
SMU Data Science Review SMU Data Science Review

Volume 1 Number 4 Article 11

2018

Comparisons of Performance between Quantum and Classical Comparisons of Performance between Quantum and Classical

Machine Learning Machine Learning

Christopher Havenstein
Southern Methodist University, chavenstein@smu.edu

Damarcus Thomas
Southern Methodist University, dtthomas@smu.edu

Swami Chandrasekaran
swamichandra@gmail.com

Follow this and additional works at: https://scholar.smu.edu/datasciencereview

 Part of the Categorical Data Analysis Commons, Other Computer Sciences Commons, and the

Quantum Physics Commons

Recommended Citation Recommended Citation
Havenstein, Christopher; Thomas, Damarcus; and Chandrasekaran, Swami (2018) "Comparisons of
Performance between Quantum and Classical Machine Learning," SMU Data Science Review: Vol. 1: No. 4,
Article 11.
Available at: https://scholar.smu.edu/datasciencereview/vol1/iss4/11

This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU
Data Science Review by an authorized administrator of SMU Scholar. For more information, please visit
http://digitalrepository.smu.edu.

https://scholar.smu.edu/datasciencereview
https://scholar.smu.edu/datasciencereview/vol1
https://scholar.smu.edu/datasciencereview/vol1/iss4
https://scholar.smu.edu/datasciencereview/vol1/iss4/11
https://scholar.smu.edu/datasciencereview?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss4%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/817?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss4%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss4%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss4%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/datasciencereview/vol1/iss4/11?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss4%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

Comparisons of Performance between Quantum
and Classical Machine Learning

Christopher L. Havenstein1, Damarcus T. Thomas1, and
Swami Chandrasekaran2

1 Master of Science in Data Science, Southern Methodist University,
Dallas, TX 75275 USA

2 Managing Director, Innovation & Enterprise Solutions,
KPMG

{chavenstein, dtthomas}@smu.edu
swamichandra@gmail.com

Abstract. In this paper, we present a performance comparison of ma-
chine learning algorithms executed on traditional and quantum comput-
ers. Quantum computing has potential of achieving incredible results for
certain types of problems [1], and we explore if it can be applied to ma-
chine learning. First, we identified quantum machine learning algorithms
with reproducible code and had classical machine learning counterparts.
Then, we found relevant data sets with which we tested the compara-
ble quantum and classical machine learning algorithms performance. We
evaluated performance with algorithm execution time and accuracy. We
found that quantum variational support vector machines in some cases
had higher accuracy than classical support vector machines on multi-
class classification problems. The main conclusion was that quantum
multi-class SVM classifiers have the potential to be useful in the future
as quantum computer's available number of qubits increases.

1 Introduction

Quantum computing is an area of computing touted with achieving incredible
results for factoring and unordered search problems [1]. Due to a phenomenon
called quantum parallelism, which occurs because of superposition, quadratic or
exponential increases in solution speed are possible with quantum computers
when compared with classical computers [1]. However, quantum computing does
not provide such a speedup for all problems and researchers are still learning in
what situations it is best applied. The question we have is when quantum com-
puting is combined with machine learning, do we still see these solution speedups
or perhaps does the machine learning solution accuracy increase? Researchers
have already shown that quantum computing and machine learning can be com-
bined. Through the concept of quantum parallelism, quantum computing can
be combined with machine learning when the machine learning algorithm can
be sufficiently parallelized [2]. The problem we are trying to solve is how does
quantum machine learning compare to classical machine learning and can their
relative performance be measured?

1

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

First, to solve this problem, we have performed a thorough search of available
quantum machine learning algorithms in research literature with reproducible
code. Next, we required that the quantum machine learning algorithm to have a
comparable classical machine learning algorithm available for comparison. Once
identifying reproducible code to apply quantum machine learning algorithms, we
identified data sets which would be suitable for the type of quantum machine
learning algorithm—regression or classification. Through this process, we were
introduced to quantum support vector machine (SVM) algorithms by a paper on
“quantum enhanced feature spaces” that are applicable for classification machine
learning problems [3].

Second, solving our problem required access to a quantum computer to run
quantum machine learning algorithms on. We were introduced to the IBM®
Quantum Experience [4], which can be combined with IBM® application pro-
gramming interfaces (APIs) to interact with quantum computers. This IBM®
Quantum Experience allows a user to make an account, be granted an API
key, and an allotment of credits to use. This API key uniquely identifies a user
and their available credits to access quantum compute. Through IBM® Qiskit
Aqua API, quantum machine learning algorithms were available to be used on
IBM® quantum computers [5]. Last, to compare quantum and classical machine
learning algorithm performance, we decided on evaluation metrics to evaluate
their relative performance. To determine if there was a quantum speedup over
the relevant classical machine learning algorithm, we utilized wall time, which
measures the program execution time on the classical or quantum hardware in
microseconds. We additionally used accuracy as an evaluation metric to find the
relative algorithm performance on the data sets selected.

Then, to describe our main results, an overview of our experiments are pro-
vided. Through our experiments, we compared two types of quantum SVMs
each against a classical SVM. For the quantum SVMs compared, a kernel-based
SVM and a variational SVM were both independently compared to a classical
SVM for a binary classification problem. Then, we compared the quantum vari-
ational SVM to a classical SVM for a multi-class classification problem with
three classes. We found that for binary classification problems, there was no
significant improvement over the classical SVM. However, for the multi-class
classification problem, the quantum variational SVM had higher accuracy than
the classical SVM. Our main conclusions were that quantum variational SVMs
performed better in our experiments than classical SVMs for multi-class classi-
fication problems. However, we observed no quantum speedups when comparing
wall times for algorithm executions. We also experienced long queuing times
before we could run our quantum algorithms on an IBM® quantum computer.

This paper is structured in a way to provide the reader with relevant back-
ground information and intuition to understand the key concepts. We begin
by providing a conceptual overview of classical computing and machine learn-
ing algorithms—focused on areas that are relevant to quantum computing. An
overview of quantum machine learning follows, concluding with a summary on
when quantum machine learning should be considered for use and when it should

2

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

not. Next, descriptions of the binary classification data set and the multi-class
classification data set follow. Subsequently, the methods used and experiments
that were performed are defined. After providing the methods and experiments,
the results of our experiments are given in more detail. After providing an anal-
ysis of the experiments, a descriptive analysis of the results is delivered. The
authors then key ethical issues and relevant ethical principles are explored. Last,
the authors supply their conclusions.

2 Classical Computing and Machine Learning

In classical computing, at the lowest level, data is stored with bits. Bits can take
on only one of two possible values based on whether an electron charge exists
[6]. If no electron charge exists, the value of a bit is 0. Whereas, if there is an
electron charge, the value of a bit is 1. A sequence of bits is known as a bitstream
[7]. Bitstreams store information which can be later analyzed. Table 1 on the
next page shows a sampling of different configurations of bits. It should also be
noted as an aside that one letter can be stored in a byte [8].

