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Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United 

States [45]. CRC is believed to advance from adenomatous polyps creating a unique op-

portunity for both early detection and cancer prevention [4, 23]. Like other diseases, CRC 

screening reduces mortality by detecting cancer at earlier, more treatable stages; however, 

it can also reduce incidence through the removal of precancerous lesions [4]. As a result, 

screening is recommended for average-risk adults ≥ 45 years of age and includes a variety 

of tests [4, 12]. Despite alternate screening options, colonoscopy capacity is often cited as 

a barrier in colorectal cancer (CRC) screening [28, 39, 44]. In this dissertation, we address 

capacity as a statistical problem rather than a resource one.

In the first part, we apply methods developed to incorporate longitudinal biomarkers for 

ovarian cancer screening to the data accumulated through a large FIT-based CRC screening 

program. This requires us to consider multiple methods to accommodate the necessary data 

transformation given the range for quantitative fecal hemoglobin concentration.

The second part of the dissertation looks at a new diagnostic marker obtained by ex-

tracting information from the biomarker trajectories using functional data analysis. The 

approach addresses problems of missing data and verification b ias. Performance however is 

hindered by data sparsity which can be attributed to the screening process.

The third part of the dissertation revisits the method highlighted in part one to derive 

and evaluate a decision threshold for clinical implementation.

iv



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ixLIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CHAPTER

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Longitudinal Biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1. Ovarian Cancer Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2. FIT-Based Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Modeling Biomarker Trajectories for Early Detection . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1. Shared Random Effects Model (SREM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2. Risk of Ovarian Cancer Algorithm (ROCA) . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3. Pattern Mixture Model (PMM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3. Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4. Organization of the Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Longitudinal Biomarkers in FIT-Based Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1. Colorectal Cancer Screening and Patient Navigation. . . . . . . . . . . . . . . . . . . . . . . 10

2.2. Limitations for PMM Implementation with Quantitative FIT . . . . . . . . . . . . . . 17

3. Analyzing Longitudinal Biomarkers with PMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1. PMM Example: PLCO ovarian cancer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2. PMM implementation and evaluation: CSPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4. Quantitative FIT Scores as a Left-Censored Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1. Left-Censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2. Non-Parametric Inverse Buckley-James . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



4.3. Simulated Data: Fetal Growth Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4. CSPAN Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5. Modeling Biomarkers with Functional Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1. Functional Data Analysis (FDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2. Modeling with Biomarker Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2. MAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.3. MNAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3. Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4. Limitations to the FDA Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6. Establishing a New Decision Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1. Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2. Selecting a Decision Threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

APPENDIX

A. APPENDIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vi



LIST OF FIGURES

Figure Page

1.1 CA-125 trajectories of 100 cases and 100 controls that were randomly se-
lected from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer
Screening Trial data [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Quantitative FIT Trajectories for 100 Cases (right panel) and 100 Controls
(left panel) randomly selected from the CSPAN program. Each black
line shows the FIT levels for one subject in the program. The horizontal
red line indicates the 20 µg of hemoglobin per gram of feces cutoff used
to define an abnormal FIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Distribution of CA-125 measurements for participants in the PLCO trial (n
= 980). [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Distribution of quantitative FIT results by sex for participants CSPAN pro-
gram (n = 16,667). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Receiver operating characteristic (ROC) curves for model performance by trans-
formation accommodation method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Simulation Results made available through the Creative Commons Attribution 4.0 Inter-
national License (https://tinyurl.com/ReprintsPermission) [50]. Mean Square
Error (MSE) from gold standard method (GoldS), Gaussian Buckley-James (Gaus-
sian BJ), 1-Step version (Gaussian BJ 1-Step), non-Parametric Buckley-James (Non-
ParBJ), and simple imputation by LOD (LOD). Censoring rates: 0% (uncensored),
20% (moderate), 50% (high), and 70% (severe). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Distribution of percent error for imputed values in 10,000 samples (N=
1,555) with 30% censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Quantitative FIT Trajectories for 100 Cases (right panel) and 100 Controls
(left panel) randomly selected from the imputed CRC-SPIN datasets.
Each black line shows the FIT levels for one subject in the program.
The horizontal red line indicates the 20 µg of hemoglobin per gram of
feces cutoff used to define an abnormal FIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vii



LIST OF TABLES

Figure Page

2.1 Descriptive statistics for CSPAN participants November 2013 — December
2021. AI/AN is American Indian/Alaska Native and NH/PI is Native
Hawaiian/Pacific Islander. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Percentiles (with 95% CI) of fecal hemoglobin concentration by program . . . . . . 19

3.1 Parameter estimates and 95% confidence intervals (CI) for CN3 reproduced
from the 905 controls in the PLCO trial subset and as published origi-
nally using 30,269 controls. SD denotes standard deviation. . . . . . . . . . . . . . . . . 24

3.2 Parameter estimates for PMM reproduced from the 71 in the PLCO trial
subset and as published originally using 132 cases: estimate and the
95% confidence interval (CI) reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Time-dependent AUCs and associated 95% bootstrapped confidence inter-
vals (shown in parentheses) for the original and reproduced PMM-CN3
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 AUC estimates and standard errors (shown in parentheses) of various data
methods for the PMM-CN3 and univariate logistic regression approaches . . . 28

4.1 Estimated coefficients and standard errors for the PMM models based on the original

and imputed datasets for the fetal growth study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 AUC estimates and standard errors (shown in parentheses) for sensitivity
analysis from the FDA approach under the MNAR assumption for CA-
125 biomarker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 AUC estimates and standard errors (shown in parentheses) for sensitivity
analysis from the FDA approach under the MNAR assumption for FIT . . . . 46

A.1 Time-dependent AUCs and associated 95% bootstrapped confidence inter-
vals (shown in parentheses) for the reproduced PMM-CN3 using the
LOOCV and 10-Fold CV method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

viii



To my husband, Jonathan, your encouragement and support of me goes beyond what words

can adequately express. You are my person, and I am so incredibly grateful to be able to

have done this with you by my side.

To my children, Keathley, Gus, and Ainsley, thank you for your understanding when I was

distracted or not fully present for you during this project. I look forward to the many great

years of adventures we will have together. I hope you will always remember we can do hard

things!



Chapter 1

Introduction

Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United

States; 52,550 new deaths attributed to CRC are projected for 2023 [46]. CRC is believed

to advance from adenomatous polyps and this slow process creates a unique opportunity

for both early detection and cancer prevention [4, 23]. Like other diseases, screening can

reduce mortality by detecting cancer at earlier stages when it is more treatable; however,

CRC screening can also reduce incidence by detecting and removing precancerous lesions

[4]. As a result, the US Preventative Services Task Force (USPSTF) recommends screen-

ing for colorectal cancer in all adults aged 50 to 75 years and has recently expanded that

recommendation to include those adults aged 45 to 49 years [12]. This recommendation

accommodates a variety of tests, including visual examinations (colonoscopy, computed to-

mography (CT) colonography, and flexible sigmoidoscopy) and high-sensitivity stool-based

tests (Guiac-based fecal occult blood tests (gFOBT), fecal immunochemical tests (FIT), and

stool DNA test)[4, 12]. Performance among different tests is comparable when completed

at the appropriate time interval and with the recommended follow-up. The inclusion of op-

tions for screening is intended to boost adherence [4]. Despite the endorsement of alternate

screening modalities, colonoscopy capacity is often cited as a barrier in colorectal cancer

(CRC) screening [28, 39, 44].

In this dissertation, we address capacity as a statistical problem rather than a resource

one. We apply methods designed to optimize the use of longitudinal biomarker measurements

for the early detection of CRC. We also derive and evaluate a decision threshold for clinical

implementation.

1



1.1. Longitudinal Biomarkers

A biomarker is a biological variable, genetic or phenotypic, used to signal the normal or

abnormal process of a condition or disease. It is objectively measured through a biochemical,

molecular, or imaging technique. It is often used to detect current disease or progression,

predict the onset of disease, or evaluate the course of therapeutic intervention. In the

absence of disease, biomarker levels are expected to remain stable over time. In the case of

cancer, however, biomarker levels in an otherwise asymptomatic patient would increase on

an exponential scale, reflecting the change in tumor volume [47]. As a result, biomarkers

can be an inexpensive noninvasive approach to screening. Two examples are Cancer Antigen

125 (CA-125) used to screen for ovarian cancer and high-sensitivity stool-based tests for

colorectal cancer.

1.1.1. Ovarian Cancer Screening

Ovarian cancer is the fifth leading cause of cancer-related death for women in the US

[19, 55]. This can be attributed to nearly 80% of ovarian cancers being diagnosed with

advanced staging (III/VI) at diagnosis [55]. Once the disease has spread within the pelvis

and abdomen the 5-year survival rate is only 29.2% [55]. Early disease detection could help

to prevent death from ovarian cancer, as most patients (70% - 90%) diagnosed with stage I

or II ovarian cancer can be treated with conventional surgery and chemotherapy, increasing

the 5-year survival rate to 93% [3, 55].

In the United States, the prevalence of ovarian cancer is 1 in 2500 for postmenopausal

women age 50 and older [55]. As a result, the ideal screening test would require a sensitivity

≥ 75% and a specificity of at least 99.6% to achieve a PPV of 10% [9, 55]. CA-125 is a

glycoprotein found on the cell surface of most ovarian cancers and is shed into the blood,

where it can be detected using immunoassays [47, 55]. This continuous measurement is

dichotomized using a population-based cutoff (≥ 35 U/mL) to indicate a positive or abnormal

test result [19, 47]. While 80% of ovarian cancers express CA-125, a single measurement

lacks the sensitivity and specificity required for early detection [55]. Serial monitoring of

2



CA-125, however, has been shown to improve specificity, as CA-125 values are expected

to rise exponentially in ovarian cancer patients but generally do not rise in those without

disease [9, 47, 55]. This is illustrated in figure 1.1 in the CA-125 trajectories of 50 cases,

women diagnosed with ovarian cancer, and 50 controls, women without ovarian cancer.

Algorithms used to differentiate patients with ovarian cancer from those without the disease

have achieved a sensitivity of 86%, a specificity of 99.7%, and a PPV of 16%, increasing the

fraction of patients detected with ovarian cancer in early stage to 41.4% [47, 55].

Screening  Time

lo
g 

(C
A

-1
25

)

Figure 1.1: CA-125 trajectories of 100 cases and 100 controls that were randomly selected from the

Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial data [11]

1.1.2. FIT-Based Screening

Both cancerous tumors and large adenomas bleed intermittently into the intestine, using

antibodies FIT can detect this blood in the stool [4, 12]. Pooled FIT sensitivity is approxi-

mately 80% for cancer and 20% –30% for advanced neoplasia detection in a single application

[40]. FIT effectiveness is maximized through repeated screening in participants with a nor-

mal screening result and follow-up colonoscopy when the test is positive [40]. This approach

then yields similar reductions in mortality when compared with screening colonoscopy [4, 12].

3



FIT results are available in two formats. Qualitative tests report results as either positive

or negative, while quantitative tests also include the estimated hemoglobin concentration in

the result [16]. Quantitative FIT allows the cutoff concentration to be modified a priori when

defining an abnormal result; this choice influences the performance characteristics of the test,

in addition to the resources needed to support screening [16, 24]. Increasing the cutoff value

decreases sensitivity while increasing specificity [24]. As a result, considerable attention has

been paid to defining the optimal cutoff value in response to colonoscopy capacity concerns

[24].

1.2. Modeling Biomarker Trajectories for Early Detection

Regardless of disease site, screening participants are likely to accumulate multiple mea-

surements collected at regular intervals when participating in routine screening. While

screening recommendations for both CA-125 and FIT suggest serial monitoring could im-

prove sensitivity and specificity, the standard of care uses a single (most recent) measurement

evaluated using a population-based cutoff to indicate a positive or negative result. This is

because regression techniques commonly used to predict death or morbid events require each

subject to have the same number of measurements, measured at the same time points [54].

In screening these criteria often cannot be met as patients with abnormal results are removed

from the screening cycle to pursue more rigorous follow-up testing; instead, the most recent

measurement is used.

Combining multiple biomarkers has also been investigated to improve diagnostic accuracy

relative to a single marker, but again these methods described in the literature do not account

for longitudinal measurements [30]. What is needed is a risk analysis method capable of

using repeated measures, as they are accumulated, to allow for a more efficient use of these

data. Addressing this gap would allow disease diagnosis to account for the trajectory in

combination with the correlation structures for measurements collected repeatedly over time.

