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In this study, our main objective is to tackle the black-box nature of popular machine

learning models in sentiment analysis and enhance model interpretability. We aim to gain

more insight into the decision-making process of sentiment analysis models, which is

often obscure in those complex models. To achieve this goal, we introduce two word-level

sentiment analysis models.

The first model is called the attention-based multiple instance classification (AMIC)

model. It combines the transparent model structure of multiple instance classification

and the self-attention mechanism in deep learning to incorporate the contextual informa-

tion from documents. As demonstrated by a wine review dataset application, AMIC can

achieve state-of-the-art performance compared to a number of machine learning meth-

ods, while providing much improved interpretability.

The second model, AMIC 2.0, improves AMIC in two key aspects. Notably, AMIC is

limited in integrating positional information in text because it ignores the order of words in

documents. AMIC 2.0 comes up with a novel approach to incorporate relative positional

information in the self-attention mechanism, enabling the model to capture more accurate

sentiment that is position-sensitive. This modification enables the model to better under-

stand how word order and proximity influence sentiment expressions. Secondly, AMIC

v



2.0 takes a step further by decomposing the sentiment score in AMIC into a context-

independent score and a context-dependent score. This decomposition, along with the

incorporation of two sentiment shifters linking these scores in a global environment and

a local environment of text respectively, elucidate how context of document influences

sentiment of words, leading to more interpretable results in sentiment analysis.

The utility of AMIC 2.0 is demonstrated by an application to a Twitter dataset. AMIC

2.0 has improved the overall performance of AMIC, with the additional capability of han-

dling more intricate language subtleties, such as different types of negations. Both AMIC

and AMIC 2.0 are trained without having to use pre-trained sentiment word dictionary or

seeded sentiment words. Compared to some other big language models, their computa-

tion cost is relatively low and they are versatile to use conventional datasets to generate

domain-specific sentiment dictionary and provide interpretable sentiment analysis results.
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CHAPTER 1

Sentiment analysis: an introduction

Sentiment analysis (SA) is a field of natural language processing (NLP) that focuses

on extracting and understanding subjective information from text. It involves automati-

cally identifying and categorizing sentiment expressed in text, determining whether the

sentiment is positive, negative, or neutral.

In today’s digital age, with an abundance of user-generated content on social media,

online reviews, and customer feedback, SA has gained more popularity with the ever

growing collection of text data. It offers valuable insights into public opinion, customer

feedback, brand perception, and market trends, etc. Businesses and organizations can

leverage SA to monitor online reputation, understand customer sentiment, gauge the suc-

cess of marketing campaigns, and make data-driven decisions.

SA employ a range of methods, from traditional statistical models to advanced deep

learning models. These methods utilize various linguistic and statistical features, including

word frequency, word embedding, semantic analysis, sentiment lexicons, and machine

learning classifiers, to analyze and classify sentiment expressed in text.

The field of SA has witnessed significant advancements in recent years, with many

of the latest breakthroughs stemming from the utilization of neural networks. Neural net-

works have revolutionized SA by providing powerful tools to tackle the complexities and

nuances inherent in text data. These models have shown remarkable success in SA

tasks, outperforming many traditional statistical approaches. However, despite the nu-

merous advantages that neural networks brought to SA, one criticism remains to be the
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black-box nature of such methods. The term “black box” refers to the challenge of in-

terpreting and understanding the inner workings of neural network models, which in turn

obstructs the transparency and clarity of their decision-making processes.

In this dissertation, we propose new methods to conduct word-level context-based

SA. Unlike traditional models that produce a single label for an entire piece of text, word-

level sentiment analysis focuses on analyzing the sentiment of individual words or short

phrases within the text. This approach offers a fine-grained analysis and provides insights

into the model’s decision-making process, which helps to reveal the inner workings of the

model and yield more interpretable results.

Chapter 2 introduces a word-level contextualized sentiment analysis model, known as

the attention-based multiple instance classification (AMIC) model. It combines the trans-

parent model structure of multiple instance classification and the self-attention mecha-

nism in deep learning to incorporate the contextual information from documents. The

application to an online wine review dataset demonstrates the model’s capability to con-

duct fine-grained SA, while attaining the similar state-of-the-art performance compared to

a number of machine learning SA models.

Although AMIC can incorporate contextual information which is critical in SA, it ignores

the positional information (i.e., the order of words) in text. The positional information can

be useful in subtle situations such as negation and presence of intensifier. In Chapter

3, we introduce AMIC 2.0, an upgraded version of AMIC, which incorporates relative

positional information in the self-attention mechanism, enabling the model to capture more

accurate sentiment that is position-sensitive. It enables the model to better understand

how word order and proximity influence sentiment expressions. Another novelty of AMIC

2.0 is that it decomposes the sentiment score in AMIC into a context-independent score

and a context-dependent score. This decomposition, along with the incorporation of two

sentiment shifters linking these scores in a global environment and a local environment of

text respectively, elucidates how the context of a document influences the sentiments of

2



words, leading to more interpretable results in SA. The utility of AMIC 2.0 is demonstrated

by its application to a Twitter dataset that contains 1.6 million tweets.

3



CHAPTER 2

Attention-based Multiple Instance Classification (AMIC) Model for Word-level Sentiment
Analysis

2.1. Introduction

In general, there are three kinds of approaches used in SA: rule-based methods, sta-

tistical methods, and neural network methods. Rule-based SA methods typically rely on a

sentiment dictionary, which consists of sentiment scores on a collection of words, to cal-

culate the overall sentiment of texts. These methods are known to generalize poorly due

to the difficulty in capturing intricacies in language and incorporating domain knowledge

and contextual information ([28]).

Statistical SA methods, which employ rigorous probability-based approaches to mod-

eling text data, have a successful track record in handling complex data ([30]). For exam-

ple, [56] used logistic regression to detect hate speech in tweets. Naive Bayes models

and support vector machine have been used to classify movie reviews as positive or neg-

ative ([12]). These relatively simple statistical models are often considered interpretable

and straightforward, as they assume clear relationships between the input text and the

outcome, allowing for a transparent explanation of the model’s predictions. However,

most of the statistical SA models don’t have a mechanism for incorporating document

context. They can not deal with situations where words or phrases may carry different

sentiments/meanings depending on their contexts, which usually results in less competi-

tive performance.
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In recent years, neural network methods in NLP have gained popularity due to their

flexible modeling capability. One of the key advantages is their ability to capture docu-

ment context, where the context of a word or sentence consists of words or sentences

before and after it, which helps to elucidate its meaning ([33, 66]). For example, convolu-

tional neural network (CNN) can process image data rich in spatial context, and they can

be applied to SA to learn textual features in the same way they learn from image data.

[27] first used CNNs for sentiment classification of movie reviews and showed that CNNs

can effectively capture local contextual patterns. The long-short term memory (LSTM)

model ([20]) and its variant, the Bidirectional LSTM (BiLSTM) model ([65]), were devel-

oped to handle sequential data such as texts and time series data. They use recurrent

neural network with feedback connections to learn the dependence structure in sequence

prediction problems, which naturally incorporates contextual information in SA. One of a

more recent developments is the Bidirectional Encoder Representations from Transform-

ers (BERT) model, proposed by [13]. With the self-attention mechanism, it can gener-

ate context-aware representations. Its variants, such as RoBERTa ([29]) and DistilBERT

([43]), have achieved excellent results on various benchmark datasets in SA.

Although the neural network models have demonstrated their effectiveness in SA, they

are often criticized as being “black box” due to their complex structures and lack of inter-

pretability. Especially for methods which focus on sentence-level or document-level anal-

ysis, the reasoning behind the final classification/prediction is often unclear. This lack of

interpretability can undermine trust in the results and prevent applications of the models in

areas where interpretability is as important as predictive accuracy ([3]). Therefore, there

is a growing need for interpretable high-performance SA models that can provide greater

transparency in the inference processes.

One way to improve the neural network SA models is to develop an interpretable

word-level context-based SA (WCSA) approach. Such a model will provide word-level

sentiment measures while incorporating its local and global contexts, giving a more gran-

5



ular understanding of the key words or phrases that contribute to the overall sentiment of

a text. WCSA can be used to create sentiment lexicon, which is a set of words assigned

with sentiment scores ([55, 59]). This type of fine-grained analysis is particularly useful

in scenarios where the sentiments of individual words is more important than the overall

sentiment. For example, in product reviews, the sentiments of individual words may pro-

vide more information on the product than the overall sentiment of the review. Consider

the following review of an electronic product: “I like my new phone, but I wish the battery

life could be improved.” The overall sentiment of the review is positive, but when the sen-

timent is analyzed at word-level, it shows that the reviewer has an issue with the battery

life, which can provide useful information for the vendor or manufacturer. This type of

analysis can help identify and address specific issues of a product, leading to improved

customer satisfaction.

Despite the valuable insights that WCSA can provide, most SA studies do not focus

on individual words. Instead, they are conducted at higher levels such as at the sentence

level and the document level. This is because assigning sentiment scores to individual

words can be challenging due to the ambiguous and context-dependent nature of senti-

ment. Many words can express different sentiments depending on the context. Taking the

word “heavy” for example: it can express a positive sentiment when it is used to describe

music (e.g., the bass is heavy and powerful), but it can also express a negative sentiment

describing work (e.g., tired from heavy work).

In Chapter 2, we propose a novel model for WCSA which is called the attention-based

multiple instance classification (AMIC) model. It has three building components. One is

to use word embedding to transform text to data, a technique that maps words to a high-

dimensional vector space ([58]). The second one is to conduct WCSA in the framework

of multiple instance classification (MIC), which is a weakly supervised learning technique

where training instances are arranged in sets (i.e., bags), and label is only provided for the

entire bag, as opposed to individual instances ([4]). The third component is to incorporate

6



the self-attention mechanism which allows the model to capture contextual information by

assigning weights to different words in the text based on their relevance to the SA task

([7]). The first two components make the model structure easy to comprehend. The third

component inserts contextual information effectively in the model. Combining the three

components, AMIC is capable to produce prediction results comparable to the neural

network SA models, while providing additional interpretability.

Our work is motivated by a sentiment classification study on wine reviews, which con-

sists of 141,409 reviews collected from the website of the renowned wine magazine Wine

Spectator dated from 2005 to 2016. Each year, the magazine’s editors chose more than

15,000 wines for blind tasting, where they provided tasting notes, numeric ratings, and

recommendations. The tasting scores are on a 100-point scale. The majority of wines

have a rating in the range of 80–100. [26] applied three neural network methods (i.e.,

CNN, BiLSTM, and BERD) to classify the wines into different sentiment groups. For ex-

ample, the sentiment of a wine is labeled as positive if its rating is at least 90, and negative

otherwise. The study showed that all three neural network methods produced much more

accurate classification than the logistic regression method which only uses numeric vari-

ables such as price and age of wine. However, none of the neural network SA methods

are able to provide an interpretation of the reasoning behind their classification results.

The aim of our study is to develop an interpretable SA model without compromis-

ing its performance compared to the neural network methods. Specifically, we assume

that words in a review can be categorized as either sentiment words or function words.

Sentiment words are associated with a clear sentiment polarity, describing an emotion

or experience that is either pleasant/desirable (e.g., delightful, smooth, pleasant) or un-

pleasant/undesirable (e.g., sour, unpleasant, corked). On the other hand, function words

are words that are used to structure the sentence and convey meaning without sentiment

implications, such as most prepositions, conjunctions, articles, pronouns, auxiliary verbs,

etc. The proposed AMIC model is able to recognize sentiment words, estimate sentiment
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score at the word level, determine the overall sentiment of a review by combining the

sentiment scores of individual words, and provide interpretable results in SA.

The chapter is organized as follows. In Section 2.2, we briefly review the previous

works on the three components of AMIC. Section 2.3 explains the model structure and the

implementation algorithm of AMIC. Section 2.4 includes the application details of AMIC

on the wine review data and its comparison to a number of representative SA methods.

Section 2.5 concludes with discussion and future directions following this work.

2.2. Related works

2.2.1. Word embedding

The first step in text analysis is to turn text into data. The simplest way to represent a

word is to use a one-hot encoded vector which is an index for location in a long vocabulary

list. It serves as the foundation of frequency-based encoding methods, which include

bag-of-words and term-frequency inverse document frequency (tf-idf) ([46, 50]). Such

encoding methods do not provide information about word meaning and they do not reveal

any relationships between words.

In AMIC, we use word embedding to represent text as data. Word embedding maps

a word in a vocabulary to a latent word representation vector space where words with

similar contexts are in proximity. By doing so, a word is converted to a vector that sum-

marises both the word’s syntactic and semantic information. Compared to the one-hot

encoded vector, word embedding provides us with an efficient, dense representation in

which similar words have a similar encoding, where we can use arithmetic operation of

vectors to study the relationships of words. For the details of word embedding and the

frequency-based encoding methods, readers may refer to [16].
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Since the introduction of word2vec ([34]) which is a method to efficiently create word

embedding, it has quickly become one of the most popular choices to transform text to

data. In this study, we will use word embedding as features of words in a multiple instance

learning framework to conduct WCSA.

2.2.2. Multiple instance learning

Multiple instance learning (MIL) is a form of weakly supervised learning where the

learning task is performed on a set of labeled bags, each containing a collection of in-

stances whose labels are often unobserved. Each individual instance is described by a

set of covariates (or features). Instances in a bag contribute to the observed bag-level

response (or label). MIL was first introduced by [14] for drug activity prediction. The bag

label is positive if at least one instance label is positive, and the bag label is negative if all

instance labels are negative. The goal is to predict the label of a new bag. More details

of MIL can be found in [4].

