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Abstract. In this paper, we present an evaluation of training size impact on 

validation accuracy for an optimized Convolutional Neural Network (CNN). 

CNNs are currently the state-of-the-art architecture for object classification 

tasks. We used Amazon’s machine learning ecosystem to train and test 648 

models to find the optimal hyperparameters with which to apply a CNN towards 

the Fashion-MNIST (Mixed National Institute of Standards and Technology) 

dataset. We were able to realize a validation accuracy of 90% by using only 

40% of the original data. We found that hidden layers appear to have had zero 

impact on validation accuracy, whereas the neural density of the network and 

the chosen optimization function had the greatest impact. 

1   Introduction 

Machine learning has “emerged as the method of choice for developing practical 

software for computer vision” [1]. By the same token, image recognition is one of the 

top ten use-cases for machine learning [2]. CNNs are the current state-of-the-art 

model architecture for image classification tasks [3]. 

Andrew Ng puts forth that Strategic Data Acquisition (SDA) is a defining principal 

approach of an AI company, as it enables a defensible business model [4]. SDA 

involves creating a positive feedback loop wherein a foundational amount of data is 

collected, from which a product is born, and subsequently used by users whom 

produce more data for the company and their product [4]. Moreover, SDA is a 

“multiyear chess game to acquire the data asset that allows you to build a defensible 

business” [4]. With this in mind, we are interested in determining the minimum 

amount of data needed with which to develop a reasonably accurate CNN. 

The dataset of hand written digits developed by the Mixed National Institute of 

Standards and Technology (MNIST) is the most popular dataset for benchmarking the 

performance of Convolutional Neural Networks (CNNs) [5]. However, MNIST 

dataset is overused, easily solved, and no longer representative of modern computer 

vision tasks [6]. For these reasons, the next-generation Fashion-MNIST dataset is 

chosen as the vehicle with which to test the effects of training data size on the 

validation accuracy of a CNN. Specifically, given a greyscale image of a piece of 
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clothing and a validation accuracy of 90%, minimize the training data size for a 

Convolutional Neural Network (CNN).  

Accomplishing this optimization problem necessitates subsetting the data into 

training, validation, and test sets. The shuffled and split data is used to train a CNN. 

The validation set is used for the purposes of tuning hyperparameters of the model. 

The CNN has various componential layers that are employed to find the minimum 

epochs for training, as well as minimum error in accuracy. 

The main components of a CNN are the convolutional, pooling, and dense layers. 

The convolutional layer extracts feature selection and learning from given clothing 

images. The pooling layer reduces dimensionality to prevent overfitting and increase 

computational performance. The dense layers compute the weights for each node of 

the 10 labels in order to perform image classification. 

Optimization of the training data size is realized through two metrics. The model 

checkpoint provides a metric wherein a loss function is monitored throughout epoch 

training. If the given loss function does not improve, then the model is saved as the 

best model. The early stopping method halts training if the given loss function being 

monitored has not improved from the previous epoch. Utilizing both the model 

checkpoint and early stopping method maximizes accuracy while simultaneously 

minimizing training time for the CNN. 

Using only 40% of the original data as a training set, we were able to achieve a 

90% validation accuracy on the Fashion-MNIST dataset. There is a decreasing rate of 

return with respect to validation accuracy as training set size increases. Moreover, 

there was no quantile overlap between validation accuracy group means of using 10% 

versus 25% of the original data for training. 

With regards to CNNs being applied to the Fashion-MNIST dataset, there is strong 

statistical evidence to suggest that training set sizes cause differences in group means 

among validation accuracies. The p-value from our one-way analysis of validation 

accuracy variance is less than 0.0001, which is statistically significant at the alpha 

level of 0.05. 

The remaining sections are organized as follows. In Section 2 we present a brief 

history of neural networks, the components of neural networks, and the metrics with 

which to analyze and compare their performance. We explore some of their 

applications and best practices in Section 3. The Fashion-MNIST dataset is presented 

in Section 4. The results are presented in Section 5, and we present our analysis of the 

in Section 6. Ethical concerns in regards to object recognition and CNNs are 

highlighted in Section 7. Lastly, we draw the relevant conclusions in Section 8. 