The following approaches have been proposed to address these limitations and applied in

the context of ovarian cancer screening. Each model used repeated CA-125 measurements

4



collected annually through The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer

Screening Trial [19].

1.2.1. Shared Random Effects Model (SREM)

SREM was developed for risk prediction [1, 19, 30]. SREM jointly models binary disease

outcomes and the longitudinal biomarker trajectories, assuming they share the same set of

random effects [19]. Let Di = 0 indicate that the ith subject, i = 1, . . . , n is healthy and

Di = 1 indicate the ith subject is diseased. The state of health of the subject is determined

by the value of Yi = (Yi1, . . . , Yini
)′, a univariate biomarker measured at times ti1, . . . , tini

.

The linear mixed model for those with (cases) and without disease (controls) is

Yi = Xiθ + Zibi + εi,

where Xi and Zi are design matrices for the fixed and random effects, respectively; θ is a

vector of fixed effects, bi ∼ MVN (0, σ2
b ) a vector of random effects, and εi ∼ MVN (0, σ2

ε)

are the random measurement errors. Then Di is linked to the longitudinal process as

P (Di = 1|bi) = g{Wiη + ϕh(bi)},

where g(·) is a link function, W′
i is a vector of covariates specific to the ith subject, h(bi)

is a known function of random effects, and ϕ represents the strength of the longitudinal

association between the biomarker value and the outcome. [1, 30, 19]. The form of h(·) is

application-specific. For example, in the fetal growth example described in Chapter 4, where

SREM was originally outlined, h(·) was based on a quadratic growth curve for both fixed

and random effects [1]. A simpler choice would be a linear combination of random effects

[19].

Calculation of the diagnosis probability P (Di = 1|Yi) is greatly simplified when one

assumes that the random effects are normally distributed and that the link function is a

probit function [1, 30, 19]. Then, likelihood function is

L = L1 × L2 =
N∏
i=1

f(Yi)
N∏
i=1

P (Di|Yi).

5



L1 involves only fixed effects, and L2 has the explicit expression

P (Di = 1|Yi) = Φ

{
W′

iη + ϕh(b̂i)√
1 + ϕ2var(h(b̂i − bi))

}

where b̂i = E(bi|Yi). The probability is obtained when the parameters are replaced with their

maximum likelihood estimates (MLEs)[1, 19, 30]. These estimates are obtained through a

two-step process, where L1 is maximized first and its estimates are then used in maximizing

L2 to obtain the remaining parameters [1, 19, 30].

1.2.2. Risk of Ovarian Cancer Algorithm (ROCA)

The Risk of Ovarian Cancer Algorithm (ROCA) was developed for the early detection

of ovarian cancer [47]. Cases and controls are modeled separately with the expectation that

CA-125 trajectories will remain flat in patients without the disease (controls) but increase

rapidly in patients with the disease (cases) [47]. Controls are modeled using a constant mean

model, such that

E(Yij|Di = 0) = θi,

where Yij is the biomarker value for the ith person at time tij and Di is the binary outcome,

where Di = 0 are controls [47, 19]. Cases, Di = 1, are more complex because approximately

15% of ovarian cancer tumors do not produce additional CA-125 [47]. As a result, those

without elevated CA-125 are modeled like controls, with mean

E(Yij|Di = 1, Ti) = θi;

note Ti is the cancer diagnosis time and differs from tij which is the screening time [47, 19].

Those with elevated CA-125 are modeled using a piecewise linear model with a latent person-

specific changepoint τi conditional on Ti [19, 47]. Skates et al (2001) assumed τi followed a

known truncated normal distribution; however, when implemented by Han, et al (2020) the

parameters for the change point distribution were estimated instead of being prespecified.

The mean is

E(Yij|Di = 1, Ti) = θi + γi(tij − τi)
+,
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where γi is the increase in slope after τi, θi is the subject-specific intercept, and (x)+ = x

when x > 0 or 0 otherwise, [19, 47]. All parameters are estimated using a Bayesian framework

[19, 47].

ROCA outperformed the standard of care approach in both a simulated setting and

an independent trial [47]. Han, et al (2020) later compared it with two alternative risk

prediction frameworks. In their implementation, the control model was modified to adjust

for both screening time and baseline age, such that

Yij = θ0 + θ1tij + θ2Agei + b0i + b1itij + εij,

where random error εij ∼ N(0, σ2
ε) and as mentioned previously, the parameters for the

changepoint distribution were estimated to improve performance [19].

Even with these adjustments, a loss in prediction accuracy is still to be expected when

predicting cancer early detection of a new subject k. This is because ROCA can only obtain

an approximation of P (Yk|Dk = 1) as it is modeling Yk|Dk = 1, Tk rather than Yk|Dk = 1

[19]. ROCA then must marginalize over-diagnosis time Tk, which is often unknown for the

new subject, to obtain this estimate [19]. Marginalization occurs by “borrowing” information

about diagnosis time from known cases, but this reduces the prediction accuracy when the

sample size for cases is small, which is to be expected given the incidence of ovarian cancer

[19].

1.2.3. Pattern Mixture Model (PMM)

Like ROCA, the pattern mixture model (PMM) uses separate longitudinal formulations

for those with (cases) and without disease (controls) [19]. They implement the same control

model as with ROCA, but the case model uses a linear mixed model with natural cubic

splines in place of the latent change-point structure to account for the nonlinear effects of

screening time and baseline age

Yij = θ0 +
3∑

ℓ=1

θℓBℓ(Agei, λ) + b0i +
3∑

ℓ=1

(θℓ+3 + bℓi)Bℓ(tij, λ) + εij,
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where Bℓ(x, λ) is the B-spline basis of order three for the natural cubic spline with knot

λ defined as the minimum and maximum values for boundary knots and first and third

quantiles for the internal knots. The fixed effects are θ0, the intercept, θℓ, ℓ = 1, 2, 3 for the

cubic splines for baseline age, and θℓ+3, ℓ = 1, 2, 3 for the cubic splines for screening time.

The random effects are b0i and bℓi and εij is the random measurement error [19]. PMM also

differs from ROCA in that it directly models Yi|Di = 1, allowing the diagnosis probability

to be calculated without marginalization, avoiding the loss of prediction accuracy [19]. The

probability P (Di = 1|Yi) is obtained using Bayes’ rule

P (Di = 1|Yi)

P (Di = 0|Yi)
=

P (Yi|Di = 1)

P (Yi|Di = 0)
× P (Di = 1)

P (Di = 0)
,

where Yi|Di follows a multivariate normal distribution with normal random effects and error

terms [19, 30]. If the prior disease information, P (Di = d), is known or can accurately be

estimated, then the likelihood ratio under PMM, P (Di = 1|Yi)/P (Di = 0|Yi), is then the

optimal combination of the longitudinal biomarkers [19, 30].

While PMM was originally designed for risk prediction rather than early detection Han

et al. (2020) demonstrated how a risk prediction framework could successfully be applied for

the early detection of ovarian cancer. In the model comparison, PMM obtained a significantly

better predictive performance relative to the other two approaches [19].

1.3. Model Comparison

ROCA, PMM, and SREM were evaluated using discrimination and calibration perfor-

mance [19]. Diagnostic predictive accuracy was derived from time-dependent ROC curves

and AUCs generated for 0.5 to 3 years post-screening. Calibration performance was defined

by the calibration intercept and slope, as well as the ratio of observed (O) to expected (E)

number of cases, where metrics closer to nominal values were considered better [19]. PMM

had the highest time-dependent AUCs, ranging from 1.8 to 3.4% compared to ROCA and

1.6 to 4.8%, compared to SREM [19]. Using the bootstrapped replicates of the AUCs to

compare ROCA and SREM there was no discernible difference in discrimination [19]. Dis-

crimination performance for SREM is likely attributed to the simultaneous modeling of cases
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and controls, which may not be reasonable given the demonstrated difference in the trajec-

tories [19]. All three approaches were well calibrated, yet PMM and ROCA were better able

to classify individuals as high and low risk, suggesting they could be more useful in clinical

practice [19].

No one model is guaranteed to be uniformly better in practical application. However

given the superior performance of PMM in the context of ovarian cancer screening combined

with the similarities in FIT-based screening for CRC and ovarian cancer screening with

CA-125, we will move forward using PMM to analyze FIT-based screening data.

1.4. Organization of the Chapters

In Chapter 2 we describe a large FIT-based CRC screening program and discuss how

the distribution for quantitative FIT measurements may influence the implementation of the

PMM approach. Chapter 3 begins with reproducing results from the PMM model in the

context of ovarian cancer screening. We then consider several ad hoc substitution methods

and complete-case analysis to address the need for data transformation in the presence of

right-skewed data heavily concentrated with zeros. We find PMM to be sensitive to the

substitution method. In chapter 4 we present an alternative approach, where we consider

quantitative FIT to be left-censored. Here we provide examples of imputation using the

non-parametric inverse Buckley-James approach, in both a “complete” dataset and the CRC

screening data. Chapter 5 introduces functional data analysis and use of the underlying FIT

trajectories to predict risk for CRC, rather than the repeated measurements themselves.

Chapter 6 utilizes bootstrap sampling to identify and evaluate a decision threshold for the

PMM risk score. We summarize the conclusions from this thesis in Chapter 7 and discuss

issues that require further research and consideration.
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Chapter 2

Longitudinal Biomarkers in FIT-Based Screening

Like ovarian cancer screening, FIT-based screening can produce a quantitative measure-

ment. This result is then evaluated using a pre-specified, population-based cutoff to deter-

mine the screening outcome. Similarly, participants with a normal result are encouraged to

repeat screening annually in both settings. Despite the accumulation of data, the test result

is still determined by a single, most recent, measurement.

A single application of FIT-based screening has better test performance when compared

to CA-125 using sensitivity and specificity [9, 40, 55]. However, the literature indicates serial

monitoring of CA-125 levels can improve test performance, particularly in terms of specificity

[9, 55]. This has been investigated further in a comparison of multiple models to incorpo-

rate longitudinal CA-125 measurements for the early detection of ovarian cancer, where the

PMM was shown to have superior performance [19]. Given the similarities in ovarian cancer

screening and FIT-based screening for CRC, we anticipate comparable improvements when

incorporating longitudinal biomarkers to screen for the early detection of CRC. Here we

introduce the FIT-based screening data, highlighting differences from the CA-125 data to

provide context for the approaches considered with implementation in Chapter 3.

2.1. Colorectal Cancer Screening and Patient Navigation

The Colorectal Cancer Screening and Patient Navigation (CSPAN) program was estab-

lished in November 2013. It began as a randomized comparative effectiveness trial to evaluate

the impact of financial incentives on participation when paired with mailed outreach to offer

FIT-based CRC screening through John Peter Smith Health Network (JPS). JPS includes a

large public hospital and a network of more than 60 community clinics to provide primary

and tertiary care services in Tarrant County, Texas, including Fort Worth. JPS offers a med-
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ical assistance program, JPS Connection, for uninsured individuals with insufficient financial

resources who need medical care. Qualifying individuals must reside in Tarrant County, be

a US citizen or a legal permanent resident, and meet the required income guidelines of less

than 250% of the federal poverty level (FPL). FIT invitations were mailed to all uninsured

individuals enrolled in JPS Connection, who were aged 50–64 years, not up-to-date with

CRC screening at baseline. Screening was defined as guaiac fecal occult blood test or FIT

in the past year, sigmoidoscopy in the past 5 years, or colonoscopy in the last 10 years. All

invitees had one or more visits to a primary care clinic within the year before program initi-

ation. Individuals with a prior history of CRC or colonic resection, missing address or phone

number, or who were incarcerated at baseline were excluded. Individuals in the resulting

cohort were then randomly assigned to receive the following: (1) mailed outreach; (2) mailed

outreach plus a $5 incentive for FIT completion; or (3) mailed outreach plus a $10 incentive

for FIT completion.

Mailed FIT outreach consisted of: (1) an invitation in English and Spanish to return

a FIT, along with pictorial instructions on how to complete; (2) an enclosed 1-sample FIT

test (OC-Micro/Sensor, Polymedco); (3) two automated telephone reminders in English and

Spanish to encourage test completion, delivered at the time of invitation and 1 week later; (4)

up to two “live” telephone reminders attempted within 4 weeks post-invitation if screening

was not completed and the patient was not reached on the initial call attempt. Returned FIT

kits were processed by the health system clinical laboratory per manufacturer instructions.