Table 1. Bit configurations

Number of bits Example Name

1 0 Bit
4 0, 1, 0, 0 Nibble
8 0, 0, 1, 1, 0, 0, 1, 0 Byte

One or more input bitstreams are operated on by using logic gates. The
Oxford Dictionary of Computing states that a logic gate is “a device, usually
but not exclusively electronic, that implements an elementary logic function;
examples include AND, OR, NAND, and NOR gates, and inverters [9].” Logic
gates tend to make more sense when shown pictorially. Please view table 2 for
examples of input bit values and their output value after passing through various
logic gates. Please note that table two spans across two pages. We created this
table after learning concepts found in [10].

Next, bitstreams can be processed in serial or parallel. In serial processing,
only one input bitstream can be processed at a given time to generate output.
Please refer to figure 1 for a pictorial example of serial processing.

Next, parallel processing can utilize multiple input bitstreams to generate
multiple outputs at a given time, which is a crucial distinction when evaluat-
ing machine learning within quantum computing. Please refer to figure 2 for a
pictorial example of parallel processing. Later, in the quantum computing and
machine learning section, we discuss why parallel processing is more important
than serial processing for quantum computers.

3

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

Table 2. Logic gate examples

Type of logic gate Logic gate diagram Table representation

And gate

Input 1 Input 2 Output

0 0 0
1 0 0
0 1 0
1 1 1

Or gate

Input 1 Input 2 Output

0 0 0
1 0 1
0 1 1
1 1 1

XOR gate

Input 1 Input 2 Output

0 0 0
1 0 1
0 1 1
1 1 0

Fig. 1. A simple figure illustrating serial processing. Notice an input bitstream
feeds into a “black box” which abstracts a series of logic gates or other processing.
Then, a bit is output from the black box.

4

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

Fig. 2. A simple figure illustrating parallel processing. Notice there are four input
bitstreams that feed into a “black box” which abstracts a series of logic gates or
other processing. Then, two bits are output from the black box simultaneously.

Thankfully, we can abstract these concepts generally and not be bothered
with them. However, they will later become relevant when describing quantum
computing and how it pertains to machine learning. Though, we do have some
examples of machine learning algorithms that do have components that are sim-
ilar to logic gates. One such example are activation functions in neural networks.
We do not expect the reader to fully understand neural networks. Conceptually,
the activation function takes a series of weighted inputs to produce an output
within a range defined by the type of activation function. There are various types
of activation functions, but one example is a sigmoid function that restricts the
output to either a 0 or 1. An example of a neural network is provided in figure
3.

As we alluded to, it is more typical in machine learning to think at an algo-
rithmic level. Algorithms generally are comprised of a series of steps and may
have iteration [11] and/or recursion [12]. In algorithms, the order of these steps is
imperative, and sometimes the algorithm will not work if the steps are performed
in the wrong order. Algorithms can be implemented using serial or parallel pro-
cessing. However, a serial algorithm may not work well or at all in parallel. The
reverse is also possible.

Machine learning algorithms are broadly described as applicable to classifi-
cation or regression problems. First, we begin describing classification problems.
In classification problems, the objective for the machine learning algorithm is to
train a classifier to predict a label of a class. To do this, the machine learning
algorithm learns from patterns in the distribution of the data for input variables,
also known as features. The label being predicted, also known as a target, must
be provided for training purposes. Overall, the data used to train a machine
learning algorithm is called training data. Then, the classifier uses the input fea-

5

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

Fig. 3. A figure of a neural network architecture. Activation functions are similar
to logic gates since they take a number of inputs to generate outputs.

tures for new unseen data, known as test data, to predict an unknown label. For
instance, the classifier would be trained to predict given input features to predict
the target label of “this” or “that” (binary classification), or perhaps “this” or
“that” or “the other thing” and etc. (which is multi-class classification). Second,
for regression machine learning problems, we still have training and test data
and input features, but the predicted target is a real number—often known as a
continuous value.

In this paper, we do not explore all of the available classification and regres-
sion machine learning algorithms that are usable on a classical computer. Re-
gardless, the reader should be aware that machine learning algorithms typically
fall into one of these two categories. Next, an overview of quantum computing
and the concepts relevant to quantum machine learning is presented.

3 Quantum Computing and Machine Learning

Quantum computers look much different in person than the computers we use
every day. The writers believe quantum computers look similar to metal chan-
deliers. For copyright purposes, we cannot provide a picture of a quantum com-
puter in-line, but the writers suggest that you refer to the link in [13]. To
paraphrase IBM® Research division, quantum computers require an extremely
cold environment and containment from outside “electromagnetic radiation” to
guard against the introduction of error into the quantum processing chip [13].
The quantum processing chip must be kept at “[approximately] -459.67 degrees
Fahrenheit”, according to IBM® [13].

While classical computers operate on bitstreams where each bit can take on
one of two values each (0 or 1), quantum computers have quantum bits with

6

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

unique properties. First, we describe quantum bits, which are most commonly
known as qubits. Qubits can be in multiple states at once, which can be easiest
explained as spinning in the electron. If the electron spin is in the “up” position,
then the qubit would equal 1 [14]. Whereas, if the electron spin were in the
down position, the qubit would equal 0 [14]. However, in quantum computing,
we have no way of knowing at a given time whether the qubit is in the up or
down position. Therefore, a superposition (i.e. a sphere) of all potential values
is created [14]. To compare bits to qubits visually, please refer to figure 4. The
sphere created by the spinning of the qubit is commonly known in quantum
computing as a “Bloch sphere [14].”

Fig. 4. A figure of a qubit. The notation used for the 1 and 0 values comes from
Dirac, and is known as a “ket [14].” A series of qubit values are notated within a
ket. The red arrows represent the spinning of the qubit, which creates a sphere
pattern. This spinning represents the superposition of values available to the
qubit.

In quantum computing, we still use logic gates, but the logic gates have
different purposes. Quantum logic gates are commonly known as quantum gates,
and they are essentially a transformation on one or more qubits. In table 3, we
have provided a sample of quantum gate types from [15].

Table 3. Quantum gate examples

Quantum gate Input Classical gate Short description

Hadamard gate 1 qubit None Creates superposition
Pauli-X gate 1 qubit Not gate Creates x rotation
Pauli-Y gate 1 qubit None Creates y rotation

Controlled not gate 2 or more qubits Not gate Used to measure 2nd qubit

For this paper, the reader does not need to become intimately familiar with
quantum gates. However, the reader should know quantum gates are impor-

7

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

tant because they transform input qubits with transformations. These quantum
transformations include but are not limited to establishing the quantum state
(e.g., superposition) and to measure qubits (e.g., with the CNOT gate) [15].
However, if the reader would like a more in-depth mathematical explanation of
quantum gates, please refer to [16].

Quantum computing becomes much more interesting when multiple qubits
are entangled together [16]. In [16], entanglement is described as having “deep
connections between spatially separated entities.” When qubits are entangled,
the superposition of values also increases. When some qubits, n, are entangled,
the superposition of values is 2n [16]. For two entangled qubits, we have repre-
sented the available values in the superposition in figure 5.

Fig. 5. A figure of a two entangled qubits. Notice that there are four unique
values in the superposition of values.

