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Ultrasound is commonly used in medicine for imaging different organ systems. Also, it is

widely used to monitor fetal development. The most common ultrasound imaging technique

is B-mode, which uses an array of transducers to generate a narrow beam.

The array with dynamic focusing is implemented by phase shifters which are complex

and costly. Also, the beamwidth is not sufficiently narrow which means it can not provide

high resolution. My research will investigate a new method which doesn’t need narrow beam

and can be implemented by only one transducer. The new system can give potentially higher

resolution and significantly reduce the cost compared to conventional B-mode ultrasound

imagers.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

Today, ultrasound imaging is widely used to monitor fetal development and detect

disease of the kidney, liver, and heart since it is safe and relatively low cost [4]. The most

common ultrasound imaging technique is Brightness Mode (B-Mode), this system uses an

array of transducers to generate a narrow beam which is scanned along a slice of tissue

through delay and sum beamforming [3]. The back-scattered energy from the scanned

beam can be used to reconstruct the tissue slice and therefore a 2-D image of the human

body can be generated.

But there are some shortcomings in B-mode ultrasound imaging. The first is that

the array with dynamic focusing is implemented by phase shifters which are complex and

costly. The second is that array aperture is limited so that the beamwidth is not sufficiently

narrow which means it can not provide high resolution. So the ultrasound images tend to

be blurred [9].

This research will demonstrate a new method of generating the ultrasound image which

doesn’t need phase shifting. The new method will only use one or two transducers with

higher resolution and lower cost compared to the B-mode ultrasound image systems. We

call the method Sparse Transducer Imaging (STI).
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1.2. Overview of Ultrasound Imaging Systems

The neurologist Karl Dussuk is credited with being the first to use ultrasonic waves

as a diagnostic tool in 1942. Ultrasound technology and its application in medical care

have become more mature. There are many types of ultrasound imaging systems but the

main idea is the same. After transmitting the ultrasound signal, the system can determine

the corresponding location of a scatterer by the arrival time of the received signal since

the tissue boundaries cause reflections. Ultrasound imaging can be classified into different

categories depending on their operation and purpose. This section gives an overview of

common ultrasound imaging methodologies.

1.2.1. A-Mode

A-mode (Amplitude-mode) imaging is a one-dimensional method which records the pulse

echo field along a single line [1]. It is often used to judge the depth of an organ and early

pregnancy assessment like detection of fetal heart beat or placental localization, as well as

for sinusitis diagnosis [5]. A simple A-mode system is shown in Figure 1.1.

Figure 1.1. An A-mode ultrasound imaging system.
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The transducer transmits the pulse and the receiver (same transducer) senses three sets

of reflections since there are three objects on one line. The system can be simulated in

MATLAB and the received signal is shown in Figure 2. There are three clusters in Figure

2 but separated in time, which indicates the depth between the three objects. Each cluster

represents one object in the A-mode system and the interval of time is for the transmitted

pulse to get the object from and reflect back to the receiver.

Figure 1.2. Received echo pulse with three objects located equally apart in A-mode system.

1.2.2. B-Mode

B-Mode (Brightness-mode) is the most common ultrasound imaging method which can

implement the 2-D cross-sectional image representing tissues and organ boundaries within

the body [2]. Like A-mode, it is constructed from echoes which are generated by reflection

of transmitted ultrasound waves on tissue boundaries and some small irregularities inside

3



the tissues. It can be viewed as repeated A-mode scans to generate the 2-D image. Each

echo is shown at a pixel (point) in the image corresponding to the relative position of its

origin within the body cross section. The brightness of 2-D image on each point is related to

the amplitude of the echo so that these different brightness points can form the 2-D scaled

map which shows the scanning result of tissues or organ boundaries.

Like we described above, the 2-D B-mode image is formed by a great number of A-

mode lines which are produced by pulse-echo sequence. In each line, the space closer to

the transducer, the faster the echoes return from the targets. Therefore, the depth below

the transducer determines the gray scale of the image. A complete B-mode image is made

up about 100 or more A-mode lines. Let’s take the linear array transducer for example, as

shown in Figure 1.3 a. Also, there is a B-mode ultrasound image which included a human

fetus, as shown in Fig.1.3 b.

