr(ZK,min = 8.0230|H0)

=
0.05− 0.047420

0.005650
= 0.4566372.

Since the null hypothesis in Eq. (2.1) is rejected if the Man-Whitney U test is too large

or too small, we have two critical values for a specific significance level. Similar to the

scenario in ZK and ZA, the null distributions of the minimum, maximum, and mean of U

take a limited number of possible values, especially when the sample sizes M1 and M2
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Table 3.4: Simulated critical values and the related randomization probabilities for the test
procedures based on test statistics ZK,min, ZK,max, ZK,mean, ZA,min, ZA,max, and ZA,mean with
system signatures s1 = (0, 2/3, 1/3) (i.e., n1 = 3) and s2 = (1/4, 1/4, 1/2, 0) (i.e., n2 = 4),
sample sizes M1 = M2 = 10, and censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4.

Proportions

Percentile
ZK,min ZK,max ZK,mean

Cmin
ZK

Pr(ZK,min = Cmin
ZK

) Pr(ZK,min > Cmin
ZK

) Cmax
ZK

Pr(ZK,max = Cmax
ZK

) Pr(ZK,max > Cmax
ZK

) Cmean
ZK

Pr(ZK,mean = Cmean
ZK

) Pr(ZK,mean > Cmean
ZK

)

ρ1 = ρ2 = 0.1 8.0230 0.005650 0.047420 10.9108 0.019190 0.042410 8.2597 0.000495 0.049970

ρ1 = ρ2 = 0.2 7.2234 0.006595 0.046325 13.5924 0.023015 0.039850 8.7972 0.016575 0.038005

ρ1 = ρ2 = 0.3 7.0348 0.006415 0.044780 16.5391 0.024670 0.030685 10.8558 0.013370 0.045180

ρ1 = ρ2 = 0.4 6.5068 0.046660 0.027495 20.8607 0.046660 0.012035 11.2753 0.003505 0.049380

Proportions

Percentile
ZA,min ZA,max ZA,mean

Cmin
ZA

Pr(ZA,min = Cmin
ZA

) Pr(ZA,min > Cmin
ZA

) Cmax
ZA

Pr(ZA,max = Cmax
ZA

) Pr(ZA,max > Cmax
ZA

) Cmean
ZA

Pr(ZA,mean = Cmean
ZA

) Pr(ZA,mean > Cmean
ZA

)

ρ1 = ρ2 = 0.1 11.7583 0.000010 0.049995 16.1745 0.000020 0.049985 13.5612 0.000010 0.049995

ρ1 = ρ2 = 0.2 11.0522 0.000270 0.049950 19.2596 0.000010 0.049995 14.7029 0.000100 0.049970

ρ1 = ρ2 = 0.3 10.9364 0.000225 0.049815 22.7476 0.000110 0.049955 16.0579 0.017285 0.047135

ρ1 = ρ2 = 0.4 11.5465 0.000180 0.049865 26.9272 0.046660 0.029530 17.7945 0.000235 0.049820

are small. As a result, the lower and upper critical values may not accurately provide a test

procedure with significance level α. Therefore, a randomization procedure can be used to

adjust the actual significance level. In Table 3.5, we present the upper and lower critical

values and the randomization probabilities for the test procedures based on test statistics

Umin, Umax, and Umean, with α = 0.05, system signatures s1 = (0, 2/3, 1/3) (i.e., n1 = 3)

and s2 = (1/4, 1/4, 1/2, 0) (i.e., n2 = 4), sample sizes M1 = M2 = 10, and censoring

proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4.

From Table 3.5, for α = 0.05 and ρ1 = ρ2 = 0.1, the upper and lower critical values

of Umin are Cmin
U1

= 10 and Cmin
U2

= 60, respectively. Since the null hypothesis should be

rejected when Umin is too large or too small, we consider the probabilities

Pr(Umin ≤ 10|H0) = Pr(Umin = 10|H0) + Pr(Umin < 10|H0)

= 0.006055 + 0.020545 = 0.0266,

Pr(Umin ≥ 60|H0) = Pr(Umin = 60|H0) + Pr(Umin > 60|H0)

= 0.00440 + 0.023935 = 0.028335.
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Table 3.5: Simulated upper and lower critical values and the related randomization prob-
abilities for the test procedures based on test statistics Umax, Umin, and Umean with system
signatures s1 = (0, 2/3, 1/3) (i.e., n1 = 3) and s2 = (1/4, 1/4, 1/2, 0) (i.e., n2 = 4), sample
sizes M1 = M2 = 10 and censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4.

Proportions

2.5% Percentile
Umin Umax Umean

Cmin
U1

Pr(Umin = Cmin
U1

) Pr(Umin < Cmin
U1

) Cmax
U1

Pr(Umax = Cmax
U1

) Pr(Umax < Cmax
U1

) Cmean
U1

Pr(Umean = Cmean
U1

) Pr(Umean < Cmean
U1

)

ρ1 = ρ2 = 0.1 10 0.006055 0.020545 17 0.007130 0.019765 14 0.003800 0.024535

ρ1 = ρ2 = 0.2 7 0.005710 0.021660 24 0.011265 0.023715 15.2 0.002915 0.024455

ρ1 = ρ2 = 0.3 4 0.011615 0.017285 31 0.011615 0.017285 15.3 0.011615 0.017285

ρ1 = ρ2 = 0.4 0 0.046660 0 40 0.046660 0 15.5 0.046660 0

Proportions

97.5% Percentile
Umin Umax Umean

Cmin
U2

Pr(Umin = Cmin
U2

) Pr(Umin > Cmin
U2

) Cmax
U2

Pr(Umax = Cmax
U2

) Pr(Umax > Cmax
U2

) Cmean
U2

Pr(Umean = Cmean
U2

) Pr(Umean > Cmean
U2

)

ρ1 = ρ2 = 0.1 60 0.004440 0.023935 63 0.004125 0.023965 62 0.002615 0.022670

ρ1 = ρ2 = 0.2 58 0.004495 0.022070 66 0.004020 0.024755 62.6 0.001180 0.023865

ρ1 = ρ2 = 0.3 54 0.006055 0.023615 71 0.003150 0.023325 64 0.001675 0.024225

ρ1 = ρ2 = 0.4 49 0.007350 0.024395 76 0.003705 0.023110 66 0.001315 0.023995

These probabilities show that rejecting the null hypothesis when Umin ≤ Cmin
U1

= 10 and

Umin ≥ Cmin
U2

= 60 will result in a significance level larger than the 5% level. To maintain

a Type-I error rate of α = 0.025 for each side of the test, a randomization procedure is

employed. This involves generating a Bernoulli random variate with probability of success

equal to q1 and q2 to determine whether the null hypothesis is rejected when the observed

test statistics Umin = Cmin
U1

and Umin = Cmin
U2

, respectively. Based on the probabilities

provided in Table 3.5, the values of q1 and q2 for this example can be obtained as

q1 =
0.025− Pr(Umin < Cmin

U1
|H0)

Pr(Umin = Cmin
U1

|H0)
=

0.025− Pr(Umin < 10|H0)

Pr(Umin = 10|H0)

=
0.025− 0.020545

0.006055
= 0.7357556.

q2 =
0.025− Pr(Umin > Cmin

U2
|H0)

Pr(Umin = Cmin
U2

|H0)
=

0.025− Pr(Umin > 60|H0)

Pr(Umin = 60|H0)

=
0.025− 0.023935

0.004440
= 0.2398649.
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Since the simulated critical values and the related probabilities for the randomization

procedure depends on the values of n1, n2, s1, s2, M1, M2, r1, r2, and α, instead of pro-

viding the extensive tables for some particular settings, we provide the computer program

written in R (R Core Team, 2022) to simulate the critical values and the related probabili-

ties under the null hypothesis for the nine test statistics.

