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Electric power systems are undergoing a dramatic change. The penetration of dis-

tributed energy resources (DERs) such as wind turbine generators and photovoltaic panels

is turning a traditional power system into the active distribution network. Power system

situational awareness, which provides critical information for system monitoring and con-

trol, is being challenged by multiple sources of uncertainties such as random meter errors,

stochastic power output of DERs, and imprecise network parameters. On the other hand,

cyber-physical power system operation is vulnerable to cyberattacks against effective state

estimation, such as false data injection attacks (FDIAs). To construct next-generation smart

grids, this dissertation develops a comprehensive situational awareness framework for dis-

tribution system monitoring and control via optimization, machine learning, and artificial

intelligence. Specifically, this dissertation explores advanced model-based and data-driven

methodologies in this framework, including state estimation, cyberattack detection, fault

location, and voltage control.

Firstly, we propose a highly efficient distribution system state estimation (DSSE) method

using supervisory control and data acquisition (SCADA) systems. The proposed method

uses the Taylor series of voltages for constructing a linear DSSE model in the interval form

and then solves this model by interval arithmetic, which avoids high calculation costs that

result from a nonlinear iterative process in traditional weighted least square (WLS)-based

methods. Subsequently, a general interval state estimation (ISE) model is developed to

iv



formulate multiple uncertainties. A modified Krawczyk operator in interval arithmetic is

proposed to solve the general ISE model efficiently and provides upper and lower bounds

of state variables. Case studies the developed DSSE method overcomes the traditional

challenges from poor observability due to lack of meters, stochastic outputs of renewables,

and imprecise network parameters, and works conveniently with limited phasor measurement

units (PMUs) in three-phase unbalanced distribution systems. Meanwhile, we seek to develop

fault location via DSSE integrating PMU data in a distributed manner. Based on the graph

model of the feeder, we further perform the decentralized DSSE algorithm in a hierarchical

structure and identify the location of the fault source. The proposed approach captures the

impact of distributed generations on distribution system operation and works with high-level

noises in measurements.

We further apply DSSE to data-driven cyberattack detection and voltage control via

machine learning and artificial intelligence (AI). In the propose semi-supervised learning-

based FDIA detection algorithm, we use autoencoders for efficient dimension reduction and

feature extraction of measurement datasets and integrate them into advanced generative

adversarial networks (GANs) to detect anomalies by capturing the unconformity between

abnormal and secure measurements. Finally, a model-free volt-VAR optimization (VVO)

algorithm via multi-agent deep reinforcement learning (MADRL) is developed. Numerical

tests show the proposed situational awareness technologies, combining sophistication and

flexibility, are highly applicable to practical distribution systems and have good potential to

improve operation and control efficiency in real-world power grids.
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Chapter 1

Introduction

1.1. Power System Situational Awareness

High penetration of distributed energy resources (DERs) is driving current distribution

systems toward smart next-generation systems [1]. DERs are defined as small power sources

on the distribution systems that produce electricity and are not otherwise included in the

formal definition of the bulk electric system by the North American Electric Reliability

Corporation (NERC) [2]. There are various types of DERs, such as photovoltaic (PV),

electric vehicle (EV), and wind turbine generators (WTGs). DERs have advantages of low

investment costs, low power losses, and flexible operation by unlocking new or existing energy

resources to be developed near customers. Motivated by these benefits, the installation of

DERs have increased significantly worldwide in recent years. As a good example of such an

increment, DERs in the United States have grown almost three times faster than net total

generation capacity (168 GW vs. 57 GW) on a 5-year basis (2015-2019) [3].

This increase brings huge challenges to practical power system and electricity market

operations. The traditional “passive” distribution systems are transforming into an active

network, which requires operators to revise their operation strategies to accommodate the

transition from the traditional top-down power flow to a bottom-up paradigm [4] and update

almost all of their control applications. Moreover, at high levels of DER penetration, electric

power is found to flow back towards the upstream transformer, causing nodal voltages to rise.