(a)

(b)

Figure 1.3. B-mode. (a) Formation of a 2-D B-mode image. (b) B-mode ultrasound image.
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An image line is formed during the first pulse-echo sequence and the active area of the

transducer is then stepped along the array to the adjacent beam position until there is a

new image line at each position and generate the 2-D image by using these image lines. Fig

1.3a shows a linear scan. Alternately, the beam can be scanned along an arc using phase

shifters and delay-sum beamforming [3].

1.2.3. M-Mode

M-Mode (Motion Mode) also called TM-Mode (Time Motion Mode) is a type of one-

dimensional image to analyze moving body parts [6]. An a example of M-mode, as shown

in Fig 1.4 [3].

Figure 1.4. M-mode image.

In Fig 1.4, the M-mode image is shown below a B-mode image. The user can select

a particular scan line in the B-mode image, which is displayed over time as the M-mode

scan. An M-mode trace takes A-mode echos from a single direction and traces out the

5



movement of targets with time. The stationary part of a target like the chest wall forms

horizontal lines and the moving part of a target like the heart values will be recorded over

time. M-mode is commonly used in cardiac and fetal cardiac imaging.
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CHAPTER 2

OVERVIEW OF ULTRASOUND FIELD PHYSICS

In this chapter, we will focus on the basic physics of ultrasound wave propagation and

the calculation of the scattered or incident field. It will give us the theoretical basis for

ultrasound wave propagation and a better understanding of ultrasound’s underlying physics.

This chapter is based on Jensen’s paper named ”A model for the propagation and scattering

of ultrasound in tissue” [7].

2.1. Ultrasound Wave Propagation

Ultrasound propagates by changing the pressure in a medium. In this section, we will

derive the wave equation needed to present an overview of ultrasound wave propagation.

To do that, we need to make two assumptions [7]. The first assumes that instantaneous

acoustic pressure and density can be written as

Pins(r, t) = P + p1(r, t), (2.1)

ρins(r, t) = ρ(r) + ρ1(r, t), (2.2)

Where P is the mean pressure of the medium and ρ is is the density of the undisturbed

medium. Both the pressure change p1 and the density change ρ1 are caused by the ultra-

sound wave and they are small compared to P and ρ.

The second assumption is there is no heat conduction or conversion of ultrasound to

thermal energy. So the acoustic pressure Pins and densityρins satisfy the adiabatic equation.

dPins
dt

= c2
dρins
dt

(2.3)

7



In the Euler description, the equation above can be written as

1

c2
∂p1
∂t

=
∂ρ1
∂t

+ u ·∆ρ (2.4)

where u is the particle velocity, ∇ is the gradient operator and · is the dot product.

Meanwhile, the pressure, density and particle velocity also satisfy the hydrodynamics

equations:

ρins
du

dt
= −∇Pins (2.5)

∂ρins
∂t

= −∇ · (ρins u) (2.6)

Assume that propagation velocity and the density only vary slightly from their mean values,

we can get:

ρ(r) = ρ0 + ∆ρ(r)

c(r) = c0 + ∆c(r)
(2.7)

where ρ0 � ∆ρ and c0 � ∆c. With the equations above, we can get the wave equation [7]:

∇2p1 −
1

c20

∂2p1
∂t2

= −2∆c

c30

∂2p1
∂t2

+
1

ρ0
v(∆ρ) · vp1 (2.8)

where the two terms on the right side are scattering terms which vanish for a homogeneous

medium.

2.2. Calculation of The Incident Field

In this section, we will calculate the incident field generated by the ultrasound trans-

ducer. There are many ways to calculate the incident field but we will introduce the

convolution method developed by Tupholme and Stepanishen which is used by Jensen to

develop the FIELD II platform [8]. We use FIELD II as our main tool to implement our

simulations.

8



The incident field can be calculated by solving the wave equation for the homogeneous

case:

∇2p1 −
1

c20

∂2p1
∂2t

= 0 (2.9)

For convenience, we apply the velocity potential ψ(r, t) which also satisfies the wave equation

for a homogeneous medium:

∇2ψ − 1

c20

∂2ψ

∂2t
= 0 (2.10)

the pressure can be found as:

p(r, t) = ρ0
∂ψ(r, t)

∂t
(2.11)

Next, we use the coordinate system in figure 2.1 where the particle velocity normal to

the transducer surface is denoted by v (r3 + r4, t).