3.4. Practical Example

To illustrate the testing procedures proposed in Section 3.2, we apply these proce-

dures to test the homogeneity of component lifetime distributions based on a system

lifetime data set from Yang et al. (2016) and Frenkel and Khvatskin (2006). In this data

set, the phosphor acid filter system is a consecutive 2-out-of-n system that fails when two

adjacent components fail. We consider that System 1 is a consecutive 2-out-of-8 (n1 = 8)

system with signature s1 = (0, 1/4, 11/28, 2/7, 1/14, 0, 0, 0) and System 2 is a 4-component

system (i.e., n2 = 4) with signature s2 = (1/4, 1/4, 1/2, 0), and the component lifetimes for

System 1 follow a Birnbaum-Saunders distribution (Birnbaum and Saunders, 1969) with

CDF

FX(t; a, b) = Φ

{
1

a

[(
t

b

)1/2

−
(
b

t

)1/2
]}

, t > 0,

where the shape parameter is a = 1 and scale parameter b = 1 and the component

lifetimes for System 2 follow a Weibull distribution with scale parameter λ = 3 and shape

parameter γ = 2 (with PDF presented in Eq. (1.4)). The complete system lifetime data

with sample sizes M1 = M2 = 20 for both systems are presented in Table 3.6.
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Table 3.6: Simulated lifetime data from System 1 and System 2 with M1 = M2 = 20

j 1 2 3 4 5 6 7 8 9 10

T1,(j) 0.2598 0.2803 0.3329 0.4172 0.4532 0.459 0.5541 0.5769 0.5842 0.7784

T2,(j) 0.5890 0.6423 0.7774 0.9879 1.0754 1.1200 1.1685 1.2410 1.2412 1.2642

j 11 12 13 14 15 16 17 18 19 20

T1,(j) 0.7917 0.8565 0.8895 0.9186 0.9348 1.1130 1.2049 1.3938 1.4406 1.6351

T2,(j) 1.4164 1.4401 1.4924 1.5415 1.6912 2.0695 2.4374 2.5627 2.6197 2.7791

For illustrative purposes, we consider several Type-II censored data with different cen-

soring proportions ρ1 = ρ2 = 0.1, 0.3, and 0.5. For instance, when ρ1 = ρ2 = 0.5, the

observed data from System 1 is T1 = (T1,(1), · · · , T2,(10)) and the observed data from Sys-

tem 2 is T2 = (T2,(1), · · · , T2,(10)) the remaining ten lifetimes from System 1 and System 2

are right-censored. To visualize the lifetime data for this example, we plot the Kaplan-

Meier survival functions for System 1 and System 2 when censoring proportions are

ρ1 = ρ2 = 0.5 in Figure 3.3.
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Figure 3.3: Kaplan-Meier survival functions for System 1 and System 2 with the data
presented in Table 3.6 when censoring proportions are ρ1 = ρ2 = 0.5.
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For the data set presented in Table 3.6, when ρ1 = ρ2 = 0.5, the experiment for System

1 ended at T1,(10) = 0.7784 and the experiment for System 2 ended at T2,(10) = 1.2642, and

there are L = 6 failures from System 2 in between T1,(10) = 0.7784 and T2,(10) = 1.2642.

Therefore, according to Proposition 3.2, there are Nr = L + 3 = 9 permutations under

the restriction on the censoring observations. In contrast to the number of permutations

Nc = 8436285, we only need to compute the test statistics under 9 permutations. Based

on the the Type-II censored data with censoring proportions ρ1 = ρ2 = 0.1, 0.3, and 0.5,

we compute the test statistics Umin, Umax, Umean, ZK,min, ZK,max, ZK,mean, ZA,min, ZK,max,

and ZA,mean under the restriction on the censoring observations discussed in Section 3.2

and the values of the test statistics are presented in Table 3.7.

Table 3.7: The proposed test statistics for Type-II censored data obtained from the data
set in Table 3.6

Censoring Proportions ZK,min ZK,max ZK,mean ZA,min ZA,max ZA,mean Umin Umax Umean

ρ1 = ρ2 = 0.1 13.5608 13.5608 13.5608 21.3711 26.2878 22.6879 320 340 330.8

ρ1 = ρ2 = 0.3 13.5608 24.2200 15.9444 20.0818 35.2745 25.6503 265 367 328.7

ρ1 = ρ2 = 0.5 13.5608 30.8581 18.0847 19.9003 44.7490 27.5182 197 367 317

To test the hypotheses in Eq. (2.1) based on the observed test statistics in Table 3.6,

we simulate the null distributions for ZK,min, ZK,max, ZK,mean, ZA,min, ZA,max, ZA,mean, Umin,

Umax, and Umean with 200, 000 Monte Carlo simulations. Since the randomization procedure

is not needed for this example, we only present the simulated critical values at 5% level

of significance for the test procedures based on ZK,min, ZK,max, ZK,mean, ZA,min, ZA,max,

ZA,mean, Umin, Umax, and Umean in Table 3.8.

By comparing the observed values of the test statistics in Table 3.7 to the critical

values presented in Table 3.8, we determine that the null hypothesis is rejected at 0.05

significance level for all the proposed test procedures under the censoring proportions 0.1,

0.3, and 0.5. These results agree with our expectation since the component lifetimes in

System 1 follow a Birnbaum-Saunders distribution, and the component lifetimes in System
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Table 3.8: Simulated critical values for the test statistics with sample size M1 = M2 = 20,
r1 = M1(1 − ρ1), r2 = M2(1 − ρ2), n1 = 8, s1 = (0, 1/4, 11/28, 2/7, 1/14, 0, 0, 0), n2 = 4,
s2 = (1/4, 1/4, 1/2, 0), and significance level α = 5%.

Test Statistics

Censoring proportion ZK,min ZK,max ZK,mean ZA,min ZA,max ZA,mean

ρ1 = ρ2 = 0.1 8.1751 13.0109 9.3828 11.8865 17.2713 13.7522

ρ1 = ρ2 = 0.3 7.9638 23.5806 16.4214 11.6480 28.4890 19.3265

ρ1 = ρ2 = 0.5 7.2502 38.5601 29.1758 12.7950 44.6873 32.9071

Lower critical values Upper critical values

Test Statistics

Censoring proportion Umin Umax Umean Umin Umax Umean

ρ1 = ρ2 = 0.1 166 174 170.5 298 321 310.8

ρ1 = ρ2 = 0.3 139 187 159 249 339 305.5

ρ1 = ρ2 = 0.5 79 221 119.9 187 360 308

2 follow a Weibull distribution.