When defining an abnormal result, the cutoff was chosen a priori as ≥ 10 µg/g to evaluate

the impact of threshold on test performance and colonoscopy demand. All patients with

an abnormal test result were referred for diagnostic colonoscopy. Colonoscopy completion

was encouraged through: (1) telephone-based navigation for appointment scheduling; (2)

provision of bowel prep (via mail or clinic pickup); and (3) appointment reminders and review

of preparation instructions 5 and 2 days before the colonoscopy appointment. Certified

letters with the test results were also sent to patients with an abnormal FIT result, as well

as their primary care provider, and included the recommendation to schedule a colonoscopy.
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Patients with normal test results were notified by mail and reminded to repeat screening in

one year. Gift cards were included with the result letter for both incentive groups. All clinical

services, including FIT tests, pre- and post-operative visits, and diagnostic colonoscopy after

an abnormal FIT were provided at no cost to participants, using funding from the Cancer

Prevention Research Institute of Texas (CPRIT; PP120229).

In year one, invitations were distributed over five mail-out “rounds.” In years 2 and 3,

patients were re-invited with the same intervention assignment (outreach only, $5, or $10)

only if they completed a screening test in the year prior, with a normal result. Patients who

did not complete a FIT were not re-invited. New patients invited in years 2 and 3, including

those newly enrolled in JPS connections or those newly age-eligible for screening, were not

randomized but rather assigned to the outreach-only group. In year 4, financial incentives

were discontinued. All patients with a normal result in year 3 were invited to complete FIT

using outreach only, regardless of their original assignment. Before data collection, this trial

was preregistered on ClinicalTrials.gov (identifier: NCT01946282). The Colorectal Cancer

Screening and Navigation (C-SPAN) is funded through the Cancer Prevention & Research

Institute of Texas (CPRIT PP120229; PI Argenbright). This program was reviewed by the

University of Texas Southwestern Medical Center Institutional Review Board and determined

as a non-research activity.

In February 2016, the program transitioned from a closed system, JPS, to an open system.

Specifically, rural and medically underserved Texans from 35 north Texas counties could

then be referred to the program by local healthcare networks, community clinics, safety-net

systems, Federally Qualified Health Centers (FQHCs), and primary care clinics. Individuals

could also self-enroll in screening either during community outreach events and health fairs

or through a dedicated 800 number, provided they met the inclusion criteria established

previously. FIT kits continued to be mailed to all FIT-negative patients from the original

program, along with the self-enrolled and those referred by a new partnering provider. The

outreach methods outlined previously were again used to encourage screening completion.

Completed FIT kits were processed at UT Southwestern Medical Center under standing
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orders from the Medical Director at Moncrief Cancer Institute (UTSW-MCI). The program

reverted to the manufacturer-specified cutoff of ≥ 20 µg/g to define an abnormal positive

FIT. This was in response to the results from the initial program implementation, where it

was found that reducing the abnormal FIT result cut-off value (≥ 10µg/g) might increase

advanced neoplasia detection, but doubled the proportion of patients requiring a diagnostic

colonoscopy [6]. Patients with a normal screening result were reminded to repeat screening in

one year and then re-invited for continued participation in the program, while patients with

an abnormal screening result were navigated to diagnostic colonoscopy. Diagnostic services

were scheduled with a partnering provider within the patient’s county of residence, when

possible, or in a neighboring county. To reduce the impact of transportation on colonoscopy

completion, travel time to care was no more than one hour, and transportation assistance

was also available. All clinical services were provided at no cost to participants through

continued support from CPRIT (PP150061).

The current phase of the program began in March 2020, expanding coverage to serve

an additional 22 counties. Again, FIT-negative participants from the previous two phases

were invited to continue annual screening, along with new referrals from community partners

and those who self-enrolled, and all clinical services are provided at no cost to participants

through continued support from CPRIT (PP200009).

The resulting CSPAN dataset contains 19,796 patients who completed at least one FIT

between November 1, 2013, and December 31, 2021, as part of either one or more phases

of the CSPAN program. Participants with a baseline screening age younger than 50 (n =

199) or older than 74 years of age (n = 62) were excluded to align with screening guidelines

for the majority of the study period. Note, the USPSTF only modified screening eligibility

in May of 2021 to include those aged 45 - 49 [12]. The sample available for analysis then

includes 29,398 completed FIT entries for 16,637 participants. Among them, we define FIT-

negative patients (n = 15,336) as those who had only negative qualitative results, regardless

of the number of rounds completed, and FIT-positive patients (n = 1,301) as those who

had a positive qualitative result, which may be preceded by one or more negative results
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depending on the number of rounds completed. This translates to a FIT positive rate of

7.82%, which is consistent with what has been reported in the literature in recent studies,

where 7% to 8% of FIT were positive [2]. Demographically the positive and negative FIT

groups are similar, as shown in the descriptive statistics included in Table:2.1.
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Characteristic Group
CSPAN Participants (N = 16,637)

FIT Negative(n = 15,336) FIT Positive (n = 1,301)

Baseline

Age

50 - 54 5,019 (32.7%) 399 (30.7%)

55 - 59 4,400 (28.6%) 427 (32.8%)

60 - 64 3,817 (24.8%) 350 (26.9%)

65 - 69 1,414 (9.2%) 93 (7.1%)

70 - 74 716 (4.7%) 32 (2.5%)

Sex
Male 4,878 (31.7%) 448 (34.4%)

Female 10,483 (68.2%) 853 (65.6%)

Race

White 7,522 (49.0%) 656 (50.4%)

Black 2,718 (17.7%) 278 (21.4%)

Asian 259 (1.7%) 16 (1.2%)

AI/AN 55 (0.4%) 3 (0.2%)

NH/PI 17 (0.1%) 3 (0.2%)

Other 2,742 (17.8%) 232 (17.8%)

Unknown 2,053 (13.4%) 113 (8.7%)

Ethnicity

Hispanic 6,052 (39.4%) 390 (30.0%)

Not Hispanic 8,186 (53.3%) 834 (64.1%)

Unknown 1,128 (7.3%) 77 (5.9%)

Number of

Observations

1 8,934 (58.1%) 866 (66.6%)

2 3,136 (20.4%) 258 (19.8%)

3 1,923 (12.5%) 113 (8.7%)

4 828 (5.4%) 43 (3.3%)

5 263 (1.7%) 13 (1.0%)

6 195 (1.3%) 5 (0.4%)

7 79 (0.5%) 3 (0.2%)

8 8 (0.1%) 0 (0.0%)

Table 2.1: Descriptive statistics for CSPAN participants November 2013 — December 2021.

AI/AN is American Indian/Alaska Native and NH/PI is Native Hawaiian/Pacific Islander.

The FIT-positive cohort can further be subdivided by colonoscopy outcome to include

CRC, advanced adenoma, adenoma, and normal results. Advanced adenomas are ≥ 1 cm,
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with villous or tubulovillous features, and/or high-grade dysplasia, while adenomas are < 1

cm, without villous or tubulovillous features, and/or without high-grade dysplasia [38]. Of

these subgroups, cases are a combination of CRC and advanced adenoma patients, also known

as advanced neoplasia (AN) patients (n = 225). The quantitative FIT score trajectories for

100 randomly chosen cases (right panel) are shown along 100 randomly selected controls (left

panel) from the FIT negative cohort in Figure 2.1. Each black line in the figure represents

FIT scores for one subject.

Figure 2.1: Quantitative FIT Trajectories for 100 Cases (right panel) and 100 Controls (left panel)

randomly selected from the CSPAN program. Each black line shows the FIT levels for one subject

in the program. The horizontal red line indicates the 20 µg of hemoglobin per gram of feces cutoff

used to define an abnormal FIT

The FIT trajectories remain nearly flat for the controls over multiple rounds of screening,

while the case trajectories increase rapidly at some point despite having begun as flat in some

patients. The patterns shown in Figure 2.1 are similar to those published for CA-125 from the

16



PLCO dataset and shown below in Figure 1.1. Given these similarities, the PMM approach

used with the PLCO data for ovarian cancer screening should also perform well with the

quantitative FIT data for CRC.

2.2. Limitations for PMM Implementation with Quantitative FIT

PMM directly makes the assumption of a linear mixed model on the biomarker trajec-

tories conditional on disease status, where Yi|Di = d, d = 0, 1 [19]. Recall Yi|Di follows a

multivariate normal distribution

Yi|Di ∼ MVN(µd,Σd),

with normal random effects and error terms [30]. Often real data are extremely skewed

leading to invalid results in a standard statistical analysis; the log transformation is a widely

used method to address skewness [15]. In this context, CA-125 spans orders of magnitude,

ranging from 2 - 10,000 U/ml as shown in Figure 2.2a. Taking the logarithm transforms

these levels to an arithmetic scale better suited for modeling with linear additive components

[19, 47]. The use of the log transformation is further grounded in the biological understanding

of the tumor process, where marker levels are thought to be proportional to the tumor

volume; this approach results in a linear increase in biomarker levels during the preclinical

phase of the disease [47]. As a result, the authors apply log transformation to obtain a

distribution much closer to normal than the original right-skewed biomarker data with a

long right tail (Figure 2.2b)[15, 19, 47].
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(a) Distribution of CA-125

measurements — original scale.

(b) Distribution of CA-125

measurements — Log scale.

Figure 2.2: Distribution of CA-125 measurements for participants in the PLCO trial (n = 980).

[11]

The quantitative FIT values for the CSPAN cohort range from 0 - 388 µg/g. Like CA-

125, fecal hemoglobin concentrations are positive with a long right tail (Figure 2.3a). The

minimum value however is now zero which can cause difficulty with transformations (Figure

2.3b).

(a) Distribution of quantitative FIT — original scale. (b) Distribution of quantitative FIT — Log scale.

Figure 2.3: Distribution of quantitative FIT results by sex for participants CSPAN program (n =

16,667).

Specifically, the log is undefined at zero, such that log(x) → −∞ as x → 0 [15, 53]. When

only a few zero values are present for a variable (< 2%), a shift parameter (M) can be added

to all values without issue for subsequent analyses, [15, 53]. M is typically a small positive

constant, like 0.01, to minimize the difference from the true value while allowing for a valid
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transformation [53]. It is worth noting, however, that guidelines for selecting this value are

limited in the literature. It is instead left to the analyst to decide, making any conclusions

subjective to investigator bias [15].

As an example, if we say g(M) = exp(E log(X +M))−M , then

g′′(M) = exp[E log(x+M)]

{(
E

1

X +M

)2

− E
1

(X +M)2

}
< 0,

unless X is constant [15]. When M > 0,

exp(E log(X +M) ̸= M + exp(E log(X))

indicating g(M) is dependant upon M [15]. Including a nonzero M adds another layer of

complexity when interpreting model estimates from the translated data, dependent on how

M was chosen [15].

We divided our CSPAN population into quintiles for the male and female subgroups in

Table 2.2 to compare with data from the National Scottish Bowel Screening Programme in

Table 2.2 [31]. The distributions are largely similar; any differences can likely be attributed

to differences in breakdown for sex, as men typically have higher hemoglobin concentrations

than women [31].

Table 2.2: Percentiles (with 95% CI) of fecal hemoglobin concentration by program

CSPAN

Sex n (%) 25.0% 50.0% 75.0% 90.0% 95.0%

Female 10,483 (68.2%) 0 (0, 0) 1 (1, 1.2) 3.2 (3.2, 3.4) 8.0 (7.6, 8.4) 16.0 (14.8, 17.6)

Male 4,878 (31.7%) 0 (0, 0) 1.2 (1, 1.2) 3.6 (3.4, 3.8) 9.4 (8.6, 10.2) 19.6 (17.2, 23.6)

Scottish Bowel Programme

Sex n (%) 25.0% 50.0% 75.0% 90.0% 95.0%

Female 20,662 (53.4%) 0 (0, 0) 0 (0, 0) 1.8 (1.6, 1.8) 7.6 (7, 8.2) 22.8 (21.2, 24.2)

Male 18,058 (46.6%) 0 (0, 0) 0.2 (0.2, 0.2) 2.4 (2.4, 2.6) 13.4 (12.2, 14.6) 36.8 (35, 42.6)

McDonald, et al. (2012) used the D’Agostino-Pearson test to confirm the quantitative

FIT distribution is not Gaussian (p < 0.0001). The D’Agostino-Pearson test is the sum of
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these skewness and kurtosis tests, such that when data are normally distributed the test

statistic z2k + z2s has a chi-square distribution with 2 degrees of freedom, i.e.

z2k + z2s ∼ χ2
2,

where zs is the test statistic for skewness and zk is the test statistic for kurtosis. The null

hypothesis is that the data is a realization of independent, identically distributed Gaussian

random variables, a significant p-value would then indicate the FIT data is not, specifically

the coefficients of skewness and kurtosis were > 1 (p < 0.0001) [31]. While it is widely

accepted that everyone has some blood in their feces, normal fecal blood loss can approach

1.5 mL of blood per day. FIT can detect as little as 0.3 mL of blood added to the stool;

therefore, Table 2.2 suggests as much as half of the population may have no detectable

hemoglobin in their feces or a quantitative FIT score of zero [31]. Within the CSPAN

dataset, 9,327 of the 111,176 quantitative FIT scores, or 29.8%, measure 0 µg/g, which well

exceeds the < 2% recommended in the literature [53].