At this juncture, the reader may intuit that a large number of qubits entan-
gled leads to a large superposition of values available to perform operations on a
quantum computer. At the authors time of writing this paper, IBM® currently
has 5 qubit (“IBM® Q 5 Tenerife”), 14 qubit (“IBM® Q 14 Melbourn”), and
16 qubit (“IBM® Q 16 Rschlikon”) quantum computers available for public use
[17]. Also, IBM® has a 20 qubit quantum computer available for private use
(“IBM® Q 20 Tokyo”) [17]. Current quantum computing researchers in [16]
suggest that the current highest performance supercomputers are only able to
represent the superposition of values in a quantum computer up to 50 qubits.
At 50 qubits, the superposition of values available to the quantum computer at
a given time would be 1,125,899,906,842,624, or 250.

Regarding machine learning, it is beneficial to know the circumstances of
when a quantum computer should be used. When a machine learning algorithm
can be parallelized, “quantum parallelism” may be possible to apply, according
to [2]. According to [18], when you have a quantum computer with large super-

8

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

position of values due to many entangled qubits, you can measure the function
output for many values simultaneously. However, for a serial machine learning
algorithm, a quantum computer's large superposition of values is wasted, since
only a small portion of the superposition is utilized.

To reinforce the idea of when machine learning may be able to be applied
on a quantum computer, we provide a conceptual example of a good potential
quantum machine learning algorithm candidate. Random Forests are a type of
machine learning algorithm that can be run in parallel and may make a good
quantum machine learning algorithm. Leo Breiman introduced the random forest
machine learning algorithm in his 2001 paper, which can be used for classification
or regression problems [19]. For Random Forests, the overall data set (as in
most machine learning algorithms) is broken into a training and test data set.
However, from the training data set, approximately one third is set aside as
an “out of bag” set. The out of bag set is used to evaluate the performance of
the Random Forest model created from the training data set. Random Forests
utilize “bagging” which is short for bootstrap aggregating, and we describe next
[19]. Then, the n bootstrap samples are selected from the training data with
replacement to create trees in the random forest. With replacement means that
once an observation is selected, it is put back into the pool to be potentially
sampled again. Then, for each bootstrapped sample, the process of creating
a tree begins. For each bootstrap sample with a predetermined sample size,
a random feature (e.g. a variable) is chosen to create a binary split from the
training data [19]. This process of creating random binary splits continues until
a user-defined maximum tree depth is reached. After all n trees are created in
this way (which can be in parallel), the tree results are aggregated together to
create the fitted random forest model. These aggregations generally are votes for
classification problems and averages for regression problems. The fitted random
forest model then predicts the target variable from the out of bag set to report
the training error. Then, the model can be used to predict the target on the test
data set. An example of a Random Forest is provided in figure 6.

While a Random Forest is a good potential candidate for a quantum ma-
chine learning algorithm, a Boosted Trees model is a bad example of a quantum
machine learning algorithm. This is because boosted trees are fit in serial. XG-
Boost is a type of Boosted Trees machine learning algorithm that is currently
heavily used on classical computers [21]. Without going into as much depth as
with Random Forest models, Boosted Tree models are required to fit a series of
trees. After each tree is fit, the prediction errors are up-weighted and the correct
predictions are down-weighted. Then, the next tree is fit after incorporating the
new weights. This process continues until a number of trees are fit. Then, the
results are aggregated together and weighted by the trees that had the best in-
dividual tree accuracy. An example of part of the boosted tree fitting process is
provided in figure 7.

In summary, quantum machine learning should be considered when a partic-
ular machine learning algorithm candidate can be parallelized—to benefit from
quantum parallelism. However, serial machine learning algorithms should be kept

9

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

Fig. 6. A figure showing the Random Forest algorithm fitting process.

Fig. 7. A figure showing the Boosted Trees algorithm fitting process.

10

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

on a classical computer. Next, we began searching for viable quantum machine
learning algorithms. We found that there was a common algorithm used as a
foundation for many of these quantum machine learning algorithms, Grover's
Search. Grover's Search is a quantum algorithm that has been shown to be use-
ful for clustering, Support Vector Machines, and Quantum Neural Networks [1].
For data that is in unordered sets, Grover's Search can find a globally optimum
value extremely quickly and has been shown very valuable for machine learning
[20]. For quantum clustering problems, Grover's Search is used almost exclusively
[21].

The following observation we made is that many of the types of quantum
machine learning algorithms found in our literary review did not have repro-
ducible code that we could find. We considered this a serious issue. There was
only one type of quantum machine learning algorithm with reproducible code
that we found, for quantum support vector machines. In table 4, we provide:
(1) the types of quantum machine learning algorithms we found; (2) the type of
machine learning problem the algorithm can be applied to; and (3) the citations
found. We were only able to find reproducible code for quantum support vector
machines. At this point, we proceed to our descriptions of the data sets used to
solve our problem.

Table 4. Quantum machine learning algorithms found through literary review

Quantum ML algorithm Applicable ML problems Citations

Quantum annealing Regression [1], [22], [23]
Quantum adiabatic algorithms Classification [24], [25], [26]
Quantum neural networks Regression or Classification [27]
Quantum process tomography Regression [1], [28]
Quantum support vector machines Classification [3]

4 Data Sets

There were two data sets used to solve our problem. The first data set that
was chosen is the UCI ML Breast Cancer Wisconsin (Diagnosis) data set that
is available from scikit learn [29]. Features are computed from a digitized image
of a fine needle aspirate (FNA) of a breast mass. They describe characteristics
of the cell nuclei present in the image. This data set has 569 observations with
30 columns that are used as features to predict the diagnosis value of a benign
breast cancer cell nuclei, 1. The default diagnosis value, 0, indicates that a breast
cancer cell nuclei is malignant. The breast cancer data set is suitable for quantum
machine learning algorithms that solve supervised binary classification problems.
For more in-depth explanation of the columns and their values in the breast
cancer data set, please refer to Appendix I: Data Set Descriptions. The quoted

11

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

column descriptions in the breast cancer data dictionary came from a Kaggle
entry for the breast cancer data set [29].

The second data set that was chosen is the UCI ML Wine data set. The
features are the results of a chemical analysis of wines grown in the same region
in Italy but derived from three different cultivars. The analysis determined the
quantities of 13 constituents found in each of the three types of wines [30]. The
data set has 178 observations and the class identifier are 1, 2, 3. For more in
depth explanation of the columns and their values in the wine data set, please
refer to Appendix I: Data Set Descriptions. The quoted column descriptions in
the breast cancer data dictionary came from the UCI data repository. The Wine
data set is suitable for multi-classification quantum machine learning algorithms.

5 Methods and Experiments

We utilized Qiskit Aqua for quantum machine learning. We used both a lo-
cal quantum computer simulator and a real quantum chip as our backend. We
applied two quantum machine learning algorithms, Support Vector Machine's
variational method and the Support Vector Machine's quantum kernel-based
method for supervised classification. The direct kernel-based method for SVM
was run on a classical computer that utilized a regular CPU.

We used the methods discovered by Vojtech Havlicek et al. [3] to apply two
quantum machine learning methods to classification problems. We have applied
two quantum support vector machine learning methods for binary classification
problems, using the breast cancer data set. These two methods are the quantum
variational method and the quantum kernel-based method.