2   Neural Network History, Components, and Metrics 

2.1   History of Neural Networks 

Neural networks can be traced back to a paper written in 1943 by Warren McCulloch 

and Walter Pitts titled “A logical calculus of the ideas immanent in nervous activity” 

[7]. McCulloch and Pitts, a neurophysiologist and mathematician respectively, 
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modeled how human neurons operate by constructing electrical circuits [7]. An 

important concept of human learning is highlighted by Donald Hebb’s “The 

Organization of Behavior” in 1949, whom emphasizes that a given neural pathway 

becomes stronger when a pair of nerves fires simultaneously [7]. In the 1950’s, IBM 

researcher Nathaniel Rochester attempts creating a hypothetical neural network (NN) 

[7].  

However, it was not until 1959 at Stanford that the first successful neural network 

is created [7]. Stanford’s Bernard Widrow and Marcian Hoff utilized Multiple 

Adaptive Linear Elements, from which would inspire the names of their two NN 

models [7]. The first being ADALINE, which recognizes binary patterns for the 

purposes of bit prediction [7]. The second, MADALINE, expanded upon ADALINE 

and applied adaptive filtering to solve real-world problems with regards to echoes 

during phone calls [7]. Further advancements of NNs are made by 1962 by Widrow 

and Hoff upon creation of weighting connections between neurons [7]. 

The field of study pertaining to NNs is further expanded in 1975 as the first 

unsupervised NN is developed [7]. In 1986, David Rumelhart of Stanford developed 

the idea of backpropagation [8]. Rumelhart’s accomplishment was done so standing 

on the shoulders of Widrow and Hoff, as he extrapolated their work and applied it to 

multiple layers [8]. Increases in computational power have given rise to more 

sophisticated models in recent times, such as Long-Short Term Memory (LSTM) [9]. 

2.2   Convolutional Neural Network Components 

Current state-of-the-art model architecture for image classification tasks, CNNs are 

comprised of three components [10]. To enable classification, CNNs employ a series 

of filters to the raw pixel data of an image for extraction of feature selection after 

learning [10]. The first component of a CNN is its convolutional layers. 

Convolutional layers apply a given number of convolutional filters to the given 

image [10]. The convolutional layer carries out a set of mathematical operations for 

each subregion of the image [10]. The resulting outcome is a singular value produced 

in the output feature map [10]. Additionally, a rectified linear units (ReLu) function is 

applied by the convolutional layers to introduce nonlinearity to the model [10]. 

The second component is max pooling layers which are inserted in between 

convolutional layers in a CNN architecture [11]. Pooling layers function by 

downsampling the given image data extracted by the convolutional layers and reduce 

the dimensionality of the image. Put differently, for a given pixel tile extracted from 

the convolutional layer, max pooling distills subregions of the pixel tile containing the 

maximum values of the subregions. By doing so, multiple benefits for the model are 

realized. The spatial size of the images is reduced to minimize computation time [11]. 

Consequently, the number of parameters for feature selection is minimized as well 

[11]. In turn, the model avoids overfitting by narrowing the scope of parameters being 

selected [11]. Figure 1 illustrates the process of max pooling via downsampling. 
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Fig. 1. Left: Illustration of 2x2 Downsampling. Right: Diagram of Max Pooling. 

The third component is a fully connected dense layer, which is incorporated into 

the last layer of the Convolutional Neural Network. It is this layer which performs the 

classification on the features extracted by the convolutional layers [3]. A softmax 

activation function is applied in the last layer to generate values between 0 and 1 for 

each node [3]. The values produced by this function given weights as to the 

probability of a given image falling into a certain classification [3]. The weights of 

these nodes are used to classify the given image. Figure 2 reflects a diagram of a 

neural network and the dense connectivity between nodes of each of its layers. 

 

Fig. 2. Dense Layers of a Neural Network. 

2.3   Convolutional Neural Network Metrics 

Two main metrics are used to discover the minimum amount of training data size 

needed to meet a validation accuracy of 90%. Both metrics are enabled by the 
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creation of a validation set as Section 4.3 overviews as part of preprocessing. The first 

metric used to discern the optimal CNN is the model checkpoint. This function saves 

the given model being trained after every epoch if a new minimization of the 

monitored loss function is found [12]. The loss function that is monitored by the 

model checkpoint is mean squared error (MSE) [12]. Formula 1 details the exact 

methodologies for calculating the MSE in the loss function. 