This phenomenon leads to an undesirable cycling of voltage regulators and voltage quality

degradation [5]. Besides, the presence of DERs reduces the fault current for downstream

faults and increases the fault current for upstream faults. Therefore, either of them may

exceed the existing current setting, resulting in mal-trip or fail-to-trip of protection devices
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at a certain penetration level [6].

On the other hand, highly relying on the communication infrastructure in the cyber-

physical power systems, the risk and vulnerability of cyber-attacks against power grid oper-

ation increase. For example, in the 2015 Ukrainian power grid cyber-attack event, attackers

intruded the supervisory control and data acquisition (SCADA) system of distribution net-

works, which leads to a power outage involving 225,000 customers [7]. Liu et al. presented

an false data injection attack (FDIA) algorithm against dc state estimation to avoid being

detected by conventional bad data detection (BDD) methods [8]. Since then, researchers

devote significant efforts to investigating the FDIA detection methods. These attacks that

can successfully circumvent the BDD methods are defined as unobservable cyber-attacks.

Distribution systems are also vulnerable to cyber-attacks due to their direct connections to

customer loads and emerging distributed generators (DGs) [9].

As a typical component for distribution automation, power system situational awareness,

represented by state estimation, enables continuous and reliable monitoring and control of

distribution system operation with DER penetration. This technology is paramount in prac-

tice as it allows distribution system operators (DSOs) to perceive the operating status of

the system and make decisions. Various control-room applications contain state estimation,

topology identification, fault management, cyberattack mitigation, and voltage control, etc.

However, the existing situational awareness technologies in transmission systems cannot be

trivially applied to typical distribution systems. The reason originates from several consid-

erable differences between electric transmission and distribution systems:

• Radial or weakly-meshed networks: The vast majority of distribution systems

operate in radial configurations for practical engineering concerns, which distinguishes

distribution networks from transmission systems that generally have multiple loops.

The weakly-meshed structure guarantees the system reliability against contingencies

or scheduled maintenance.

• Poor Observability: Distribution systems may be unobservable due to data missing

and lack of real-time meters, especially phasor measurement units (PMUs), which
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means that the number of metering instruments in a network is generally limited. In

contrast, transmission systems have a high measurement redundancy due to prevalent

PMU installation.

• Low x/r ratio: Low reactance to resistance ratio in distribution lines make conven-

tional Newton-Raphson power flow and state estimation algorithms in transmission

systems fail at a distribution level [10].

• Unbalanced operation: Distribution systems are highly unbalanced in practice,

resulting in higher complexity in the formulation of power flow calculation and distri-

bution system state estimation (DSSE). This unbalanced property is reflected not only

in the different network parameters (or loads) on each phase but also in the existences

of single-phase and two-phase branches.

• “Invisible” network configuration: The complete data of network topology are not

commonly stored [11]. Moreover, the topology information in distribution networks is

often not available at the low-voltage level due to uninformed changes that frequently

happen [12].

These characteristics of distribution systems increase the challenges and difficulties of

system operation and control. As a result, accurate and effective modeling and methodology

of power system situational awareness call for holistic improvement.

1.2. Research Objectives and Achievements

Active distribution systems emerge with extensive DERs aggregating on the demand

side. Quantitatively assessing these impacts of DER uncertainty on these active distribution

systems via DSSE becomes more necessary. On the other hand, data-driven approaches,

which exploit valuable information by abundant real-time and historical data from periodic

patterns of power systems, hold the promise to enhance operational efficiency of distribution

system operation. In pursuit of these goals, we have pioneered a general theoretical frame-

work that advances statistical theory, optimization, and machine learning for distribution

system monitoring and control.
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Figure 1.1. Research scheme of this dissertation for distribution system monitoring and

control.

Fig. 1.1 depicts the general schematic of a model-based and data-driven situational

awareness framework. In the framework, the uncertain power outputs of DER are modeled

by diverse techniques and then deemed as the inputs of DSSE along with measurements

to depict the system states. Meanwhile, the random noises from meters and malicious

cyber-attacks against these measurements degrade the estimation accuracy. Further DSSE-

based applications appear across voltage control, topology identification, and cyberattack

mitigation. Specifically, the main contributions and achievements of this dissertation are

outlined below.