When the label is categorical, MIL is referred to as multiple instance classification

(MIC). The task of predicting the sentiment of wine reviews can be formulated as an MIC

problem. Each wine review can be considered as a bag consisting of individual words

as instances, where the features of these instances are represented by the correspond-

ing word embeddings. Predicting the overall sentiment of the reviews is equivalent to

predicting the bag labels.

[39] presented an approach based on primary instance, which assumes that the bag

label is solely determined by the primary instances, while the non-primary instances carry

little information on the bag label. [62] followed this assumption and introduced a Bayesian

MIC approach for cancer detection using T-cell receptor sequences. It is composed of two

nested probit regression models, where the inner model predicts the primary instances

and the outer model predicts bag labels based on the features of the primary instances

identified by the inner model. We will implement the idea of identifying primary instances
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and the nested regression strategy in MIC to differentiate sentiment words and function

words and conduct WCSA in our proposed method.

2.2.3. Self-attention mechanism

Although word embedding, compared to frequency-based encoding methods, can pro-

vide a more informative representation of text as data, it is an isolated representation of

individual words. In addition, the MIC framework treats instances as independent entities.

Both fail to incorporate contextual information in documents. This creates an issue in

WCSA, because it implies that a word always receives the same sentiment score, regard-

less of its context. However, as the earlier example of the word “heavy” demonstrates, the

same word may carry very different sentiments in different contexts.

To overcome this limitation, we incorporate the self-attention mechanism ([7]) into

AMIC. It allows the model to identify which words are more important in relation to other

words in the sequence, by assigning different weights to the words based on their rele-

vance to the task at hand. This enables the model to focus on the most important parts

of input and better capture the context-dependent nuances of the text. As demonstrated

by [13], the incorporation of contextual awareness in BERT leads to significant advance-

ments in the performance of language models, surpassing the previous benchmarks.

The incorporation of the self-attention mechanism allows AMIC to assign context-

based sentiment scores to individual words by considering the interactions between words

within a document. It facilitates comprehension of subtle sentiment conveyed by words in

varying contexts and thereby produces more accurate sentiment scores.

2.3. Methodology

AMIC has a two-layer nested regression structure depicted in Figure 2.1. Layer 1 em-

ploys a logistic regression model using the self-attention transformed word embeddings
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Figure 2.1: Model Structure of AMIC. Layer 1 aims at identifying sentiment words. Layer
2 produces both word-level and document-level context-based sentiment scores.

to predict whether a word is a sentiment word in a document. Layer 2 employs another

logistic regression model to estimate word-level context-based sentiment scores of the

sentiment words identified in Layer 1, upon which, the classification of the sentiment label

for the entire document is obtained.

In the following, we introduce AMIC in the context of binary classification, but it can be

easily extended to multiclass classification or prediction with continuous outcomes.

In AMIC, yi (i = 1, 2, ..., n) represents the observed sentiment label of the ith document,

xij is a d-dimension vector (i.e., a length-d word embedding vector) representing the jth

(j = 1, 2, ...,mi) word in the ith document. In this study, the documents are padded to

have the same length (i.e., mi = m). Note that only xij and yi are observed and they are

represented with a square box in Figure 2.1.

In Layer 1, the context-independent word embedding xij is transformed to a context-

based word embedding, denoted as aPij, using the self-attention mechanism, based on

the algorithm described in [57]. Then AMIC conducts a logistic regression using aPij as
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features of each word to predict δij, which is the indicator on whether the jth word in the

ith document is a sentiment word. Under this model, b is the logistic regression coefficient

vector, and uij = aPijb is the linear predictor.

In Layer 2, xij is transformed to another context-based word embedding, denoted as

aLij, using the self-attention mechanism. Note that Layers 1 and 2 each employs their own

self-attention transformation, because they serve distinct purposes. Layer 1 focuses on

identifying sentiment words, so its attention mechanism is driven to achieve this goal. In

contrast, Layer 2 is concerned with estimating sentiment values of the sentiment words

identified in Layer 1, thus its attention transformation should focus on sentiment quantifi-

cation of those words. This differentiation allows the model to concentrate on each task

with different focuses, resulting in distinctively transformed embedding vectors. Layer 2

uses aLij as predictors to produce the sentiment score estimate, Zij, for the sentiment

words identified from Layer 1. The document-level sentiment score, Zi, is calculated as

the average of Zij ’s in the document, which is fed to a logistic regression supervised by

the document sentiment label yi.

Specifically, the relationships among the entities in AMIC can be summarized as fol-

lows. In Layer 1, the goal is to identify sentiment words in the document by using

uij = aPijb, (2.1)

δij = sig(uij), (2.2)

where sig(uij) = 1

1+e−uij
is the sigmoid function. In Layer 2, the goal is to predict the

sentiment label of the document by estimating word-level and document-level sentiment
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scores, which are

Zij = δija
L
ijβ, (2.3)

Zi =

∑m
j=1 Zij

m
, (2.4)

ŷi = 1[0.5,1](sig(Zi)), (2.5)

where ŷi is the predicted document label, ŷi = 1 if sig(Zi) ≥ 0.5 and ŷi = 0 otherwise.

In addition to the entities described above, AMIC includes three penalty terms as fol-

lows:

p1i = c1

m∑
j=1

(δij(1− δij))
1
2 , (2.6)

p2i = c2

m∑
j=1

δij, (2.7)

p3i = c3

√√√√ m∑
j=1

(aLijβ)
2. (2.8)

The self-attention mechanism is typically implemented using the gradient descent

backpropagation learning algorithm, which calculates the gradients of the loss function

to update the model parameters. Note that the indicator function is not differentiable, so

we can not use an exact 0/1 indicator in Equation (2.2) for sentiment word identification

in Layer 1. Our solution is to use a proxy indicator, δij, which is a differentiable sigmoid

function, and add a penalty term to ensure that δij, after rounding to a certain decimal

place, has a dichotomous outcome to adequately approximate a 0/1 indicator function.

As shown in Figure 2.2, the function (δij(1 − δij))
1
2 in penalty p1i has a dome shaped

curve. It encourages δij to take values close to 0 or 1. The 1
2

power further helps to create

a steep curve near 0 and 1 to drive convergence of δij towards 0 or 1. The penalty has a
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tuning parameter c1. With this strategy, the differentiable proxy indicator δij will take 0 or

1 after rounding to the 6th decimal place during the model training.

The second penalty term p2i promotes sparsity in the identification of sentiment words.

Our preliminary examination of the wine review dataset shows that the sentiment words

typically account for less than 30% of all the words in a review. This observation initiates

the introduction of sparsity in sentiment word identification in Layer 1. The third penalty

term p3i is to ensure the stability in the estimation of Zij in (2.3). Specifically, it imposes

an L2 penalty of aLijβ to prevent the model from arbitrarily inflating aLijβ in situations where

δij may take close-to-zero values in the early training stage.

The parameters in AMIC are estimated using the gradient descent backpropagation

algorithm to minimize the following loss function. It consists of a cross-entropy loss and

the penalty terms:

L(yi, Zi) = − 1

n

n∑
i=1

([yilog(sig(Zi)) + (1− yi)log(1− sig(Zi))] + p1i + p2i + p3i) . (2.9)

By minimizing the loss function in Equation (2.9), AMIC is able to automatically identify

sentiment words, produce word-level context-based sentiment scores, predict document-

level sentiment label, while doing so without requiring prior information such as seed

words (i.e., words whose sentiment polarity or score is given) or a pre-trained sentiment

dictionary. Algorithm 1 provides an overview of AMIC’s training process. Note that c1,

c2, and c3 are tuning parameters that need to be selected to optimize performance of the

model. Among them, c2 is primarily responsible for regulating the sparsity of the model.

If the value c2 takes is too large, it will result in under-identification of sentiment words,

leading to underfitting of the model. Conversely, if c2 takes a value that is too small,

it will cause over-identification of sentiment words, causing overfitting of the model. A

training-validation-test split of the data is employed to train the model, choose the values

of the tuning parameters, and assess the model’s predictive performance, respectively.
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Figure 2.2: Shape of Penalty p1i

Based on the scheme, we choose a value of 1e-3 for c2 which provides the optimal model

performance. The classification accuracy is relatively robust to the values of c1 and c3,

and they are set to be 1e-4. The training process terminates when the loss evaluated on

the validation set stops to be further reduced after 5 consecutive epochs.

2.4. Application: WCSA of wine reviews

2.4.1. Data preprocessing

We have applied AMIC to the same dataset used in [26] and [63], which consists of

141,409 reviews collected from the website of Wine Spectator dated from 2005 to 2016.

For demonstration purposes, we labeled the sentiment of a wine as positive if its rating

is at least 90, and negative otherwise. The reviews typically contain between 20 and 150

words, and we padded short reviews so that all texts have 150 words. The padding was

done by inserting a special token, not present in the original vocabulary, with a vector

of zero as its embedding. This is to ensure that the padded tokens do not interfere with

model training.

15



The word embeddings (i.e., xij ’s in AMIC) are pre-trained results from the Global Vec-

tor (GloVe) method ([38]). GloVe learns word embeddings based on co-occurrences of

words in a corpus. Several versions of GloVe have been provided based on the corpus

used for training. In this project, we used the version of 300-dimensional word embed-

dings (Glove-300-Wiki) trained on Wikipedia, which is considered to be a reliable ap-

proach to provide general-purpose word embeddings.

Words that are not present in the Glove-300-Wiki vocabulary were removed, resulting

in an elimination of 3.3% of the words. Stop words were not removed for two reasons.

First, AMIC is able to distinguish between sentiment words and function words. Second,

although most stop words do not possess strong sentiment, some of they can still have

a noticeable effect modifying sentiment in a text (e.g., “but” or “against”). Thus, removing

stop words may result in loss of information in WCSA.

Stemming is a popular preprocessing technique employed in NLP, which is used to

reduce a word to its word stem or base word ([60]). In this study, we chose not to apply

stemming because it leads to reduced classification accuracy. One possible explanation

is that there are words with different forms which carry different sentiment. For example,

“acidity” is a word whose noun form has a neutral sentiment in a sentence such as “This
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wine has a good level of acidity,” but its adjective form “acidic” carries a negative sentiment

in a sentence such as “This wine is too acidic and puckers the mouth.” In addition, GloVe-

300-wiki was trained without stemming, thus applying stemming risks reducing variants

of a word to a base form that is not included in the GloVe-300-wiki vocabulary.

Lastly, we eliminated punctuation words and standardized all characters to lowercase.

These steps are standard practices in NLP to enhance the robustness and generalizability

of the model.

2.4.2. Implementation and comparison

The model was implemented using PyTorch in Python. The training-validation-test

split follows a 18:1:1 ratio. The training process terminates when the loss evaluated on

the validation set stops to be further reduced after 5 consecutive epochs. The model’s

prediction accuracy was then reported on the test set using the parameters that produced

the lowest loss in the validation set.

To evaluate the performance of AMIC, we compared it to a number of representative

SA methods. One of the widely used word-level SA models is the multinomial inverse re-

gression (MNIR) model for text analysis proposed by [53, 54]. MNIR assumes that token

count data (i.e., count of words or phrases in text) are drawn from a multinomial distri-

bution. The method uses logistic regression of token counts onto document annotations

to obtain low dimension document sentiment representations. Specifically, MNIR is able

to create word-level sentiment loadings, which allows for the identification of influential

words and phrases in SA. MNIR was implemented using the “textir” package in R. Note

that both AMIC and MNIR are word-level SA models. We have also included three neural

network SA models: CNN, BILSTM, and BERT, which represent the state-of-the-art SA

performance on document-level prediction.

Based on Table 2.1, AMIC has achieved the highest accuracy (0.8926) in the sentiment

classification of wine review texts. Among the three neural network models, BERT has
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Table 2.1: Model Performances on Sentiment Prediction Accuracy

Model Predictive Accuracy

Word-level

SA models

AMIC 0.8926

MNIR 0.8468

MNIR (with bigram) 0.8345

Neural Network

SA models

CNN 0.8802

BILSTM 0.8869

BERT 0.8912

the highest accuracy at 0.8912, closely followed by BiLSTM and CNN. AMIC, which is

developed to conduct interpretable WCSA, does not compromise on its performance in

the document-level sentiment classification.

The benchmark word-level MNIR model has achieved an accuracy of 0.8468. The

difference in performance between MNIR and the other methods is that MNIR does not

have a mechanism to incorporate document context (i.e., the dependence of words in a

document). On the other hand, MNIR takes token count as input, which naturally allows n-

gram (i.e., continuous sequences of words or symbols in a document) to be the token unit.

By comparison, AMIC takes word embedding as input and it can not handle n-gram in the

current form. In this study, we also ran MNIR with the bigram input, and its prediction

accuracy is 0.8345. It shows that in this particular study bigrams do not provide more

information for sentiment classification than individual words.

While AMIC has achieved the best performance in terms of sentiment prediction ac-

curacy for this particular dataset, it is important to recognize that wine review texts are

relatively short and straightforward. Hence, it is possible that the neural network models

may have better performance on datasets containing longer or more complex texts. Nev-

ertheless, it is reasonable to conclude that AMIC, which has a much simpler model struc-

ture, can compete with BERT, the state-of-the-art NLP model, in terms of performance
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on certain datasets in SA, with the capability of providing more interpretable results. To

further assess the robustness of our findings, we conduct the entire procedure five times

using distinct data splits, following the same 18:1:1 ratio. The results of these iterations

are presented in Appendix A.1, where the conclusion remains the same as presented

above.

As for the computational cost, MNIR is implemented in R and it is trained using a AMD

Ryzen 7 3700X CPU. It takes approximately 4 minutes to run with the unigram input, twice

as long to run with the bigram input. The other models are implemented in Python and

they are trained using a Tesla P100 GPU. The training time for AMIC and CNN is around

20 minutes, and 30 minutes for BiLSTM. BERT, which is a much larger model, takes over

2 hours to train.