Figure 2.1. Coordinate system for calculating the incident field.

If the aperture is set up as an infinite, rigid, and flat baffle, the solution to the homoge-

neous wave equation is

ψ (r1 + r3, t) =

∫
s

∫
T
v (r3 + r4, t3) g (r1, t|r3 + r4, t3) dt3d

2r4 (2.12)

9



where S denotes the transducer surface, and g is the Green’s function for a bounded medium,

given by

g (r1, t|r3 + r4, t3) = δ (t− t3 − |r1 − r3 − r4| /c0) / (2π |r1 − r3 − r4|) (2.13)

where c0 is the mean propagation velocity and |r1 − r3 − r4| is the distance from the trans-

ducer S to the field point we set. The integral is a statement of Huyghens’principle that the

resulting field is made up by integrating the contributions from a spherical wave generated

by each point on the transducer [7].

If the particle velocity is uniform on the transducer surface, the wave equation can be

simplified to

ψ (r1, r3, t) ==

∫
T
v (t3)

∫
S
g (r1, t|r3 + r4, t3) d

2r4dt3 (2.14)

In this equation, we can call

h (r1, r3, t− t3) =

∫
S
g (r1, t|r3 + r4, t3) d

2r4

=

∫
S

δ (t− t3 − |r1 − r3 − r4| /c0)
2π |r1 − r3 − r4|

d2r4

(2.15)

the spatial impulse response which is a function of spatial location and time. Therefore, we

can rewrite the equation as the convolution.

ψ (r1, r3, t) = v(t) ∗ h (r1, r3, t) (2.16)

where v(t) is the piston velocity waveform and h depends on the difference between r1 and

r3. So we finally get the pressure incident field:

p (r1, r3, t) = ρ0
∂ψ (r1, r3, t)

∂t

= ρ0v(t) ∗ ∂h (r1, r3, t)

∂t

= ρ0
∂v(t)

∂t
∗ h (r1, r3, t)

(2.17)

10



Therefore, the ultrasound field can be found by convolving the spatial impluse response

of the transducer with the excitation function.

2.3. Calculation of the Scattered Field

After calculating the incident field pressure, we will consider the scattered field from a

small inhomogeneity embedded in a homogeneous surrounding as in figure 2.2.

Figure 2.2. Coordinate system for calculating the scattered field.

As the figure shows, the inhomogeneity is denoted by r1 and its volume is V ′. We will

calculate the scattered field at the point denoted by r2. To do that, we need to integrate

all the spherical waves emanating from the inhomogeneity V ′ by using the time-dependent

Green’s function for unbounded space. Then, the scattered field can be written:

px (r2, t) =

∫
V

∫
T

[
1

ρ0
∇ [∆ρ (r1)] · ∇p1 (r1, t1)

−2∆c (r1)

c30

∂2p1 (r1, t1)

∂t2

]
×G (r1, t1|r2, t) dt1d3r1

(2.18)

Where d3r1 means integrating with respect to r1 over the volume V ′ and T means the

11



integration over time. The Green’s function can be written as:

G (r1, t1|r2, t) =
δ (t− t1 − |r2 − r1| /c0)

4π |r2 − r1|
(2.19)

The integral can’t be solved directly. We can use the Born-Neumann expansion to solve it.

For simplifying the calculation, let’s denote Fop the scattering operator.

Fop =
1

ρ0
∇ [∆ρ (r1)] · ∇ −

2∆c (r1)

c30

∂2

∂t2
(2.20)

and Gi to be the integral operator representing Green’s function. Therefore, the first-order

Born approximation is :

ps1 (r2, t) = GiFoppi (r1, t1) (2.21)

and then the general expression for the scattered field is:

ps (r2, t) =GiFop pi (r1, t1)

+ (GiFop )2 pi (r1, t1)

+ (GiFop )3 pi (r1, t1)

+ (GiFop )4 pi (r1, t1) + · · ·

(2.22)