3.5. Monte-Carlo Simulation Study

In this section, we use a Monte Carlo simulation study to assess the effectiveness

and power performance of the nonparametric test procedures described in Section 3.2

for testing the hypotheses in Eq. (2.1). The simulation settings, including the system

structures and the underlying distributions of the component lifetimes, are described in

Section 3.5.1. The simulation results and discussions are provided in Section 3.5.2.

3.5.1. Simulation settings
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In the simulation study, we consider the following system signatures described in

Navarro et al. (2007) for System 1 and System 2:

[S1] System 1: 3 components system with system signature s1 = (0, 2/3, 1/3);

System 2: 4 components system with system signature s2 = (1/4, 1/4, 1/2, 0).

[S2] System 1: 3 components system with system signature s1 = (0, 2/3, 1/3);

System 2: 4 components system with system signature s2 = (0, 1/2, 1/4, 1/4).

To compare the power of hypothesis testing, we fix the parameter settings of the un-

derlying component distribution for the components in System 1 and vary the parameter

settings of the underlying component distribution for the components in System 2. The

following distribution settings are used to generate the system lifetime data for System 1

and System 2:

[D1] Exponential distributions with variations in the scale parameter:

System 1: Exp(θ1) with θ1 = 1 (i.e., ln θ1 = 0);

System 2: Exp(θ2) with ln θ2 varies from −1.6 to 1.6 in increments of 0.1. (denoted

by −1.6 (0.1) 1.6);

[D2] Gamma distributions with variations in the shape parameter:

System 1: Gamma(α1, β1) with α1 = 5 and β1 = 2;

System 2: Gamma(α2, β2) with α2 varies from 3 to 7 in increments of 0.2 (denoted

by 3 (0.2) 7) and β2 = 2;

[D3] Gamma distributions with variations in the rate parameter:

System 1: Gamma(α1, β1) with α1 = 5 and β1 = 2;

System 2: Gamma(α2, β2) with α2 = 5 and β2 varies from 1 to 3 in increments of 0.1

(denoted by 1 (0.1) 3);

[D4] Weibull distributions with variations in the scale parameter:
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System 1: Weibull(λ1, γ1) with λ1 = 2.5 and γ1 = 5;

System 2: Weibull(λ2, γ2) with λ2 varies from 1.5 to 3.5 in increments of 0.1 (denoted

by 1.5 (0.1) 3.5) and γ2 = 5;

[D5] Lognormal distributions with variations in the standard deviation on the log-scale,

which corresponds to changes in the shape parameter.:

System 1: Lognormal(µ1, σ1) with µ1 = 0 and σ1 = 1;

System 2: Lognormal(µ2, σ2) with σ2 = 1 and µ2 varies from −1.6 to 1.6 in increments

of 0.1 (denoted by −1.6 (0.1) 1.6).

For the simulation study, we fix the significance level α = 0.05. Different sample sizes

M1 = M2 = 10, 20, and 30, and censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4

are considered. The estimated the rejection rates under various settings (i.e., different

combinations of [S1] and [S2] with [D1]–[D5]) are obtained based on 5, 000 simulations.

We also consider the test procedures based on complete system lifetime data (i.e., ri =

Mi, i = 1, 2) as a benchmark for the power comparisons. For the sake of simplicity, we

only present the simulated power curves for test statistic ZA based on complete system

lifetime data as ZA is more powerful compared to ZK and U in most cases.

3.5.2. Results and Discussions

After simulating the rejection rate of the test procedures based on the nine statistics,

Umin, Umax, Umean, ZK,min, ZK,max, ZK,mean, ZA,min, ZA,max and ZA,mean under the settings

described in Section 3.5.1, we summarize the results by plotting the simulated power

curves of these nice proposed test procedures. These simulated power curves are aim

to provide a clear and concise way of visualizing the performance of each test procedure

in detecting the hypothesized effect sizes under varying conditions. These simulated

power curves are centered at the rejection rates obtained under the null hypothesis that

FX1 = FX2, which are expected to be close to the nominal significance level α = 5%. As

the differences between the parameters in the underlying component lifetime distributions
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for components in System 1 and System 2 increase (i.e., the simulated power curves

moving away from the center), we anticipate that the simulated power values will increase.

Based on our preliminary observations, the performance of the proposed test proce-

dures are similar for different sample sizes M1 and M2. For the sake of saving spaces,

we present the simulated power curves for five different underlying distribution settings

[D1]–[D5], with system structures [S1] and [S2], for sample sizes of M1 = M2 = 20 in

Figures 3.4–3.13. For the simulated power curves for sample sizes M1 = M2 = 10 and 30

are presented in Figure B.1–B.19 in Appendix.

In addition to the power values, we also consider the computation times required to

compute the test statistic. In Table 3.9, we present the total computation time for the test

statistics based on ZK , ZA, and U for 5, 000 simulations when the underlying distributions

Exp(1) and Exp(θ2), where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1] with system structures [S1].)

From Table 3.9, we observe that the computation time for the test procedures based on

the U statistic is at least 90% lower than the computation time for the test procedures

based on ZA and ZK , while the computation time for the test procedures based on ZA is

similar to that for those based on ZK .

Table 3.9: Total computation time (in minutes) for the test statistics based on ZK , ZA, and
U for 5000 simulations for different settings

Settings ZK,min, ZK,max, ZK,mean ZA,min, ZA,max, ZA,mean Umin, Umax, Umean

ρ1 = ρ2 = 0.1, M1 = M2 = 10 75.68 75.73 6.08

ρ1 = ρ2 = 0.2, M1 = M2 = 20 195.6 196.8 11.02

ρ1 = ρ2 = 0.4, M1 = M2 = 20 174.30 174.61 11.42
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Figure 3.4: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0)), sample
sizes M1 = M2 = 20, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the
underlying distributions are Exp(1) and Exp(θ2), where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1]
with system structures [S1]).
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Figure 3.5: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
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Figure 3.6: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
sizes M1 = M2 = 20, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the
underlying distributions are Gamma(5, 2) for System 1 and Gamma(5, β2) for System 2,
where β2 = 1 (0.1) 3 (i.e., [D3] with system structures [S1]).
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Figure 3.7: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
sizes M1 = M2 = 20, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the
underlying distributions are Weibull(2.5, 5) for System 1 and Weibull(λ2, 5) for System 2,
where λ2 = 1.5 (0.1) 3.5 (i.e., [D4] with system structures [S1]).
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Figure 3.8: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
sizes M1 = M2 = 20, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the un-
derlying distributions are Lognormal(0, 1) for System 1 and Lognormal(µ2, 1) for System
2, where µ2 = −1.6 (0.1) 1.6 (i.e., [D5] with system structures [S1]).
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Figure 3.9: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4), sample
sizes M1 = M2 = 20, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the
underlying distributions distributions are Exp(1) for System 1 and Exp(θ2) for System 2,
where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1] with system structures [S2]).
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Figure 3.10: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4), sample
sizes M1 = M2 = 20, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the
underlying distributions Gamma(5, 2) for System 1 and Gamma(α2, 2) for System 2, where
α2 = 3 (0.2) 7 (i.e., [D2] with system structures [S2]).
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Figure 3.11: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4), sample
sizes M1 = M2 = 20, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the
underlying distributions Gamma(5, 2) for System 1 and Gamma(5, β2) for System 2 where
β2 = 1 (0.1) 3 (i.e., [D3] with system structures [S2]).
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Figure 3.12: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4), sample
sizes M1 = M2 = 20, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the un-
derlying distributions Weibull(2.5, 5) for System 1 and Weibull(λ2, 5) for System 2, where
λ2 = 1.5 (0.1) 3.5 (i.e., [D4] with system structures [S2]).
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Figure 3.13: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4), sample
sizes M1 = M2 = 20, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the
underlying distributions Lognormal(0, 1) for System 1 and Lognormal(µ2, 1) for System 2,
where µ2=-1.6 (0.1) 1.6 (i.e., [D5] with system structures [S2]).
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From the simulation results, we observe that the proposed test procedures for test-