2.4.3. Word-level sentiment analysis

AMIC can simultaneously identify individual sentiment words, estimate word-level context-

based sentiment scores, and measure the overall sentiment of a document. By doing so,

AMIC can identify the relevant parts of the text in determining the overall sentiment and

quantify their respective contributions, which provides an interpretable SA framework.

Table 2.2 shows an example of the word-level parameter estimation on a wine review

text. Recall that δij is the indicator of whether a word is a sentiment word or not. In this

review text, words like “this” and “offering” are identified as function words (i.e., δij = 0)

and their respective sentiment scores (i.e., δijaijβ’s) are 0. For words that are identified

as sentiment words (e.g., “lush,” “beauty,” etc.), their sentiment scores are aggregated

to calculate the document-level sentiment Zi. This example illustrates how AMIC makes

document-level sentiment prediction, which is interpreable from word-level sentiment es-

timation.

Note that a word appearing in different context may carry different sentiment. AMIC

calculates the overall word-level sentiment score for an individual word as the mean of
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Table 2.2: Demonstration of AMIC’s Interpreability

Raw Text

This lush beauty really tames the rugged structure of the vintage, offering

gorgeous boysenberry and raspberry confiture layered with mocha, Turkish

coffee, licorice and fig paste notes. The long finish has great grip, though it

is remarkably well-embedded, allowing the exotic spice notes to linger

beautifully.

Input Text this lush beauty ... offering gorgeous ... linger beautifully

δij 0 1 1 ... 0 1 ... 1 1

δijaijβ 0.0 34.89 29.65 ... 0.0 34.18 ... 21.04 33.56

Z_i 9.35 (positive prediction)

its δijaijβ values across the documents that it appears in, from which we can create a

sentiment dictionary for all the words in the vocabulary. Table 2.3 presents AMIC’s top

50 words with the highest sentiment scores in this wine review dataset, where size is

proportional to the sentiment score. These words can be roughly grouped into three

categories based on their meanings and connotations:

• Descriptive words: words that are used to describe the sensory experience of drink-

ing wine, such as gorgeous, beautiful, ethereal, exquisite, sumptuous, luxuriant,

glistening.

• Adjectives of intensity: words that are used to describe the degree or intensity of the

sensory experience, such as beautifully, gloriously, gorgeously, thoroughly, amaz-

ingly, strikingly, brilliantly, impeccably, perfectly, deliciously, and wonderfully.

• Verbs and nouns: words that are used to indicate the action or the characteristics

associated with the wine, such as drip, soak, swirl, stain, sing, silk, perfume, cognac,

burgundy, velvet, cascading, haunting, truffle, charms, brunello, fabric, and carpet.
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Table 2.3: AMIC’S Top 50 List of Positive Sentiment Words

gorgeous beautiful ethereal beautifully gloriously

gorgeously thoroughly drips beauty impeccable

amazingly exquisite strikingly sumptuous cognac

burgundy breed velvet cascading haunting

seductive finely stuffed soak lovely

soaked perfectly deliciously brilliantly impeccably

wonderful drip luxuriant glistening silk

truffle charms brunello soothing carpet

champagne perfume seductively fabric unobtrusive

sings swirl stained wonderfully elegance

Note: size of a word is proportional to it sentiment score

It is less obvious why some of the words in the list convey a positive sentiment com-

pared to the other words. Table 2.4 provides a few examples of how these words, which

are not typically associated with positive sentiment in everyday language, convey a pos-

itive connotation in the domain of wine reviews. For instance, the adjective “stained”

implies a deeper and more complex flavor profile, which is typically considered to be of

high quality. Similarly, “carpet” and “fabric” are associated with wines with a rich velvety

texture that is often indicative of high quality wines. The word “cascading” introduces an

additional flavor profile — suggesting that a wine has a complex and layered flavor pro-

file. Lastly, “cognac” refers to a specific type of brandy, produced in the Cognac region

of France, which is renowned for its complex flavor profile and smooth finish, making it a

desirable association for high quality wines.

Table 2.5 presents the bottom 50 words with the lowest sentiment scores in this study.

They can also be roughly grouped into three categories based on their meaning:
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Table 2.4: Illustration of Examples on Less-obvious Positive Sentiment Words

word review texts

stained

...the long charcoal stained finish has a nice tug of roasted bay leaf and truffle,

and this shows terrific range...

...floral notes creamy mouthfeel and a long fruit stained finish...

carpet

like a persian carpet this lovely elegant champagne seamlessly weaves together its

elements with fine grained texture and vibrant acidity...

...sail across a carpet of superfine tannins lingering on the spicy finish...

cascading
...with smoky cherry and red plum flavors cascading along a sleek frame a charming wine...

...and then ends with a cascading mix of fruit mineral cedar sage...

fabric
...with fine tannins woven delicately into its fabric...

...like a suit cut from beautiful fabric balanced with a vibrancy and silkiness...

cognac

...rich and expressive with spun honey bergamot graphite and pastry dough notes

leading to plum tart smoked almond and cognac flavors...

...marzipan fennel seed and cognac notes accent this rich and creamy blanc de blancs...

• Adjectives of undesirability: words that in general express undesirability, such as

canned, tinny, stale, unfocused, metallic, dull, cloying, muddled, detract, blunt, tired,

overripe.

• Adjectives expressing simplicity: words that are used to describe wines that lack

depth or complexity: such as quick, generic, simple, canned, uncomplicated, diluted,

tinny, neutral, straightforward, flat, fade, modestly, decent, soft, and easy.

• Words related to herbal notes or freshness: words that are associated with fruit

or herb implying less desired sense of flavor, such as grassy, weedy, asparagus,

parsley, lemonade, chilled, watermelon, greenish, scallion, and cucumber.

Table 2.6 presents a few examples featuring words that are commonly associated

with positive sentiment in everyday language but are indicative of negative sentiment in

wine reviews. Our analysis of the positive sentiment words reveals that fine wines are

generally associated with sophistication, depth, and complexity. Consequently, terms that

suggest the opposite qualities, such as “quick” or “breezy,” are deemed undesirable in
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Table 2.5: AMIC’S Bottom 50 List of Negative Sentiment Words

quick generic hearted simple canned

uncomplicated diluted tinny neutral straightforward

stale cocktail easygoing fizzy picnic

flat lovage greenish unfocused breezy

beaujolais metallic dull easy tail

modestly decent fade scallion modest

cucumber cloying watermelon soft parsley

asparagus kosher muddled herbal lemonade

detract weedy blunt tired muscadet

grass grassy chilled trim overripe

Note: size of a word is proportional to it sentiment score

wine reviews. These terms imply a lack of complexity and evolution. The word “hearted”

is associated with the phrase “light-hearted”. The expression “light-hearted” is seen as an

undesirable attribute, as it suggests a wine that is too simple and lacks character. Finally,

terms such as “straightforward” and “easygoing” also indicate a lack of sophistication and

depth, making them descriptors for less desirable wines. The respective top 100 and

bottom 100 sentiment words produced by AMIC and MNIR are included in Appendix A.2

for further reference.

One group of SA methods are dictionary-based methods where the word-level SA

is based on sentiment measures provided by a pre-trained sentiment dictionary. [41]

has provided a survey on quantitative tests and qualitative assessments on a number of

dictionary-based SA methods. As demonstrated in our study, words used in a particular

area may carry sentiment different from its general sentiment. In contrast to dictionary-

based methods, AMIC is capable of creating domain-specific sentiment dictionary without

referring to an existing one or requiring prior information such as seed words. It enables
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Table 2.6: Illustration of Examples on Less-obvious Negative Sentiment Words

word review texts

quick
...light with modest citrus and green apple hints clean quick finish...

light and quick with lemon pulp and jicama notes...

hearted
...a friendly off dry style with light hearted candied lime peel and peach notes...

...light hearted and floral with nice melon and kiwi flavors that bounce through...

straightforward

...a straightforward white with light notes of gala orange and basil easy to drink

but loses some intensity towards the finish...

..this straightforward red shows light cherry herbal and vanilla flavors over ...

light tannins

easygoing
...bright cherry and berry notes are up front in this easygoing supple red...

...light and easygoing with pretty pear and green melon flavors...

breezy
...tender with modest green apple and green melon notes featuring an open breezy finish...

...pear and floral notes that stay nicely defined through the breezy finish...

us to assess sentiment of documents more accurately in the domain of interest, provide

more meaningful interpretation, and gain a deeper understanding of the domain-specific

wording characteristics.

2.5. Discussion and future work

The main goal of AMIC is to conduct interpretable sentiment analysis without compro-

mising the predictive accuracy. It is achieved by assembling three elements developed

in different areas in a novel way. Specifically, it employs word embedding as an efficient

transformation of text to data, MIC as an overall transparent model structure, and the self-

attention mechanism to incorporate document context in SA. Through this strategy, AMIC

combines the best of two worlds: the interpretability of a statistical model and the high

predictive performance of deep learning algorithms.

AMIC is not trained using a frequentist or Bayesian approach. Instead, the parameters

in AMIC are estimated by minimizing the loss function using the gradient descent back-

propagation algorithm. This is because the self-attention transformed word embeddings
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need to be updated in each iteration by back propagation, and the associated parameters

can not be explicitly expressed in a closed form or in a posterior distribution.

The current AMIC is based on word embedding which is defined on individual words.

This restriction makes AMIC only applicable to word-level SA, but not to n-gram or phrase-

level SA. Another limitation of AMIC is that it does not incorporate positional information

of words within a document. In some cases, the arrangement of words in a sentence can

play a crucial role in its sentiment interpretation. For example, in the sentence “The wine

is not too acidic, the aftertaste is well-balanced”, the word “not” negates the negative

sentiment of “too acidic”, resulting in a positive sentiment. However, if “not” is relocated

and the sentence now reads “The wine is too acidic, the aftertaste is not well-balanced”,

it would indicate a negative sentiment. The current version of AMIC is not able to tell the

difference in the two arrangements of the same collection of words. Future research will

be conducted to address these concerns.

Finally, we provide our thoughts on how AMIC compares to ChatGPT, which is a pow-

erful large language model primarily focused on generating content. ChatGPT provides

the unprecedented ability to create human-like text and content (images, music, etc.), and

answers questions in a conversational manner. It is certainly more versatile than AMIC

in general. We have fed wine review texts to ChatGPT. It can provide a general interpre-

tation, but it tends to classify reviews as positive more frequently and seldom classify a

wine view as negative. This is because ChatGPT is not fine-tuned on a specific domain

(in this case, the wine review domain), so the output may not be as accurate as a model

specifically trained with supervised information in that domain. Taken together, if the re-

search question and research domain is very clear, a specifically trained language model

can still be competitive compared to ChatGPT.
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CHAPTER 3

AMIC 2.0: Incorporating Positional Information in AMIC for Word-level Sentiment
Analysis

3.1. Introduction

AMIC was designed with the objective of providing interpretable results without com-

promising classification accuracy in SA. To achieve this goal, AMIC incorporates the self-

attention mechanism in a multiple instance classification framework, which is shown to be

highly effective in conducting contextualized word-level sentiment analysis while deliver-

ing impressive classification performance.

The strength of the self-attention mechanism is that it enables the model to assess the

relationships between words in text. These connections and relationships between words

are commonly referred to as dependencies ([36]). Such dependencies can be categorized

into two types: global dependency and local dependency. Global dependency refers to

the long-range relationships between words across the entire text. Local dependency fo-

cuses on the immediate relationships between neighboring words within a small window

of text, which includes dependencies such as subject-verb agreement, adjective-noun

relationships, and the impact of negation words on sentiment. Capturing local dependen-

cies can help a SA model to effectively utilize the subtle nuances and relationships among

words that collectively contribute to the overall sentiment expressed in text.

The self-attention mechanism was originally designed to emphasize the relationships

between words throughout the entire sentence, regardless of their specific positions. This
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characteristic makes it highly proficient in capturing global dependencies. However, its

ignorance to the positions of words introduces a limitation when it comes to incorporat-

ing local dependencies. Without the knowledge of neighboring words, the self-attention

mechanism, on its own, struggles to accurately discern sentiment shifts influenced by

factors such as negation, word order, or proximity to other words. These contextual cues

can be important in determining the sentiment expressed in text, and the self-attention

mechanism may not fully grasp these subtleties.

Let’s consider the following two sentences as an example, where the only difference

is the placement of the word “not”:

Sentence I: The service of the restaurant is good, the overall experience is

not bad.

Sentence II: The service of the restaurant is not good, the overall experience

is bad.

Sentence I presents a positive assessment of a restaurant, highlighting its excellent

service. In contrast, Sentence II expresses a negative sentiment towards the overall din-

ing experience as well as the quality of service provided. This simple example illustrates

the importance of positional information in understanding the meaning of text. By rear-

ranging the position of just one word, the entire sentiment of the text is reversed. Note

that due to its utilization of the self-attention mechanism, AMIC treats the collection of

words in text as an unordered set and ignores their positional information. Thus, AMIC

would produce identical sentiment estimation for Sentence I and Sentence II, resulting in

the failure to differentiate between them.

In this chapter, we propose AMIC 2.0 to overcome the lack of positional awareness in

AMIC. Our approach is based on the methodology proposed by [47], which incorporates

relative positional information into the self-attention mechanism. By adding the positional

information into the self-attention process, AMIC 2.0 can take into account the appro-
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priate word order and contextual dependencies, which makes it capable of conducting

WCSA more accurately than AMIC, capturing the local dependencies between words,

understanding the sentiment nuances, and providing more interpretable results in SA.