Incorporating longitudinal biomarkers has been shown to improve performance when

screening for the early detection of ovarian cancer. Given the similarities to FIT-based

screening, we anticipate incorporating longitudinal measurements could have a similar effect

on the early detection of CRC. To do so, we will apply PMM as it was shown to have

superior performance in a model comparison but this will require log-transforming the data

[19]. While this method could readily be applied to CA-125 without a shift parameter

because they are positive, nonzero measurements, we have shown that not to be the case for

quantitive hemoglobin measurements. In the next chapter, we consider multiple choices for

the shift parameter, M , to facilitate the necessary data transformation in our implementation

of PMM.
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Chapter 3

Analyzing Longitudinal Biomarkers with PMM

In this chapter, we implement the PMM approach for early detection. We first recre-

ate results from Han, et al. (2020) using the PLCO Ovarian Phase III Validation Study

dataset from LABCAS Public Collections to validate the process. Then we analyze the

CSPAN dataset using PMM, applying various approaches to accommodate the necessary

data transformation. These same methods are used within the standard-of-care approach,

using univariate logistic regression to predict risk based on the most recent FIT. Performance

is evaluated based on diagnostic predictive accuracy as defined by the area under the ROC

curve (AUC).

3.1. PMM Example: PLCO ovarian cancer data

Our analytic sample is the publicly available subset (N =976) of the PLCO Cancer

Screening Trial used in the original paper (N = 30,402). The sample includes 71 ovarian

cancer cases and 905 controls, compared to 132 cases and 30,269 controls in the original data

set [19]. CA-125 measurements ranged from 2 - 4,755 U/mL before a log transformation.

The median number of measurements in cases was three, and six in controls.

Recall the PMM approach models cases and controls separately. We adjust for both

screening time and baseline age in the control model. For consistency with Han, et al.

(2020), we label it Model 3 (CN3):

Yij = θ0 + θ1tij + θ2Agei + b0i + b1itij + εij,

where tij is screening time, Agei is baseline age, θ0, θ1 and θ2 are fixed effects, b0i and b1i are

random effects, and εij is the random measurement error. Similarly, we label the case model
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as PMM:

Yij = θ0 +
3∑

ℓ=1

θℓBℓ(Agei, λ) + b0i +
3∑

ℓ=1

(θℓ+3 + bℓiBℓ(tij, λ) + εij,

where Bℓ(x, λ) is the B-spline basis of order 3 for the natural cubic spline with knot λ

decided based on x, θ0, θℓ and θℓ+3 are fixed effects, b0i and bℓi are random effects, and εij is

the random measurement error.

As described in chapter 1, the PMM model accounts for the nonlinear effects of screening

time and baseline age using natural cubic splines. To build the corresponding design matrices,

we first calculate screening time as the difference, in years, from the date the patient entered

the study to the date of serum collection for each measurement. Baseline age is defined as

age at study entry [11]. Using the splines package, we generated the B-spline basis of order

3 for the natural cubic splines. The knots (λ) were determined in the same way and using

all cases for both screening time and baseline age. Specifically, the boundary knots were set

as the maximum and minimum values for each variable, while the internal knots were set

as the first and third quantiles. Stratifying data by disease status, we then pass screening

time and baseline age to X0, the design matrix for fixed effects in the control model, and

screening time to Z0, the design matrix for random effects in the control model. Similarly,

X1 is comprised of the spline values for baseline age and the spline values for screening time,

while Z1 contains the spline values for screening time. Lastly, the CA-125 measurements

were log-transformed.

We estimated the case (PMM) and control (CN3) models using the lme4 package. The

vector of fixed effects, βd, along with the variance components from the random effects

(bdi ∼ MVN(0,∆d)) and random errors (εdi ∼ MVN(0,Σd
i )) were extracted. Estimating

individual disease risk score first requires us to calculate µd ≡ Xiβd and Γd ≡ Zi∆
dZ ′

i+Σd
i for

cases (d = 1) and controls (d = 0). Suppose we regard disease classification as a hypothesis-

testing problem. In that case, we can consider ϕ to be the combination rule mapping the

J-dimensional longitudinal marker Y to a univariate marker ϕ(Y ), where a larger value

of ϕ(Y ) is more characteristic of disease [30]. Based on the Neyman-Pearson Lemma, the
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likelihood ratio

Λ(Y ) =
P (Y |D = 1)

P (Y |D = 0)

can be considered the most powerful test. As stated in chapter 1, this gives us the optimal

combination of the longitudinal biomarkers [30]. We obtain Λ(Y ) under the PMM setting

as

log Λ(Y ) ∝ (yi − µ0)
′ Γ−1

0 (yi − µ0)− (yi − µ1)
′ Γ−1

1 (yi − µ1),

where log Λ(Y ) ≡ λ(Y ) [30]. The disease risk score , P (D = 1|Y ) can then be written as a

function of λ(Y )

log
(P (D = 1|Y )

(P (D = 0|Y )
= log

(P (D = 1, Y )

(P (D = 0, Y )
= log

fY |D=1(Y )P (D = 1)

fY |D=0(Y )P (D = 0)
= log

(P (D = 1)

(P (D = 0)
+

1

2
log

|Γ0|
|Γ0|

+
1

2
λ(Y )

using Bayes’ theorem [30]. As a result, the risk score is merely a byproduct of computing

the likelihood ratio combination.

Concurrently, we are also estimating variance (Ω) for a disease risk score (ρ0) using

Ω =
∂ρ0
∂γ1

Π1

(∂ρ0
∂γ1

)′
+

∂ρ0
∂γ0

Π0

(∂ρ0
∂γ0

)′
+

1

pD(1− pD)
, (3.1)

from which we can calculate a corresponding confidence interval. To do so, we first obtain

Πd, the information matrix of the stratified likelihood function L(Yi|Di = d; γd), where

γd = (βd, ηd), such that βd is the vector of fixed effects and ηd is the vector of parameters in

the variance components for the PMM case and control models [30]. Second, we compute the

derivatives ∂ρ0
∂γd =

(
∂ρ0
∂βd ,

∂ρ0
∂ηd

)
for cases (d = 1) and controls (d = 0) [30]. Lastly, we evaluate

the variance contribution from estimating disease prevalence. If pD ≡ P (D = 1), we can

approximate pD as 1
N

∑N
i=1Di [30]. Taking the derivative yields 1

pD(1−pD)
. The contributions

of pD, γ
1, and γ0 to the variance, Ω, are additive given their mutual independence, resulting

in Equation 3.1 [30].

Out-of-sample risk predictions were obtained for each participant (N = 976) using leave-

one-out-cross-validation (LOOCV) to minimize over-fitting [19]. Specifically, the CA-125

measurements were removed for a given participant, the models were estimated using the

remaining participant data, and then the risk score was calculated for the excluded partici-

pant. Time-dependent ROC curves and AUCs generated with survivalROC for 0.5 to 3 years
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post CA-125 screening were used to compare prediction accuracy; the corresponding 95%

confidence intervals were calculated for each time-dependent AUC using 2,000 bootstrapping

replicates. Analysis was conducted in R version 4.3.1 [35].

3.1.1. Results

Table 3.1 includes the fitted parameters we obtained for the control model (CN3), along

with those published by Han et al. (2020). Our results align in both direction and magnitude

with those reported originally. While Han, et al. (2020) reported baseline age and screening

time had small but significant effects on the CA-125 trajectories (0.019 (0.018, 0.020) and

0.002 (0.001, 0.003), respectively). However, we found evidence for an effect of screening time

(p = 0.002) but not baseline age (p = 0.224). Similarly, table 3.2 includes the fitted results for

PMM from both our implementation and those published originally. Our estimates largely

fall within the confidence intervals reported by Han et al. (2020), except for those effects

(fixed and random) related to screening time, where we see a greater variance in magnitude.

Reproduced CN3 Original CN3

Parameter Estimate (95% CI) Estimate (95% CI)

intercept: θ0 2.261 (1.734, 2.788) 2.158 (2.097, 2.219)

screening time: θ1 0.009 (0.003, 0.016) 0.019 (0.018, 0.20)

baseline age: θ2 0.005 (-0.004, 0.013) 0.002 (0.001, 0.003)

SD of random intercept:σb0 0.607 (0.575, 0.641) 0.451 (0.442, 0.460)

SD of random slope:σb1 0.058 (0.050, 0.066) 0.039 (0.008, 0.069)

random effect correlation:ρb0b1 -0.108 (-0.220, -0.012) -0.147 (-0.191, -0.103)

SD of random error: σξ 0.276 (0.268, 0.283) 0.215(0.211, 0.220)

Table 3.1: Parameter estimates and 95% confidence intervals (CI) for CN3 reproduced from the

905 controls in the PLCO trial subset and as published originally using 30,269 controls. SD denotes

standard deviation.
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Reproduced PMM Original PMM

Parameter Estimate (95% CI) Estimate (95% CI)

Fixed Effects

intercept: θ0 2.313 (1.096, 3.536) 2.604 (2.079, 3.129)

AgeSpline1: θ1 1.440 (-0.017, 2.820) 0.251 (-0.629, 1.130)

AgeSpline2: θ2 1.066 (-1.903, 4.036) 0.466 (-0.930, 1.862)

AgeSpline3: θ3 -0.062 (-0.500, 0.383) 0.480 (-0.234, 1.192)

ScrTimeSpline1:θ4 7.219 (2.811, 11.574) 1.649 (0.945, 2.353)

ScrTimeSpline2:θ5 9.540 (3.915, 15.126) 0.701 (0.135, 1.267)

ScrTimeSpline3:θ6 1.393 (1.097, 1.620) 0.834 (0.343, 1.326)

Random Effects

intercept: σb0 1.393 (1.097, 1.620) 1.223 (1.034, 1.446)

ScrTimeSpline1:σb1 0.604 (0.315, 1.124) 3.194 (2.293, 4.450)

ScrTimeSpline2:σb2 14.463 (11.087, 17.414) 2.317 (1.080, 4.971)

ScrTimeSpline3:σb3 18.505 (14.122, 22.267) 1.5663 (0.824, 2.967)

correlation: ρb0b1 -0.115 (-0.951, 0.597) -0.306 (-0.704, 0.238)

correlation: ρb0b2 -0.327 (-0.602, -0.014) -0.675 (-0.859, -0.337)

correlation: ρb0b3 -0.378 (-0.642, -0.071) -0.431 (-0.884, 0.440)

correlation: ρb1b2 0.450 (-0.116, 0.983) 0.735 (0.232, 0.928)

correlation: ρb1b3 0.453 (-0.128, 0.983) 0.181 (-0.907, 0.954)

correlation: ρb2b3 0.998 (0.993, 0.999) 0.506 (-0.737, 0.970)

random error: σξ 0.321 (0.246, 0.353) 0.437 (0.356, 0.536)

Table 3.2: Parameter estimates for PMM reproduced from the 71 in the PLCO trial subset and as

published originally using 132 cases: estimate and the 95% confidence interval (CI) reported.

We further evaluate our implementation using diagnostic predictive accuracy. As in the

original paper, we report time-dependent AUCs generated at six cutoff times ranging from

0.5 to 3 years post-screening in Table 3.3. We can interpret these values as the probability of
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a randomly selected “case” with a cancer diagnosis before time t having a larger predicted

risk than a randomly selected “control” with a diagnosis time after time t [19]. Predictive

accuracy is considered better at time t at greater values of AUCs [19]. Our results yield a

similar pattern to the outcomes reported by Han et al. (2020), where AUCs are greatest

early in the follow-up period but decrease as time t increases. While our values exceed

those reported originally, our comparison using the bootstrapped replicates of the AUCs

indicates no difference between the two results at each of the cutoff times, excluding AUC1.0

These results suggest our reproduction of the model is satisfactory and our implementation

approach sufficiently mirrors the one presented by Han et al. (2020). We will now apply the

PMM approach to the CSPAN dataset.