ing the homogeneity of component lifetime distributions based on Type-II censored data

provide reasonable power values across all the settings considered here. As was fore-

seeable, we observe an increase in the power values for all the proposed test procedures

as the sample sizes M1 and M2 increase. We also observe a decrease in the power

values for all the proposed test procedures when the censoring proportions increase. In-

terestingly, no single test procedure consistently outperforms all the other test procedures

under all the settings considered in this simulation study.

The simulation results demonstrate that our proposed procedures for Type-II censored

data yield comparable power values to the test procedure ZA based on complete system

lifetime data. When the censoring proportion is small (say, ρ1 = ρ2 = 0.1 or 0.2), the

power values based on Type-II censored data are similar to those based on complete

system lifetime data. As censoring proportions increase (say, ρ1 = ρ2 = 0.3 or 0.4), as we

expected, the power values based on complete system lifetime data are larger than those

based on the censored system lifetime data.

To study the performance of the proposed test procedures for Type-II censored sys-

tem lifetime data, first, we compare the power performance of the statistics by taking the

minimum, maximum, and mean of the statistics U , ZK , and ZA for all the restricted per-

mutations. When we compare the simulated power curves by taking the upper bound of

the Monte Carlo error,
√

0.5(1− 0.5)/5000 = 0.007, into account, we have the following

observations:

• In comparing ZK,min, ZK,max, and ZK,mean (indicated by black lines in the figures), we

observe that ZK,max outperforms ZK,min and ZK,mean in most cases. It is noteworthy

that the test procedure based on ZK,min may not be appropriate in some cases when

the censoring proportions are ρ1 = ρ2 = 0.3 and 0.4 (see, for example, Figure 3.9

and Figure B.18 in Appendix) since there are limited values of Zk for the restricted

permutations and the distribution of Zk,min is highly discrete.
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• In comparing ZA,min, ZA,max, and ZA,mean (indicated by red lines in the figures), we

observe that the test statistic ZA,min has worse power performance than ZA,max and

ZA,mean in most cases.

• In comparing Umin, Umax, and Umean (indicated by green lines in the figures), we

observe that the test statistic Umin has better power performance than Umax and

Umean in most cases.

In comparing all the nine proposed test statistics, we compare the power performance

under (i) the mean lifetime of components in System 1 is smaller than the mean lifetime of

components in System 2; and (ii) the mean lifetime of components in System 2 is smaller

than the mean lifetime of components in System 1. Based on the simulation results, we

have the following observations:

• For changes in the shape parameter (i.e., distribution settings [D2] and [D5]): (i)

Umin has the best power performance on the left-hand side of the power curve in

general; and (ii) ZA,mean has the best power performance on the right-hand side of

the power curve (see, for example, Figures 3.5 and 3.8);

• For changes in the scale parameter (i.e., distribution settings [D1], [D3] and [D4]):

(i) Umin has the best power performance on the left-hand side of the power curve in

general; and (ii) ZA,mean has the best power performance on the right-hand side of

the power curve (see, for example, Figures 3.4 and 3.7).

When the sample sizes are large (M1 = M2 = 30), the tests based on U generally

exhibit better performance, or are among the tests with better performance, across all

censoring proportions considered as shown in Figures B.6-B.10.

Overall, among the nine test statistics proposed in this chapter, we observe that the

power performance of ZA,max and Umin are satisfactory compared to all the other test

statistics in most of the scenarios considered in the Monte Carlo simulation study. If we
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take into account the computation time requires to compute the test statistics, it is more

advisable to use Umin as the computation time for Umin is significantly shorter than ZA,max.

3.6. Concluding Remarks

In this manuscript, we proposed different nonparametric statistical testing procedures

for testing the homogeneity of component lifetime distributions based on Type-II censored

system-level data with known structures, which is a practical scenario in life testing pro-

cedures involving systems. The empirical likelihood ratio statistics and Mann-Whitney U

statistic developed for testing the homogeneity of component lifetime distributions based

on complete system-level data are considered. The proposed test procedures are based

on the permutations of the unobserved censored system lifetimes, which can be con-

sidered a generalization of the test procedures based on complete system-level data.

In order to reduce the number of permutations required in the computation of test proce-

dures, we propose a permutation method with a restriction on the equality of the censored

system lifetimes. We provide the computational approach using the Monte Carlo method

to approximate the null distributions of the test statistics.

The proposed test procedures were compared using a Monte Carlo simulation study.

The simulation results indicate that the power performance of the proposed test proce-

dures for Type-II censored data is comparable to the test procedure based on complete

system lifetime data. Based on the simulation results, we recommend the test proce-

dure based on the maximum of the empirical likelihood ratio statistic (i.e., ZA,max) and the

minimum of the Mann-Whitney U statistic (i.e., Umin). However, if computation time is con-

sidered, Umin is preferred. The computer programs written in R (R Core Team, 2022) for

executing the test procedures presented in this manuscript are available from the authors

upon request.

As a potential direction for future research, extending the test procedures to handle
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progressive Type-II censored system-level data would be valuable. Additionally, while

our work assumes known system structures, this may be unrealistic when the systems

of interest are black boxes and complete information about their structures is unavail-

able. Therefore, developing test procedures for the homogeneity of component lifetime

distributions when the system structures are unknown would be a valuable and relevant

contribution to practical applications.
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CHAPTER 4

Concluding Remarks and Future Research Directions

4.1. Summaries and Concluding Remarks

In this thesis, we developed and studied statistical hypothesis testing procedures for

testing the homogeneity of component lifetime distributions based on system lifetimes

from multiple data sources. Testing the homogeneity of component lifetime distributions

based on system lifetimes is of practical interest in identifying the most reliable component

supplier based on system lifetime data, determining if the performance of the is different

in different systems, or the actual performance of the components in a system is different

from that obtained when the components are out of the system. Several distribution-free

hypothesis testing procedures for testing the homogeneity of component lifetime distri-

butions based on complete and Type-II censored system lifetime data are proposed by

assuming known system structures.