Another improvement in AMIC 2.0 is the enhanced model structure over AMIC. AMIC

incorporates the multiple instance classification framework, which improves SA inter-

pretability by explicitly distinguishing sentiment words versus function words, producing

contextualized sentiment scores for sentiment words, and generating a document-level

sentiment score as the average of word-level sentiment scores. To understand how con-

text influences sentiment expressed in text, AMIC 2.0 takes a step further by decom-

posing the contextualized sentiment score in AMIC into two distinct scores: the context-

independent and context-dependent scores. The context-independent sentiment score

serves as a baseline sentiment estimation that remains consistent regardless of the sur-

rounding context, while the context-dependent score is affected by both the global de-

pendency and the local dependency. By providing estimations for the two sentiment

scores and quantifying the global dependency and the local dependency respectively,

AMIC 2.0 can offer insights on how context influences sentiment and the inner workings

in the model’s decision-making process.

To demonstrate the model’s capability in capturing positional relationships that influ-

ence the polarity and intensity of sentiment words, it requires to use datasets that contain

abundant examples of these positional structures to train the model. In this study we

use the Sentiment140 dataset introduced in [18]. The Sentiment140 dataset is sourced

from Twitter, a popular social media platform where users share brief messages called

tweets. This dataset consists of 1.6 million tweets collected between April 6, 2009, and

June 25, 2009. Among these tweets, 800,000 are labeled with negative sentiment, while

the remaining 800,000 are labeled with positive sentiment. These tweets exhibit diverse

linguistic variations that are context-sensitive. Therefore, it is critical for the model to un-
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derstand the relative positional information in tweets to accurately predict the sentiment

expressed in each message.

The subsequent sections of this chapter are structured as follows. In Section 3.2, we

provide a detailed overview of prior research work on the critical components in AMIC

2.0. Section 3.3 explains the model’s construction and the implementation algorithm,

outlining the key technical components of AMIC 2.0. Section 3.4 includes the application

details of AMIC 2.0 on the Sentiment140 dataset. Section 3.5 summarizes the model’s

contributions and presents discussion on potential future research directions.

3.2. Background

3.2.1. A closer look at the self-attention mechanism

Because this project involves modifying the self-attention mechanism, as opposed to

just applying it as in AMIC, here we provide a detailed examination of how self-attention

operates at its core. As discussed before, the motivation behind self-attention is to en-

able neural networks to capture the relationships between words in a sequence more

effectively.

Traditional neural network architectures such as recurrent neural networks (RNNs)

and convolutional neural networks (CNNs) have limited ability to capture relationships

between words, particularly long-term dependencies. For example, RNNs suffer from

the vanishing gradient problem, which prevents them from effectively capturing long-term

dependencies. CNNs only analyze the relationships between words within a fixed window

(also known as a “kernel”), ignoring long-term dependencies. This can limit their ability

to capture the complex relationships between words in a sequence, particularly when the

dependencies between the words span a longer distance.
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On the other hand, the self-attention mechanism enables neural networks to capture

global dependencies by computing a weighted sum of the input words, where the weights

are computed based on their relationships with all other words in the sequence indis-

criminatel. This enables the network to focus on different parts of the input sequence

depending on their relevance to the current word and capture complex patterns and re-

lationships between the words, regardless of their distance from the current word. To

achieve this, the self-attention mechanism follows three major steps.

The initial step involves computing Query, Key, and Value vectors. Each word in the

input sequence is represented as a vector, and the self-attention mechanism computes

separate Query, Key, and Value vectors through linear transformations. This concept of

Key, Value, and Query is analogous to information retrieval systems in search engines.

For instance, when a user search for videos on Youtube, the search engine will map the

user’s query (text in the search bar) against a set of keys (video title, description, genre,

etc.) associated with candidate videos in its database, and present the user with retrieved

values (i.e., the best-matched videos).

Similarly, in the self-attention mechanism, Query vectors represent the words that re-

quire attention, Key vectors represent the words used to calculate attention weights, and

Value vectors represent the information that the network aims to retrieve and propagate

to the next layer of the neural network. By utilizing these vectors, the self-attention mech-

anism effectively captures and leverages the relationships between words in the input

sequence.

The widely utilized self-attention mechanism is known as the scaled dot-product atten-

tion. Consider an input sequence of word embedding vectors for a document denoted by

x = [x1, x2, ..., xm], where xj ∈ Rd represents the embedding for the jth word and m is the

total number of words in the sequence. Self-attention uses three d × d projection matri-

ces WQ,WK , and W V , which are updated as model parameters during training. These

matrices serve to project the inputs into Query, Key, and Value vectors for each word,
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respectively, via matrix multiplication between the matrices W and the embedded inputs

xj,

Query vector : xQ
j = xjW

Q

Key vector : xK
j = xjW

K

Value vector : xV
j = xjW

V .

Next the self-attention mechanism proceeds to compute a weight vector for each word,

considering its interactions with other words in the sequence. Each element in the atten-

tion weight vector is calculated by evaluating the strength of relationship between two

words through an inner product. For instance, in the self-attention representation of word

j, the similarity between word j and word k is computed as follows:

ejk = (xQ
j )(x

K
k )

T (3.1)

The attention weight αjk is then computed as the standardized similarity score of ejk:

αjk =
exp(ejk)∑m
h=1 exp(ejh)

, (3.2)

where αjk can be interpreted as the level of attention that should be given to the kth word

when calculating the context-dependent representation for the jth word.

As an illustration, let’s take the sentence “the food was so bad” as an example. In

this sentence, the word “bad” is crucial for determining the sentiment, while the word

“so” intensifies the negative sentiment conveyed by “bad”. The self-attention mechanism

takes into account the relationships between the words to determine how much attention

should be paid to each word. Therefore, when computing the attention weights for the

word “bad”, the mechanism would assign a higher weight to the word “so” because it
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intensifies the sentiment of “bad”, while assigning a lower weight to the word “the”, as it

has little influence on “bad”.

In the third and final step, the self-attention mechanism computes a weighted sum of

the Value vectors for each word in the input sequence. The weights, calculated in the

second step, measure the relevance of each word in the input sequence to the current

word. The self-attention embedding of word j, aj, which incorporates the context of word

j, is computed as follows,

aj =
m∑
k=1

αjk(x
V
k ) (3.3)

The Value vectors xV
k (k = 1, ...m) are commonly regarded as encodings of the semantic

meaning of words in the input sequence. They capture the fundamental semantic informa-

tion that plays a crucial role in comprehending the entire sequence, thus proving valuable

for various downstream tasks like sentiment analysis ([52]) machine translation ([17]), or

question-answering ([45]). In Equation (B.3), aj not only includes the semantic encoding

of word j itself but also incorporates the information from all the other words weighted by

their attention relevance.

3.2.2. Incorporation of relative positional information

The self-attention mechanism is a powerful technique in NLP that makes use of context

by computing attention weights for word representations. However, it relies exclusively on

the inner product computation between the Query and Key vectors to calculate the atten-

tion weights. As a result, the self-attention mechanism does not inherently incorporate

the positional information of words within the input sequence.

To illustrate this point, let’s refer to the example of Sentence I and II discussed in Sec-

tion 3.1, where the position of one word is crucial for correctly interpreting the meaning of

the sentences. The self-attention mechanism ignores the positional information of words

and treats the two sentences in the same way. This limitation hinders the model’s abil-
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ity to capture the nuanced meaning conveyed by the word order, leading to inaccurate

interpretation of the underlying sentiment.

To tackle the challenge of incorporating positional information into the self-attention

mechanism, researchers have proposed different approaches ([57], [47],[2], [6] and [22]).

One method, introduced by [47], is known as self-attention with relative positional repre-

sentation, where relative positional information refers to the information about the relative

distances or positions between the words in an input sequence. This technique enables

the self-attention mechanism to effectively utilize the relative positional information be-

tween words which can convey important information about the relationships between the

words and their syntactic or semantic association.

For instance, in the sentence “I do not like cooking,” the relative position of the words

play a crucial role in interpreting the sentiments of both individual words and the overall

sentence. The word “not” functions as a negation word, reversing the polarity of the

sentiment that follows it. Specifically, the word “not” negates the positive sentiment that

would be conveyed by the word “like” if it were used independently. Consequently, the

phrase “do not like” conveys a negative sentiment, even though the individual words “do,”

“not,” and “like” might be positive or neutral. To accurately understand the sentiment of

the phrase, an SA model needs to capture the relative positional information between the

words “not” and “like.” This enables the model to recognize the negation and correctly

assign a negative sentiment to the sentence.

The approach introduced in [47] aims to explicitly capture the relative positional in-

formation within an input sequence of words. This is achieved by introducing relative

positional embeddings, which encode both the position and direction between words. For

convenience of explanation, we will designate one word as the “target word” and the other

as the “reference word” within a pairwise relationship.
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In the above example, if we set “not” as the target word, the remaining words are

considered as reference words. For instance, the reference word “do” is one position

before the target word “not”, while the reference word “cooking” is two positions after “not”.

In [47], these relative positional relationships are explicitly captured using vectors known

as positional embeddings. This approach is similar to how word embeddings represent

the meaning of words.

To be easily integrated in the self-attention mechanism, the relative positional embed-

dings w are constructed as the same d-length vectors as the word embedding vectors.

For example, in the left-to-right direction, the relative position between a target word and

the reference word one position to the right is represented as the w1 vector, while the

relative position between the target word and the reference word two positions to the right

is denoted as w2, and so forth. In the opposite direction, the relative position between

a target word and the reference word immediately to its left is represented as w−1, and

the embedding between a target word and the reference word two positions to the left

is denoted as w−2, and so forth. Moreover, w0 denotes the relative position between the

target word and itself as the reference word. Given an input sequence of five words, there

are in total nine distinct relative positional relationships, represented as w−4, w−3, . . . , w0,

. . . , w3, and w4, as illustrated in Figure 3.1.

Given that these relative embedding vectors represent the distance between two words,

we can also express them using a pairwise notation, which is denoted as aj→k, where j

represents the position of the target word and k represents the position of the reference

word. Furthermore, [47] considers position of words only up to a specific limit, which is

based on the assumption that the relative position of two words carries trivial information

beyond a certain threshold. Let parameter q denote the relative position threshold, the

model learns position embeddings w−q, w−q+1, . . . , wq−1, and wq, resulting in a total of

2q + 1 unique relative positional embeddings. Figure 3.2 illustrates this arrangement with

q = 2.
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Figure 3.1: The target words are listed in the first row, and the reference words are listed
in the first column. The positional relationship between a reference word and a target
word is represented as the w’s.
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Figure 3.2: When the range is limited to q = 2, only five distinct positional embeddings
are learned, namely w−2, w−1, w−0, w1, and w2. The relative positions are considered the
same for the cells marked in grey.

To incorporate the relative positional information in the self-attention mechanism, two

separate sets of relative positional embeddings are learned in the Key vectors and Value

vectors, respectively. Specifically, one set of relative position embeddings, denoted as

aKj→k, is added to the Key vector xK
j in Equation (3.1) to inject the relative positional in-

formation into the Key vector as demonstrated in Equation (3.4). Thus, (xK
k + aKj→k) con-

tains both the semantic information and the positional information. A similar operation is

conducted by adding another set of relative position embeddings, denoted as aVj→k, to the

Value vector xV
j . The incorporation of relative positional information in the Key vectors and

Value vectors, modifying Equation (3.1) to Equation (3.4) and Equation (B.3) to Equation

(3.6), enables the self-attention mechanism to consider the positional relationships be-
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tween words and incorporate them in the computation of attention weights.

ejk = (xQ
j )(x

K
k + aKj→k)

T (3.4)

αjk =
exp(ejk)∑m
k=1 exp(ejk)

(3.5)

aj =
m∑
k=1

αjk(x
V
k + aVj→k) (3.6)

Generally speaking, in the self-attention mechanism, the query is the information that

is being looked for, the key is the context or reference, and the value is the content that

is being searched. Thus, Key vectors and Value vectors contain different information of

words, and their encoding of relative positional information can be different. We need to

have two sets of positional embeddings (i.e., aKj→k and aVj→k), each of them is tailored to

produce the most relevant positional information to the respective vector. Together, they

ensure an effective incorporation of positional information in the self-attention mechanism.

By introducing these two sets of relative positional embeddings, the model gains an

awareness of the neighbouring words to each target word and can potentially assign more

significance to these neighboring words within a specific range parameterized by q. This

capability enables the model to better understand the context and positional relationships

between words, leading to more accurate and contextually informed representation in the

self-attention process.

3.2.3. Ngation handling in NLP

Negation is a linguistic phenomenon that reverses the meaning of a word or a sen-

tence. Negation handling refers to methods of automatically detecting the extent of nega-

tion and inverting the polarity of opinionated words that are impacted by a negation. It

is an important sub-task in sentiment analysis in NLP which is considered as one of the

most challenging problems in NLP in opinion mining ([48]).
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Early research on negation handling mainly used rule-based approaches applied in

the medical domain, where negation handling techniques were primarily employed to

analyze medical reports and identify the presence or absence of specific disease

conditions. For example, a typical task might involve automatically detecting diseases in

medical reports like the following:

The patient exhibits high fever, but no headache...

where “fever” is a medical condition that requires recognition, while “headache” is consid-

ered a medical condition that is not present as it is ruled out by the negation word “not”.

In the context of negation handling, the words responsible for negation are termed “cue,”

and the portion of the sentence influenced by the cue is referred to as the “scope.” In this

example, the cue is the word “not” and the scope of negation is the range within the two

words to the right of the cue.