Reproduced Original

Metric PMM-CN3 PMM-CN3

AUC0.5 0.971 (0.952, 0.986) 0.946 (0.937, 0.954)

AUC1.0 0.947 (0.922, 0.968) 0.894 (0.886, 0.902)

AUC1.5 0.889 (0.835, 0.938) 0.865 (0.858, 0.872)

AUC2.0 0.867 (0.806, 0.921) 0.842 (0.832, 0.851)

AUC2.5 0.867 (0.806, 0.918) 0.819 (0.810, 0.828)

AUC3.0 0.859 (0.799, 0.913) 0.801 (0.791, 0.809)

Table 3.3: Time-dependent AUCs and associated 95% bootstrapped confidence intervals (shown in

parentheses) for the original and reproduced PMM-CN3 method

3.2. PMM implementation and evaluation: CSPAN

In chapter 2 we introduced the need for a shift parameter to log-transform quantitative

FIT from the CPSAN dataset. Specifically, the measurements are heavily right-skewed,

ranging in value from 0 - 388 µg/g with a high concentration of zeros. We selected values

commonly employed to address this scenario, in addition to a complete case analysis. These

include:
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• M1: Complete case (CC) analysis, removing participants with a quantitative FIT

measurement equal to zero (N = 9,393);

• M2: Add a small positive number (0.01) to all values before taking the log transform

to avoid taking the log of 0. [53];

• M3: Substitute each recorded 0 value with min(Yij), where Yij is the quantitative FIT

measured indexed by patient and time, indicating all samples;

• M4: substitution of zero by min(Yij) ± X ∼ N (0, 0.00005), where Yij is the quantitative

FIT measured indexed by patient and time, indicating all samples;

• M5: substitution of zero by 1
2 min(Yij), where Yij is the quantitative FIT measured indexed

by patient and time, indicating all samples;

• M6: substitution of zero by 1
2 min(Yij) ± X ∼ N (0, 0.00005), where Yij is the quantitative

FIT measured indexed by patient and time, indicating all samples.

We made one exception before applying the PMM approach outlined in the previous section.

Rather than calculate risk scores using LOOCV, we used K-fold cross-validation, where K

= 10, to minimize overfitting while still being computationally efficient. Before making

this modification, we tested the approach on the CA-125 data and compared those results

to the LOOCV results from our reproduction and those published by Han et al. (2020).

Performance using 10-fold cross-validation differed by less than 1% and are included in

Table A.1. Similarly, these results are comparable to the AUCs published originally for each

of the cutoff times, suggesting any influence of the proposed modification was negligible.

The 10-fold validation also greatly decreases computational time.

The data corresponding to each method was analyzed with the PMM-CN3 approach

and univariate logistic regression. This second approach includes only the most recent FIT

to evaluate the probability of advanced neoplasia, mirroring current screening and [51].

Table 3.4 includes the estimated AUC and standard error obtained from these models for

each method. We compare model performance using the DeLong test with pROC [41]. The
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DeLong test incorporates AUC estimates and their corresponding variances to assess whether

there is a statistically significant difference in the predictive ability of the models [13]. The

“Difference of AUC” is calculated as the estimated AUC for PMM-CN3 minus the estimated

AUC for the univariate logistic regression model for each method.

Method PMM-CN3 Logistic Regression P-Value Difference of AUC

M1 0.950 (0.007) 0.927 (0.017) 0.226 0.022

M2 0.925 (0.012) 0.906 (0.022) 0.437 0.019

M3 0.956 (0.007) 0.907 (0.022) 0.029 0.049

M4 0.956 (0.007) 0.905 (0.022) 0.030 0.051

M5 0.949 (0.008) 0.906 (0.022) 0.067 0.043

M6 0.949 (0.008) 0.906 (0.022) 0.071 0.057

Table 3.4: AUC estimates and standard errors (shown in parentheses) of various data methods for

the PMM-CN3 and univariate logistic regression approaches

The estimated AUC for the PMM-CN3 approach is consistently greater than that of the

logistic regression approach, regardless of the method employed(Figure 3.1). In the case of

M3 and M4 there is a notable difference (p = 0.029 and 0.030, respectively).

Figure 3.1: Receiver operating characteristic (ROC) curves for model performance by transforma-

tion accommodation method.
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The standard error for the estimated AUC is also smaller for PMM-CN3 compared to the

univariate logistic regression model for each implementation. Logistic regression performance

seems more robust to variation in the ad hoc substitution methods used, yielding consistent

AUC estimates and corresponding standard errors. The only exception was the complete

case (M1) dataset, which yielded the largest AUC for the logistic regression approach. It is

important to note, however, the improvement came at great expense, forfeiting nearly half

(43.64%) of the available patient data.

Unlike logistic regression, PMM-CN3 appears to be more sensitive to the method used

to accommodate the log transformation, linking us back to the original concern outlined

in Chapter 2. Specifically, we see the fluctuation in estimated AUC and corresponding SE

based on M, the small positive constant added before transformation. AUC is lowest when M

is set to 0.01, the recommendation in West (2022). AUC increases 2.3% when M is 50 times

greater at one-half the observed non-zero minimum, with and without variation. Similarly,

when M is 100 times greater at the observed non-zero minimum, with and without variation,

AUC increases by 3.1%. These results align with the caution issued by Feng, et al. (2012)

that the model estimates from the translated data depend on how M is selected. In the

next chapter, we will introduce and implement an alternative approach to accommodate log

transformation in data with a high concentration of zeros before analyzing the CSPAN data

using PMM.
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Chapter 4

Quantitative FIT Scores as a Left-Censored Outcome

In Chapter 2, we compared CA-125 and hemoglobin concentration distributions as shown

in figures 2.2 and 2.3, respectively. Both are right-skewed, but the range of possible values

differs in that CA-125 is always greater than zero but quantitative hemoglobin is often not

(30%), impacting the feasibility of a logarithmic transformation. Using biomarkers requires

some consideration for instrument precision and random measurement error. Even when

levels are sufficient, biomarker quantification could be compromised because the instrumen-

tation could not detect low values, resulting in missing data [43]. Suppose the quantitative

hemoglobin measurements equal to zero are considered below the detection limit and evalu-

ated as missing, rather than truly zero. The commonly chosen shift parameters would then

be referred to as ad hoc substitution while exclusion of the nonzero measurements is truly

a complete case analysis. The approaches implemented to facilitate data transformation are

still appropriate in the context of missing data but not without concern. Complete-case

analysis is inefficient, as was illustrated with the CSPAN dataset [10, 20, 43]. Ad hoc sub-

stitutions, often chosen as the detection limit (M3) or one-half the detection limit (M5), can

lead to biased estimates for parameters and standard errors [10, 43, 50]. This approach can

also understate variability, which we attempted to address through coerced variation M4 and

M6 [20].

In this chapter, we consider measurements of zero as being below the detection limit and

therefore missing. Imputation-based approaches allow missing data to be replaced by one

or more plausible set of values to be analyzed in conjunction with the observed data as a

completed data set [20, 36]. The “complete” dataset can then be considered a valid sample

from the population under certain assumptions and given the other information available

for those subjects, resulting in inferences within the realm of statistical plausibility obtained
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had there been no missing data [20, 36]. While bias is still a concern, these approaches have

been shown to outperform ad hoc substitution with a constant [50]. As a result, we used

an imputation-based approach to replace the zeros and accommodate data transformation

before analyzing the “completed” dataset with PMM and univariate logistic regression.

4.1. Left-Censoring

The limit of detection (LOD) is the smallest value at which an instrument can delineate

between the presence and absence of substance [10, 43]. When the level of the substance is

below the LOD, the value recorded is censored but does not always indicate the absence of

the biomarker. When the assay has a lower detection limit, the result is considered to be

censored from below, or left-censored.

While no minimum detection limit has been reported for quantitative hemoglobin con-

centrations obtained by the automated semi-quantitative OC-Sensor, data and literature

provided by the manufacturer document the test reliability only for the range of 10 - 400

µg/g [51]. It is important to note this cutoff is well below the 20µg/g threshold recommended

by the manufacturer and commonly used in screening. Any variability in this range would

not be expected to influence performance when used as a qualitative test. Because no data

is available for test reliability at cutoffs below 10 µg/g, it is possible these results become

gradually less reliable below this threshold [25]. As a result, we intend to use the minimum

observed non-zero FIT score as the censoring threshold. Any measurement less than the

censoring threshold will be treated as missing or left-censored and replaced with an imputed

value before applying PMM.

4.2. Non-Parametric Inverse Buckley-James

Many approaches applied to left-censored data analysis are based on methods developed

for right-censored survival data. The accelerated failure time model is frequently used as a

regression model for right-censored survival data, as it directly links the expected response

to the predictors [50]. The Buckley-James estimator is a popular method for fitting the ac-
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celerated failure time model allowing the dependent variable to be censored and the residual

distribution unspecified [7]. It was originally used in conjunction with data from the Stan-

ford Heart Transplantation Program to illustrate its application but has also been applied

more recently to left-censored human immunodeficiency virus (HIV) viral load data [7, 50].

This approach imputes censored values by their estimated conditional mean to provide

censoring and predictor values [50]. Even though it was developed under right censoring, it

can be readily applied to left-censored data by reversing the scale. Once the data has been

inverted from left-censored to right-censored, the algorithm can be directly applied using the

bujar package in R [35, 52]. The process is as follows [50]:

1. Let Yi be the response variable and LOD be fixed and known. Zi is the observed

response defined as:

Zi =


Yi if Yi > LOD

LOD if Yi ≤ LOD

2. Define an arbitrary constant M ≥ max(Yi)

3. Reverse the order of the data: M − Yi

▷ Note: Left-censored Z is replaced by (M− Z) which is now right-censored at M−LOD.

4. Impute (M − Zi)
∗ as:

δi(M − Yi) + (1− δi)E(M − Yi|M − Yi ≥ M − LOD,Xi),

where Xi is a p-vector of fixed predictors

5. Calculate the conditional expectation by:

E(M − Yi|M − Yi ≥ M − LOD,Xi) =

∫ M

M−LOD

uf(u,Xi,β)du

1− F (M − LOD,Xi,β)
, (4.1)

where Xi is a p-vector of fixed predictors, β is a p-vector of unknown regression pa-

rameters, and F (u,Xi,β) is the (unknown) cumulative density function for M − Yi

with mean M −Xiβ evaluated at u. F (u,Xi,β) can be estimated using Kaplan-Meier

[50].
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6. Compute the Buckley-James estimate using a semiparametric iterative algorithm:

β̂(λ) = argmin
β

||(M − Z)∗ − (M −Xβ)||22 + λ||β||1,

alternating between the imputation of censored values using Equation 4.1 and the

Lasso, where λ = 0 corresponds to the unpenalized ordinary least-squares estimate.

Soret, et al. (2018) defined censoring rates as moderate (20% censoring), high (50%), and

severe (70%). Figure 4.1 indicates similar performance between the nonparametric Buckley-

James approach with moderate censoring and the gold standard with uncensored data [50].

The error increases when censoring is high, but the change is most notable when censoring is

severe [50]. Recall nearly 30% of the quantitative FIT measurements are zero in the CSPAN

dataset. If we consider those measurements below the LOD, the censoring rate would fall

midway between moderate and high based on the classification used by Soret, et al. (2018).

The simulation results presented in figure 4.1 then suggest non-parametric Buckley-James

approach should still perform well when applied to the CSPAN data.