4.1.1. Summary of Chapter 2

In Chapter 2, we studied the problem of testing the homogeneity of component life-

time distributions based on system-level data, which can be applied to many practical

situations in life testing procedures involving systems with known structures. We showed

that those existing parametric test procedures might suffer from the inflation of Type-I

error rates when the underlying probability distributions of the component lifetimes are

misspecified. To address this issue, we focus on developing nonparametric statistical test

91



procedures for the homogeneity of component lifetime distributions based on system-level

data. We proposed two empirical likelihood ratio tests based on the empirical likelihood

ratio and the nonparametric estimation of component lifetime distributions. We provided

the computational algorithms for obtaining the null distributions of the test statistics using

the Monte Carlo method. Our simulation results show that the proposed nonparametric

procedures provide comparative power values with those existing tests. These proposed

test procedures have advantages in power performance when the two systems are very

different.

4.1.2. Summary of Chapter 3

As described in Chapter 2, researchers are interested in testing the equality of com-

ponent lifetime distributions based on various system settings. However, in the process

of collecting system lifetime data, it is possible that complete information on the time to

failure of the systems may not be available due to cost and time constraints. Censoring

is often adopted to reduce the length and expenses of a life-testing experiment or lifetime

data collection process.

Based on Type-II censored system-level data with known structures, we proposed

different nonparametric statistical testing procedures for testing the homogeneity of com-

ponent lifetime distributions. The empirical likelihood ratio statistics and Mann-Whitney U

statistic developed for testing the homogeneity of component lifetime distributions based

on complete system-level data are considered. The proposed test procedures are based

on the permutations of the unobserved censored system lifetimes, which can be con-

sidered a generalization of the test procedures based on complete system-level data.

In order to reduce the number of permutations required in the computation of test proce-

dures, we propose a permutation method with a restriction on the equality of the censored

system lifetimes. We provide the computational approach using the Monte Carlo method

to approximate the null distributions of the test statistics.
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The proposed test procedures were compared using a Monte Carlo simulation study.

The simulation results demonstrate that the proposed nonparametric procedures have

reasonable power values. We recommend the test procedure based on the minimum of

the Mann-Whitney U statistic (i.e., Umin).

4.2. Future Research Directions

In this thesis, we proposed using empirical likelihood ratio statistics for assessing the

homogeneity of component lifetime distributions using complete and Type-II censored

system-level data. For future research on this topic, the following research directions can

be explored.

4.2.1. Extensions to Other Censoring Schemes

This dissertation exclusively focuses on complete and Type-II censored system life-

time data. There are other kinds of censoring schemes such as Type-I censoring and

progressive Type-II censoring, have been used for life-testing experiments.

For Type-I censoring, the life-testing experiments for System 1 and System 2 are ter-

minated at a prefixed time C. In this situation, the numbers of observed system failures

from System 1 and System 2 are random variables while the time for the experiments is

prefixed. The test procedures developed for Type-II censored system lifetime data may

not be suitable for Type-I censored system lifetime data because there is a positive prob-

ability that there are no observed system failures under the Type-I censoring scheme,

especially when the two systems are very different (e.g., series system against paral-

lel systems). For this reason, suitable adjustments of the test procedures developed for

Type-II censored data are needed.
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For the progressive Type-II censoring scheme, which is a generalization of Type-II

censoring, an experiment is conducted with n units placed on a lifetime testing. At the

time of the first failure, R1 units are randomly removed from the remaining n-1 surviving

units. At the time of the second failure, R2 units are randomly removed from the remaining

n − 2 − R1 units, and so on until the m-th failure. At this point, all remaining units (Rm =

n −m − R1 − R2 − ... − Rm−1) are removed. The values of Ri are predetermined before

the study and remain fixed throughout. Note that the complete sample and Type-II right

censored sample are special cases of the progressive Type-II censored sample.

Based on the progressive Type-II censored system lifetime data from System 1 and

System 2, we are interested in testing the homogeneity of the component lifetime distri-

butions. Kaplan-Meier estimate of survival function can be applied to progressive Type-II

right-censored data. The following steps can be used to estimate the survival function

of the component lifetime using Kaplan-Meier estimation for progressive Type-II right-

censored data:

• Order the observed failure times of System i (i = 1, 2) with progressive Type-II

censoring scheme (Ri1, Ri2, . . . , Riri) in ascending order, and denote them by Ti =

(Ti1 < Ti2 < . . . < Tiri). For j = 1, 2, . . . , ri, define dij as the number of failures

at time Tij, and nij as the number of units at risk just before time Tij. At time Ti1,

ni1 = ni, and at subsequent times, nij = ni,j−1 − di,j−1 −Ri,j−1.

• Compute the Kaplan-Meier product limit estimator of the survival function as follows:

Si(t) =
∏

j:Tij≤t

(
1− dij

nij

)(1−Rij)

where the product is taken over all failure times Tij such that Tij ≤ t, and the expo-

nents (1−Rij) account for the progressive Type-II right-censoring scheme.

• To analyze the reliability of a system with signature si, we calculate the reliability

polynomial hi(p), as defined in Eq. (1.2). We can obtain the estimated survival
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function of the components, denoted by p̂i(t) = h−1
i (Si(t)). Using these component

survival functions and censored system data, we can then construct the likelihood

function for both systems.

According to Hall et al. (2015), the empirical likelihood function for System i based on

progressive Type-II censored sample for System i, Ti = (Ti1, . . . , Tiri) (i = 1, 2), can be

expressed as

LTi
(t) =

(
Mi

Yi(t)

)
hi(p̂i(t))

Yi(t)[1− hi(p̂i(t))]
Mi−Yi(t),

where Yi(t) =
∑Mi

j=1 I(t,∞)(Tij), i = 1, 2, and I(t,∞)(Tij) is an indicator function defined as

IA(b) =


1, if b ∈ A,

0, otherwise.

Here, Mi is the total number of systems (including both observed failures and censored

systems) for System i, Yi(t) counts the number of systems for System i that have failed

by time t, and p̂i(t) is the estimated survival function of System i based on the reliability

polynomial hi(p).

When we have progressive Type-II censored system lifetime data, a similar idea of

going through all the permutations of the censored system lifetimes proposed in Chapter

3 can be considered. However, considering all the required permutations for progressive

Type-II censoring is more complicated than conventional Type-II censored data, and it

needs to be executed with great care.
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4.2.2. Extension to Situations with Unknown System Structures

In this dissertation, we assumed that the system structures are known for complete

and Type-II censored system lifetime data. However, this assumption may not be realistic

in some situations, especially when the systems of interest are black boxes. Therefore,

it would be interesting to develop test procedures for the homogeneity problem without

complete information about the system structure.

It is necessary to estimate the system signatures from the available data to handle

the nonparametric estimation of the component lifetime distributions when the system

structures are unknown. Jin et al. (2017) assumed that auxiliary data in the form of a

variable K, representing the number of failed components at the time of system failure,

is available in addition to the system lifetime data. The information on the variable K

is typically obtained from a subsequent autopsy of a failed system. The data (T1, K1),

(T2, K2), . . . , (TN , KN) can be used to estimate the reliability polynomial h, which is calcu-

lated using system signatures as described in Eq. (1.2). Based on the work by Jin et al.

(2017), we can define the test statistics ZK , ZA, and U , and construct the simulated null

distributions for these statistics when the system structures of System 1 and System 2

are unknown.