In the medical domain, rule-based approaches for negation handling gained popular-

ity due to the available set of predefined negations and the relatively standardized lan-

guage used in medical reports ([48]). For instance, when processing a medical report,

the decision-making process of a simplified rule-based negation handling system could

be:

• Step 1. Retrieve negation terms from a pre-defined negation dictionary.

• Step 2. Search through the report for medical conditions and their positional infor-

mation with respect to the nearest negation terms.

• Step 3. Report the medical conditions outside the negation scope as present and

those within the negation scope as absent.

In practice, rule-based systems often utilize a combination of regular expressions ([1]),

sentence parsers which is a NLP tool that analyzes and deconstructs the grammatical
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structure of a sentence ([25]), and other methods to facilitate the identification of negation

cues and their scope. For example, [5] introduced the NegEx algorithm, a rule-based

method that identifies the scope of negation words in discharge reports to determine

whether the disease condition is negated or not. DEEPEN, proposed in [31] , is a more ad-

vanced negation algorithm that considers the dependency relationship between negation

words and concepts. DEEPEN incorporates the Stanford dependency parser to enhance

negation detection in medical reports. Similarly, [49] employed a dependency parser

for negation detection in clinical datasets, aiming to improve the performance of cTAKE

(Clinical Text Analysis and Knowledge Extraction System) which is a modular system

of pipelined components combining rule-based and machine learning techniques aiming

at information extraction from the clinical narrative ([44]). NegFinder, proposed in [35],

introduces a set of rules to recognize a broad range of negated patterns in text by utiliz-

ing regular expressions based on a subset of context-free grammars, known as LALR(1)

grammars ([15]). NegFinder is trained using a diverse collection of manually inspected

and labeled medical documents from a variety of disease conditions.

The majority of these methods depend on annotated datasets for model implementa-

tion, leading to the creation of several negation-annotated datasets in various domains.

For instance, [51] introduced the BioScope corpus, a valuable resource for studying nega-

tion in medical texts. The corpus comprises medical texts, biological papers, and biolog-

ical scientific abstracts. Expert linguists meticulously annotated the dataset at the token

level, identifying negative and speculative keywords, as well as at the sentence level,

determining their linguistic scope.

Likewise, in the SA field, most early research for negation handling used rule-based

methods focusing on identifying scope and cue of negation in text ([24], [37], [19], [21],

and [64]). For instance, [24] studied the influence of the negation term “not’ ’ using de-

pendency parsers along with static and dynamic delimiters. The researchers introduced
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heuristic rules that involved sentimental verbs, sentimental adjectives, and sentimental

nouns, as well as double object rules for scope detection.

However, in domains that employ non-standardized language, such as online cus-

tomer reviews or social media platforms like Twitter, coming up with explicit rules to handle

negation exhaustively can be challenging. In such cases, it is argued that statistical ap-

proaches including machine learning outperform rule-based systems ([11]). For instance,

[10] applied support vector machine to the Simon Fraser review corpus, which is a collec-

tion of movie, book, and consumer product reviews with annotated negation, and it was

found to outperform rule-based approaches in terms of scope detection. In [42], a type of

graphic machine learning model called conditional random field ([9]) was used to conduct

negation scope detection on a negation-annotated Twitter dataset by exploiting valence

shifters, which are changes in the emotional polarity or sentiment of words or expressions

in the tweets.

A major limitation of these approaches is their dependence on annotated datasets that

usually need to be manually labeled ([23]). The limited availability of negation-annotated

datasets poses a significant obstacle, making it difficult to apply these models in vari-

ous domains. Thus, it is meaningful to develop models which are capable of capturing

negation without reliance on annotated datasets.

3.3. Methodology

Two features introduced in AMIC 2.0 distinguishes it from AMIC. First, AMIC 2.0 de-

composes the word-level contextualized sentiment score in AMIC into a context-independent

score, which represents a word’s intrinsic context-free sentiment, and a context-dependent

score, which captures the sentiment in the context of a given text. Furthermore, the

context-dependent score is obtained by considering both the global dependency and

the local dependency, which helps to elucidate how context affects sentiment in differ-
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ent angles. Second, AMIC 2.0 implements a modified self-attention mechanism which

incorporates the relative positional information of words to quantify the local dependency,

enabling it to handle more delicate lingistic complexities such as negation and sentiment

intensifier. Last but not least, the training of AMIC 2.0 does not require special annotated

datasets to handle lingistic complexity.

Figure 3.3 presents the overview of AMIC 2.0 model structure. Following the notations

assumed in AMIC, we use xij to denote the input word embedding for the jth word and yi to

represent the sentiment label in document i. Furthermore, vij is a real-valued scalar that

represents the context-independent sentiment score of word j in document i. This value

captures the inherent sentiment of the word, where a positive value indicates positive

sentiment and a negative value negative sentiment.

The newly added rgij, r
l
ij, and rsij in AMIC 2.0 are the context-dependent d-dimensional

vectors for the input word xij. Specifically, rgij contains information on its global depen-

dency, rlij on its local dependency, and rsij contains information to decide whether the word

is a sentiment word. Note that rgij and rsij are computed using the standard self-attention

mechanisms without incorporating positional information, whereas rlij is computed using

the modified self-attention to incorporate relative positional information.

Furthermore, δgij, δ
l
ij, and δsij are real-valued scalars derived from the d-dimensional

vectors rgij, r
l
ij, and rsij. Specifically, δgij and δlij are termed as global and local sentiment

shifters, respectively. The value of δgij ranges from 0 to 10, quantifying the influence of

global dependency for the sentiment of the jth word in document i. Whereas δlij repre-

sents the impact of local dependency on the sentiment of word j and it takes a value

between -1 and 1. A negative value of δlij indicates negation of the context-independent

sentiment of word j in document i. Finally, δsij is the proxy indicator that takes a value of

either 1 or 0, where 1 indicates that the word j is considered to be a sentiment word and

0 a function word.
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Figure 3.3: Model structure of AMIC 2.0
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The rest of the parameters have the same meaning/utility as those used in AMIC.

Specifically, pi1, pi2, and pi3 are the penalty terms, zij is the context-dependent sentiment

of the jth word in the ith document, and Zi represents the overall sentiment score of

document i. In the following, we will explain the details in the construction of the AMIC

2.0 model.

Let Xi =
[
xi1 , . . . , xim

]
, a d×m matrix, represent the sequence of all the input word

embeddings for document i. In the initial step, we use a feedforward layer to calculate vij,

the context-independent sentiment score, where bv is the d-dimensional coefficient vector:

vij = xijb
v (3.7)

Because xij is pre-trained word embedding, it does not incorporate context of the given

text. As demonstrated in Equation (3.7), vij is solely dependent on its corresponding word

embedding xij and the regression coefficient bv, without being influenced by the other

word embeddings xik (k ̸= j). Thus vij is context-independent, as it is not influenced by

other words in the document.

Next we compute the collection of rgij and rsij. Let Rs
i =

[
rsi1 . . . rsim

]
and Rg

i =[
rgi1 . . . rgim

]
. Since Rg

i contains the word representations of global dependency and Rs
i

is used to identify sentiment words, they are not influenced by the order of words. Thus,

both Rg
i and Rs

i are calculated using the original self-attention mechanism:

Rg
i = F g

self-attention(Xi) (3.8)

Rs
i = F s

self-attention(Xi) (3.9)

where F g
self-attention and F s

self-attention denote the original self-attention algorithm with the de-

tails covered in Appendix B.1.
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To measure the local dependency and understand the relationships between neigh-

boring words in a document, we have introduced rlij, the word representation for the local

dependency. In AMIC 2.0, we propose a novel variation of the self-attention mechanism

to compute rlij which effectively incorporates relative positional information.

We first calculate the Query vector xQ
ij and Key vector xK

ij using the self-attention mech-

anism. Notice that in comparison to the method listed in Section 3.2.1, we have introduced

an additional subscript i to indicate the document index i.

Query vector : xQ
ij = xijW

Q (3.10)

Key vector : xK
ij = xijW

K . (3.11)

We do not compute the Value vector xV
ij since its inclusion is unnecessary in our modified

approach for reasons explained later.

Based on [47] in Section 3.2.2, the context-based word embedding aj is computed

following Equation (3.4), (3.5), and (3.6). In our proposed algorithm, the steps are:

eijk = (xQ
ij)(x

K
ik + aKj→k)

T (3.12)

αijk =
exp(eijk)∑m
h=1 exp(eijh)

(3.13)

rlij =
m∑
k=1

αijk(a
V
j→k) (3.14)

where Equation (3.12) and (3.13) are designed similarly to Expression(3.5) and (3.6).

The difference lies in Equation (3.14) where we modify Equation (3.6) by eliminating

the Value vector xV
ij from the word representation calculation. If we follow Equation (3.6),

which is rlij =
∑m

k=1 αijk(x
V
ij + aVj→k), then rlij would be a weighted representation of the

Value vectors modified by the positional information. Following Equation (3.14), rlij now

is a weighted representation of the positional embedding. This adjustment allows rlij to

44



focus on the positional information rather than encoding the semantic meaning carried

by the Value vectors. By removing the Value vector of words, the model becomes more

sensitive to the relative positions of words, enabling it to better capture the contextual

dependencies based on their positions in the sequence. The reason why AMIC 2.0 can

let rlij only focus on the positional embedding is that AMIC 2.0 has decomposed the se-

mantic/sentiment information of words in multiple latent dimensions: context-independent

score and context-dependent score, where the transition from the former to the latter is

further explained by the joint function of global shifter and local shifter, so that rlij does

not have to be a comprehensive word representation but a specific word representation

focusing on local positional dependency.

In the following step, δgij, δ
l
ij, and δsij are obtained using the update on rgij, r

l
ij, and rsij.

Specifically,

δsij = sig(rsij
T bs) (3.15)

δgij = 10× sig(rgij
T bg) (3.16)

δlij = tanh(rlij
T
bl). (3.17)

Note that δsij eventually acts as an 0/1 indicator function with the constraints added by

the penalty terms (see the details in the construction of AMIC). A scaling factor of 10 is

applied to the sigmoid function for the global sentiment shifter δgij to address the potential

vanishing gradient problem. The hyperbolic tangent function is used to compute δlij which

has an output range between -1 and 1, allowing for the detection of sentiment negation.

Specifically, a negative value of δgij indicates a flipped sentiment, signifying the presence

of sentiment negation.
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The penalty terms are constructed in a similar fashion as in AMIC:

pi1 = c1

m∑
j=1

(δsij(1− δsij))
1
2 , (3.18)

pi2 = c2

m∑
j=1

δsij, (3.19)

pi3 = c3

√√√√ m∑
j=1

(vij × δgij × δlij)
2. (3.20)

The utility of the penalty terms and the choice of the tuning parameters remain the same

as in AMIC.

The context-dependent sentiment score of word j, denoted as zij, is obtained by mul-

tiplying together the context-independent sentiment vij, the sentiment word indicator δsij,

the global sentiment shifter δgij, and the local sentiment shifter δlij:

zij = vij × δsij × δgij × δlij. (3.21)

The product of these factors captures their collective impact on the final sentiment score

for word j. Recall that if a word is identified as a function word (i.e., rsij = 0), its

context-dependent sentiment score is 0 and it does not contribute to the calculation of

the document-level sentiment score Zi. For a sentiment word (i.e., rsij = 1), the context-

dependent score zij stems from the context-dependent score vij modified by its global

dependency and its local dependency to its context in the document. The document-level

sentiment score Zi is then determined by averaging the sentiment scores of the sentiment

words within the document:

Zi =

∑m
j=1 Zij∑m
j=1 r

s
ij

, (3.22)

ŷi = 1[0.5,1](sig(Zi)), (3.23)
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where ŷi denotes the predicted sentiment label. ŷi = 1 if sig(Zi) ≥ 0.5 and ŷi = 0 other-

wise.

Now with the introduction of Equation (3.21), we can add more explanation to the

scaling factor 10 in (3.16). The choice of 10 as the scaling factor is somewhat arbitrary

but serves the purpose of preventing the product of the global sentiment shifter and the

local sentiment shifter from becoming too small. When two values with absolute values

smaller than 1 are multiplied together, the result becomes even smaller, potentially leading

to vanishing gradients and slower learning during training. By using a scaling factor of 10,

the product remains in a reasonable range, helping to keep a more stable training process.

Like AMIC, the parameters in AMIC 2.0 are estimated using the gradient descent al-

gorithm to minimize the following loss function, which consists of a cross-entropy loss and

the three penalty terms:

l(Xi, yi) = − 1

n

n∑
i=1

([yilog(sig(Zi)) + (1− yi)log(1− sig(Zi))] + pi1 + pi2 + pi3) . (3.24)

The cross-entropy loss encourages the model to produce accurate document-level senti-

ment prediction.

3.4. Application

3.4.1. Data preprocessing and training scheme

AMIC 2.0 is applied to the Sentiment140 dataset ([18]) which consists of 1.6 million

tweets with brief messages each limited to a maximum of 140 characters. Exploratory

data analysis revealed that, on average, an individual tweet contains approximately 14

words or 68 characters. Manually labeling such a large dataset would be impractical due
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to its size. To overcome this challenge, [18] adopted a technique introduced in [40], where

emoticons were utilized as sentiment labels.

Emoticons are textual representations of facial expressions or emotions. For example,

“:)” represents a smiley face, indicating positive sentiment, while “:(” represents a sad

face, conveying negative sentiment. From the Twitter platform, [18] collected a dataset

comprising 1.6 million tweets that contained positive or negative emoticons and used

them as noisy labels for supervised training ([18]). These tweets collected were posted

between April 6 and June 25 in 2009. In the dataset, emoticons were removed from the

tweets to allow the model to focus on the textual information.