Since the scattering from small obstacles is very small, the higher-order terms can be ne-

glected. Therefore, in practice, we only apply the first-order Born approximation. And

finally equation (2.23) can be simplified as:

ps (r2, t) ≈
∫
V ′

∫
T

(
1

ρ0
∇ [∆ρ (r1)] · ∇pi (r1, t1)

−2∆c (r1)

c30

∂2pi (r1, t1)

∂t2

)
×G (r1, t1|r2, t) dt1d3r1

(2.23)

Where Pi is the incident pressure field and it can be found by convolving the spatial

impluse response of the transducer with the excitation function (equation 2.17).
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CHAPTER 3

PROPOSED METHODOLOGY

3.1. Proposed Method

Assume that there is an ultrasound transmitter and a receiver on the surface of a body.

Meanwhile, there is also a scatterer inside the body. The transmitter sends out a short

pulse δ(t) which travels through the body as a spherical spatiotemporal wave. The wave

hits the scatterer and is back-scattered. Then the reflected wave is received by the receiver

as shown in Fig 3.1.

Figure 3.1. Configuration for a single scatterer.

Suppose that s is the strength of the scatterer and T is the total travel time of the

transmitted wave through the body. The received signal y(t) = sδ(t−T ) is the transmitted

pulse delayed by T seconds and weighted by the strength of the scatterer.

Now we consider the more common situation. Let ~rt(θ) be a vector in polar coordinates

13



for our 2-D space that traces out an ellipse through tissue corresponding to a total travel

time t from the transmitter to receiver. The transmitter and receiver are located at the foci

of the ellipse and the angle θ goes from 0 to π. The lager travel time, the deeper the ellipse.

Suppose there is a large continuous distribution of scatterers in the body, s(·), as shown in

Fig 3.2.

Figure 3.2. Configuration for a multiple scatterers.

The distribution is not uniform and results in uneven backscattering to the receiver. If

we fix the travel time at t = T , each scatterer in this ellipse follows the function s(~rt(θ)).

In figure 3.2, we choose four scatterers located at ~rT (θ1), ~rT (θ2), ~rT (θ3), and ~rT (θ4) along

path ~rT (θ) respectively. Like we discussed in figure 3.1, the received signal from these four

scatterers at travel time T is given by

y(T ) = s(~rT (θ1)) + s(~rT (θ2)) + s(~rT (θ3)) + s(~rT (θ4)) (3.1)

Therefore, the received signal from all scatterers along the path s(~rT (θ)) is

y(T ) =

∫ π

0
s(~rT (θ))dθ (3.2)

Our goal is to estimate s(~rT (θ)) from y(T ). Let p(~rT (θ)) be the pressure along the ellipse

14



vary with θ. Then the recevied signal is given by:

y(T ) =

∫ π

0
p(~rT (θ))s(~rT (θ))dθ (3.3)

The main idea in this method is to send out k spatiotemporal waves pk(~τT (θ)) and gather

the responses yk(T )which can be expressed by

yk(T ) =

∫ π

0
pk(~rT (θ))s(~rT (θ))dθ, k = 1, 2, ..., N (3.4)

which can be approximated by the sum,

yk(T ) =
∑
i

pk(~rT (θi))s(~rT (θi))∆i, k = 1, 2, ..., N (3.5)

Therefore, this system can be viewed as a linear system of equations:

As = y (3.6)

which can be solved for the scatterer distribution s(·) on ~rT (θi) . In equation (3.6), A

is an N x M matrix and the ith row of the matrix represents the known samples of the

transmitted wave pk(~rT (θi)), i = 1, ...,M , s is an M × 1 vector representing the unknown

scatterers s(~rT (θi)), i = 1, ...,M , and y is an N × 1 vector representing the received signal

yk(T ), k = 1, ..., N .

Let N ≥ M , which means we have more equations than unknowns. If the transmitted

waves pk(~τT (θi)) are known along ~τT (θi) and they are sufficiently independent, then the

system of equations described in 3.4 can be solved to find the scattering coefficients s(~rT (θi)).

It should be noticed that if the transmitter and receiver are set up in the same location

which means there is only one transducer on the body, the path ~rT (θ) will be a circle.

Therefore all equations we discussed above also apply to this circle path case.