In [3], the authors suggest that their quantum support vector machine algo-
rithms could be applied in the near future on quantum architectures. They have
even provided an example Jupyter notebook to show how one of their algorithms
works [31]. We utilized their Jupyter notebook as a baseline for this analysis,
since the reader will likely have the aptitude to apply quantum machine learn-
ing in Python with such a Jupyter notebook—after downloading the required
package libraries. The authors in [3] state that their methods were run on a
quantum computer, but they have not shown this in their Jupyter notebook.
Since, their code in their notebook is rerunning with a local quantum simula-
tor in Qiskit Aqua. Next, we describe the quantum variational method and the
quantum kernel-based method, beginning with the quantum variational method.

With the quantum variational method, hyperplane(s) are calculated and used
for classification of new test data. In the simplest sense, if the training data are
used and plotted in two dimensions, similar to a scatterplot, a hyperplane is
the line (or curve in higher dimensions) that separates the class values that the
training data belongs to (often denoted as the yi values). The main advantage of
the quantum variational method is that it can handle classification of more than
two classes for the response variable. The disadvantage of the quantum varia-
tional method is that it requires two sequential quantum algorithms to be run,
which is much more computationally intensive than the quantum kernel-based

12

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

method. The first algorithm is used when trying to compute the hyperplane(s)
with the training data. This first algorithm can be found in figure 8. The second
algorithm runs after the hyperplane(s) from the first algorithm are calculated
and are used to begin classifying the new test data. You can find the second
algorithm in figure 9 [3].

Fig. 8. A figure showing the first algorithm in the quantum variational SVM
method. This algorithm was found in [3].

The second quantum support vector method, is the quantum kernel-based
method, is restricted to only binary classification problems. However, it is much
quicker to complete since the quantum computer is only used for one algorithm.
Whereas, the quantum variational method has to run two algorithms, one to
calculate the hyperplane(s) and another to classify the test data. According
to the authors of [32], the kernel approach used by the quantum kernel-based
method “cannot be estimated classically.” They also mention in their paper,
that there won't be an advantage to using quantum kernel-based Support Vector
Machines (SVM) if the data are not already complex to fit on classical silicon-
based computers.

The steps for the quantum kernel-based SVM algorithm follow. As stated
previously, with the quantum kernel-based method, we are restricted to only
having two labels to classify (e.g. binary classification). The authors stated in [3]
that it is technically possible to classify more than two labels, but partitioning
would have to occur into two label sets, and the developer would require a deeper
understanding of quantum hardware. First, a kernel matrix is estimated with
the quantum computer by using all of the training data rows. Then, the classical
computer takes this quantum kernel matrix of the training data to calculate

13

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

Fig. 9. A figure showing the first algorithm in the quantum variational support
vector machine method. This algorithm was found in [3].

the support vectors with the classical computer. After the support vectors are
calculated with the classical computer, classification can begin by the classical
computer to predict the labels for the test data set. Because the support vectors
were already calculated and the quantum kernel matrix from the training data
is available, the label can be directly calculated for each of the test data rows.

The classical support vector machine method used for comparative purposes
is the “Support Vector Machine Radial Basis Function Kernel (SVM RBF Ker-
nel)” which is made available in Qiskit Aqua and is briefly described in their
documentation [32].

For our experiments, we used code from our Jupyter Notebook which can
be found in Appendix II: Python Code from Quantum SVM Analysis Jupyter
Notebook. Table 5 lists out the complete experimental configurations. Please
note that the runtime and accuracy percentage will be compared amongst the
two different algorithms. We also utilized four different types of back-ends, which
were: (1) the local CPU; (2) the quantum simulator; (3) the state vector simu-
lator; and (4) a real quantum chip. In the first approach, we use a variational
circuit as given in [33] [34] that generates a separating hyperplane in the quan-
tum feature space. In the second approach, we use the quantum computer to
estimate the kernel function of the quantum feature space directly and imple-
ment a conventional SVM.

6 Analysis

After deciding on how to setup the experiments, we began the analysis. We tried
applying the quantum variational SVM model to the same training and test split
for the breast cancer data set (with 20 training and 10 test observations). As
expected, this model took too long to fit, with a total approximate run time
of 25 minutes. However, the accuracy when we use the quantum simulator for
the quantum variational SVM model completed was 95%, as we show in Table
6. The classic SVM had a slower wall time with only an 85% accuracy. The

14

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

Table 5. Experimental setup configurations

Algorithm
compared

Quantum or
classical

Back-end Runtime Data set
Evaluation
metric

Kernel-
based
SVM

Quantum
Quantum
back-end
(ibmqx4)

Wall time
(µs)

UCI Breast
Cancer
Wisconsin

Accuracy

Kernel-
based
SVM

Quantum
Quantum
simulator

Wall time
(µs)

UCI Breast
Cancer
Wisconsin

Accuracy

Kernel-
based
SVM

Quantum
Statevector
simulator

Wall time
(µs)

UCI Breast
Cancer
Wisconsin

Accuracy

Classic SVM Classical
Local CPU
environment

Wall time
(µs)

UCI Breast
Cancer
Wisconsin

Accuracy

Variational
SVM

Quantum
Quantum
simulator

Wall time
(µs)

UCI Breast
Cancer
Wisconsin

Accuracy

Variational
(multi-class)
SVM

Quantum
Quantum
back-end
(ibmqx4)

Wall time
(µs)

Wine Accuracy

Variational
(multi-class)
SVM

Quantum
Quantum
simulator

Wall time
(µs)

Wine Accuracy

Variational
(multi-class)
SVM

Classical
Local CPU
environment

Wall time
(µs)

Wine Accuracy

15

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

simulated variational model outperformed the local CPU as it should have since
such variational circuit classifiers are directly related to conventional SVMs [35].

Table 6. Quantum variational SVM results on the Breast Cancer Wisconsin
data set

Classifiers Back-end Algorithm Wall Time Accuracy

Quantum
SVM

Quantum
simulator

Variational
SVM

5.96 µs 95.00%

Classic SVM
Local CPU
environment

SVM 6.20 µs 85.00%

Next, as our control, we applied the classical “Support Vector Machine Radial
Basis Function Kernel (SVM RBF Kernel)” to the same training and test split
for the breast cancer data set (with 20 training and 10 test observations) [32].
Table 7 summarizes the kernel-based binary classification results. The quantum
state vector simulator had 100% accuracy in approximately 6 microseconds. The
classic SVM run on a local CPU had 85% accuracy.

Table 7. Quantum kernel-based SVM results on the Breast Cancer Wisconsin
data set

Classifiers Back-end Algorithm Wall Time Accuracy

Quantum
SVM

ibmqx4
SVM RBF
Kernel

6.91 µs 80.00%

Quantum
SVM

Statevector
simulator

SVM RBF
Kernel

5.96 µs 100.00%

Classic SVM
Local CPU
environment

SVM 6.20 µs 85.00%

We ran the classical SVM RBF Kernel model a few more times, and received
the same result, of 85% prediction accuracy each time. It was after this we
realized that the quantum SVM methods appeared to have more variability
during the model fit process than the classical SVM model did. We were also

16

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

impressed with how easy it was after running through one example dataset to fit
quantum machine learning models. On multi-class variational SVM comparisons
as noted in Table 8, the quantum simulator had the best accuracy (100%). The
quantum SVM run on a quantum chip had an accuracy of 93%. The local CPU
SVM had 90% accuracy.