1.2.1. Innovation: Preparing for DER Uncertainty

The variability and intermittency of DER outputs pose significant uncertainty to system

operation; besides, measurements with noises and imprecise line parameters because of aging

also result in uncertain inputs to DSSE. In the meantime, the reliability events represented
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by faults and cyberattacks bring immense uncertainty factors to normal system operation.

All these issues result in stringent requirements for system modeling and operation practices.

DSSE & Renewable Integration. To capture the impacts of these uncertainties from

DER outputs, imprecise line parameters, and measurements with noises, we develop a general

framework of interval state estimation (ISE) leveraging the heterogeneous measurements

from SCADA systems and the emerging PMUs. Our proposed algorithms obtain the upper

and lower bounds of state variables for better monitoring power grids under the coordinated

impacts of multiple uncertainties. In brief, we see through these uncertainties by ISE and

realize 100x acceleration compared with the conventional weighted least square (WLS)-based

methods based on Monte Carlo simulation in this field. Towards a 100% renewable power

grid in the near future, where significant uncertainty produces a far-reaching influence on

system operation, the proposed ISE algorithm will be a promising candidate for effective

solutions to uncertainty analysis.

DSSE & Fault Location. Fast and accurate fault location helps the utilities to clear

the faults and accelerate system restoration; however, this is a challenging task as the bidi-

rectional power flow due to the increasing penetration of DERs leads to the mal-trip or

fail-to-trip of conventional protection devices and imprecise fault location. To mitigate the

impacts, a graph-based fault location algorithm in distribution networks is proposed by ad-

vanced DSSE techniques integrating PMU data. This faulted-line location method running

in a decentralized manner has a lower computation cost and enables fast fault location within

15 milliseconds, which shows the application potential in larger-scale systems. The proposed

approach captures the impact of DER penetration on distribution system operation, and its

location performance is independent of fault types and fault impedances. Furthermore, the

proposed algorithm is robust against high-level noises in measurements.

1.2.2. Integration: Transforming the Grid with Big Data, Machine Learning, and Artificial

Intelligence

With the fast development of advanced metering infrastructure (AMI) that collects a
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massive volume of data, machine learning (ML) and artificial intelligence (AI) techniques

are widely applied to power system operation due to their powerful capability of extracting

useful information and flexible extensibility. Based on DSSE, this dissertation further focus

on developing data-driven AI-based methods for upgrading the monitoring and control of

electric distribution systems with high penetration of DERs.

DSSE & Cyberattack Detection. The high dependence of cyber-physical power sys-

tems on information technology increases vulnerability from malicious cyberattacks. Con-

sidering the high dimensionality and correlated nature of power system measurements, the

advanced ML technique using PMU data is applied to cyberattack detection and mitiga-

tion. Autoencoders are integrated into an advanced generative adversarial network (GAN)

framework, which detects abnormal measurements under the unobservable cyberattacks by

capturing the unconformity between anomalies and secure measurements. Also, because of

the expensive labeling costs and potential missing labeled data in practical systems, this

method only requires unlabeled data and a few labeled data from measuring instruments

by leveraging a powerful generation capability of GAN and thus is semi-supervised learning.

Specifically, the proposed method with as few as 1000 labeled training data self-learns with

an accurate detection ability of higher than 95%.

DSSE & Voltage Control. Encouraged by AlphaGo’s big hit, a real-time volt-VAR

optimization (VVO) paradigm is developed to support distribution system operators in ef-

fective voltage control via deep reinforcement learning (DRL). This work is the first attempt

to apply such an innovative AI technique to VVO control on voltage regulating devices

in distribution systems. This method realizes power loss reduction and voltage regulation

concurrently. In brief, under time-varying operating conditions, this work enables a power

distribution grid to self-learn with the “cognitive” function of system operation by mimicking

the human mind. Furthermore, by assigning the global control variables to multiple DRL

agents with effective information exchange, the proposed method addresses the scalability

issue and raise computational efficiency in larger-scale distribution systems, compared with

single-agent DRL-based algorithms.
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1.3. Chapter Organization

The remainder of this dissertation is organized as follows.