Figure 4.1: Simulation Results made available through the Creative Commons Attribution 4.0 Interna-

tional License (https://tinyurl.com/ReprintsPermission) [50]. Mean Square Error (MSE) from gold

standard method (GoldS), Gaussian Buckley-James (Gaussian BJ), 1-Step version (Gaussian BJ 1-Step),

non-Parametric Buckley-James (NonParBJ), and simple imputation by LOD (LOD). Censoring rates: 0%

(uncensored), 20% (moderate), 50% (high), and 70% (severe).
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4.3. Simulated Data: Fetal Growth Example

Before applying the non-parametric Buckley-James approach to the CSPAN dataset, we

tested it on a complete data set with imposed censoring. We used data from the Scandinavian

portion of the NICHD (National Institute of Child Health and Human Development) Study

of Successive Small-for-Gestational Age (SGA) Births [5]. This dataset was used by Liu and

Albert (2014) to illustrate the application of the PMM approach compared with SREM. Of

the 5,722 eligible women expecting a second or third child between January 1986 and March

1988, 1,945 women and their births were selected for follow-up at four prenatal visits, delivery,

and during the first year of life [5]. Excluding those women who failed to complete more than

one of the four pregnancy examinations, the final dataset contained 1,116 subjects. Data

elements included maternal pre-pregnancy risk factors associated with SGA birth, including

1) a prior low birth weight (LBW) birth, 2) maternal cigarette smoking at conception, 3) low

pre-pregnancy weight (< 50 kg), 4) a previous perinatal death, or 5) the presence of chronic

maternal disease (namely, chronic renal disease, essential hypertension, or heart disease) [5].

The longitudinal marker is the mean abdominal diameter measured at approximately 17, 25,

33, and 37 weeks of gestation and reported on the log scale [5, 30]. We chose this dataset

because it has been analyzed previously with PMM, has no detection limit, and unlike the

CA-125 dataset, the complete dataset used in the publication is available.

We used the quantile function in R to identify the 30th percentile in the fetal growth data.

Any observations less than the 30th percentile were considered censored. The LOD was set

at 2.262 to maintain a 30% censoring rate. Sampling with replacement, we generated 10,000

samples of size N = 1,555. We found values imputed for measurements less than the imposed

LOD were very close to the actual measurement recorded for mean abdominal diameter. We

calculated the percent error for each of the imputed measurements in each of the sample

datasets using (Imputed−Original)
Original

× 100. When averaged over all sample sets, the mean was

1.14% with a standard deviation of 2.28%. The distribution of percent error for imputed

measurements in the sample sets is shown in figure 4.2. While some bias is present, as the

percent error is greater than zero, it is small.
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Figure 4.2: Distribution of percent error for imputed values in 10,000 samples (N= 1,555) with

30% censoring

Using the imputed value in place of the “censored” value, each “completed” dataset was

analyzed using PMM. For fetal growth, the longitudinal profile for ultrasound anthropomor-

phic measurements is characterized by

Yij = β0 + β1tij + β2t
2
ij + bi0 + bi1tij + bi2t

2
ij + ϵij.

As a result, the case and control models used in the PMM were the same [14, 30, 48]. Table

4.1 includes the parameter estimates and AUC generated by the original dataset and the

mean for the estimates and AUC obtained by each sample set (N = 10,000).
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Original Dataset Imputed Datasets

Controls Cases Controls Cases

β0 1.5001 (0.0045) 1.5117 (0.0107) 1.5230 (0.0045) 1.5300 (0.0078)

β1 0.8803 (0.0046) 0.8736 (0.0122) 0.8578 (0.0046) 0.8532(0.0080)

β2 -0.0882 (0.0010) -0.0927 (0.0028) -0.0837 (0.0010) -0.0831(0.0017)

σb0 0.0798 0.0203 0.1286 0.0910

σb1 0.0769 0.0381 0.1396 0.0934

σb2 0.0151 0.0087 0.0315 0.0200

ρ01 -0.9109 -0.8294 -0.9523 -0.9467

ρ02 0.8391 0.6110 0.9002 0.8911

ρ12 -0.9789 -0.9490 -0.9844 -0.9810

σϵ 0.0227 0.0241 0.0190 0.0286

AUC 0.847 0.856

Table 4.1: Estimated coefficients and standard errors for the PMM models based on the original and

imputed datasets for the fetal growth study.

The imputed datasets produced similar estimates to the original dataset. While the

random effects showed greater variability in magnitude compared to the fixed effects, di-

rectionality is consistent between the two sets of outcomes. Similarly, trends in magnitude

are also maintained when comparing the case and control models in each scenario. Lastly,

model performance is consistent even when the imputed data is used. The percent error

was 1.05%, suggesting this approach can be successfully implemented even in the presence

of heavier censoring.

4.4. CSPAN Data

We then applied the inverse nonparametric Buckley-James approach to the CSPAN data

and analyzed the “completed” dataset with PMM. To do so, we first split the dataset to

exclude entries where values are truly missing in subsequent rounds of screening, because our

intent is not to fill in the missing data, but rather only to update those measurements below

the imposed LOD. The quantitative FIT measurement becomes Yi within the Buckley-James
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algorithm, and the LOD is set to one, the minimum observed value. We identify M as the

maximum observed value plus one, before subtracting all observed values to reverse order

the data. We then built the model matrix, X, including baseline age, race, ethnicity, sex,

and screening time as variables. We let λ = 0 in step 7 from section 4.2, corresponding

to the unpenalized ordinary least-squares estimate. Again using the bujar function in R

we obtain the imputed values, subtracting from M to reorder the data. It is important to

note that with the CSPAN data, the algorithm produced negative values for the imputed

quantitative FIT score; this was not an issue in the fetal growth dataset. We replaced the

zeros with a small positive constant less than the smallest observed non-zero value and log-

transform the measurements. This was considered acceptable because the MLE for LOD

is the minimum of the observed values. Also, the small positive constant is only added to

those measurements below the LOD, which are then replaced through imputation. After

running the rest of the algorithm, the imputed response variables are now non-negative after

reordering and exponentiating back to the original scale. We then combine those records

with newly imputed values or observations exceeding the LOD with those missing data to

create the “completed” dataset.

These data are analyzed with the PMM approach described in chapter 3, using 10-fold

cross-validation when calculating risk scores. The data was also analyzed using univariate

logistic regression, where only the most recent FIT result is considered, mirroring current

screening practice. As seen in Chapter 3, the PMM approach led to moderate improvement

in the out-of-sample AUC (0.951) compared with univariate logistic regression (0.921). The

standard error for PMM-CN3 is also approximately one-third that of the univariate logistic

regression model (0.008 vs. 0.023). While neither result exceeds the maximum AUCs re-

ported in table 3.4, both are consistent with the results achieved through M1, the complete

case analysis, without sacrificing any data. Our results indicate the inverse non-parametric

Buckley-James approach is a strong alternative when modeling with a moderate to high

concentration of zeros in the response variable.
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Chapter 5

Modeling Biomarkers with Functional Data Analysis

Biomarkers were defined in Chapter 1, highlighting their role as an inexpensive and

noninvasive screening tool. We included CA-125 and fecal hemoglobin as specific examples,

where the first is used for ovarian cancer screening and the latter to screen for CRC. We also

provided case and control trajectories for CA-125 in Figure 1.1 and for hemoglobin in Figure

2.1. Both biomarkers show distinctive patterns for those with the disease (cases) compared

to those without disease (controls). Until now, our attempts to harness the additional

information available through repeated measurements have treated these data as sequential

discrete observations. Here we propose an alternate strategy, extracting information from the

entire biomarker trajectories using functional data analysis (FDA) in place of the individual

biomarker measurements.

5.1. Functional Data Analysis (FDA)

In functional data analysis (FDA) we consider longitudinal data as sets of discrete obser-

vations on smooth underlying curves [37]. The basic unit of information is then the entire

observed function rather than a string of individual values. The goals of functional data

analysis include: 1) representing and transforming data in ways to aid further analysis,

2) displaying data in a way that highlights various characteristics, 3) studying important

sources of pattern and variation in the data, and 4) explaining variation in an outcome or

dependent variable by using input or independent variable information [37]. FDA enables us

to bring the biomarker trajectory information into the model using a countable linear com-

bination of the basis functions. The functional principal component (FPC) scores are one

choice for the set of basis functions [26, 56]. The goal is to obtain the orthogonal functions

that most efficiently describe the variation in the data [26, 56]. FPC analysis is commonly
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used for dimension reduction, condensing the trajectories from longitudinal data to a set of

FPC scores [26, 56]. Yao et al. (2005) developed a method for FPC analysis in which the

FPC scores are framed as conditional expectations. Their nonparametric approach, principal

component analysis through conditional expectation (PACE) for longitudinal data, was de-

signed for sparse, irregularly spaced longitudinal data [56]. PACE allows us to represent the

biomarker trajectories through the Karhunen-Loéve expansion and is computed by determin-

ing the eigenfunctions from the data [26, 56]. The number of FPC scores needed is identified

based on a combination of the Akaike information criterion (AIC) and the scree plot, i.e.

where AIC has approached its minimum and the plot has plateaued[26]. We implement this

approach in R using the fdapace package [57]. We can then approximate a generalized func-

tional linear regression model, by including the FPC scores obtained through this approach

as covariates in the model.

5.2. Modeling with Biomarker Trajectories

Patients in most cancer screening programs are selectively chosen for disease verification

with the gold standard based on the results from preliminary testing. The patient’s true

disease status is confirmed only when the first test is abnormal. Otherwise, the patient’s

disease status is missing, introducing the potential for verification bias. We can address

verification bias as a missing data problem by considering true disease status to be either

missing at random (MAR) or missing not at random (MNAR) [26]. As we describe how to

incorporate FDA using PACE to obtain a new composite diagnostic marker for disease risk,

we include models for MAR and MNAR.

5.2.1. Notation

PACE allows for irregularly spaced longitudinal data. To align the data we discretize visit

time tik into the kth visit, where k = 1, 2, 3, ..., for each individual [26]. For each patient, at
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each visit tk we collect the following: disease status

dtk =


1 if verified and diseased

0 if verified and nondiseased

missing if not verified,

(5.1)

a p-dimensional biomarker measurement Mtk = (Mtk1
,Mtk2

, ...,Mtkp
)T, a tk × p biomarker

measurement Qtk = (MT
t1
,MT

t2
, ...,MT

tk
)T, and the missing data indicator

rtk =


1 if dtk is observed

0 otherwise,

(5.2)

and a test result variable to be defined later [26]. We use the missing disease status indicator

to model as MAR or MNAR. The next two subsections give the model details for each

mechanism.

5.2.2. MAR

MAR indicates the missing data mechanism depends only on the observed data [29]. In

FIT-based cancer screening, test positivity is defined by the manufacturer’s recommended

cut-off value of 20µg/g. When the fecal hemoglobin concentration exceeds the cut-off value,

the test is positive and the patient is referred to colonoscopy, otherwise the test is negative

and the patient is re-invited to FIT in the subsequent year. Only patients completing

colonoscopy will have true disease status verified as advanced neoplasia or “normal.” The

disease status will be missing in all other patients. Under the MAR assumption, verification

status is obtained directly from the missing data indicator rtk for any patient at a given visit

time tk because both the biomarker value Mtk and missing data indicator rtk are observed.

Disease status dtk is assumed to be observed only for those patients with a positive test

result [26]. As a result, we can also assume that given both the biomarker measurements

and disease status, the verification process depends only on the biomarker measurements

[26].
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For a set of n patients, we will have data (Qitk
, ditk , ritk ) at time tk. We are interested

in modeling the risk of disease given the biomarker measurements, P (ditk = 1|Qitk
). This

probability is the new composite diagnostic marker for disease risk to be used in place of

a single biomarker value. Based on the MAR assumptions outlined previously, this can be

done using only the data from those patients with verified true disease status at time tk [26].

We first compute a finite number of FPC scores for the data at measurement time tk

with fdapace. We then approximate the logistic functional model for risk using a logistic

regression model where true disease status is defined as a binary variable and the extracted

FPC scores are covariates. Specifically,

g(P (ditk = 1|fMi1
(t), . . . , fMip

(t))) ≈ g(P (ditk = 1|ξitk))

≈ α0 +

L1k∑
l=1

α1lξi1l(tk) + ...+

Lpk∑
l=1

αplξipl(tk),

where L1k, L2k, . . . , Lpk are the finite number of principal components for biomarker trajecto-

ries 1,2,...,p, and ξijl(tk) is the lth FPC score obtained from the measurements of biomarker

j for patient i up to visit tk [26]. The likelihood function for the observed ditk is then pro-

portional to
∏νk

i=1 p
ditk
itk

(1 − pitk)
1−ditk , where νk is the total number of patients whose true

disease status is observed at time tk, and

pitk = g−1

(
α0 +

L1k∑
l=1

α1lξi1l(tk) + ...+

Lpk∑
l=1

αplξipl(tk)

)
.