 
(1) 

 

The second metric used is the early stopping method which halts training when 

minimization has failed to iteratively improve based on the given absolute minimum 

delta. With a patience value of zero, the early stopping method will not wait between 

epochs to stop training if its loss function does improve. Like the model checkpoint, 

the early stopping method employs the MSE as its loss function to monitor.  

3   Neural Networks Use Cases and Best Practices 

3.1   Neural Network Use Cases   

Neural networks (NNs) enable relationship understanding between independent and 

dependent variables, as well as abstraction of generalized patterns and behaviors [10]. 

With its hidden layers acting as feature selectors, and its last layer acting as a logistic 

regression classifier, problem domains of NNs range from linear, non-linear, and 

classification [10]. Unlike humans, NNs never tire or become bored, and as such are 

well suited for repetitive tasks [10]. In particular, identifying product defects via 

image classification on assembly lines is one such issue. Moreover, disease prediction 

is another field that is aided by NNs’ ability to classify images.  

Beyond image classification, NNs are capable of predicting weather forecasts and 

stock prices with data that is time-serial in nature [10]. Furthermore, neural networks 

have the ability to process sequential data to predict the next character in a given 

Internet search query, or the next sequence in a song or voice command [10]. 

3.2   Neural Network Best Practices   

Microsoft researchers Patrice Y. Simard, Dave Steinkraus, and John C. Platt put forth 

two main best practices with regards to image analysis via neural networks. Firstly, 

Simard et al. found that increasing the size of the training set was in part responsible 

for optimal results [11]. In particular, expansion of the training set was realized by 

means of elastic distortion. New images are derived from the existing images by pixel 

distortion and obfuscation. As a result, the model constructed by Simard et al. was 

able to generalize to a better degree, and thus produce more accurate predictions on 

real-world datasets [11]. Figure 3 shows multiple examples of distortion techniques in 

order to achieve a larger dataset via augmentation. 
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Fig. 3. Examples of distortion techniques resulting in an augmented dataset. 

The second-best practice asserted by Simard et al. for image analysis with neural 

networks was simply to use the best performing model; Convolutional Neural 

Networks (CNNs). The benchmarking performed by Simard et al. reflect that CNNs 

are more accurate than standard neural networks because of knowledge exploitation 

that inputs from a given image are not independent, but rather come from a spatial 

structure [11]. 

Another best practice for neural networks is to make use of drop out techniques. 

Nitish Srivastava et al. present dropout as a simple vehicle with which to prevent 

neural networks from overfitting [12]. Srivastava et al. showed that “dropout 

improves the performance of neural networks on supervised learning tasks in vision, 

speech recognition, document classification and computational biology, obtaining 

state-of-the-art results on many benchmark datasets” [12]. Dropout is a method of 

randomly dropping nodes, along with their respective neural connections, from the 

neural network during training [12]. Consequently, the situation that Donald Hebb 

highlights in his 1949 paper is avoided. Specifically, arbitrary pairs of neural 

pathways are not over-emphasized by repeated connections. 

4   Fashion-MNIST Data Collection 

4.1   Fashion-MNIST Data History   

MNIST stands for the Modified National Institute of Standards and Technology. The 

original MNIST dataset is a collection of handwritten digits gathered and created by 

Yann LeCun, Corinna Cortes, and Christopher J.C. Burges [13]. Its authors perpetuate 

it as a good dataset for which to conduct machine learning and pattern recognition 

techniques without involving heavy efforts in data preprocessing [13]. Because of the 

dataset’s ease of use, it has become the de facto benchmark to validate algorithms [9]. 
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The Fashion-MNIST dataset is the resulting culmination of a research project by Dr. 

Kashif Rasul and Dr. Han Xiao of Zalando Research [9]. Their reasons for creating a 

direct replacement of MNIST are threefold.  

Firstly, Rasul and Xiao argue that MNIST is too easily solved now-a-days [9]. A 

publicly available Github Gist by David Robinson overviews comparing pairs of 

MNIST digits based on one pixel [14]. The capability to distinguish a pair of MNIST 

digits utilizing simply one pixel lends credence to Rasul’s and Xiao’s assertions. 