Chapter 2 proposes a novel and highly efficient DSSE algorithm with measurements from

SCADA systems. The proposed method uses the Taylor series of voltages for constructing a

linear DSSE model in the interval form and then solves this model by interval arithmetic.

Chapter 3 extends the work proposed in Chapter 2 and proposes a general ISE framework

in DSSE integrating PMU data in unbalanced distribution systems. The proposed model

simultaneously formulates multiple uncertainties in unbalanced distribution systems by in-

terval arithmetic. Moreover, this model can accommodate partially available measurements

of DG outputs and inaccurate line parameters. A modified Krawczyk-operator algorithm

is proposed to solve the general ISE model, and effectively provides the upper and lower

bounds of state variables under coordinated impacts of these uncertainties.

Chapter 4 proposes a graph-based faulted line identification algorithm using a limited

number of PMUs. The proposed method first applies a distributed DSSE algorithm to

efficiently restrict the searching region for the fault source in the feeder between two adjacent

PMUs. Based on the graph model of the feeder in the reduced searching region, this method

performed in a hierarchical structure further identifies the location of the fault source.

Chapter 5 explores the advanced semi-supervised learning technique for detecting cy-

berattack against DSSE. Autoencoders are integrated into a GAN framework, which detects

abnormal measurements under the unobservable cyberattacks by capturing the unconformity

between anomalies and secure measurements.

Chapter 6 develops a model-free VVO algorithm via multi-agent DRL, where the forward-

backward sweep method for DSSE provides power flow results within a few iterations as the

DRL environment. The VVO problem in unbalanced distribution networks is cast to an

intelligent deep Q-network framework, which avoids solving a specific optimization model

directly when facing time-varying system operating conditions.

Finally, a conclusion of this dissertation and future works unveiled during the research

efforts are discussed in Chapter 7.
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Chapter 2

Towards Highly Efficient State Estimation with SCADA Measurements in

Distribution Systems

2.1. Motivation

Distribution systems are undergoing radical changes in operation and control, which

calls for effective situation awareness techniques [13]. Distribution system state estimation

(DSSE) converts redundant meter readings and other available information into an estimate

of system states and thus develops into a subject of active research [14]. The measurements

can be the voltage magnitudes, power injections, and power flows from supervisory control

and data acquisition (SCADA) systems, or voltage and current phasor recorded by phasor

measurement units (PMUs) [15]. Monte Carlo simulations (MCSs) [16] are widely used to

obtain measurements samplings including noises owing to the assumption that these noises

follow Gaussian distributions. Also, traditional nonlinear DSSE methods adopt the Gauss-

Newton method based on the WLS criterion to perform the iterative estimation process.

Besides, to correctly evaluate the estimation performance, the number of the required samples

in MCSs is tremendous, which brings a heavy computation load to the WLS-based methods

[13].

To mitigate the deficiency of MCSs, analytical methods such as nonlinear program-

ming [17, 18] are proposed to provide the upper and lower bounds of all possible state vari-

ables that meet all constraints from measurements. For instance, the authors of [17] used

a constrained nonlinear programming approach to obtain the ranges of states in transmis-

sion systems, while [18] extends this boundary optimization method to distribution systems

with PMU installation. However, the method in [18] requires the installation of PMUs in

distribution systems. Due to lack of PMUs in some distribution systems, the metering data
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recorded by SCADA systems and pseudo-measurements collected at loads or distributed

generators (DGs) are widely used in the existing DSSE methods [15]. Moreover, these mea-

surements lead to nonlinear DSSE models that are iteratively solved, and thus the process is

time-consuming. This chapter presents a highly efficient DSSE method to handle the uncer-

tainty of random measurement noises. The main contributions of the proposed method are

concluded as (i) constructing a novel DSSE model to avoid multiple runs of the WLS-based

DSSE procedure and (ii) accelerating accurate state estimates by interval arithmetic with

no requirements of PMU data.