Out of the 1.6 million tweets, 800,000 were associated with negative sentiment and

the other 800,000 with positive sentiment. Following the standard NLP preprocessing

practice, we removed numbers and punctuations from the tweets and converted all words

to lowercase. Furthermore, all emojis and user tags were removed from the tweets.

In contrast to AMIC, which employs Glove-300-Wiki pre-trained embeddings, AMIC

2.0 utilizes word2vec ([32]) to generate word embeddings using the current Sentiment140

dataset during data preprosessing. It is because Glove-300-Wiki was trained using the

Wikipedia data, which mainly consists of documents written in formal language using

proper words. The language in the wine review dataset is also standard, which makes it

appropriate to use the Glove-300-Wiki embeddings in SA. However, the tweets in Sen-

timent140 were often written in informal language, so employing word2vec to generate

wording embeddings allows AMIC 2.0 to use better representation of words in Senti-

ment140.

Another concern is that the construction of zij in Equation (3.21) introduces a potential

identifiability issue. Note that zij is obtained as the product of four components, where

vij and δlij both can take positive values and negative values. The identifiability prob-
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lem occurs when the product of vij and δlij stays the same when their signs are flipped

simultaneously.

Let’s consider a scenario where word j in document i has a positive context-independent

sentiment as well as a positive context-dependent sentiment. In such a case, the training

process would encourage zij to take a positive value. Intuitively, this would mean that both

vij and δlij should also be positive, as the context-independent sentiment remains positive

and should not be flipped by the context. However, the identifiability issue arises because

zij can remain positive with both vij and δlij taking a negative value.

To address this challenge and ensure that vij would take the correct sign, we propose

a two-pass training scheme for AMIC 2.0. In the first pass of the training scheme, the

algorithm only updates vij, which is trained using a modified approach. Instead of using

the original equation zij = vij×δsij×δgij×δlij in Equation (3.21), we modify it to be zij = vij to

only compute context-independent sentiment without cnsidering the influence of context.

This modification helps to ensure that vij generates meaningful sentiment scores, where

a positive value of vij corresponds to a positive sentiment and a negative value a negative

sentiment. By isolating the training of vij in the first pass, AMIC 2.0 can produce more

stable and accurate estimation of its value.

In the second pass of the training scheme, we reintroduce the other components δsij,

δgij, and δlij in the calculation of zij. However, during this pass, vij remains fixed while

we only update the other components in Equation (3.21). This step allows the model

to effectively capture the contextual dependencies and respective sentiment shifts in the

document. More importantly, it also ensures that a negative value of δsij indicates a flipped

sentiment and a positive value a nonflipped sentiment between the context-independent

sentiment and context-dependent sentiment of word j.

Regarding the tuning parameters for the penalties, c2 is set to 1e-3, and both c1 and c3

are set to 1e-4, the same choice used in AMIC. The capped relative position q is set to 3,
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which means the model does not consider relative positions beyond three words from the

target words. The training scheme is depicted in Algorithm 2.

3.4.2. Model performance comparison

To assess the predictive capability of AMIC 2.0, we have implemented a training-

validation-test split on the Sentiment140 dataset. The dataset was divided into three

parts using a 9:0.5:0.5 ratio. This means that 1.44 million tweets were used for training,

while the remaining 160,000 tweets were evenly divided between the validation set and

the test set. This splitting strategy allows us to train the model on a large amount of data,

validate its performance on a separate set, and finally evaluate its generalization on an

independent test set, where the latter two sets still have a decent sample size.
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Through the use of the training-validation-test scheme and parameter selection based

on the validation set, we can effectively evaluate the model performance in terms of its

capability to make accurate predictions. To gain an objective assessment on the perfor-

mance for AMIC 2.0, we have included a number of statistical and deep-learning models

in the comparison. The results are presented in Table 3.1.

Table 3.1: Comparison of Model Performance on the Sentiment140 Dataset

Models Predictive Accuracy (%) Models Predictive Accuracy (%)

Logistic Regression 78.40 AMIC 2.0 82.63

SVM (linear kernel) 77.89
AMIC 2.0 (using the

algorithm in [47])
82.50

Naive Bayes 77.45
AMIC 2.0 (without local

sentiment shifter)
81.32

Random Forest 70.61 AMIC 81.27

CNN 79.33

BiLSTM 80.21

BERT 86.72

Among the statistical and machine learning models, logistic regression has the best

performance with a classification accuracy of 78.40%. It is closely followed by the support

vector machine with a linear kernel with a classification accuracy of 77.89%. Naive Bayes

produces an accuracy of 77.45%, while Random Forest has the lowest performance with

an accuracy of 70.61%. Among the deep-learning models, BERT outperforms all the

others with the highest classification accuracy of 86.72%. The CNN and BiLSTM models

yield classification accuracy of 79.33% and 80.21%, respectively.

AMIC 2.0 produces a classification accuracy of 82.63%. The version of AMIC 2.0 using

the original relative positional representation algorhim in [47] performs similarly with an

accuracy of 82.50%. AMIC 2.0 without the local sentiment shifter has a lower accuracy of

81.32%, which is comparable to AMIC’s performance at 81.27%.
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The little difference in the performance between AMIC 2.0 and AMIC 2.0 with the

algorithm in [47] shows that our proposed algorithm which removes the Value vector from

the self-attention mechanism does not compromise its performance. Notably, by removing

the Value vectors for the calculation of the local sentiment shifter, our algorithm yields a

more efficient model that requires roughly 30% fewer parameters for the calculation of

the local sentiment shifter compared to the algorithm in [47]. On the other hand, the

noticeable difference in the performance between AMIC 2.0 and AMIC 2.0 without the

local sentiment shifter demonstrates the utility of incorporating positional information. The

local sentiment shifter plays a crucial role in capturing local dependencies and generating

more accurate context-dependent sentiment scores.

In general, the statistical models, such as logistic regression, support vector machine

with a linear kernel, and Naive Bayes, exhibit relatively lower performance compared to

the other models. The primary reason for this performance gap lies in their limited ability to

capture context-dependent information present in the text, which is essential for accurate

understanding of the sentiment conveyed in text.

In comparison, models like CNN and BiLSTM have shown better performance than

the statistical models. This improvement can be attributed to their ability to process and

learn from the contextual information in the input text. CNN is proficient at detecting local

patterns, while BiLSTM can capture sequential dependencies in text, both contributing to

their contextual awareness.

Despite their improved performance, both CNN and BiLSTM are outperformed by the

family of AMIC models. The AMIC models leverage the self-attention mechanism, en-

abling them to effectively capture global dependencies across the entire input sequence.

This ability to understand the relationship of words and phrases in text allows the AMIC

models to gain a deeper understanding of the overall context and sentiment expressed,

resulting in further improved performance.

52



BERT has outperformed all the other models, including the AMIC models. This result

can be attributed to several factors. First, BERT is a much larger model, containing over

300 times the number of parameters compared to AMIC 2.0. This larger capacity enables

BERT to learn more complex patterns and representations, contributing to its superior

performance. Second, while all the other models are trained only on the Sentiment140

dataset, BERT stands out as the only pre-trained model, where its parameters are pre-

trained based on a vast amount of various text data. In other wards, BERT, before it

is applied to the Sentiment140 dataset, it has already gained superior capability as a

large language model. When it is applied to the Sentiment140 dataset, it uses transfer

learning, which is a machine learning technique where a model is first pre-trained on a

large dataset and then fine-tuned on a specific task, enabling it to leverage knowledge

from the pre-training phase for better performance on the current task. This pre-training

process equips BERT with a deeper understanding of context and use of language, a

characteristic that AMIC 2.0 lacks since it is trained exclusively with sentiment labels on

the Sentiment140 dataset.

For simpler tasks such as wine reviews or medical report, the language used is usually

more standard and domain-specific. In such cases, pre-training on a general language

corpus might still offer some benefits, but the improvement in performance may not be as

significant as in complex language tasks. This might explain why in the Wine Spectator

dataset, BERT and AMIC’s performances are similar.

On the other hand, complex tasks such as sentiment analysis of social media datasets

like Sentiment140 involve highly diverse and informal language, including slang, emojis,

and colloquial expressions. Pre-training on a vast amount of general language data, as

what BERT does, allows the model to learn a rich understanding of language and context.

This knowledge can be transferred to the downstream SA tasks, enabling the model to

handle the complexities and nuances of sentiment expression in social media data more

effectively.
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Taken together the above considerations, it is expected that BERT will outperform

AMIC 2.0 due to the advantages it holds, such as its larger size and the pre-training on a

vast amount of data. However, despite BERT’s dominance, AMIC 2.0 still demonstrates

strong performance compared to the other models considered. This highlights the effec-

tiveness of AMIC 2.0’s approach and its ability to provide competitive results in SA.

Additionally, a significant distinction between BERT and AMIC 2.0 lies in the inter-

pretability of their outputs. While BERT can produce word-level contextualized represen-

tations, these representations are not directly tied to the sentiment of words. This lack

of direct association makes it challenging to interpret BERT’s SA results from a clear

decision-making perspective. On the other hand, AMIC 2.0 offers a higher level of inter-

pretability. It explicitly identifies sentiment words versus function words, generates both

context-independent and context-dependent sentiment scores for sentiment words, and

employs two sentiment shifters to link these scores. Additionally, AMIC 2.0 calculates

the document-level sentiment score by averaging word-level scores, providing clear ex-

planation on how document-level sentiments are determined by the model. This trans-

parency in the decision-making process makes AMIC 2.0 a valuable tool for SA, enabling

researchers to gain a deeper understanding of the model’s inner workings.

Finally, it is important to emphasize that the main focus of this study is to come up

with an SA model that can provide interpretable results to help researchers to understand

the decision-making process, while achieving the highest predictive performance is not

the primary objective. AMIC 2.0 has demonstrated solid classification performance when

compared to other popular SA models, with BERT being the only model to outperform it.

The emphasis on interpretability and transparency distinguishes AMIC 2.0 as a valuable

SA tool in domains where understanding the reasoning behind predictions is crucial.

3.4.3. Case study
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With the integration of positional information and the utilization of local dependen-

cies, AMIC 2.0 surpasses its predecessor, AMIC, in terms of its enhanced capability for

nuanced and fine-grained SA. By examining AMIC 2.0’s assessment of Sentence I and

Sentence II and a number of other examples, we can illustrate AMIC 2.0’s proficiency in

accurately identifying negation and providing precise sentiment estimation based on word

positional information.

Let us start with Sentence I (see Table 3.2). Sentence I consists of two clauses con-

nected by a comma. In the first clause, the subject is “the service of the restaurant,” which

is modified by the adjective “good,” indicating that the service is satisfactory. In the second

clause, the subject is “the overall experience,” which is modified by the phrase “not bad.”

Although “bad” itself carries negative sentiment, it is negated by “not”. Putting it together,

the sentence delivers a postive sentiment.

Table 3.2: AMIC 2.0’s Analysis Result of Sentence I

Raw text The service of the restaurant is good, the overall experience is not bad.

Input text the service of the restaurant is good the overall experience is not bad

vij 7.10 -1.0 6.9 7.1 19.3 -2.1 21.2 7.1 30.1 11.4 -2.1 -17.4 -28.1

δsij 0 0 0 0 0 0 1 0 0 0 0 1 1

δgij - - - - - - 1.47 - - - - 6.6 2.6

δlij - - - - - - 0.45 - - - - -0.9 -0.8

Zij 0 0 0 0 0 0 14.2 0 0 0 0 103.8 62.5

Z_i 60.17

Sentiment Label Positive

Table 3.2 provides a summary of the components used in the calculation of the context-

dependent sentiment of individual words and the document-level sentiment label for Sen-

tence I. The vij column contains the context-independent sentiment score, which remains

constant regardless of the context. For instance, the context-independent sentiment of

“good” is 21.2 in sentences it appears, likewise, the context-independent sentiment score

of “bad” is always -28.1. The δsij column contains the indicator on whether a word is iden-

tified as a sentiment word. In Sentence I, AMIC 2.0 identifies “good,” “not,” and “bad” as
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sentiment words. The δgij column reports the value for the global sentiment shifter, which

adjusts the sentiment expressed based on all the other words in the text. The δlij column

shows the estimates for the local sentiment shifter, which modifies the sentiment based

on the adjacent words. The zij column represents the context-dependent sentiment score

of each word. Finally, Zi denotes the document-level sentiment score, calculated as the

average sentiment of the sentiment words in the document.

We can see that AMIC 2.0 effectively handles negation in Sentence I by recognizing

“bad” in the sentence is part of “not bad”. The negative context-independent sentiment of

“bad”, -28.1, after being negated by “not”, has a negative local shifter, -0.8, resulting in a

positive context-dependent sentiment of 62.5.

Sentence II, like Sentence I, also consists of two clauses (see Table 3.3). The subjects,

verbs, and grammatical structure of both clauses remain unchanged. The distinction lies

in the adjectives used. In the first clause, the adjective “not good” introduces a negation

and conveys negative sentiment. In the second clause, the adjective “bad” also conveys

negative sentiment. Overall, the sentence expresses a sense of dissatisfaction towards

both the service and the overall experience of the restaurant.

Table 3.3: AMIC 2.0’s Analysis Result of Sentence II

Raw text The service of the restaurant is not good, the overall experience is bad.