The solution to the least square problem is:

ŝ = (ATA)−1AT y (3.7)
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CHAPTER 4

EXPERIMENTAL AND RESULTS

4.1. Field II Platform Introduction

Field II is a program for the simulation of ultrasound systems. It is based on the

concept of the spatial impulse response developed by Tupholme and Stepanishen and can

calculate the ultrasound field for both the emitted ultrasound field and the continuous wave

case. Also, all types of transducers and excitations can be simulated on it. Field II is based

on MATLAB and has lots of commands for transducer simulation. Those commands are

able to define transducers, set up transducer properties and calculate fields for transducers.

Our simulations in this research will be implemented on Field II. We will set up some

phantoms on this platform and use our designed transducers to scan these phantoms. The

pressure field matrix A and received signal y can be easily calculate by some commands on

Field II. Then we are supposed to get the reflection signal s by solving the least squares

problem in Chapter3.

4.2. Data Acquisition

In this section, we will discuss how we form our pressure field matrix A and received

signal y in Equation (3.7).
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4.2.1. Pressure Field

The ultrasound field can be found through the spatial impulse response. This response

gives the emitted ultrasound field at a specific point in space as a function of time when the

transducer is excitated by a dirac delta function. Then the field for any kind of excitation

can by found by convolving the spatial impulse response with excitation function. There

is a command to calculate the emitted field named calc hp which will return the emitted

pressure field according to the transducer and field point positions you set up.

For our case, according to our proposed methodology in Chapter 3, we set up a circular

path formed by 100 field points. Each field point is a 1× 3 vector (x, y, z) which represents

its location. After running the command calc hp with the field points we set up, Field

II will return a 98 × 100 matrix. Each column indicates the change of pressure in one

corresponding field point according to the wave travel time in this circle and therefore there

are 100 columns in this matrix. The row number corresponds to the time length and the

column number is the number of field points in this circle. The visualization of the pressure

wave is :

Figure 4.1. Visualization of the wave pressure.
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We take the maximum value in each column because the maximum value is the pressure

in this field point when the ultrasound wave is propagating on this field point. Finally,

we get a 1 × 100 vector. Our method requires enough equations to solve the least squares

problem. So, after repeating the experiment 1000 times, we will get the 1000×100 pressure

matrix A.

4.2.2. Received Signal

Similar to the pressure field, there is a command named calc scat which can calculate

the received signal if we provide the scatterers’ position and amplitude and the transmit

aperture and receiver aperture. For example, the received signal for one scatterer on the

circle is a 127× 1 voltage trace vector, as shown in Fig.4.2.

Figure 4.2. Received signal of one scattterer.

After taking the maximum value of the vector and repeating 1000 times, we get a 1000×1

received signal vector y.
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4.3. Transducer Configuration

4.3.1. Transducer Parameters

In this experiment, one 128-element linear array transducer was used for both trans-

mitting and receiving. The central frequency of the transducer was 10 MHz and the speed

of sound used in this transducer was 1540 m/s which will give a wavelength of 0.154 mm.

The spacing between elements was 0.0077 mm which was 1
20 times the wavelength. The

width of the elements was 0.000513 mm which was 1
300 times wavelength. The height of

each element is 0.3 mm. Also, the sampling frequency was 200 MHz.

4.3.2. Excitation Signal and Impulse Response

The basic excitation signal and impulse response of every individual elements in this

method is a sequence of regularly occurring pulses, as shown in Fig.4.3. But in order

to generate independent pressure patterns, the zero-mean amplitude and phase shifts are

added to our basic excitation signal in every elements.

Figure 4.3. Transmitted wave.

19



The ultrasound pulse usually contains four or five cycles. The number of cycles can

decide the length and frequency content of the pulse. The more cycles the better resolution

but if the excitation is too long, there is an issue when we generate the 2-D ultrasound

image as the long excitation may cover multiple cycles.

4.3.3. Generating Independent Pressure Patterns

To implement our methodology discussed in Chapter 3, we are supposed to get a full

rank pressure matrix A so that we can solve the least squares problem. In other words,

our transducer needs to have the ability to generate independent pressure patterns. To do

so, we add zero-mean amplitude and phase shifts to our basic excitation signal. The 128

elements in our transducer are excited by 128 different waveforms so that the transducer

can generate independent pressure patterns in each experiment.