2.2. Conventional DSSE

2.2.1. State Estimation Theory

In classical state estimators, the relationship between redundant measurements and state

variables is depicted as:

z = h(x) + e (2.1)

where x is an n-dimension state vector, and z is an m-dimension measurement vector; h(x) is

the measurement function about x; the measurement noise vector e obeys a Gaussian distri-

bution e ∼ N(0,R) is a covariance matrix and is usually considered diagonal (for instance,

see [19]), R = diag [σ2
1, σ

2
2, . . . , σ

2
m], and σ2

i denotes the variance of the ith measurement

error, i = 1, 2, . . . ,m.

The state variables are obtained via a WLS criterion that minimizes the sum of weighted

measurement residuals J as:

x̂ = arg min J = arg min[z − h(x)]TW [z − h(x)] (2.2)

where W is a weight matrix of measurements to quantify the trust levels of diverse mea-

surements, and W = R−1.
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Optimal estimated states are solved iteratively by the Gauss-Newton method until each

component of the vector ∆x at each iteration is sufficiently small:

∂J/∂x = H(x)TW [z − h(x)] = 0 (2.3)

H(x)TWH(x)∆x = H(x)TW [z − h(x)] (2.4)

x(t+1) = x(t) + ∆x (2.5)

where H(x) is the Jacobian matrix of the measurement function with respect to x, and

H(x) = ∂h(x)/∂x.

2.2.2. Formulation of DSSE

In the conventional DSSE methods, SCADA systems provide the metering data of volt-

age magnitudes and powers, and pseudo-measurements are also used to achieve the system

observability. Also, the substation acts as a slack bus [15].

The system states are usually chosen as the voltage phasors at all buses and expressed

as

x = [v1, v1, · · · , vn] (2.6)

where vj denotes the voltage phasor at bus j and j = 1, . . . , n; n is the number of buses in

the system.

The vector of measurements, z, in DSSE generally includes 1) voltage and current pha-

sors from distribution-level PMUs, 2) power flows recorded by supervisory control and data

acquisition systems, and 3) power injections from smart meters or pseudo-measurements,

including load consumption and DG [20]. The DSSE model is nonlinear since PMUs are not

installed at each node in a practical distribution system [10].

Denote the voltage at node k as V k and the current at branch i- j as I ij, k ∈ ψV and

{i, j} ∈ ψI ; ψV and ψI are the sets of nodes and branches with voltage/current measurements
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from limited PMUs installed in the distribution system. Power measurements exist at node

k or branch i- j, {i, j} or k ∈ ψS is the set of load/DG nodes or the branches installed with

a meter.

The measurement function of the three-phase voltage measurement at node k, k ∈ ψV ,

can be depicted as

V k = [V a
k , V

b
k , V

c
k ]
T

= vk (2.7)

The relationship between the current measurement at branch i- j and the state can be

expressed as:

I ij = [Iaij, I
b
ij, I

c
ij]
T

= Y
ij

(v
i
− vj) (2.8)

where Y ij denotes the line admittance at this branch.

The complex power measurements at node k or at branch i- j can be expressed as a

nonlinear relationship about the states as

Sk = vk · (Ik)∗ (2.9)

Sij = vi · (I ij)∗ (2.10)

where the power flow measurement Sij ∈ C3×1 and the power injection measurement Sk ∈

C3×1; vk and vi denote the estimated voltages at node k and i, respectively, and come from

the corresponding elements in x; Further, I ij can be obtained by (2.8), and the current

injection at node k can be expressed as Ik = [Iak , I
b
k, I

c
k]
T

= Y kvk, where Y k ∈ C3×3 denotes

the nodal admittance.

The DSSE model in the complex form is expressed as

z = [V k, I ij,Sk,Sij]
T = h(x) + e (2.11)

Due to the nonlinear relationships between the voltages and the power measurements,

the model (2.11) is nonlinear. The DSSE process in the three-phase distribution system is
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iteratively implemented in the following steps [21]:

1) Backward Sweep: Get initial values of branch currents by a backward approach. An initial

voltage at each node is set as the substation voltage, i.e., ṽi = V slack , and (2.12) is used to

calculate the current injections is calculated as through nodal power injections:

Ik eq = (Sk/ṽi)
∗ (2.12)

Next, these injections are used to obtain branch currents.

2) Forward Sweep: The branch currents in step 1) and the substation voltage are used to

calculate initial nodal voltages, x0.