Input text the service of the restaurant is not good the overall experience is bad

vij 7.10 -1.0 6.9 7.1 19.3 -2.1 -17.4 21.2 7.1 30.1 11.4 -2.1 -28.1

δsij 0 0 0 0 0 0 1 1 0 0 0 0 1

δgij - - - - - - 6.59 1.46 - - - - 2.66

δlij - - - - - - 0.79 -0.99 - - - - 0.16

Zij 0 0 0 0 0 0 -91.7 -30.7 0 0 0 0 -11.7

Zi -44.37

Sentiment Label Negative

As demonstrated in Table 3.3, AMIC 2.0 has identified three sentiment words in Sen-

tence II: “not,” “good,” and “bad.” In the first clause, the positive context-independent
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sentiment score of “good” (21.2, the same value as in Sentence I) is reversed by “not”

in the phrase “not good,” leading to a negative context-dependent sentiment score of -

30.7. In the second clause, the sentiment of “bad” is not reversed because there are no

negation words nearby, resulting in a context-dependent sentiment score of -11.7. The

document-level sentiment score is -44.37, indicating an overall negative sentiment con-

veyed in Sentence II.

It is also interesting to point out the different treatment of “not” in these two sentences

by AMIC 2.0. Note that ‘not” has the same content-independent sentiment score of −17.4

(a negative sentiment) in both cases. This makes sense because “not” is used to ex-

press negation, denial, refusal, or prohibition. In Sentence I, “not” is placed next to “bad”.

Though both words carry a negative sentiment by themselves, together “not bad” conveys

a positive sentiment. Thus, the sentiment polarity of “not” is flipped to a positive sentiment

with 103.8 as its context-dependent sentiment score. In Sentence II, the sentiment of “not”

is not flipped as it is positioned adjacent to “good”. It is even strengthened to have a more

negative context-dependent sentiment score of -91.7, capturing the clearly negative sen-

timent expressed in the phrase “not good”. This comparison further demonstrates the

capability AMIC 2.0 in providing nuanced understanding and accurate identification of

sentiment in sentences that takes into account specific word positions.

In contrast, AMIC, which employs the orginal self-attention mechanism, does not in-

corporate positional information and thus ignores local dependencies. As a consequence,

AMIC can not distinguish Sentence I and Sentence II because they have the same col-

lection of words. So it produces the same result for the two sentences, which is included

in Appendix B.2.

Note that natural language has a rich representation of negative expressions, where

negation can be classified into different groups in different ways ([61]). For example, we

can classify negation by the location of the negation word with respect to the negated

concept, or we can make a distinction between negation in the asserted meaning (i.e.,
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explicit negation) and negation in the non-asserted content (i.e., implicit negation). In

this study, we focus on two groupings of negation: preceding negation vs. succeeding

negation, and explicit negation vs. implicit negation.

In the first group, negation is classified based on the position of the negating word

relative to the negated word. For example, NegEX ([5]), a simple algorithm for negation

capturing, classifies negation triggers (i.e., negation words) into those that precede the

negated concept and those that succeed the negated concept. Similarly, [35] also classi-

fies negation words into preceding signals and succeeding signals. In this study, we refer

to the type of negation where the negating word (such as “not”) precedes the negated

concept as preceding negation, where the succeeding negation is when the negation

word is placed after the negated word.

In the second group, negation can be classified based on whether the negation cue is

considered an explicit negation word or an implicit negation word ([8]). According to [8],

explicit negation includes expressions such as “no,” “not,” “never.”, etc. In contrast, implicit

negation does not use these specific negation words. For example, words like “forget,”

“fail,” “doubt,” and “deny” are considered examples of implicit negation.

The negation structure in both Sentence I and Sentence II is considered to be pre-

ceding negation, because the negation word “not” precede the word whose sentiment is

negated by it. It also falls into the category of explicit negation because of the use of ex-

plicit negation word “not”. The following example tweet demonstrates the model’s ability

to capture succeeding negation with the word “free” (Table 3.4).

The model recognizes “celebrating,” “phil,” “cancer,” and “free” as sentiment words,

among which only “cancer” conveys a negative context-independent sentiment, while the

other three words carry positive context-independent sentiment. In this case, the succeed-

ing negation word “free” negates the sentiment conveyed by “cancer.” Consequently, the

context-independent sentiment score of “cancer” at -38.6 is shifted to a positive context-
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Table 3.4: AMIC 2.0’s Analysis Result of a Succeeding Negation Example

Raw text Celebriting Phil being one year cancer free!

Input text celebriting phil being one year cancer free

vij 32.9 17.3 -11.5 2.3 -4.6 -38.6 19.9

δsij 1 1 0 0 0 1 1

δgij 1.98 1.63 - - - 1.4 2.03

δlij 0.73 0.79 - - - -0.28 0.45

zij 47.80 22.5 0 0 0 14.9 18.5

Zi 25.925

Sentiment Label Positive

dependent sentiment score of 14.9, accurately interpreting the positive sentiment con-

veyed by the phrase “cancer-free.” In contrast, the context-independent sentiment scores

of “celebrating,” “phil,” and “free” remain unchanged, contributing to the overall positive

sentiment conveyed in the tweet.

Next we present an example demonstrating AMIC 2.0’s capability to automatically cap-

ture implicit negation. The tweet in Table 3.5 presents a sentence that contains implicit

negation. In the main clause, “Chicago was awesome,” a positive sentiment is expressed,

portraying Chicago favorably. However, in the following clause, “my dreams were shat-

tered” conveys a strong negative sentiment.

The model identifies “awesome,” “although,” “dreams,” and “shattered” as sentiment

words in the sentence. Note that the phrase “my dreams were shattered” contains implicit

negation, as it conveys a negative sentiment without using explicit negation words like

“not” or “never.” The implicit negation is implied through the word “shattered”. Because

of it, the word “dreams” which carries a positive context-independent sentiment (11.3), is

coupled with a negative local sentiment shifter, resulting in a negative context-dependent

sentiment of “dreams” (-20.9), which correctly leads to a negative document-level senti-

ment. This example demonstrates that AMIC 2.0 can accurately capture implicit negation
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Table 3.5: AMIC 2.0’s Analysis Result of an Implicit Negation Example

Raw text Chicago was awesome although my dreams were shattered.

Input text chicago was awesome although my dreams were shattered

vij 1.7 -3.1 35.1 2.1 -7.4 11.3 -5.6 -25.5

δsij 0 0 1 1 0 1 0 1

δgij - - 1.30 0.96 - 4.25 - 1.31

δlij - - 0.04 0.87 - -0.43 - 0.50

zij 0.0 0.0 1.7 1.7 0 -20.9 0.0 -16.8

Zi -8.57

Sentiment Label Negative

relationships, showing the model’s strength compared to rule-based negation systems

that heavily rely on explicit negation words to identify negation.

In addition to negation handling, AMIC 2.0 can also deal with other types of language

complexity, such as use of intensifiers, where intensifiers are adverbs or adverbial phrases

that strengthen the meaning of other expressions and show emphasis. Our next exam-

ple demonstrates how AMIC 2.0 can distinguish sentiment words under the influence of

intensifiers. Table 3.6 displays two short phrases, “bad” and “very bad.” Apparently, “very

bad” delivers a stronger negative sentiment than just “bad”. Note that the global sentiment

shifter, without bearing positional awareness, can not recognize that “very” only intensifies

the second “bad”, and it takes the same value of “7.61” for both occurrences of “bad” in

the sentence. However, the local sentiment shifter, equipped with positional awareness,

accurately recognizes that “very” is a function word that only intensifies the sentiment of

the second “bad” but not the first “bad”. As a result, the local sentiment shifter for the

second “bad” is larger that for the first “bad”. resulting in a stronger negative sentiment for

the second “bad” correctly.

In summary, the examples demonstrated from Table 3.2 to Table 3.6 exhibit a num-

ber of different representations of language complexity, covering preceding negation vs.
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Table 3.6: AMIC 2.0’s Analysis Result of an Intensifier Word

Raw text Bad, very bad!

Input text bad very bad

vij -28.1 3.8 -28.1

δsij 1 0 1

δgij 7.61 - 7.61

δlij 0.67 - 0.92

zij -142.6 0.0 -196.7

Zi -169.7

Sentiment Label Negative

succeeding negation, explicit negation vs. implicit negation, and presence of intensifier.

All these examples have illustrated AMIC 2.0’s capability of conducting fine-grained SA

by incorporating word positional information, providing detailed interpretation of analysis

process, and producing correct classification results in SA. It is worth noting that AMIC

2.0 achieves these goals without requiring an annotated dataset for training, which gives

it a great advantage over the methods that need one.

3.4.4. Sentiment lexicon for Sentiment140

Similar to its predecessor AMIC, AMIC 2.0 can automatically generate a domain-

specific sentiment lexicon. In this lexicon, each word has a sentiment score, which is

the average of its context-dependent scores across all occurrences. Table 3.7 shows the

top 50 words that have the highest sentiment scores in the Sentiment140 dataset, where

the words can be put into several categories:

• Words that express joy and excitment such as “yayy,” “rad,” “yay,” “ woot” “congrats”,

“excited,” and “stoked.” These words are used to convey positive emotions, enthusi-

asm, and a sense of celebration.
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Table 3.7: AMIC 2.0’S List of Top 50 Positive Sentiment Words

followfriday congratulations recommendation welcome

appreciated pleasure smiling lovin

loving goodmorning proud compliment

ff woot congrats coolest

sharing rb mothers feedback

cheers greetings props entertaining

smile blessed sweetest thanks

myweakness twitterverse appreciate add

thankyou chillin hilarious excited

worries yayy ty rad

hello glad yey deserved

yaay yumm thanx sir

inspiring stoked

Note: size of a word is proportional to its sentiment score

• Words that convey a feeling of gratitude and appreciation such as “acknowledged,”

“grateful,” “thanks,” “gratitude,” and “gratefulness.” These expressions are frequently

utilized to recognize and convey appreciation for something.

• Words that evoke feelings of happiness and contentment usch as “pleasure,” “smil-

ing,” “loving,” “glad,” and “blessed”. These words reflect a positive outlook and a

sense of well-being.

• Words that describe positive experiences or positive aspects such as “recommen-

dation,” “goodmorning,” “proud,” “sharing,” and “entertaining.” These words highlight

enjoyable or favorable situations.

Five words“followfriday,” “ff,” “rb,” “add,” and “sir” in the top 50 list seem to be less

obvious to carry positive sentiment. Out of context, these words may not inherently carry
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positive sentiment. The sentiment associated with these words largely depends on the

context and the conventional usage in tweets.

The hashtag or term “followfriday” is often used to recommend or highlight other Twitter

users, expressing appreciation for their content or recommending them to one’s followers.

Similarly, “ff” is an abbreviation for “Follow Friday.” When users include the “ff” hash-

tag along with the usernames of others, it indicates that they are recommending those

accounts to their followers. It is a way to show appreciation and promote other users, cre-

ating a positive and supportive atmosphere.“rb” stands for “Retweet” or “Reblog.” When

someone retweets or reblogs a post, it indicates that they find the content worth sharing

with their own followers. This act of sharing and highlighting someone else’s content is

often seen as positive and supportive. In the context of tweets, “add” may refer to the

action of adding someone to a list, group, or conversation. When someone asks to be

added or offers to add others, it can create a sense of inclusion and connection, fostering

a positive community or networking environment. While “sir” is a term to show respect,

its sentiment in tweets can vary depending on the context and the relationship between

the users. Majority of the tweets that uses the word in a positive way to show politeness,

deference, or admiration. Overall, the positive sentiment associated with these words

in tweets is often derived from the social dynamics, supportive nature, and collaborative

atmosphere in the context of Twitter interactions.

Table 3.8 presents the bottom 50 words with the lowest sentiment scores in this study,

which can be roughly categorized into the following groups:

• Words that convey feelings of pain such as “ache,” “cramps,” “toothache,” “swollen,”

“headache,” “itchy,” “hurts,” “infection,” “bleeding,” “hayfever,” and “stomach.” These

words evoke physical discomfort and highlight the experience of pain.

• Words that evoke a sense of sadness and melancholy such as “sad,” “miserable,”

“gutted,” “crying,” “lonely,” “heartbroken,” “disappointed,” “gloomy,” “depressing,” and
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Table 3.8: AMIC 2.0’S List of 50 Words with Lowest Sentiment

fawcett farrah rip fathers ache

carradine died miserable gutted cramps

toothache itchy swollen headache icky

sad misses ruined poorly crying

missin tummy lonely unfair disappointing

tragic hurts canceled sinus sadly

heartbroken disappointed hayfever oww bummed

gloomy depressing throat cancelled ouch

infection depressed stressed hates worst

burnt worried bleeding stomach dies

Note: size of a word is proportional to its sentiment score

“depressed.” They depict feelings of sorrow, disappointment, and a sense of emo-

tional heaviness.

• Words that express disappointment, signaling unmet expectations or unfavorable

outcomes such as “ruined,” “poorly,” “missin,” “unfair,” “disappointing,” and “can-

celled.” These words reflect a sense of letdown and dissatisfaction.

Among these 50 words with the lowest sentiment, three words stand out as least

expected: “fawcett,” “farrah,” and “fathers.” Upon closer examination, we find out that many

tweets with clear negative sentiment were posted at the time when the movie actress

Farrah Fawcett passed away (on June 25th, 2009). As a result, these tweets expressed

feelings of sadness and mourning for the loss of the star, leading to an overall negative

sentiment score associated with the term.

Notice that “farrah” has less negative sentiment associated with it than “fawcett.” It is

because “fawcett” is an unusual first name, exclusively used in tweets referring to Farrah
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Fawcett, while “farrah” is a more common name and has been used in tweets unrelated

to the mentioning of the movie star. For instance, there are tweets expressing excitement

about a road trip with someone named Farrah, such as “congratulations best wishes amp

lots of happiness auntie farrah.” This difference explains why “farrah” has less negative

sentiment than “fawcett” assigned by AMIC 2.0.