4.2.3. Consider Other Test Statistics

In this dissertation, we consider testing the homogeneity of component lifetime dis-

tributions using system lifetime data based on two empirical likelihood ratio statistics,

namely ZK and ZA, originally proposed by Zhang (2006). Zhang (2006) also introduced

other test statistics based on the empirical likelihood ratio, including test statistics obtained

by employing a different weight function w(t) in the empirical likelihood ratio.

For future research, we can explore other test statistics beyond ZK and ZA by using
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different weight functions w(t) and examine the power performance of those test statis-

tics.
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APPENDIX A

APPENDIX of CHAPTER 2

Appendix A: Additional Simulation Results for Different Distributions and Settings
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Figure A.1: Simulated power curves of the parametric and nonparametric test for α1 = 5
and α2 = 3 (0.2) 7, β1 = β2 = 2 with M1 = M2 for gamma components from systems
s1 = (0, 0, 0, 1) and s2 = (1, 0, 0) (i.e., [D5] with system structures [S1]).
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Figure A.2: Simulated power curves of the parametric and nonparametric test for β1 = 2
and β2 = 1 (0.1) 3, α1 = α2 = 5 with M1 = M2 for gamma components from systems
s1 = (0, 0, 0, 1) and s2 = (1, 0, 0) (i.e., [D6] with system structures [S1]).
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Figure A.3: Simulated power curves of the parametric and nonparametric test for µ1 = 0
and µ2 = −1.6 (0.1) 1.6, σ1 = σ2 = 1 with M1 = M2 for lognormal components from
systems s1 = (0, 0, 0, 1) and s2 = (1, 0, 0) (i.e., [D7] with system structures [S1]).
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Figure A.4: Simulated power curves of the parametric and nonparametric test for ln θ1 = 0
and ln θ2 = −1.6 (0.1) 1.6 with M1 = M2 for exponential components from systems s1 =
(0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0) (i.e., [D1] with system structures [S2]).
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Figure A.5: Simulated power curves of the parametric and nonparametric test for γ1 = 1
and γ2 = 0.5 (0.1) 1.5, λ1 = λ2 = 1 with M1 = M2 for Weibull components from systems
s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0) (i.e., [D2] with system structures [S2]).
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Figure A.6: Simulated power curves of the parametric and nonparametric test for µ1 =
µ2 = 0, σ1 = 2 and σ2 = 1 (0.1) 3 with M1 = M2 for lognormal components from systems
s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0) (i.e., [D3] with system structures [S2]).
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Figure A.7: Simulated power curves of the parametric and nonparametric test for α1 = 5
and α2 = 3 (0.2) 7, β1 = β2 = 2 with M1 = M2 for gamma components from systems
s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0) (i.e., [D5] with system structures [S2]).
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Figure A.8: Simulated power curves of the parametric and nonparametric test for α1 =
α2 = 5, β1 = 2 and β2 = 1 (0.1) 3 with M1 = M2 for gamma components from systems
s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0) (i.e., [D6] with system structures [S2]).
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Figure A.9: Simulated power curves of the parametric and nonparametric test for µ1 = 0
and µ2 = −1.6 (0.1) 1.6, σ1 = σ2 = 1 with M1 = M2 for lognormal components from
systems s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0) (i.e., [D7] with system structures
[S2]).
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Figure A.10: Simulated power curves of the parametric and nonparametric test for ln θ1 =
0 and ln θ2 = −1.6 (0.1) 1.6 with M1 = M2 for exponential components from systems
s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4) (i.e., [D1] with system structures [S3]).
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Figure A.11: Simulated power curves of the parametric and nonparametric test for γ1 = 1
and γ2 = 0.5 (0.1) 1.5, λ1 = λ2 = 1 with M1 = M2 for Weibull components from systems
s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4) (i.e., [D2] with system structures [S3]).
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Figure A.12: Simulated power curves of the parametric and nonparametric test for µ1 =
µ2 = 0, σ1 = 2 and σ2 = 1 (0.1) 3 with M1 = M2 for lognormal components from systems
s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4) (i.e., [D3] with system structures [S3]).
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Figure A.13: Simulated power curves of the parametric and nonparametric test for α1 = 5
and α2 = 3 (0.2) 7, β1 = β2 = 2 with M1 = M2 for gamma components from systems
s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4) (i.e., [D5] with system structures [S3]).
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Figure A.14: Simulated power curves of the parametric and nonparametric test for α1 =
α2 = 5 and β1 = 2, β2 = 1 (0.1) 3 with M1 = M2 for gamma components from systems
s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4) (i.e., [D6] with system structures [S3]).
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Figure A.15: Simulated power curves of the parametric and nonparametric test for µ1 = 0
and µ2 = −1.6 (0.1) 1.6, σ1 = σ2 = 1 with M1 = M2 for lognormal components from
systems s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4) (i.e., [D7] with system structures
[S3]).
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APPENDIX B