Table 8. Quantum multi-class variational SVM results on the Wine data set

Classifiers Back-end Algorithm Wall Time Accuracy

Quantum
Multi-class
SVM

ibmqx4
Variational
SVM

6.44 µs 93.33%

Quantum
Multi-class
SVM

Statevector
simulator

Variational
SVM

5.96 µs 100.00%

Classic SVM
Local CPU
environment

SVM 6.20 µs 90.00%

7 Results

The results on the Breast Cancer Wisconsin data set are reviewed first. On the
Breast Cancer Wisconsin data set, only simulator results were obtained for the
quantum variational SVM while quantum computer results were obtained for
the quantum kernel-based SVM. The quantum variational SVM results were
not obtained after waiting for approximately a day for the results to return.
It was unclear if this wait was due to queuing issues or the run time of the
quantum variational SVM on the IBM® quantum computer. For the quantum
variational SVM simulator results, the accuracy was 95.00% when compared to
85.00% with the classical SVM to predict benign or malignant breast cancer
tumors. For the quantum kernel-based SVM, the best results were obtained by
the quantum SVM simulator with 100.00% accuracy. The classical SVM had
the next highest accuracy at 85.00%. Then last, the quantum kernel-based SVM
run on a quantum computer performed the worst with 80.00% accuracy on the
Breast Cancer Wisconsin data set.

The results for the Wine data set are reviewed next. The quantum multi-
class variational SVM run on the simulator had the best accuracy at 100.00% to
predict the three types of wine. Next, the quantum multi-class variational SVM
run on the quantum computer had 93.33% accuracy. Last, the classic SVM had
90.00% accuracy on the Wine data set.

17

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

There were a few key insights gained after reviewing these results on both
data sets. First, fitting quantum SVM models on large data sets for binary
classification problems appeared initially to be computationally inefficient. The
authors believe that using 20 training and 10 test observations isn’t enough for
practical use, and is primarily useful only as a proof of concept. The authors
would like to see if the performance improves with a quantum computer with
more qubits. The authors will also state that the most likely explanation for long
runtime of the SVMs on IBM® quantum computers was due to long queuing
times. The justification for this statement is due to the low wall-times (measured
in microseconds) returned from the quantum computer, while the overall runtime
was typically long (greater than 20 minutes).

Second, the difference in predictive accuracy between the simulated quantum
SVM and the actual quantum SVM suggests that the simulator tends to overstate
the accuracy of quantum SVMs run on quantum computers.

Finally, The most interesting results were found from the quantum variational
SVM to perform multi-class classification on the Wine Data Set. Since, the
quantum variational SVM for the multi-class classification problem had higher
accuracy than the classical SVM (93.33% compared to 90.00%).

8 Ethics

During our analysis, we discovered a potential ethical issue that we deemed
worthy of discussion. Here, we provide some background to introduce the po-
tential ethical issue. While the wall times we observed to fit the quantum SVMs
were short—typically taking a few microseconds—the queuing times were long
in comparison. We do acknowledge that in our python code we initially did not
think to include a runtime timer in addition to the wall time timer. If we did,
we would have recorded from our experiences very long code run times. For the
kernel-based quantum SVM on the Breast Cancer Wisconsin data set, the code
execution time from running the line to receiving results back from the quan-
tum computer was approximately 20 to 30 minutes. Then, with the variational
quantum SVM on the Wine data set, we received results back from the quantum
computer in approximately 5 to 6 hours. This queueing time for the variational
SVM on the Wine multi-class classification data set was unfortunate since the
results were the most promising.

The experience of waiting in a slow queue to access the IBM® quantum
compute led us to wonder, what if clients were provided unequal access to the
quantum computers queue? This is a potential ethical issue, which right now
doesn't have much impact other than being an annoyance, but in the future could
become a serious ethical issue. We believe that access to quantum computers
shouldn't be restricted.

As a framework to evaluate the ethical issue we are exploring—access to
quantum computers shouldn't be restricted—we used two ethical principles. The
first ethical principle we used for evaluation of this ethical issue was beneficence
accessed from the Stanford Encyclopedia of Philosophy [36]. Then, we used the

18

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

ethical principle Be fair and take action not to discriminate from the ACM code
of ethics [37].

Initially, we evaluated the ethical issue, access to quantum computers should
not be restricted, with the ethical principle “beneficence [36].” According to [36],
the ethical principle of beneficence alludes to a moral obligation to provide some
service or to perform an action to help others. If IBM® intends to provide
a free quantum computing service, then that service should be provided with
equal access to all requesting clients. If IBM® is not providing equal access
to their free quantum computing service, then beneficence is violated. From
the authors' perspective, IBM® is doing a great job with providing access to
quantum compute currently. In the probable future where quantum computers
become more impactful, we believe that IBM® should continue to provide this
free quantum computing service for educational purposes.

Last, we evaluated this potential ethical issue with the ethical principle “Be
fair and take action not to discriminate [37].” This ethical principle is similar to
beneficence, but also focuses on equal treatment of all people. For IBM® not to
be discriminating with access to their free quantum compute, all clients would
have to be treated equally. To not violate this ethical principle, no discriminating
on clients on any basis can occur when requesting access with a valid API key to
the free IBM® quantum compute. If any discriminating or unequal treatment
occurs where some clients are more equal than others, then the ACM ethical
principle “be fair and take action not to discriminate” is violated. We challenge
IBM® in the future to keep comparable free access available to their quantum
computers as is available now for educational purposes.

9 Conclusions and Future Work

Experimentally we have shown that a classifier can exploit a quantum feature
space. The kernel of this feature space has been conjectured to be hard to esti-
mate classically. In the experiment we find that even in the presence of noise, we
are capable of achieving success rates up to 93.00% with quantum compute. In
the future it becomes intriguing to find suitable feature maps for this technique
with provable quantum advantages while providing significant improvement on
real world data sets. With the ubiquity in machine learning, we are optimistic
that our technique will find application beyond with SVM classifiers. Two ma-
jor issues should be addressed, for one, the quantum simulator was executed
on a local classical machine. Despite the efforts of the backend, it is not feasi-
ble for a classical computer to imitate a quantum computer without some type
of high-performance computing power, and so the simulator results are purely
observational. Furthermore, the presence of noise diminishes the results on a
real quantum chip especially with the limited number of qubits. Small quantum
computers and larger special purpose quantum simulators, annealers, etc., ex-
hibit promising applications in machine learning and data analysis [38]. However
we are in a certain quantum era called, the Noisy Intermediate-Scale Quantum
(NISQ) era. Here “intermediate scale” refers to the size of quantum computers

19

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

which will be available in the next few years. NISQ tends to refer to quantum
computers having number of qubits ranging from 50 to a few hundred 50 qubits
as a significant milestone. This is because that's beyond what can be simulated
by brute force using the most powerful existing digital supercomputers. “Noisy”
emphasizes that we will have imperfect control over those qubits; the noise will
place serious limitations on what quantum devices can achieve in the near term
[39]. It is unknown whether the NISQ era will yield great developments and
technologies that speed up the time to solutions. Nonetheless, we are living in
exciting times where experimentation on real quantum chips are possible, and a
new quantum community is developing and trickling over to the curiosity of the
general public minds.