Secondly, Rasul and Xiao put forth that MNIST has become overused [6]. It is 

often used as the “Hello World” programming equivalent for teaching image 

classification to deep learning novices [16]. Ben Hamner, Chief Technology Officer 

of Kaggle, illustrated the overuse of MNIST by plotting dataset references over time. 

Ian Goodfellow, a Google Brain research scientist, refers to Hamner’s illustration 

when calling for the Machine Learning community to move on to more difficult 

datasets [5]. 

Thirdly, MNIST does not perform well for transfer learning to modern, real 

computer vision tasks [6]. François Chollet, creator of the Keras neural networks 

library, puts forth that many good ideas such as batch normalization do not work well 

on MNIST, and inversely many bad ideas may work well on MNIST but fail to 

transfer to real computer vision tasks [18]. 

4.2   Fashion-MNIST Data Collection   

Obtaining the Fashion-MNIST can be accomplished via direct download, cloning 

Zalando Research’s Github repository, or utilizing a machine learning library that 

already includes the Fashion-MNIST as a built-in dataset. The total size of the 

Fashion-MNIST dataset is approximately 29.2002 megabytes. Table 1 provides a full 

breakdown of file sizes for training and test sets [19]. 

Table 1.  Files Contained in the Fashion-MNIST Dataset.  

Name Description Number of Examples Size 

train-images-idx3-

ubyte.gz 

Training set images 60,000 25 Mbytes 

train-images-idx1-

ubyte.gz 

Training set labels 60,000 140 Bytes 

t10k-images-idx3-

ubyte.gz 

Test set images 10,000 4.2 Mbytes 

t10k-labels-idx1-ubyte.gz Test set labels 10,000 92 Bytes 

 

TensorFlow is one of such APIs that contains the Fashion-MNIST dataset, and is 

employed in our work for building CNNs. Fashion-MNIST is a dataset comprised of 

article images from Zalando, Europe’s leading online platform for fashion [19], [20]. 

Each observation contained in the dataset is a greyscale image by the size of 28 by 28 

pixels [19]. Moreover, each observation is tagged with one of ten classification labels 

[19]. Table 2 reflects the potential labels an observation can have [19]. The default 

training and test sizes are 60,000 and 10,000 observations, respectively [19]. 
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Table 2.  Label Classification of Clothing.  

Label Description Examples 

0 T-shirt/top 
 

1 Trouser 
 

2 Pullover 
 

3 Dress 
 

4 Coat 
 

5 Sandal 
 

6 Shirt 
 

7 Sneaker 
 

8 Bag 
 

9 Ankle boot 
 

4.3   Fashion-MNIST Data Preprocessing 

Rasul and Xiao have preprocessed the Fashion-MNIST dataset with regards to data 

cleansing [19]. TensorFlow shuffles the data as a preprocessing step before 

importation. Consequently, training the model on batches of highly correlated 

observations is avoided. However, some data munging is still required. 

The greyscale values contained in the x_train and x_test sets are of the type uint8. 

These values are converted to a type of float32 and then dimensionally normalized so 

that both are of the same scale [21]. Then a subset of the training set is partitioned for 

the purposes of validation. In particular, 5,000 observations are removed from the x 

and y training sets and assigned to the new x and y validation sets. Table 3 displays 

the number of observations in each set with the inclusion of the validation set [21]. 

Table 3.  Total Number of Observation per Dataset.  

Name Description Number of Observations 

Training set Used for model training 55,000 

Validation set Used for tuning hyperparameters 5,000 

Test set Used for model testing after 

validation 

10,000 

 

In order to be compatible with the Keras Sequential Model API, all three sets of 

data pertaining to the greyscale values are reshaped from the dimension of “(28, 28)” 

to a dimension of “(28, 28, 1)” [21]. The data is now ready for model building and 

metric evaluation. 
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5   Convolutional Neural Network Results 

5.1   Hyperparameter Tuning 

Before testing the impact of training data size on the validation accuracy of a CNN, 

the hyperparameters need to be decided upon. 648 models, each with their own 

distinct set of hyperparameters were trained and tested on the Fashion-MNIST 

dataset. The purpose of testing this large swath of models was to discern an optimal 

set hyperparameters with which to statistically test the impact of training data size on 

validation accuracy. Table 4 reflects the six hyperparameters that were tuned via 

training and testing the 648 CNNs. 