APPENDIX of CHAPTER 3

Appendix B: Simulated Power Curves for Different Settings with Sample Sizes

M1 = M2 = 10 and 30 for Type-II Censored Lifetime Data
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Figure B.1: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
sizes M1 = M2 = 10, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the un-
derlying component lifetime distributions are Exp(1) for System 1 and Exp(θ2) for System
2, where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1] with system structures [S1]).
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Figure B.2: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
sizes M1 = M2 = 10, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the under-
lying component lifetime distributions are Gamma(5, 2) for System 1 and Gamma(α2, 2)
for System 2, where α2 = 3 (0.2) 7 (i.e., [D2] with system structures [S1]).
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Figure B.3: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
sizes M1 = M2 = 10, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the under-
lying component lifetime distributions are Gamma(5, 2) for System 1 and Gamma(5, β2)
for System 2, where β2 = 1 (0.1) 3 (i.e., [D3] with system structures [S1]).
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Figure B.4: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
sizes M1 = M2 = 10, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the
underlying distributions are Weibull(2.5, 5) for System 1 and Weibull(λ2, 5) for System 2,
where λ2 = 1.5 (0.1) 3.5 (i.e., [D4] with system structures [S1]).
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Figure B.5: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
sizes M1 = M2 = 10, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the un-
derlying distributions are Lognormal(0, 1) for System 1 and Lognormal(µ2, 1) for System
2, where µ2 = −1.6 (0.1) 1.6 (i.e., [D5] with system structures [S1]).
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Figure B.6: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
sizes M1 = M2 = 30, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the
underlying distributions distributions are Exp(1) for System 1 and Exp(θ2) for System 2,
where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1] with system structures [S1]).
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Figure B.7: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
sizes M1 = M2 = 30, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the
underlying distributions distributions are Gamma(5, 2) for System 1 and Gamma(α2, 2) for
System 2, where α2 = 3 (0.2) 7 (i.e., [D2] with system structures [S1]).
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Figure B.8: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
sizes M1 = M2 = 30, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the
underlying distributions distributions are Gamma(5, 2) for System 1 and Gamma(5, β2) for
System 2, where β2 = 1 (0.1) 3 (i.e., [D3] with system structures [S1]).
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Figure B.9: Simulated power curves for the proposed test procedures based on restricted
permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0), sample
sizes M1 = M2 = 30, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and the
underlying distributions distributions are Weibull(2.5, 5) for System 1 and Weibull(λ2, 5)
for System 2, where λ2 = 1.5 (0.1) 3.5 (i.e., [D4] with system structures [S1]).
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Figure B.10: Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (1/4, 1/4, 1/2, 0),
sample sizes M1 = M2 = 30, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and
0.4, and the underlying distributions distributions are Lognormal(0, 1) for System 1 and
Lognormal(µ2, 1) for System 2, where µ2 = −1.6 (0.1) 1.6 (i.e., [D5] with system struc-
tures [S1]). 124
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Figure B.11: Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4),
sample sizes M1 = M2 = 10, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and
the underlying distributions distributions are Exp(1) for System 1 and Exp(θ2) for System
2, where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1] with system structures [S2]).
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Figure B.12: Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4),
sample sizes M1 = M2 = 10, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and
the underlying distributions Gamma(5, 2) for System 1 and Gamma(α2, 2) for System 2,
where α2 = 3 (0.2) 7 (i.e., [D2] with system structures [S2]).
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Figure B.13: Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4),
sample sizes M1 = M2 = 10, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and
the underlying distributions Gamma(5, 2) for System 1 and Gamma(5, β2) for System 2
where β2 = 1 (0.1) 3 (i.e., [D3] with system structures [S2]).
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Figure B.14: Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4),
sample sizes M1 = M2 = 10, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and
the underlying distributions Weibull(2.5, 5) for System 1 and Weibull(λ2, 5) for System 2,
where λ2 = 1.5 (0.1) 3.5 (i.e., [D4] with system structures [S2]).
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Figure B.15: Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4),
sample sizes M1 = M2 = 10, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and
the underlying distributions Lognormal(0, 1) for System 1 and Lognormal(µ2, 1) for Sys-
tem 2, where µ2= −1.6 (0.1) 1.6 (i.e., [D5] with system structures [S2]).
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Figure B.16: Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4),
sample sizes M1 = M2 = 30, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and
the underlying distributions distributions are Exp(1) for System 1 and Exp(θ2) for System
2, where ln θ2 = −1.6 (0.1) 1.6 (i.e., [D1] with system structures [S2]).
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Figure B.17: Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4),
sample sizes M1 = M2 = 30, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and
the underlying distributions Gamma(5, 2) for System 1 and Gamma(α2, 2) for System 2,
where α2 = 3 (0.2) 7. (i.e., [D2] with system structures [S2]).
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Figure B.18: Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4),
sample sizes M1 = M2 = 30, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and
the underlying distributions Gamma(5, 2) for System 1 and Gamma(5, β2) for System 2
where β2 = 1 (0.1) 3 (i.e., [D3] with system structures [S2]).
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Figure B.19: Simulated power curves for the proposed test procedures based on re-
stricted permutations with system signatures s1 = (0, 2/3, 1/3) and s2 = (0, 1/2, 1/4, 1/4),
sample sizes M1 = M2 = 30, censoring proportions ρ1 = ρ2 = 0.1, 0.2, 0.3, and 0.4, and
the underlying distributions Weibull(2.5, 5) for System 1 and Weibull(λ2, 5) for System 2
where λ2 = 1.5 (0.1) 3.5 (i.e., [D3] with system structures [S2]).

133



BIBLIOGRAPHY

Aalen, O. (1978). Nonparametric inference for a family of counting processes. The Annals
of Statistics, pages 701–726.

Balakrishnan, N., Ng, H. K. T., and Navarro, J. (2011a). Exact nonparametric inference
for component lifetime distribution based on lifetime data from systems with known
signatures. Journal of Nonparametric Statistics, 23(3):741–752.

Balakrishnan, N., Ng, H. K. T., and Navarro, J. (2011b). Linear inference for type-ii cen-
sored lifetime data of reliability systems with known signatures. IEEE Transactions on
Reliability, 60(2):426–440.

Bhattacharya, D. and Samaniego, F. J. (2010). Estimating component characteristics from
system failure-time data. Naval Research Logistics (NRL), 57(4):380–389.

Birnbaum, Z. W. and Saunders, S. C. (1969). A new family of life distributions. Journal of
Applied Probability, 6(2):319–327.

Boyles, R. and Samaniego, F. (1987). On estimating component reliability for systems
with random redundancy levels. IEEE Transactions on Reliability, 36(4):403–407.

Bueno, V. C. (1988). A note on the component lifetime estimation of a multistate monotone
system through the system lifetime. Advances in Applied Probability, 20(3):686–689.

Chen, S. X. (1996). Empirical likelihood confidence intervals for nonparametric density
estimation. Biometrika, 83(2):329–341.

Chen, S. X. and Hall, P. (1993). Smoothed empirical likelihood confidence intervals for
quantiles. The Annals of Statistics, pages 1166–1181.

Chen, S. X. and Keilegom, I. V. (2009). A review on empirical likelihood methods for
regression. TEST, 18:415–447.

Chen, S. X. and Qin, Y. S. (2000). Empirical likelihood confidence intervals for local linear
smoothers. Biometrika, 87(4):946–953.

DiCiccio, T., Hall, P., and Romano, J. (1991). Empirical likelihood is bartlett-correctable.
the Annals of Statistics, pages 1053–1061.

Efron, B. (1981). Nonparametric standard errors and confidence intervals. canadian
Journal of Statistics, 9(2):139–158.

134



Eryilmaz, S., Koutras, M. V., and Triantafyllou, I. S. (2011). Signature based analysis of
m-consecutive-k-out-of-n: f systems with exchangeable components. Naval Research
Logistics (NRL), 58(4):344–354.

Fleming, T. R., Harrington, D. P., and O’sullivan, M. (1987). Supremum versions of the
log-rank and generalized wilcoxon statistics. Journal of the American Statistical Asso-
ciation, 82(397):312–320.

Frenkel, I. and Khvatskin, L. (2006). Cost–effective maintenance with preventive replace-
ment of oldest components. W SKRÓCIE, page 37.

Guess, F. M., Usher, J. S., and Hodgson, T. J. (1991). Estimating system and component
reliabilities under partial information on cause of failure. Journal of Statistical Planning
and Inference, 29(1-2):75–85.

Hall, P., Jin, Y., and Samaniego, F. J. (2015). Nonparametric estimation of component
reliability based on lifetime data from systems of varying design. Statistica Sinica, pages
1313–1335.

Jin, Y., Hall, P. G., Jiang, J., and Samaniego, F. J. (2017). Estimating component reliability
based on failure time data from a system of unknown design. Statistica Sinica, pages
479–499.

Jing, B.-Y., Yuan, J., and Zhou, W. (2009). Jackknife empirical likelihood. Journal of the
American Statistical Association, 104(487):1224–1232.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observa-
tions. Journal of the American statistical association, 53(282):457–481.

Kitamura, Y. (1997). Empirical likelihood methods with weakly dependent processes. The
Annals of Statistics, 25(5):2084–2102.

Kochar, S., Mukerjee, H., and Samaniego, F. J. (1999). The “signature” of a coherent
system and its application to comparisons among systems. Naval Research Logistics
(NRL), 46(5):507–523.