References

1. Peter Wittek. Quantum machine learning: what quantum computing means to data
mining. Academic Press, 2014.

2. Daoyi Dong, Chunlin Chen, Hanxiong Li, and Tzyh-Jong Tarn. Quantum rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 38(5):1207–1220, 2008.

3. Vojtech Havlicek, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Jerry M
Chow, and Jay M Gambetta. Supervised learning with quantum enhanced feature
spaces. arXiv preprint arXiv:1804.11326, 2018.

4. IBM Staff. Ibm quantum experience. https://quantumexperience.ng.bluemix.

net/qx/experience.
5. IBM Staff. Quantum information science kit. https://qiskit.org/aqua.
6. David Deutsch. Quantum theory, the church–turing principle and the universal

quantum computer. Proc. R. Soc. Lond. A, 400(1818):97–117, 1985.
7. Community Editor. Bitstream. https://en.wikipedia.org/wiki/Bitstream.
8. Ashley Taylor. Bits bytes. https://web.stanford.edu/class/cs101/

bits-bytes.html.
9. Reference Staff. Logic gates quick reference. http://www.oxfordreference.com/

view/10.1093/oi/authority.20110810105307777.
10. Margaret Rouse. logic gate (and, or, xor, not, nand, nor

and xnor). https://whatis.techtarget.com/definition/

logic-gate-AND-OR-XOR-NOT-NAND-NOR-and-XNOR.
11. Reference Staff. Iteration. https://www.oxfordlearnersdictionaries.com/us/

definition/english/iteration.
12. Chris Alvin. Recursive function. http://pages.cs.wisc.edu/~calvin/cs110/

RECURSION.html.
13. IBM Staff. Inside look: Quantum computer. https://www.research.ibm.com/

ibm-q/learn/what-is-ibm-q/images/infographic-inside.jpg.
14. Eleanor G Rieffel and Wolfgang H Polak. Quantum computing: A gentle introduc-

tion. MIT Press, 2011.
15. Community Editor. Quantum logic gates. https://en.wikipedia.org/wiki/

Quantum_logic_gate.
16. Krysta M Svore and Matthias Troyer. The quantum future of computation. Com-

puter, 49(9):21–30, 2016.
17. IBM Staff. Quantum devices simulators. https://www.research.ibm.com/ibm-q/

technology/devices/.

20

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

https://quantumexperience.ng.bluemix.net/qx/experience
https://quantumexperience.ng.bluemix.net/qx/experience
https://qiskit.org/aqua
https://en.wikipedia.org/wiki/Bitstream
https://web.stanford.edu/class/cs101/bits-bytes.html
https://web.stanford.edu/class/cs101/bits-bytes.html
http://www.oxfordreference.com/view/10.1093/oi/authority.20110810105307777
http://www.oxfordreference.com/view/10.1093/oi/authority.20110810105307777
https://whatis.techtarget.com/definition/logic-gate-AND-OR-XOR-NOT-NAND-NOR-and-XNOR
https://whatis.techtarget.com/definition/logic-gate-AND-OR-XOR-NOT-NAND-NOR-and-XNOR
https://www.oxfordlearnersdictionaries.com/us/definition/english/iteration
https://www.oxfordlearnersdictionaries.com/us/definition/english/iteration
http://pages.cs.wisc.edu/~calvin/cs110/RECURSION.html
http://pages.cs.wisc.edu/~calvin/cs110/RECURSION.html
https://www.research.ibm.com/ibm-q/learn/what-is-ibm-q/images/infographic-inside.jpg
https://www.research.ibm.com/ibm-q/learn/what-is-ibm-q/images/infographic-inside.jpg
https://en.wikipedia.org/wiki/Quantum_logic_gate
https://en.wikipedia.org/wiki/Quantum_logic_gate
https://www.research.ibm.com/ibm-q/technology/devices/
https://www.research.ibm.com/ibm-q/technology/devices/

18. J. Lanzagorta, M. Uhlmann. Quantum parallel real? https:

//www.researchgate.net/profile/Marco_Lanzagorta/publication/

252477910_Is_quantum_parallelism_real/links/54982fc80cf2eeefc30f7e2c/

Is-quantum-parallelism-real.pdf.
19. L. Breiman. Random forest. https://www.stat.berkeley.edu/~breiman/

randomforest2001.pdf.
20. Christoph Durr and Peter Hoyer. A quantum algorithm for finding the minimum.

arXiv preprint quant-ph/9607014, 1996.
21. Esma Aı̈meur, Gilles Brassard, and Sébastien Gambs. Quantum speed-up for un-

supervised learning. Machine Learning, 90(2):261–287, 2013.
22. Emile HL Aarts et al. Simulated annealing: Theory and applications. 1987.
23. AB Finnila, MA Gomez, C Sebenik, C Stenson, and JD Doll. Quantum annealing:

a new method for minimizing multidimensional functions. Chemical physics letters,
219(5-6):343–348, 1994.

24. Hartmut Neven, Vasil S Denchev, Geordie Rose, and William G Macready. Train-
ing a binary classifier with the quantum adiabatic algorithm. arXiv preprint
arXiv:0811.0416, 2008.

25. Wim Van Dam, Michele Mosca, and Umesh Vazirani. How powerful is adiabatic
quantum computation? In Foundations of Computer Science, 2001. Proceedings.
42nd IEEE Symposium on, pages 279–287. IEEE, 2001.

26. David DiVincenzo. Quantum information processing. lecture notes.
27. Sanjay Gupta and RKP Zia. Quantum neural networks. Journal of Computer and

System Sciences, 63(3):355–383, 2001.
28. Isaac L Chuang and Michael A Nielsen. Prescription for experimental determina-

tion of the dynamics of a quantum black box. Journal of Modern Optics, 44(11-
12):2455–2467, 1997.

29. Nick Street. Scikit learn dataset load. http://scikit-learn.org/stable/

modules/generated/sklearn.datasets.load_breast_cancer.html.
30. Nick Street. Breast cancer wisconsin (diagnostic) data set. https://www.kaggle.

com/uciml/breast-cancer-wisconsin-data/version/2.
31. Qiskit Community. Qiskit aqua-tutorials. https://github.com/Qiskit/

aqua-tutorials/blob/master/artificial_intelligence/svm_qkernel.ipynb.
32. Qiskit Community. Support vector machine radial basis function kernel

svm rbf kernel. https://qiskit.org/documentation/aqua/algorithms.html#

support-vector-machine-radial-basis-function-kernel-svm-rbf-kernel.
33. Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus

Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242,
2017.

34. Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Hartmut Neven. Quantum
algorithms for fixed qubit architectures. arXiv preprint arXiv:1703.06199, 2017.

35. Christopher JC Burges. A tutorial on support vector machines for pattern recog-
nition. Data mining and knowledge discovery, 2(2):121–167, 1998.

36. T Beauchamp. The principle of beneficence in applied ethics. https://plato.

stanford.edu/entries/principle-beneficence/.
37. Committee Editor. Acm code of ethics. https://www.acm.org/code-of-ethics.
38. Rodion Neigovzen, Jorge L Neves, Rudolf Sollacher, and Steffen J Glaser. Quantum

pattern recognition with liquid-state nuclear magnetic resonance. Physical Review
A, 79(4):042321, 2009.