We then combine this result with the optimal classification rule developed by McIntosh

and Pepe (2002) to define patients as testing positive or negative at time tk. If Y is the

vector of test results (i.e. markers or other screening tests), the Neyman-Pearson lemma

states that for any f0, where f0 is defined as 1 - specificity, the screening rule with the highest

true positive rate (TPR) based on Y among all possible rules based on Y is the likelihood

ratio rule [32]. McIntosh and Pepe (2002) then show rules based on LR(Y) are equivalent to

rules based on the risk score p(Y) = P (D = 1|Y), which can be approximated with binomial

regression as logit(p(Y)) = β0 + h(β,Y). Having established p(Y) = P (D = 1|Y), this can

41



be rewritten using Bayes’ rules as

P (Y|D = 1)P (D = 1)

{P (Y|D = 1)P (D = 1) + P (Y|D = 0)P (D = 0)}

=
LR(Y)q

{LR(Y)q + 1}
,

where q = P (D = 1)/P (D = 0) is the odds of disease in the population [32]. Given the risk

score is a monotone increasing function of the likelihood ratio, the likelihood ratio rule can

be rewritten as p(Y) > c∗(f0), where c
∗(f0) is chosen where f0 = 1-specificity [32]. Replacing

Y with Qtk to reflect our notation, we then define risk, p(Qt), as the new diagnostic marker

[26].

5.2.3. MNAR

Ideally, true disease status would be verified for all patients with an abnormal result in

the initial screening test; however, this is not feasible in many cases because the patient

is either too sick or refuses to be verified [22]. In this scenario, the verification process

is considered to be MNAR, where the missing data mechanism may depend on both the

observed data (i.e. test results) and unobserved data (i.e. true disease status or other risk

factor(s) directly related to true disease status) [29]. As we cannot verify the missing data

mechanism, we also present the model derived under the less restrictive MNAR setting.

Unlike under MAR we cannot reduce the likelihood function to include only the verified

patients. Instead the joint likelihood function is

n∏
i=1

P (ditk , ritk |Qit) =
n∏

i=1

P (ritk |Qit)P (ditk |ritk , Qit)

, where n is the total number of patients [26]. Using the same notation for biomarker

measurements and corresponding smooth functions, we use a pattern mixture model for

missing data [34]. Using the same notation as before, the missing data indicator model is

g(P (ritk = 1|fMi1
(t), . . . , fMip

(t))) ≈ g(P (ritk = 1|ξitk))

≈ β0 +

L1k∑
l=1

β1lξi1l(tk) + ...+

Lpk∑
l=1

βplξipl(tk),
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and functional logistic regression is again approximated using the extracted FPC scores

as covariates [26]. We use the same approach to model risk given the missing indicator and

biomarker measurements, where

g(P (ditk = 1|ritk , fMi1
(t), . . . , fMip

(t))) ≈ g(P (ditk = 1|ritk , ξitk))

≈ γ0 + γ1ritk +

L1k∑
l=1

γ21lξi1l(tk) + ...+

Lpk∑
l=1

γ2plξipl(tk)

[26]. Thus at time tk, ritk |ξ(tk) ∼ Bernoulli(θitk) and ditk = 1|ritk , ξ(tk) ∼ Bernoulli(qitk),

where θitk and qitk are the inverse logit for the corresponding models.

Given dtk can either be missing or observed, we have two missing data patterns requiring

two separate models. In pattern 1, ritk = 1 and ditk has been verified in all patients. This

can be modeled as

g(P (ditk = 1|ritk = 1, fMi1
(t), . . . , fMip

(t))) ≈ γ
(1)
0 +

L1k∑
l=1

γ
(1)
21lξi1l(tk) + ...+

Lpk∑
l=1

γ
(1)
2plξipl(tk),

where all parameters are identifiable [26]. While in pattern 2, ritk = 0 and ditk is missing.

This is modeled similarly as

g(P (ditk = 1|ritk = 0, fMi1
(t), . . . , fMip

(t))) ≈ γ
(0)
0 +

L1k∑
l=1

γ
(0)
21lξi1l(tk) + ...+

Lpk∑
l=1

γ
(0)
2plξipl(tk),

the exception being the parameters here are not identifiable [26]. We can then estimate

disease risk using

P (ditk = 1|ξ(tk)) = P (ditk = 1, ritk = 1|ξ(tk)) + P (ditk = 1, ritk = 0|ξ(tk))

= P (ritk = 1|ξ(tk))P (ditk = 1|ritk = 1, ξ(tk)) + P (ritk = 0|ξ(tk))P (ditk = 1|ritk = 0, ξ(tk)),

where γ
(0)
0 = γ

(1)
0 , γ

(0)
21l = γ

(1)
21l, . . . γ

(0)
2pl = γ

(1)
2pl are the identifying restrictions established

under the MAR assumptions [26]. This can then be rewritten as γ
(0)
0 = γ

(1)
0 + δ0, γ

(0)
21l =

γ
(1)
21l + δ1, . . . γ

(0)
2pl = γ

(1)
2pl + δp once we reparametrize the model to embed the MAR constraints

using the sensitivity parameter δ [26]. The missing data mechanism can thus be classified

as MAR when δ0 = δ1 = . . . = δp = 0 and MNAR otherwise.
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5.3. Model Implementation

We first apply this approach to analyze the PLCO ovarian cancer data also described in

chapter 1. Women aged 55 and older completed a CA-125 blood test annually and those

with an abnormal result received a follow-up biopsy. In our subset, participants completed

between 1 and 6 blood tests, where the median number of completed tests was 3 for cases and

6 for controls. These tests were completed on average at 1, 12, 24, 37, 48, and 61 months.

We used R version 4.3.1 for our analysis[35]. We used fdapace to apply the PACE method

and obtain FPC scores for the CA-125 trajectory. Based on the AIC and scree plot, we

identified L1 = 1 as the number of FPC scores needed in the model. We randomly selected

two-thirds of the data as training data, leaving the remaining one-third as test data; this

was the ratio used by Li and Gatsonis (2017). We fit the logistic regression model with the

FPC scores as covariates to approximate the logistic functional regression model and obtain

an estimate for the composite diagnostic marker. Following Li and Gatsonis (2017), we used

R2, really the McFadden pseudo-R2, and the Hosmer and Lemeshow goodness-of-fit test to

evaluate fit for the logistic regression model, while the C statistic was used to check the

prediction error. We also used the AUC of the empirical ROC curve to evaluate diagnostic

accuracy.

Analyzing the data under the MAR assumption, we reduced the dataset to include only

those participants with verified disease status (n = 284). Our R2 was 0.204, the Hosmer

and Lemeshow goodness-of-fit test suggests the evidence may be insufficient to indicate poor

model fit (p = 0.286), and our C statistic was 0.693. AUC was estimated at 0.717, which

suggests discrimination for this approach is acceptable but falls short of that achieved by

PMM as reported in table 3.3.

We repeated the analysis under the MNAR assumption. Rather than add the sensitivity

parameter δ to every parameter, where we may not know its real effect, our sensitivity

analysis only includes the intercept term [26]. This was chosen because δ0 is the log odds

difference when comparing the odds ditk = 1 between observed true disease status and

missing true disease status, where the log odds of ditk = 1 for missing true disease status
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is δ0 units(s) larger than the log odds of ditk = 1 for observing true disease status relative

to the MAR. As a result, the intercept for the regression model was γ
(0)
0 = γ

(1)
0 + δ0 under

the MNAR assumption [26]. We varied δ from -1.6 to 0.8, which accounts for a range in

prevalence from 9% to 54% among patients whose true disease status is missing. We used

the same number of principal components for the CA-125 biomarker, L1 = 1. The diagnostic

results are included in table 5.1. Our results indicate discrimination is below an acceptable

threshold and still far lower than what was achieved using PMM.

Table 5.1: AUC estimates and standard errors (shown in parentheses) for sensitivity analysis from

the FDA approach under the MNAR assumption for CA-125 biomarker

δ0 Estimated AUC (se)

-1.6 0.584 (0.052)

-1 0.595 (0.094)

-0.4 0.612 (0.074)

0.4 0.610 (0.052)

0.8 0.617 (0.072)

We also used this approach to analyze the data from the CSPAN program. Recall in

Chapter 2, patients aged 50 and older were invited annually to complete FIT-based screening.

Participants with an abnormal FIT result were navigated to colonoscopy, while those with a

normal FIT result were re-invited to FIT screening. Participants completed between 1 and

8 FIT during the study period (Table 2.1), with a median of 1 and interquartile range of 1.

These FIT were completed on average at 2, 17, 29, 42, 48, 61, 80, and 87 months.

We first obtained FPC scores for the FIT trajectory. Based on the AIC and scree plot,

we identified L1 = 4 as the number of FPC scores needed in the model. We then analyzed

the data under the MAR assumption, reducing the dataset to include only those participants

with verified disease status (n = 1,301). We used the same ratio to split the data into testing

and training sets. We fit the model using the training data and then applied the model-fitting

results to the test data Our R2 was 0.018, the Hosmer and Lemeshow goodness-of-fit test
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was statistically significant (p = 0.021), and our C statistic was 0.511. These results suggest

the logistic regression model did not fit well and our prediction rate was poor. Our AUC

estimate was 0.540, suggesting the FDA approach has insufficient discrimination compared

to PMM or even the standard screening approach, both of which had AUCs ranging from

0.905 to 0.956 as shown in Table 3.4.

We repeated the analysis under the MNAR assumption, applying sensitivity analysis

only to the intercept term and maintaining the same number of principal components, L1

= 4. We allowed δ to vary from -1.6 to 0.8, accounting for the same range in prevalence.

The diagnostic results are included in table 5.2. Like Li and Gatsonis (2017), we see small

variations in the estimated AUCs when the δ0 varies, but our results again suggest poor

discrimination when applied in this screening setting.

δ0 Estimated AUC (se)

-1.6 0.515 (0.022)

-1 0.514 (0.021)

-0.4 0.514 (0.022)

0.4 0.513 (0.021)

0.8 0.513 (0.021)

Table 5.2: AUC estimates and standard errors (shown in parentheses) for sensitivity analysis from

the FDA approach under the MNAR assumption for FIT

5.4. Limitations to the FDA Approach

While the results obtained by Li and Gatsonis (2017) suggest the richer information

available through biomarker trajectories should improve the precision with which we predict

disease, our implementation showed otherwise. To understand the difference in performance,

it is important to highlight key aspects of divergence between our settings.

The FDA approach was presented as a means of improving prediction for disease recur-

rence by combining information from multiple biomarker trajectories [26]. They similarly
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showed this approach performed well when applied to a single biomarker using simulated

CA-125 data [26]. While we may attribute some loss in performance to the constraint of a

single biomarker in both the CRC and ovarian cancer screening scenarios, we anticipate two

other factors to be greater contributors to the change.

The first is sparseness of measurements. PACE was designed to used in settings where the

number of repeated measurements available per subject is small, yet the working assumption

is a dataset is treated as sparse if it has on average ≤ 20, potentially irregularly spaced,

measurements per subject [56]. The examples included by Yao et al. (2005) range from 1 to

14 measurements per patient, with a median of 6, and 1 to 6 with a median of 3. While the

predictions based on a single measure work reasonably well, it is not feasible to apply the

method when there is only one observation available per subject for all subjects as we need

to be able to consistently estimate the covariance structure. Similarly, the simulated CA-125

dataset would have 1 to 12 measurements per patient, and the applied datasets range from

1 to 7 and 1 to 5 measurements per patient, but no median value is provided [26]. When we

consider the CSPAN data, however, we have 1 to 8 measurements per patient with a median

of 1, which may be too sparse for PACE to glean enough meaningful information from the

FIT trajectories. This notion is further supported by our application to the PLCO ovarian

cancer screening data, where again the number of measurements ranged from 1 to 6, but

had a median of 3 for cases and 6 for controls. While our results were still not as favorable

as those published by Li and Gatsonis (2017), they were markedly improved compared to

those obtained using the CSPAN dataset.

The other factor is the sparseness of the disease. Li and Gatsonis (2017) focused on

predicting disease recurrence, which often occurs at a higher rate than initial disease onset.