Li, G. (1995a). Nonparametric likelihood ratio estimation of probabilities for truncated
data. Journal of the American Statistical Association, 90(431):997–1003.

Li, G. (1995b). On nonparametric likelihood ratio estimation of survival probabilities for
censored data. Statistics & Probability Letters, 25(2):95–104.

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables
is stochastically larger than the other. The annals of mathematical statistics, pages 50–
60.

Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in
its consideration. Cancer Chemother Rep, 50:163–170.

135



Meilijson, I. (1981). Estimation of the lifetime distribution of the parts from the autopsy
statistics of the machine. Journal of Applied Probability, 18(4):829–838.

Miyakawa, M. (1984). Analysis of incomplete data in competing risks model. IEEE Trans-
actions on Reliability, 33(4):293–296.

Murphy, S. A. and van der Vaart, A. W. (1997). Semiparametric likelihood ratio inference.
The Annals of Statistics, 25(4):1471–1509.

Murphy, S. A. and Van Der Vaart, A. W. (1999). Observed information in semi-parametric
models. Bernoulli, pages 381–412.

Murphy, S. A. and Van der Vaart, A. W. (2000). On profile likelihood. Journal of the
American Statistical Association, 95(450):449–465.

Mykland, P. A. (1995). Dual likelihood. The Annals of Statistics, pages 396–421.

Nadarajah, T., Variyath, A. M., and Loredo-Osti, J. C. (2014). Empirical likelihood based
longitudinal data analysis. Open Journal of Statistics, 10:611–639.

Navarro, J., Ng, H. K. T., and Balakrishnan, N. (2012). Parametric inference for component
distributions from lifetimes of systems with dependent components. Naval Research
Logistics (NRL), 59(7):487–496.

Navarro, J., Ruiz, J. M., and Sandoval, C. J. (2007). Properties of coherent systems
with dependent components. Communications in Statistics—Theory and Methods,
36(1):175–191.

Navarro, J., Samaniego, F. J., and Balakrishnan, N. (2011). Signature-based representa-
tions for the reliability of systems with heterogeneous components. Journal of Applied
Probability, 48(3):856–867.

Ng, H. K. T., Navarro, J., and Balakrishnan, N. (2012). Parametric inference from system
lifetime data under a proportional hazard rate model. Metrika, 75(3):367–388.

Nordman, D. J. and Lahiri, S. N. (2014). A review of empirical likelihood methods for time
series. Journal of Statistical Planning and Inference, 155:1–18.

Owen, A. (1990). Empirical likelihood ratio confidence regions. The annals of statistics,
18(1):90–120.

Owen, A. (1991). Empirical likelihood for linear models. The Annals of Statistics, pages
1725–1747.

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional.
Biometrika, 75(2):237–249.

Owen, A. B. (2001). Empirical likelihood. CRC press.

136



Peto, R. and Peto, J. (1972). Asymptotically efficient rank invariant test procedures. Jour-
nal of the Royal Statistical Society: Series A (General), 135(2):185–198.

Qin, J. (1993). Empirical likelihood in biased sample problems. The Annals of Statistics,
21(3):1182–1196.

Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. the
Annals of Statistics, 22(1):300–325.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Samaniego, F. J. (1985). On closure of the ifr class under formation of coherent systems.
IEEE Transactions on Reliability, 34(1):69–72.

Samaniego, F. J. (2007). System signatures and their applications in engineering reliabil-
ity, volume 110. Springer Science & Business Media.

Thomas, D. R. and Grunkemeier, G. L. (1975). Confidence interval estimation of sur-
vival probabilities for censored data. Journal of the American Statistical Association,
70(352):865–871.

Usher, J. S. and Hodgson, T. J. (1988). Maximum likelihood analysis of component relia-
bility using masked system life-test data. IEEE Transactions on Reliability, 37(5):550–
555.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in
statistics, pages 196–202. Springer.

Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing com-
posite hypotheses. The annals of mathematical statistics, 9(1):60–62.

Yang, Y., Ng, H. K. T., and Balakrishnan, N. (2016). A stochastic expectation-maximization
algorithm for the analysis of system lifetime data with known signature. Computational
Statistics, 31(2):609–641.

Zhang, J. (2002). Powerful goodness-of-fit tests based on the likelihood ratio. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 64(2):281–294.

Zhang, J. (2006). Powerful two-sample tests based on the likelihood ratio. Technometrics,
48(1):95–103.

Zhang, J., Ng, H. K. T., and Balakrishnan, N. (2015). Tests for homogeneity of distributions
of component lifetimes from system lifetime data with known system signatures. Naval
Research Logistics (NRL), 62(7):550–563.

Zhou, M. (2019). Empirical likelihood method in survival analysis. Chapman and
Hall/CRC.

137


	Empirical Likelihood Ratio Tests for Homogeneity of Distributions of Component Lifetimes from System Lifetime Data with Known System Structures
	Recommended Citation

	 LIST OF FIGURES
	 LIST OF TABLES
	 1.   Introduction
	1.1. Problem of interest
	1.2. Coherent System and System Signature
	1.3. Censoring in Life Testing Experiments
	1.4. Parametric Lifetime Distributions and Likelihood Inference 
	1.4.1. Some useful lifetime distributions
	1.4.2. Maximum likelihood estimation
	1.4.3. Parametric likelihood ratio test

	1.5. Empirical Likelihood Method
	1.5.1. Empirical Likelihood
	1.5.2. Empirical Likelihood Ratio

	1.6. Scope of Thesis

	 2.   Empirical Likelihood Ratio Tests for Homogeneity of Component Lifetime Distributions Based on System Lifetime Data
	2.1. Introduction
	2.2. Tests for Homogeneity Based on System Lifetime Data
	2.2.1. Parametric Test Procedures
	2.2.1.1. Asymptotic Tests Under Exponential Distributed Component Lifetimes Assumption
	2.2.1.2. Parametric Likelihood Ratio Test

	2.2.2. Nonparametric Mann-Whitney Statistic

	2.3. Proposed Test Procedures Based on Empirical Likelihood Ratio
	2.4. Null Distributions of Based on Monte Carlo Method
	2.5. Illustrative Example
	2.6. Monte Carlo Simulation Studies
	2.7. Concluding Remarks

	 3.   Empirical Likelihood Ratio Tests for Homogeneity of Component Lifetime Distributions Based on Type-II Censored System Lifetime Data
	3.1. Introduction
	3.2. Extensions to Type-II Censored System Lifetime Data
	3.3. Null Distributions of the Test Statistics
	3.4. Practical Example
	3.5. Monte-Carlo Simulation Study
	3.5.1. Simulation settings
	3.5.2. Results and Discussions

	3.6. Concluding Remarks

	 4.   Concluding Remarks and Future Research Directions
	4.1. Summaries and Concluding Remarks
	4.1.1. Summary of Chapter 2
	4.1.2. Summary of Chapter 3

	4.2. Future Research Directions
	4.2.1. Extensions to Other Censoring Schemes
	4.2.2. Extension to Situations with Unknown System Structures
	4.2.3. Consider Other Test Statistics


	 A.   APPENDIX of CHAPTER 2
	 B.   APPENDIX of CHAPTER 3
	BIBLIOGRAPHY