3) Obtain h(x) by (2.7)-(2.10) with the latest states xt, and then update system state

variables as

∆xt = (H(xt)
T
WH(xt))−1H(xt)

T
W
[
z − h(xt)

]
(2.13)

4) Update the nodal voltages by xt+1 = xt + ∆xt.

5) If ∆xt is less than a pre-set tolerance, stop the iterative process. Otherwise, go to step

3).

2.3. Proposed Methodology

2.3.1. DSSE Modeling in Interval Arithmatic

A linear approximation is developed in this section. Define ∆Vk = 1 − Vk, where Vk

denotes the voltage phasor at bus k. Considering the small voltage drops along the distribu-

tion lines and the normal voltage limits (0.95 ∼ 1.05 p.u.) in practical systems [22], apply

the Taylor series of ∆Vk around zero as 1(1 −∆Vk) =
∑∞

n=0(∆Vk)
n. Further, the following

equation is obtained by ignoring the high order terms [23]:

1/(1−∆Vk) ≈ 1 + ∆Vk = 2− Vk (2.14)
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Figure 2.1. Schematic diagram of the proposed linearization. (a) The complex plane of Vk.

(b) Approximation loss F (Vk)

Fig.2.1 depicts the accuracy loss introduced by (2.14) as F (Vk) = 1
Vk
− (2− Vk), and for

instance, the error for Vk = 0.1 is around 0.01. The approximation relationship 1
Vk

= 2− Vk

is used for constructing the measurement functions in the proposed DSSE model, which are

shown below.

1) Power Flow Measurements From SCADA System

The power flow measurements Pik and Qik at branch i–k are expressed as

Sik = Pik + jQik = Vi[yik(Vi − Vk)]∗ (2.15)

where Pik and Qik denote the real and reactive powers at this branch; yik denotes the nodal

admittance between buses i and k, and the function [·]∗ represents the complex conjugate;

Vi and Vk denote the voltage phasors at these two buses.

Apply (2.14) to (2.15), and a closed-form expression is obtained.

Sik(2− Vi) = Vi[yik(Vi − Vk)]∗ (2.16)

Formula (2.15) can be linearly expressed as SikVi + y∗ikV
∗
i − y∗ikV ∗k = 2Sik.

2) Power Injection Measurements From SCADA System or Pseudo-measurements

The measurement function of the power injection at bus k holds below, and similar to

(2.15), further expressed as a linear one.
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Sk = Pk + jQk = Vk
∑
l∈N(k)

[ylk(Vl − Vk)]∗ (2.17)

Sk(2− Vk) =
∑
l∈N(k)

[ylk(Vl − Vk)]∗ (2.18)

where Pk and Qk denote the real and reactive powers at bus k, and N(k) is the set of all

buses connected to bus k.

3) Voltage Magnitudes From SCADA System

The measurement function of voltage magnitudes at bus k is approximated as

Vk =
√

(V 2
k,r + V 2

k,x ≈ Vk,r (2.19)

where Vk,r and Vk,x represent the real and imaginary parts of voltages at bus k, and the small

angle differences of distribution lines are considered, e.g., 0.1 degrees per mile [2].

Reorganize the linear equations (2.16), (2.18), and (2.19) as

BV +DV ∗ = E (2.20)

where V denotes the vector of the nodal voltage phasors, and B, D, and E are the corre-

sponding coefficient matrices and suppressed here due to the limited space. Further, express

(2.20) in rectangular coordinates as

Br +Dr −Bx +Dx

Bx +Dx Br −Dr


V r

V x

 =

Er

Ex

 (2.21)

where the subscripts r and x denote the real and imaginary parts of complex numbers. For

simplicity, (2.21) is expressed as

Ax = b (2.22)
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where x =

V r

V x

 denotes the state vector; A =

Br +Dr −Bx +Dx

Bx +Dx Br −Dr

, and A ∈ Rm×n ;

rank(A)=n, i.e., a full rank; b =

Er
Ex

 and b ∈ Rm×1.