The number of independent pluses transmitted will determine the noise level of the

solution. If we transmit too many pluses, our solution can take a long time to calculate. To

find a reasonable number of pluses, we set up two scatterers in one circle located on x=20

mm and x=30 mm respectively. We used different pulses to compare the results as shown

in Fig. 4.4. After comparing, we decided to transmit 1000 pluses in all.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4. Comparison in different numbers of transmitted pluses. (a) 100 pluses. (b) 300

pluses. (c) 500 pluses. (d) 800 pluses. (e) 1000 pluses. (f) 1500 pluses.
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4.4. 2-D Image Formation

To build the 2-D image, we need to obtain circles at different radii which present the

distance between the scatters in the circle and transducer. Different radii mean different

total travel time T in the equations (3.5). By observing the received signal at different total

travel time T , we can separate the interval corresponding to the circle with radii as shown

in Fig 4.5. Then we use the corresponding interval to generate our received signal vector y

so that we can solve the reflection signal x for this circle. A 2-D image can be generated by

repeating this procedure for multiple travel times.

Figure 4.5. Different intervals corresponding to different radii.

In our simulation, command calc scat in Field II returns the received voltage as a func-

tion of time. For example, Fig.4.6 represents the received signal of three scatterers at

r=90mm, 100mm, and 120mm.
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Figure 4.6. Received signal of three scatterers.

Since it starts at the first scatterer, we can calculate the start of the following scatterer

time interval by :

nx = fs(
rx − r1
1000c

) (4.1)

where r1 = t1×1000c
2 . The length of interval in this experiment is usually 130 so that the

interval we extract from the receievd signal is from nx to nx+135.

4.5. Results Obtained By The Proposed Method

In this section, all results in this research will be presented included 1-D and 2-D images.

All our solutions calculated by least squares method were averaged by multiple times to

reduce noise. We will talk about noise reduction in later section.

4.5.1. One-Dimensional Results

Our goal is to get a clear and accurate 2-D ultrasound image. To implement this, it is

necessary to begin with one-dimensional scanning since it is convenient and quick for us to
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adjust the transducer. At first, there is only one scatter x = 10 mm set up on the circle

and after many experiments, the scanning result shows the correct location with low noise,

as shown in Fig 4.7. The solution in this experiment is averaged by 10 times for reducing

noise.

Figure 4.7. One scatterer scanned result in one-dimensional.

It is clear that the peak value at x=10mm means the scatterer is detected correctly.

For further verification of the methodology, there are more scatterers set up on the same

circle. Add one scatterer after each experiment until there are six scatterers on the same

circle (x=-30,-15,0,10,20,40 mm), as shown in Fig 4.8. All solutions are averaged by 10

times for reducing noise.
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(a) (b)

(c) (d)

(e)

Figure 4.8. Multiple scatterers for one-dimensional case. (a) x=0,10 mm. (b) x=0,10,20

mm. (c) x=0,10,20,40 mm. (d) x=-15,0,10,20,40 mm. (e) x=-30,-15,0,10,20,40 mm.
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As we can see, we can distinguish every scatterers’ location clearly and correctly.

4.5.2. Two Dimensional Phantom Scanning

After detecting the location of scatterers successfully, it’s time to test if this system can

scan certain shape phantoms in 2-D which consisted of a triangle or square.

First, we set up a triangle phantom whose amplitude was 1 and used the same transducer

to scan the phantom. The actual phantom and the image obtained by the proposed method

are both shown below in fig 4.9. The solution in this experiment is averaged by 20 times

for reducing noise.

(a)

(b)

Figure 4.9. Triangle phantom. (a) Actual phantom. (b) Image obtained by the proposed

method.

Then, we set up a square phantom with amplitude of 1. The actual phantom and the

image obtained by the proposed method are both shown below in fig 4.10. The solution in

this experiment is averaged by 20 times for reducing noise.
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(a)

(b)

Figure 4.10. Square phantom. (a) Actual phantom. (b) Image obtained by the proposed

method.

To test if the system worked with different amplitudes, we set up zero amplitude in the

center of the square. The actual phantom and the image obtained by the proposed method

are both shown below in Fig 4.11. The solution in this experiment is averaged by 20 times

for reducing noise.