The word “fathers” is frequently used in tweets related to Father’s Day, which, in a

strange way, tends to carry negative connotations. Examples include sentiments like “I

hate Father’s Day now; I have to do dad’s jobs today” or “I still don’t have an idea for a

Father’s Day gift. It’s getting closer to gift time. What do I do?” These tweets reflect a

predominantly negative sentiment associated with Father’s Day, possibly stemming from

stress caused by the holiday.

The application to Sentiment 140 in this section demonstrates AMIC 2.0’s capability

to create a domain-specific sentiment lexicon. The domain-specific sentiment lexicon

enables us to assess the sentiments of documents more accurately in the domain of

interest, provide more meaningful interpretation, and gain a deeper understanding of the

domain-specific wording characteristics.

3.5. Discussion

In Chapter 2, we introduced AMIC for word-level context-based sentiment analysis.

AMIC can provide interpretable WCSA while keeping comparable performance to the

state-of-the-art deep learning models. However, a limitation of AMIC is its ignorance of

positional information of input words. As a result, its ability to accurately measure word-

level and document-level sentiment is affected, especially in domains where sentiment

heavily relies on the precise positions of words, as illustrated in the examples of Sentence

I and Sentence II.
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We have two goals in the construction of AMIC 2.0 to bring improvement over AMIC.

The first goal is to incorporate positional information in WCSA. This improvement allows

the model to effectively utilize positional information of words, enabling it to capture local

dependencies and achieve more precise sentiment estimation. The second goal is to

develop a model structure that explicitly demonstrates how context influences sentiment.

This feature will help people to better understand the interaction of words and provide

more detailed interpretation of the inner workings of the model.

To achieve the first goal, we have proposed an algorithm to incorporate relative po-

sitional embedding in the self-attention algorithm, so that the attention adjusted embed-

dings also carry positional information. Equipped with positional understanding, AMIC 2.0

has an enhanced ability to capture the intricate nuances of sentiment analysis.

One notable advantage of the proposed algorithm is its efficiency. Compared to the

approach proposed in [47] to incorporate positional information, AMIC 2.0 requires around

30% fewer parameters while maintaining its performance. This reduction in parameters

not only streamlines the computational requirements but also contributes to improved

training and inference speed.

As demonstrated in Section 3.4.3, AMIC 2.0 can effectively deal with nuanced senti-

ment phenomena, such as the impact of negation. By considering the positional informa-

tion of words in relation to negation markers and excluding the value representation which

concerns words’ semantic meaning, the model becomes adept at accurately discerning

the shift in sentiment caused by negation. This heightened sensitivity to negation greatly

improves the model’s overall sentiment analysis capability, allowing for more accurate and

nuanced understanding of contextual sentiment.

To achieve the second goal, we have modified the model structure of AMIC to de-

compose the single contextualized word-level sentiment score into two scores: a context-

independent sentiment score and a context-dependent sentiment score. The context-
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independent sentiment score represents the inherent sentiment associated with individ-

ual words, regardless of the context. The context-dependent sentiment score modifies

context-independent score by considering the context of the word, providing a more ac-

curate measurement of sentiment in the particular contextual environment.

Furthermore, we have introduced a global sentiment shifter and a local sentiment

shifter, with the former focusing on the overall interaction of words across the entire text

and the latter on the immediate relationships between neighboring words. The two sen-

timent shifters together can provide a more detailed explanation on the inner workings

of the model, showing how the context-independent sentiment of a word is influenced

by both global and local dependencies which transforms it into the context-dependent

sentiment. This dual-scoring approach, together with the two sentiment shifters, offers

valuable insights into the model’s decision-making process.

It is worth mentioning that AMIC 2.0 operates without requesting an annotated dataset

which contains, for example, annotated negation words. Creating such datasets can be a

time-consuming, labor-intensive, and error-prone task. Thus, a model that automatically

handles language complexity such as different types of negation can significantly reduce

the reliance on annotated datasets, resulting in greater efficiency and cost-effectiveness

in sentiment analysis.

Moving forward, we plan to apply AMIC 2.0 to a broad spectrum of datasets across var-

ious domains. The investigation can provide us with a more comprehensive understand-

ing of the model’s performance and interpretability when it is applied to diverse datasets

encompassing different language use complexities.

The second potential direction we are considering addresses a critical limitation of

neural networks. In addition to being criticized as black-box models, neural networks

have also faced scrutiny for their inability to provide uncertainty analysis, which can lead

to overly confident predictions or the underestimation of potential risks.
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One of the key strengths of our model lies in its shallow and relatively compact struc-

ture. This characteristic presents an opportunity for us to explore the integration of un-

certainty measurement using Bayesian neural network approaches. By incorporating

Bayesian neural networks into AMIC 2.0, we can introduce uncertainty estimation as an

integral aspect of the model’s predictive capabilities. Unlike traditional neural networks

that treat model parameters as fixed values, Bayesian neural networks represent these

parameters as probability distributions. This approach enables us to quantify uncertainty

in predictions, leading to more reliable and well-calibrated results.
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APPENDIX A

APPENDIX of CHAPTER 2

A.1. The Results on the Multiple Runs for the Comparison Study

Table A.1 displays the results from multiple runs of the SA models in the comparison

study in Section 2.4.2. The table reports the average predictive accuracy and its stan-

dard deviation across the five runs following the same 18:1:1 training-validation-test ratio.

The conclusion from this study on model performance is consistent with that in Section

2.4.2. Specifically, AMIC and BERT exhibit the best performances, followed by CNN and

BiLSTM. The two MNIR models yield lower performance.

Table A.1: Comparison of Model Performances based on Multiple Runs

Model
Mean Predictive Accuracy

(Standard Deviation)

Word-level

SA models

AMIC 0.8918 (0.00368)

MNIR 0.8479 (0.00229)

MNIR (with bigram) 0.8375 (0.00155)

Neural network

Models

CNN 0.8802 (0.00327)

BILSTM 0.8865 (0.00197)

BERT 0.8912 (0.00379)
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A.2. The Sentiment Word Lists for AMIC and MNIR

This appendix provides the lists of the top 100 positive sentiment words and the bot-

tom 100 negative sentiment words from AMIC and MNIR, respectively. AMIC’s unique

words are marked in red, MNIR’s unique words are marked in blue, overlapping words

are marked in the black.

Table A.2

AMIC’s List of Top 100 Positive Sentiment Words
gorgeous beautiful ethereal beautifully gloriously

gorgeously thoroughly drips beauty impeccable
amazingly exquisite strikingly sumptuous cognac
burgundy breed velvet cascading haunting
seductive finely stuffed soak lovely
soaked perfectly deliciously brilliantly impeccably

wonderful drip luxuriant glistening silk
truffle charms brunello soothing carpet

champagne perfume seductively fabric unobtrusive
sings swirl stained wonderfully elegance

excellent rain wears artfully neatly
beaded remarkably clad effortlessly bouquet

aftertaste beguiling luxurious rolls foie
tempting terroir deceptively luscious jujube

baby brownie buckwheat strudel barolo
gras glowing brilliant tongue fine

classy effortless richly masculine delicacy
nimble blancs cuttings embers pecan
corn violets alluring drape drapes

crafted lush melts expressive toffee

MNIR’s List of Top 100 Positive Sentiment Words

stunning superb drc impeccable incredibly
endless upon chave incredible stunner
luxuriant wellsubmerged torrent supersilky strikingly

leroy cascading lalande pichon maximum
authoritatively glorious gloriously eiswein gracefulness
extraordinary hedonists auction winner doors
tremendously soar knockout saturating aftertastenonblind
lengthnonblind santo multidimensional dovetailing marshaling

inner anisefilled unimpeded gorgeous tremendous
amazingly beautiful beauty february amazing
cascade boding waves civilized gorgeously
pieces remarkable thoroughly intricate beautifully

ethereal lardière january superlong drips
evolution riveting captivating superracy profound
potential gripfilled impeccably honed waiting

remarkably brunello pinpoint impenetrable kaleidoscope
pulses cruises seamless brilliant explosive
innate sgn block rising multilayered
gushes wealth pastissoaked large resist
adelaide yattarna largescaled tba november
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Table A.3

AMIC’s List of Bottom 100 Negative Sentiment Words
quick generic hearted simple canned

uncomplicated diluted tinny neutral straightforward
stale cocktail easygoing fizzy picnic
flat lovage greenish unfocused breezy

beaujolais metallic dull easy tail
modestly decent fade scallion modest
cucumber cloying watermelon soft parsley
asparagus kosher muddled herbal lemonade

detract weedy blunt tired muscadet
grass grassy chilled trim overripe

alcoholic drying muted onion crab
loosely grape stewed astringent coarse
drinking cooked clipped pith thin

maraschino flabby effervescent short odd
herbaceous spritz sour veneer washed

pea offbeat musty cider soapy
rustic slightly bottles softly tinned
albeit tails colombard faint pulp
iced plodding leathery kilter acidic

woody prosecco jerky lemongrass bitterness

MNIR’s List of Bottom 100 Negative Sentiment Words

quick hoping canned cava stewy
hardcandy prosecco quaffer quaffable tinned

flat userfriendly unfocused bing lambrusco
overwhelm vaz tuttifrutti saint neutral

antão aragonês colombard spritzy mulchy
roupeiro limited canelli uncomplicated murky

overshadows lemberger wellchilled fina thins
roditis crab picnic generic underripe
fizzy soapy torrontés pleaser xarello

catarratto regional offbeat barnyardy tibouren
issue weedy threaten tinny crémant

unbalanced tooth moschofilero nouveau lumbering
stale seashell schiava gussied greenish

lemonade crispedged lighthearted tastings brachetto
detract diluted lovage easyenjoy burgers
washed unoaked vidal grapefruitflavored limeade

sauvignonlike simple basic blowsy simpler
sipper straightforward dilute spritz tailing
decent hollow gamay cocktail easydrinking

tails castelão struggles resiny tired
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APPENDIX B

APPENDIX of CHAPTER 3

B.1. The self-attention mechanism algorithm

In this appendix, we describe the implementation steps of the self-attention mecha-

nism. There is a difference in notation between equations presented here and those in

Section 3.2.1, where the equations in the appendix have been modified to include the

subscript i, representing the ith document.

Let xij denote the d-dimensional word embedding of a word j in the ith document.

Consider an input sequence of word embedding vectors for a document denoted by Xi =

[xi1, xi2, ..., xim], where xij ∈ Rd represents the embedding for the jth word in ith document

and m is the total number of words in the sequence. Self-attention uses three d × d

projection matrices WQ,WK , and W V , which are updated as model parameters during

training. These matrices serve to project the inputs into Query, Key, and Value vectors

for each word, respectively, via matrix multiplication between the matrices W and the

embedded inputs xij,

Query vector : xQ
ij = xijW

Q

Key vector : xK
ij = xijW

K

Value vector : xV
ij = xijW

V .
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Next the self-attention mechanism proceeds to compute a weight vector for each word,

considering its interactions with other words in the sequence. For instance, in the self-

attention representation of word j, the similarity between word j and word k in document

i is computed as follows:

eijk = (xQ
ij)(x

K
ik)

T (B.1)

The attention weight αijk is then computed as the standardized similarity score of eijk:

αijk =
exp(eijk)∑m
h=1 exp(eijh)

, (B.2)

where αijk can be interpreted as the level of attention that should be given to the kth word

when calculating the context-dependent representation for the jth word in document i.

In the third and final step, the self-attention mechanism computes a weighted sum of

the Value vectors for each word in the input sequence. The weights, calculated in the

second step, measure the relevance of each word in the input sequence to the current

word. The self-attention embedding of word j, rij, which incorporates the context of word

j, is computed as follows:

rij =
m∑
k=1

αijk(x
V
ik). (B.3)

The self-attention representation for the word j within document i is denoted as rij, which

represents the result of applying self-attention transformation to the word j. Denote Ri =

[ri1, ri2, ..., rim] as the transformed representation of document i. we use F self-attention() as

an aggregated function for all the above steps:

Ri = F self-attention(Xi), (B.4)

where Xi = [xi1, xi2, ..., xim] consists of the original word embeddings in document i.
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B.2. AMIC output of Sentence I and Sentence II

Table B.1 and B.2 display the outputs of AMIC for Sentence I and Sentence II, re-

spectively. It is evident that AMIC assigns exactly the same word-level contextualized

sentiment score to each word in both sentences, leading to an identical document-level

sentiment prediction of -0.683 for both Sentence I and Sentence II. This resulted in an

incorrect prediction of sentiment label for Sentence I.

Additionally, it is worth highlighting that the word “good” is assigned a negative con-

textualized sentiment score of -30.4 in both sentences, despite “good” typically being

associated with a positive sentiment and its sentiment is not flipped in Sentence I.

By comparing Table B.1 and B.2 to Table 3.3 and 3.4, it becomes evident that AMIC

2.0’s positional awareness provides it with a clear advantage over AMIC. This positional

awareness allows AMIC 2.0 to accurately assess the sentiment of individual words in

different local contexts, resulting in more precise sentiment predictions.

Table B.1: AMIC’s Analysis Result of Sentence I

Raw text The service of the restaurant is good, the overall experience is not bad.

Input text the service of the restaurant is good the overall experience is not bad

δij 0 1 0 0 1 0 1 0 0 0 0 1 1

Zij 0 -16.8 0 0 -8.5 0 -30.4 0 0 0 0 39.3 23

Z_i -0.683

Sentiment Label Negative

Table B.2: AMIC’s Analysis Result of Sentence II

Raw text The service of the restaurant is not good, the overall experience is bad.

Input text the service of the restaurant not good the overall experience is bad

δij 0 1 0 0 1 1 1 0 0 0 0 1

Zij 0 -16.8 0 0 -8.5 39.3 -30.4 0 0 0 0 23

Z_i -0.683

Sentiment Label Negative
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