Table 4.  Hyperparameter Tuning for CNNs.  

Hyperparameter Description 

First Neuron Number of nodes in the first layer 

Hidden Layers Defines the Neural Network depth 

Batch Size How much data is processed at a given 

time 

Epochs Number of training iterations 

Dropout Rate How much data is remembered at a 

given time 

Optimization 

Function 

Controls the gradient descent of the 

model via Adam, RMSprop, and SGD 

functions 

5.2   Distribution of Model Performance 

The kernel density plot displayed in Figure 4 reflects the distribution of model 

performance based on validation accuracy. The red circles highlight the four 

underlying subpopulations that exist within our models. These subpopulations are 

neighborhoods of models with similar hyperparameters. 
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Fig. 4. Distribution of Model Performance Based on Validation Accuracy. 

The histogram displayed in Figure 5 sheds light on the worst performing modal 

point. Within this neighborhood of models, the most common hyperparameters were 

found to be: A first neuron of 16 nodes, an even split of hidden layers, a batch size of 

32, 5 epochs, a dropout rate of 0.50, and an optimization function of SGD. 

 

Fig. 5. Worst Performing Modal Point Based on Validation Accuracy. 

The histogram displayed in Figure 6 sheds light on the second worst performing 

modal point. Within this neighborhood of models, the most common hyperparameters 

were found to be: A first neuron of 32 nodes, an even split of hidden layers, a batch 

size of 32, 5 epochs, a dropout rate of 0.50, and an optimization function of SGD. 
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Fig. 6. Second Worst Modal Point Based on Validation Accuracy. 

The histogram displayed in Figure 7 sheds light on the second best performing 

modal point. Within this neighborhood of models, the most common hyperparameters 

were found to be: A first neuron of 16 nodes, an even split of hidden layers, a batch 

size of 8, 5 epochs, a dropout rate of 0.25, and an optimization function of SGD. 

 

 

Fig. 7. Second Best Modal Point Based on Validation Accuracy. 

The histogram displayed in Figure 8 sheds light on the best performing modal 

point. Within this neighborhood of models, the most common hyperparameters were 

found to be: A first neuron of 64 nodes, an even split of hidden layers, a batch size of 

8, 20 epochs, a dropout rate of 0.25, and a roughly even split between Adam and 

RMSprop for optimization function. 
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Fig. 8. Best Modal Point Based on Validation Accuracy. 

5.3   Hyperparameter Selection of Top Performing Models 

The most common hyperparameters from the top 10 performing models, based on 

validation accuracy, are chosen as an optimal set of hyperparameters with which to 

test the training size impact on validation accuracy. In particular, the set of 

hyperparameters to be used are as follows: A first neuron size of 64 nodes, 1 hidden 

layer, a batch size of 8, 20 epochs, a dropout rate of 0.25, and the Adam optimization 

function. Figure 9 compares the location of the top ten performing models against the 

distribution of the rest of the models. 
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Fig. 9. Top Ten Performing Models by Validation Accuracy. 

5.4   Validation Accuracy of Varying Training Set Sizes 

After an optimal set of hyperparameters were found, the CNN was trained on varying 

sizes of the original dataset. Specifically, the training set sizes range from 51,000 

down to 6,000 by increments of 9,000. The CNN was trained on each of these six 

varying training sizes ten times. The group means of accuracy and validation accuracy 

for each of the training set sizes are reflected in Table 5. 

Table 5.  Mean Accuracies by Training Set Size. 

Training Size as % of Original Data Mean Accuracy Mean Validation Accuracy 

10 0.9601 0.8727 

25 0.9543 0.8946 

40 0.9492 0.902 

55 0.9457 0.9086 

70 0.9432 0.9102 

85 0.9405 0.9148 
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6   Convolutional Neural Network Analysis 

6.1   One-Way Analysis of Variance for Validation Accuracy 

A one-way analysis of variance (ANOVA) considers one treatment factor with two or 

more treatment levels [22]. The goal of this analysis is to test for differences among 

the means of the levels and to quantify these differences [22]. The null hypothesis of 

this test is that the mean validation accuracies of all training set sizes are equal. In 

contrast, the alternative hypothesis is that not all of the mean validation accuracies of 

all the training set sizes are equal. Figure 10 displays the one-way analysis of 

validation accuracy variance conducted upon the differing training set sizes. 