(a)

(b)

Figure 4.11. Special square phantom. (a) Actual phantom. (b) Image obtained by the

proposed method.

Next, we set up two squares horizontally. The actual phantom and the image obtained

by the proposed method are both shown below in Fig 4.12. The solution in this experiment
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is averaged by 20 times for reducing noise.

(a)

(b)

Figure 4.12. Two square phantom. (a) Actual phantom. (b) Image obtained by the

proposed method.

Finally, we set up one triangle and one square horizontally. The actual phantom and the

image obtained by the proposed method are both shown below in Fig 4.13. The solution in

this experiment is averaged by 20 times for reducing noise.

(a)

(b)

Figure 4.13. Triangle and square phantom. (a) Actual phantom. (b) Image obtained by

the proposed method.
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4.5.3. Artificial Kidney

If we are successful in scanning certain shape phantoms, we should able to scan human

tissue. The artificial kidney is used from the Field-II website. There are other two methods

to get the reflection solution from pressure field matrix A and received signal vector r which

are total least square and ridge regression.

In this kidney ultrasound scanning simulation, we use these three methods to calculate

the reflection signal and reconstruct the 2-D image. And the solutions from all of three

method are taken the averaging of 10 times to reduce the noise. The actual artificial kidney

and the image obtained by the proposed method are shown below in Fig 4.14.

(a) (b)

(c) (d)

Figure 4.14. Artificial kidney simulation. (a) Actual kidney phantom. (b) Image obtained

by the ridge regression method. (c) Image obtained by the least square method. (d) Image

obtained by the total least square method.
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As we can see, the shape of this kidney can be detected by these three methods. The

ridge regression method can reduce the noise significantly but loses some resolution. The

least square method and total least square have the similar appearances in this simulation.

4.6. Noise Reduction

In our method, there is some unavoidable noise what we need to deal with. To make our

system linear, We average the least square solution multiple times to reduce the unwanted

noise. The more times we average, the signal-to-noise ratio (SNR) will be increased which

means the noise will trend to zero if we take enough averages. But we need to limit the

averaging time since too many averaging time will cost a lot of time to process. In our

experiment, 10-20 times averaging is enough to make the result clear and accurate. Fig

4.15 shows the comparison between no averaging and 20 times averaging in scanning the

same cyst phantom.

(a)

(b) (c)

Figure 4.15. Comparison between low noise and no noise reduction. (a) actual-phantom.

(b) No averaging. (c) Averaging 20 times.

30



As we can see there is a significant effect if we average to reduce the noise. Also, it should

be noticed that our method scans the phantom circle by circle. So we need to restore our

straight line result back to a circle.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1. Summary and Conclusions

In this work we presented a method for ultrasonic imaging using random signals. The

proposed approach employs random short duration pulses and unlike currently used meth-

ods, does not rely on generating narrow beams. We presented the concept of sparse trans-

ducer imaging (STI) and validated its feasibility by using the simulator Field II. It works

for both on 1-D and 2-D. We scanned some artificial phantoms and got fairly accurate 2D

images. The shape and size of the phantoms were restored in the image which demonstrated

the feasibility of the STI concept.

Our transmit and receive transducer consists of 128 elements each of which is a separate

transducer. Our goal is to design a single transducer capable of delivering variable and

independent wave fronts. This may be possible by incorporating irregular surfaces on a

single transducer. Field II allows for this type of design. This will be investigated in future

work.

5.2. Future Work

After we generated the 2-D ultrasound image of the artificial kidney, the sparse trans-

ducer imaging (STI) concept has been proven to be effective. But there are still some

challenges needed to be solved. Until now, the noise reduction in our method is based on

averaging the solution, but if the target we want to scan is something moving like the heart,

averaging will lead to errors.
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In future work, we will continue working on reducing noise sensitivity without averaging

so that we can scan live tissue. Also, we will modify our loop to significantly reduce the

simulation time. After that, we plan to scan more practical medical phantoms other than

the kidney. In the final step, we will design an actual transducer based on the FIELD II

simulation we have done. With this transducer, we can implement the ultrasound imaging

system based on our STI concept. It is worthy to further explore STI ultrasound imaging

because of its potential medical value and commercial value.
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