39. John Preskill. Quantum computing in the nisq era and beyond. arXiv preprint
arXiv:1801.00862, 2018.

21

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

https://www.researchgate.net/profile/Marco_Lanzagorta/publication/252477910_Is_quantum_parallelism_real/links/54982fc80cf2eeefc30f7e2c/Is-quantum-parallelism-real.pdf
https://www.researchgate.net/profile/Marco_Lanzagorta/publication/252477910_Is_quantum_parallelism_real/links/54982fc80cf2eeefc30f7e2c/Is-quantum-parallelism-real.pdf
https://www.researchgate.net/profile/Marco_Lanzagorta/publication/252477910_Is_quantum_parallelism_real/links/54982fc80cf2eeefc30f7e2c/Is-quantum-parallelism-real.pdf
https://www.researchgate.net/profile/Marco_Lanzagorta/publication/252477910_Is_quantum_parallelism_real/links/54982fc80cf2eeefc30f7e2c/Is-quantum-parallelism-real.pdf
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data/version/2
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data/version/2
https://github.com/Qiskit/aqua-tutorials/blob/master/artificial_intelligence/svm_qkernel.ipynb
https://github.com/Qiskit/aqua-tutorials/blob/master/artificial_intelligence/svm_qkernel.ipynb
https://qiskit.org/documentation/aqua/algorithms.html#support-vector-machine-radial-basis-function-kernel-svm-rbf-kernel
https://qiskit.org/documentation/aqua/algorithms.html#support-vector-machine-radial-basis-function-kernel-svm-rbf-kernel
https://plato.stanford.edu/entries/principle-beneficence/
https://plato.stanford.edu/entries/principle-beneficence/
https://www.acm.org/code-of-ethics

Appendix I: Data Set Descriptions

First, information about the Breast Cancer Wisconsin (Diagnostic) Data Set was
acquired from the UCI Machine Learning Repository of data sets. The data set
had 32 features, 569 rows, and a diagnosis/classification for each row of either a
malignant breast cancer tumor or a benign breast cancer tumor. In other words,
this is a binary classification data set. Then, three values were provided for each
of the features in table 9.

Table 9. Breast Cancer Wisconsin (Diagnosis) feature names acquired from the
UCI Machine Learning Repository. Note that there are three values captured for
each feature below for each row in the data set.

Feature number Feature name

1 Radius
2 Texture
3 Perimeter
4 Area
5 Smoothness
6 Compactness
7 Concavity
8 Concave points
9 Symmetry
10 Fractal dimension

Second, information about the Wine data set was acquired from the UCI
Machine Learning Repository of data sets. The dataset had 13 attributes, 178
rows, and a classification of one of three types of wine. In other words, this is a
multi-class classification data set. The feature names are listed in table 10.

22

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

Table 10. Wine data set feature names acquired from the UCI Machine Learning
Repository.

Feature number Feature name

1 Alcohol
2 Malic Acid
3 Ash
4 Alcalinity of ash
5 Magnesium
6 Total phenols
7 Flavanoids
8 Nonflavanoid phenols
9 Proanthocyanins
10 Color intensity
11 Hue
12 OD280/OD315 of diluted wines
13 Proline

Appendix II: Python Code from Quantum SVM Analysis
Jupyter Notebook

#Breast Cancer on a Real Quantum chip Kernel Direct Method

from datasets import *

from qiskit_aqua.utils import split_dataset_to_data_and_labels

from qiskit_aqua.input import get_input_instance

from qiskit_aqua import run_algorithm

from qiskit import execute, register

import getpass

try:

APItoken = getpass.getpass(’Please input your token and hit enter:

’)

qx_config = {

"APItoken": APItoken,

"url":"https://quantumexperience.ng.bluemix.net/api"}

except (ConnectionError, ValueError, RuntimeError, TypeError,

NameError):

print("That was not a valid token. Try again...")

register(qx_config[’APItoken’], qx_config[’url’])

sample_Total, training_input, test_input, class_labels = \

Breast_cancer(training_size=10, test_size=10, n=2, # 2 is the

dimension of each data point

gap=0.3, PLOT_DATA=False)

23

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

datapoints, class_to_label =

split_dataset_to_data_and_labels(test_input)

params = {

’problem’: {’name’: ’svm_classification’, ’random_seed’: 10598},

’algorithm’: {

’name’: ’QSVM.Kernel’

},

’backend’: {’name’: ’ibmqx4’, ’shots’: 1024},

’feature_map’: {’name’: ’SecondOrderExpansion’, ’depth’: 2,

’entanglement’: ’linear’}

}

algo_input = get_input_instance(’SVMInput’)

algo_input.training_dataset = training_input

algo_input.test_dataset = test_input

algo_input.datapoints = datapoints[0] # 0 is data, 1 is labels

result = run_algorithm(params, algo_input)

print(result)

#Breast Cancer Data set Variational method on QASM simulator

from datasets import *

from qiskit_aqua.utils import split_dataset_to_data_and_labels,

map_label_to_class_name

from qiskit_aqua.input import get_input_instance

from qiskit_aqua import run_algorithm

n = 2 # dimension of each data point

sample_Total, training_input, test_input, class_labels =

Breast_cancer(training_size=10, test_size=10, n=n, gap=0.3,

PLOT_DATA=False)

datapoints, class_to_label =

split_dataset_to_data_and_labels(test_input)

params = {

’problem’: {’name’: ’svm_classification’, ’random_seed’: 10598},

’algorithm’: {’name’: ’QSVM.Variational’, ’override_SPSA_params’:

True},

’backend’: {’name’: ’qasm_simulator’, ’shots’: 1024},

’optimizer’: {’name’: ’SPSA’, ’max_trials’: 200, ’save_steps’: 1},

’variational_form’: {’name’: ’RYRZ’, ’depth’: 3},

’feature_map’: {’name’: ’SecondOrderExpansion’, ’depth’: 2}

}

algo_input = get_input_instance(’SVMInput’)

algo_input.training_dataset = training_input

algo_input.test_dataset = test_input

24

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

algo_input.datapoints = datapoints[0]

result = run_algorithm(params, algo_input)

print(result)

#Breast Cancer on QASM simulator Kernel Direct Method

from datasets import *

from qiskit_aqua.utils import split_dataset_to_data_and_labels

from qiskit_aqua.input import get_input_instance

from qiskit_aqua import run_algorithm

sample_Total, training_input, test_input, class_labels = \

Breast_cancer(training_size=10, test_size=10, n=2, # 2 is the

dimension of each data point

gap=0.3, PLOT_DATA=False)

datapoints, class_to_label =

split_dataset_to_data_and_labels(test_input)

params = {

’problem’: {’name’: ’svm_classification’, ’random_seed’: 10598},

’algorithm’: {

’name’: ’QSVM.Kernel’

},

’backend’: {’name’: ’qasm_simulator’, ’shots’: 1024},

’feature_map’: {’name’: ’SecondOrderExpansion’, ’depth’: 2,

’entanglement’: ’linear’}

}

algo_input = get_input_instance(’SVMInput’)

algo_input.training_dataset = training_input

algo_input.test_dataset = test_input

algo_input.datapoints = datapoints[0] # 0 is data, 1 is labels

result = run_algorithm(params, algo_input)

print(result)