 

Fig. 10. Top Ten Performing Models by Validation Accuracy. 

Visually, the boxplots reflect a decreasing rate of return with regards to validation 

accuracy as the training set size increases. Moreover, there is no quantile overlap 

between using 10% versus 25% of the original data as training sets. Furthermore, a 

validation accuracy of 90% is achieved by using only 40% of our original data as a 

training set. We can confirm this via the p-value of our statistical test. The p-value for 

this ANOVA test is less than 0.0001. At an alpha level of 0.05, this p-value is highly 

statistically significant. Since the p-value is less than the alpha level, we reject our 

null hypothesis. In other words, there is evidence to suggest that training size has an 

effect on validation accuracy for a CNN. By randomly selecting our observations 

during the stratified split, we can we can infer training set sizes caused differences in 
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validation accuracies. However, we cannot infer that training set sizes cause 

differences in validation accuracies for other algorithms.  

7   Ethical Issues of Classification 

On the surface level, there is no ethical issue with identifying articles of clothing and 

classifying them correctly. However, the over-arching scheme of object classification 

lends itself to possible ethical issues. 

For example, China’s social credit system is fueling research and development into 

technologies that can track and identify an individual’s face, gait, and even their 

clothing [23]. These metrics help determine a Chinese citizen’s social credit score 

[23]. Subsequently, a Chinese citizen’s social credit score affects their ability to 

travel, internet speed, access to education, and even whether or not they are publicly 

shamed [23].  

There is an ethical issue with determining someone’s social value and standing 

based on how they dress. Because of the ability of classification algorithms to identify 

objects in the public space, and to glean intimate information about someone, the 

ethical duties of a data scientist are numerous. 

According to the Association for Computing Machinery’s (ACM) code of ethics, 

“technology enables the collection, monitoring, and exchange of personal information 

quickly, inexpensively, and often without the knowledge of the people affected” [24]. 

Because of this, the duties of anyone using technology in an impactful manner are to 

communicate what they are doing, how they are doing it, what the findings mean, and 

how the findings affect the user. These duties are not only of paramount importance 

but should be ever evolving and continuous. 

In the ACM’s code of ethics, it states that anyone using technology in an impactful 

manner “should only use personal information for legitimate ends and without 

violating the rights of individuals and groups” [24]. Additionally, people exercising 

impactful technology “should establish transparent policies and procedures that allow 

individuals to understand what data is being collected and how it is being used, to 

give informed consent for automatic data collection, and to review, obtain, correct 

inaccuracies in, and delete their personal data” [24]. With this in mind, anyone fueling 

or conducting research and development into technologies that perform object 

classification on individuals, whether it be their face or clothing, need to address 

individuals’ expectations of privacy as to not violate them. 

8   Conclusions 

The number of hidden layers in the Convolutional Neural Network employed in this 

paper had no impact on validation accuracy. This assertion is supported by the 

roughly equivalent distribution of models containing one, two, and three hidden layers 

throughout the 4 modal points in the kernel density plot displayed in Figure 4. One 

would think the best performing models would contain more hidden layers, whereas 
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the worst performing models would contain fewer hidden layer, due to neural density 

playing an important role validation accuracy. 

Of the hyperparameters tested, the first neuron, dropout, and optimization function 

had the greatest impact on validation accuracy. The best 10 models predominantly 

had 64 neurons, and a dropout rate of 0.25, which supports the notion that a denser 

neural network is more accurate. Furthermore, the SGD optimization function was 

only found in the bottom 3 modal points containing the worst performing models. 

Moreover, only ADAM and RMSprop were found in the best performing models. In 

addition, epoch training times of 20 were predominately found in the top preforming 

models suggesting more training iterations increase the validation accuracy. 

Evidence suggests training size causes validation accuracy. Without at least 40% of 

our original training data, or 24,000 samples, we were not able to achieve a 90% 

validation accuracy. Moreover, there is a diminishing rate of return on validation 

accuracy as the training sizes increase. This makes sense because you cannot have an 

accuracy greater than 100%, so it is in essence the upper bound. 
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