This is evidenced by the specifications for the simulated data and in the description of

the first applied dataset; both have outcome occurrence of 80% [26]. Our biomarker data,

however, originates from cancer screening, where incidence is much lower. As an example,

a woman’s risk for getting ovarian cancer is approximately 1 in 87, and the risk for CRC is

nearly 1 in 23 for men and 1 in 25 for women [4, 46]. While confirmed incidence in the PLCO
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dataset is higher at 7.24% and confirmed incidence in the CSPAN dataset is only 1.5%, both

are much lower than recurrence rates in the examples published and may contribute to some

loss in performance.
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Chapter 6

Establishing a New Decision Threshold

In prior chapters, we presented approaches for estimating risk scores using longitudinal

biomarker measurements. We need a decision threshold to translate these findings into

medical practice and support clinical diagnosis. This value dichotomizes the risk score into

a binary decision, classifying values greater than or equal to the threshold as positive, and

those below as negative. We focus on the PMM approach paired with inverse non-parametric

Buckley-James based on its superior performance using the AUC as a measure.

6.1. Test Data

We first considered two imputation-based approaches to generate sample sets for testing.

Using the microsimulation model, CRC-SPIN, we simulated colorectal cancer disease trajec-

tories paired with outcomes from screening tests [42]. However, this approach only yields

qualitative screening outcomes. Using the additional data available for the simulated cohort

along with the data available through the CSPAN program, we attempted to impute the

missing qualitative FIT measurements using Multivariate Imputation by Chained Equations

(mice) and donor-based imputation, specifically k-Nearest Neighbour (KNN). Variables con-

sidered in the imputation included sex, age, screening time, qualitative screening outcome,

and advanced neoplasia status. We did not include race or ethnicity, as CRC-SPIN does

not account for either in its modeling [42]. We used the mice and VIM packages in R to

implement imputation, but neither produced useable results. As indicated previously, PMM

capitalizes on the differing biomarker trajectories for those with disease (cases) and those

without disease (controls) illustrated in Figures 1.1 and 2.1, something imputation fails to

capture through either approach. In Figure 6.1 we show the trajectories for a random sample

of cases and controls by imputation method. While KNN (6.1b) more closely resembles what
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we would expect given the true FIT trajectories from CSPAN, we see a regression to the

mean-like behavior. Some values in the control group appear to be greater than expected

and some values in the case group appear lower than expected, with some nonsensical values

in both groups. The mice trajectories (6.1a) fail to capture any semblance of the expected

trends. While the control peaks appear less severe than for cases, both contain implausible

values.

(a) Imputation using mice (b) Imputation using knn in VIM

Figure 6.1: Quantitative FIT Trajectories for 100 Cases (right panel) and 100 Controls (left panel)

randomly selected from the imputed CRC-SPIN datasets. Each black line shows the FIT levels for

one subject in the program. The horizontal red line indicates the 20 µg of hemoglobin per gram of

feces cutoff used to define an abnormal FIT

Instead, we produced 500 bootstrap samples of size N = 10,000 from the original CSPAN

dataset. While FIT-positivity for CSPAN was 7.82%, which aligns with values reported

by other programs in the literature, cost-effectiveness models use FIT positivity parameters

≤10% [18]. We sampled FIT-positive and FIT-negative patients separately to allow FIT-

positivity to vary while staying at or below 10% but greater than 0.

We first applied the inverse non-parametric Buckley-James approach described in Chap-

ter 4 to impute the non-zero quantitative FIT measurements necessary to accommodate

logarithmic transformation. The case and control models (PMM-CN3) described in Chapter

3 were then fit with the transformed data and out-of-sample risk predictions were calculated

using 10-fold cross-validation. The original CSPAN data yielded an AUC of 0.951 with a

standard error of 0.008, similarly, the mean AUC for the sample sets was 0.936 with a stan-
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dard error of 0.010. We anticipate varying the FIT-positive rate is likely responsible for the

small difference in AUC and slightly larger standard error. Nonetheless, these results indi-

cate this approach is consistent and well able to discriminate between two clinically relevant

subclasses of participants in a CRC screening program, those with and without advanced

neoplasia.

6.2. Selecting a Decision Threshold

Incorporating a test into patient management requires a decision threshold and each

threshold corresponds to a specific sensitivity/specificity pair [58]. As we consider all possible

sensitivity/specificity pairs in pursuit of the optimal decision threshold, we also account for

the relative burden of errors (i.e. false-positive and false-negative classifications) and the

relative proportions of the two subclasses.

Burden can be defined in the context of financial or health-specific cost and from varying

perspectives (i.e. patient, provider, insurer, community, etc.), but including some judgment

for the relative burden of a false result is necessary [58]. We define burden using the clinical

costs associated with a false result. A false positive result is approximately $1,300 based on

the 2022 Medicare rate for unnecessary diagnostic testing, including pre-and post-operative

consults, bowel prep, and the average cost of colonoscopy with and without polypectomy and

pathology [8]. We define the burden of a false negative result by the increase in treatment

cost associated with a later stage at diagnosis. We use the average difference in treatment

cost associated with a single delay in cancer staging, which is approximately $35,000 [17].

In this setting, the relative cost for a false-negative result is much greater than the cost for

a false-positive result, indicating our pair will favor sensitivity rather than specificity [58].

Prevalence interacts with the sensitivity and specificity to determine the actual proba-

bilities of false-positive and false-negative results in the population and as such must also

be included to identify the optimal sensitivity/specificity pair [58]. While the prevalence of

advanced neoplasia increases with age, we conservatively used 6.2%, which is the prevalence

in 50–54 year-olds [27]. We then combine these two elements to calculate a slope (m) for the
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ROC curve, using:

m =

(
false-positive cost

false-negative cost

)
×
(
1− P

P

)
,

where P = disease prevalence and [58]. The decision threshold corresponds to the operating

point where a line with slope (m) intersects the ROC curve, and can also be obtained from

the sensitivity and specificity pair which maximizes [sensitivity − m(1 − specificity)] [58].

The resulting threshold is the value that will yield the optimal mix of false-positive and

false-negative results [58].

6.3. Results

To maximize the above function, we extracted sensitivity and specificity pairs from the

AUC results obtained previously at varying thresholds for each sample set. We combine our

false-positive/false-negative cost ratio of 0.036 and prevalence estimate of 6.2% to calculate

m = 0.5505. We then iterate through the pairs until we obtain the maximum.

Based on this approach, the decision threshold is 0.02528; the corresponding sensitiv-

ity/specificity pair is 0.8997 and 0.9018, respectively. Specificity is slightly lower in com-

parison to values reported in the literature for single-sample FIT (0.91 (0.87 - 0.94)) and

colonoscopy (0.93 (0.91 - 0.95)), but sensitivity is slightly higher relative to single-sample

FIT (0.86 (0.68 - 0.95)) and colonoscopy (0.71 (0.58 - 0.81)) [24]. This is likely a result of

the choices made when defining the elements used to calculate the slope (m). Particularly,

we attributed a greater burden to false-negative classification and thus would expect the

pair to favor sensitivity over specificity, as is shown here. These results further suggest the

PMM risk score, at this threshold, can correctly distinguish between participants with and

without AN.

We also consider efficiency and predictive value in our evaluation. Specifically, efficiency

is the fraction of correct results (true-positive and true-negative) among all results, while

predictive results are either positive (PPV), the percentage of correct positive results, or

negative (NPV), the percentage of correct negative results. We include these measurements

separately as they are to be viewed more as aid in interpreting the test result, rather than a
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measure of performance. This is because both efficiency and predictive value also incorporate

prevalence, meaning they cannot be considered as inherent properties of the test alone, like

sensitivity and specificity, but rather are the results from applying the test in a particular

context (decision threshold and disease prevalence) [58]. As a result, it is also important to

note this indicates multiple values are possible for each measurement, i.e. holding prevalence

constant, a value then exists for each possible decision threshold [58]. Given a prevalence

estimate of 6.2% and a decision threshold of 0.02528, the mean value for efficiency was 0.933

(0.002), while PPV was 0.141 (0.009) and NPV was 0.998 (0.0004).

Negative predictive value is not typically reported for FIT-based screening programs as

colonoscopy is not completed for participants with a normal FIT result so true negative

status is unknown. Similarly, as disease prevalence is low, indicating the number of affected

participants is small, we should expect NPV to be high as the risk of being classified as

a false negative is low. We focus instead on PPV. While values reported in the literature

vary for FIT-based screening, we compare our results to those reported from a retrospective,

longitudinal study performed in a fixed cohort of Kaiser Permanente health plan members

over four rounds of annual screening; PPV for AN was summarized at 0.114 for the entire

study period [21]. Our results suggest a modest improvement in our ability to correctly

classify patients with AN based on their PMM risk score. Lastly, we consider efficiency

as it allows us to consider all results together rather than only one class at a time, as with

predictive value. Of the 6.7% results still misclassified, on average only 0.174% of participants

would receive a false-negative result, while 6.526% would still be considered a false-positive

result. Even so, this approach would still also yield a 19.87% reduction, on average, in false-

positive results relative to the current screening approach. Using the costs defined previously

for false-positive and false-negative results, this approach could save approximately $110 per

patient screened. These results suggest the PMM approach could be a favorable solution

to the colonoscopy capacity issue by reducing the number of unnecessary procedures, in

addition to yielding cost savings for the healthcare system.
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Chapter 7

Conclusion

This dissertation focuses on statistical methods using longitudinal biomarkers for the

early detection of disease. We first apply a risk prediction framework (PMM) to identify

cancer among asymptomatic patients. In the context of colorectal cancer screening, this

strategy required additional consideration before the modeling approach could be imple-

mented. Specifically, the distribution and range of values for fecal hemoglobin required we

test various shift parameters to accommodate data transformation. In doing so, we found the

PMM approach to be sensitive to the value used. We then transitioned to an imputation-

based approach to accommodate data transformation. PMM continuously outperformed

univariate logistic regression, implemented to represent the standard of care. In addition to

the longitudinal measures, we implemented a functional data approach to instead leverage

the information from the underlying trajectories, adjusting for verification bias under both

MAR and MNAR assumptions. However, this approach did not perform as well as PMM or

even the standard of care. We anticipate this approach was unsuccessful due to the sparsity

of measurements associated with screening. In hindsight, this is unsurprising as one of the

original models considered (ROCA), which incorporated the estimation of a changepoint

distribution as part of its evaluation of risk, was thought to be unsuccessful because the

intervals between two biomarker measurements were too wide and thus would not contain

enough measurements around the changepoint. Lastly, we identified and evaluated a de-

cision threshold for clinical implementation. This approach leveraged Receiver-Operating

Characteristic (ROC) Plots in combination with the relative cost/undesirability of errors to

identify the decision threshold corresponding to the optimal mix of false-positive and false-

negative results. We applied these methods to data collected within a large FIT-based CRC

screening program, with the motivation of improving early detection success while reducing
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the number of colonoscopies needed to identify patients with AN.

Several topics warrant further research. First, a natural next step is to apply the PMM

approach used in this thesis within a FIT-based screening program and evaluate clinical

outcomes in a randomized control setting in comparison with the standard of care. We will

also investigate different methods for determining the optimum binary cut-off threshold to

pair with the PMM risk score and how they might be applied in a clinical setting. As an

example, information theory offers multiple concepts thought to be useful when evaluating a

clinical test. Both mutual information (MI) and information gain (IG) have been proposed as

metrics for clinical test value, where MI quantifies the degree to which performing the test can

be expected to reduce uncertainty regarding the underlying disease and IG (relative entropy)

quantifies the expectation that a specific test result (i.e. positive or negative) will reduce

diagnostic uncertainty [33, 49]. IG is of particular interest as the clinical considerations for

cancer screening disproportionately weigh certain test results. Lastly, we continue to pursue

methods for incorporating longitudinal biomarker measurements for the early detection of

disease while accounting for the sparseness of data typically associated with cancer screening.
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Appendix A

APPENDIX

x

Table A.1: Time-dependent AUCs and associated 95% bootstrapped confidence intervals (shown

in parentheses) for the reproduced PMM-CN3 using the LOOCV and 10-Fold CV method

LOOCV 10-Fold CV

Metric PMM-CN3 PMM-CN3

AUC0.5 0.971 (0.952, 0.986) 0.969 (0.947, 0.985)

AUC1.0 0.947 (0.922, 0.968) 0.947 (0.922, 0.967)

AUC1.5 0.889 (0.835, 0.938) 0.895 (0.845, 0.937)

AUC2.0 0.867 (0.806, 0.921) 0.872 (0.816, 0.920)

AUC2.5 0.867 (0.806, 0.918) 0.871 (0.818, 0.919)

AUC3.0 0.859 (0.799, 0.913) 0.863 (0.802, 0.913)
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