#Wine Data set QVSM kernel direct method

from datasets import *

from qiskit_aqua.utils import split_dataset_to_data_and_labels

from qiskit_aqua.input import get_input_instance

from qiskit_aqua import run_algorithm

import numpy as np

n = 2 # dimension of each data point

sample_Total, training_input, test_input, class_labels =

Wine(training_size=40, test_size=10, n=n, PLOT_DATA=False)

temp = [test_input[k] for k in test_input]

25

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

total_array = np.concatenate(temp)

params = {

’problem’: {’name’: ’svm_classification’, ’random_seed’: 10598},

’algorithm’: {

’name’: ’QSVM.Kernel’,

},

’backend’: {’name’: ’qasm_simulator’, ’shots’: 1024},

’multiclass_extension’: {’name’: ’OneAgainstRest’},

’multiclass_extension’: {’name’: ’AllPairs’},

’multiclass_extension’: {’name’: ’ErrorCorrectingCode’,

’code_size’: 5},

’feature_map’: {’name’: ’SecondOrderExpansion’, ’depth’: 2,

’entangler_map’: {0: [1]}}

}

algo_input = get_input_instance(’SVMInput’)

algo_input.training_dataset = training_input

algo_input.test_dataset = test_input

algo_input.datapoints = total_array

result = run_algorithm(params, algo_input)

print(result)

#SVM Classical algorithm Code

load required libraries

import numpy as np

import scipy

from scipy.linalg import expm

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler, MinMaxScaler

from sklearn.decomposition import PCA

from qiskit_aqua.svm.data_preprocess import *

from qiskit_aqua.input import get_input_instance

from qiskit_aqua import run_algorithm

from qiskit import register, available_backends

import logging

logger = logging.getLogger()

logger.setLevel(logging.DEBUG) # uncomment it to see detailed logging

import Qconfig and set APIToken and API url and prepare backends

Used https://hk.saowen.com/a/

5070648b000bbba96268d1f35ba20d241fbccff1e520590f8a3327f2c5c15f0a

to set up Qconfig.py

26

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

get Qconfig set up for API token

try:

import sys

sys.path.append("../../") # go to parent dir

import Qconfig

except Exception as e:

print(e)

#set api

APItoken=getattr(Qconfig, ’APItoken’, None)

url = Qconfig.config.get(’url’, None)

#hub = Qconfig.config.get(’hub’, None)

#group = Qconfig.config.get(’group’, None)

#project = Qconfig.config.get(’project’, None)

try:

#register(APItoken, url, hub, group, project)

register(APItoken)

except Exception as e:

print(e)

print("Backends: {}".format(available_backends()))

Create Breast_cancer data preparation function

def Breast_cancer(training_size, test_size, n, PLOT_DATA):

class_labels = [r’Malignant’, r’Benign’]

data, target = datasets.load_breast_cancer(True)

sample_train, sample_test, label_train, label_test =

train_test_split(data, target, test_size=0.3, random_state=12)

Now we standarize for gaussian around 0 with unit variance

std_scale = StandardScaler().fit(sample_train)

sample_train = std_scale.transform(sample_train)

sample_test = std_scale.transform(sample_test)

Now reduce number of features to number of qubits

pca = PCA(n_components=n).fit(sample_train)

sample_train = pca.transform(sample_train)

sample_test = pca.transform(sample_test)

Scale to the range (-1,+1)

samples = np.append(sample_train, sample_test, axis=0)

minmax_scale = MinMaxScaler((-1, 1)).fit(samples)

sample_train = minmax_scale.transform(sample_train)

sample_test = minmax_scale.transform(sample_test)

Pick training size number of samples from each distro

training_input = {key: (sample_train[label_train == k,

:])[:training_size] for k, key in enumerate(class_labels)}

test_input = {key: (sample_train[label_train == k,

:])[training_size:(

training_size+test_size)] for k, key in enumerate(class_labels)}

27

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

if PLOT_DATA:

for k in range(0, 2):

plt.scatter(sample_train[label_train == k,

0][:training_size], sample_train[label_train == k,

1][:training_size])

plt.title("PCA dim. reduced Breast Cancer dataset")

plt.show()

return sample_train, training_input, test_input, class_labels

#Call the Breast Cancer function to prepare the data

sample_train, training_input, test_input, class_labels =

Breast_cancer(training_size=20, test_size=10, n=2, PLOT_DATA=True)

#sample_train, training_input, test_input, class_labels =

Breast_cancer(training_size=105, test_size=45, n=2,

PLOT_DATA=True)

#sample_Total, training_input, test_input, class_labels =

Breast_cancer(training_size=210, test_size=90, n=2,

PLOT_DATA=True)

print(class_labels)

total_array, label_to_labelclass = get_points(test_input,

class_labels)

#Set SVM_Variational parameter JSON string

params = {

’problem’: {’name’: ’svm_classification’},

’backend’: {’name’: ’local_qasm_simulator’, ’shots’:1000},

’algorithm’: {

’name’: ’SVM_Variational’, #SVM_RBF_Kernel for classical,

SVM_QKernel

’print_info’ : True

}

}

algo_input = get_input_instance(’SVMInput’)

algo_input.training_dataset = training_input

algo_input.test_dataset = test_input

algo_input.datapoints = total_array

#Run Quantum Variational SVM model

result = run_algorithm(params,algo_input)

print("testing success ratio: ", result[’test_success_ratio’])

print("predicted labels:", result[’predicted_labels’])

28

SMU Data Science Review, Vol. 1 [2018], No. 4, Art. 11

https://scholar.smu.edu/datasciencereview/vol1/iss4/11

#Set SVM_QKernel parameter JSON string

params = {

’problem’: {’name’: ’svm_classification’},

’backend’: {’name’: ’local_qasm_simulator’, ’shots’:1000},

’algorithm’: {

’name’: ’SVM_QKernel’, #SVM_RBF_Kernel for classical,

SVM_Variational

’print_info’ : True

}

}

algo_input = get_input_instance(’SVMInput’)

algo_input.training_dataset = training_input

algo_input.test_dataset = test_input

algo_input.datapoints = total_array

#Run Quantum Kernel-based SVM model

result = run_algorithm(params,algo_input)

print("testing success ratio: ", result[’test_success_ratio’])

print("predicted labels:", result[’predicted_labels’])

#Set SVM_RBF_Kernel parameter JSON string

params = {

’problem’: {’name’: ’svm_classification’},

’backend’: {’name’: ’local_qasm_simulator’, ’shots’:1000},

’algorithm’: {

’name’: ’SVM_RBF_Kernel’, #SVM_QKernel, SVM_Variational

’print_info’ : True

}

}

algo_input = get_input_instance(’SVMInput’)

algo_input.training_dataset = training_input

algo_input.test_dataset = test_input

algo_input.datapoints = total_array

#Run Classical Radial Basis Function Kernel SVM model

result = run_algorithm(params,algo_input)

print("testing success ratio: ", result[’test_success_ratio’])

print("predicted labels:", result[’predicted_labels’])

29

Havenstein et al.: Quantum and Classical Machine Learning Performance Comparisons

Published by SMU Scholar, 2018

	Comparisons of Performance between Quantum and Classical Machine Learning
	Recommended Citation

	tmp.1544663670.pdf.LswUr