Note that (2.22) does not consider measurement noises and involves various levels of

approximation on the voltage magnitudes and powers. Next, based on (2.22), we use interval

arithmetic to handle these accuracy losses in DSSE. We consider the measurement noises

by updating (2.22) to an interval equation, where an interval number is defined as [a] =

[al, au] = {a ∈ R |al≤a≤au}, and interval vectors and matrices are constructed similarly [24].

According to the 3σ rule of a Gaussian distribution, where σ denotes the standard deviation,

99.73% of values from the distribution are within three times of standard deviations [2].

Hence, the maximum measurement errors (i.e.,∓3σ) are superposed onto the corresponding

measurements to obtain the lower and upper bounds of A and b, i.e., [A] and [b]. By this

relaxation, these measurement intervals enclose their true values.

2.3.2. Solution in Interval Arithmetic

This section presents a novel solving method towards the linear DSSE model by further

taking into account measurement noises based on (2.22). Also, interval arithmetic [24] is used

to handle the accuracy loss introduced by the linear approximation and these measurement

noises in the DSSE process.

The proposed method considers the measurement noises by updating (2.22) to an interval

equation, where an interval number is defined as [a] = [al, au] = {a ∈ R | al ≤ a ≤ au}, and

an interval vector and matrix are constructed similarly. The maximum measurement errors

(±3σ, and σ is the standard deviation of a Gaussian distribution) are superposed onto the

corresponding measurements to obtain the lower and upper bounds of A and b, i.e., [A] and

[b]. By this relaxation, these measurement intervals enclose the true values of measurements

15



[A][x] = [b]⇒

[A] −I

0 [A]T


[x]

[y]

 =

[b]

0

 (2.23)

where I ∈ Rm×m is an identity matrix, and [y] ∈ Rm×1.

Compactly express (2.23) as [A][X] = [B], and the interval symbol [·] is omitted below,

e.g., the augmented state vector X =

[x]

[y]

. Equation (2.23) is solved by a Krawczyk-

operator algorithm. An initial interval solution X(0) is calculated by

X(0) = ([−α, α], . . . , [−α, α])T (2.24)

where α = ‖CB‖∞/(1 − β) and β = ‖I − CA‖∞; C is a preconditioning point matrix,

C−1=Mid[A], and Mid[·] is the medium of intervals; ‖·‖∞ denotes the infinite norm of a

vector, and this initial solution X(0) contains the final solution.

The following process at iteration j is used to gradually approach the final solution hull

until ‖X(j+1) −X(j)‖∞≤ ε:

X(j+1) = (CB + (I −CA)X(j)) ∩X(j) (2.25)

where ε = 10−4. It is proved that starting from X(0), the iterative process rapidly converges

if ‖I −CA‖< 1, and ‖·‖ is any norm [24].

The final state estimate of x in the proposed DSSE model is obtained by Mid[X(j+1)]

considering that the measurement noises follow symmetric Gaussian distributions about zero

means.

2.4. Numerical Test

We test the proposed algorithm on the IEEE 34-bus distribution system [25]. The system

is modified by adding four DGs , shown as Fig. 2.2:, and the installed capacity of each DG
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Table 2.1. Measurement arrangement in test systems

Measurements Location

SCADA
|V | 1, 11, 20, 25

P, Q 1-2, 4-6, 13-15, 20-23,30-31

Pseudo-meas. P, Q All load nodes and DG nodes

Figure 2.2. IEEE 34-bus distribution system

is 200 kVA. The maximum errors of measurements are set as 1% of these true values for the

voltage magnitudes and powers from SCADA systems and 20% for pseudo-measurements.

Table 2.1 displays the measurement placement scheme in the test system.

2.4.1. Estimation Performance

To evaluate the performance of the proposed method, we adopt the nonlinear WLS-based

method in (2.1)-(2.5) as the baseline. In Fig. 2.3, the maximum absolute errors (MAEs) of

the real and imaginary parts of voltages in 1000 MCSs are used to evaluate the estimation

accuracy of the nonlinear WLS-based method in [15]. Also, using measurements from one

of these MCSs, we calculate the errors of the estimated voltages by the proposed method.

Fig. 2.3 implies that the WLS-based method in MCSs may produce the MAEs that reach up

to around 5.34×10−3 p.u., while the proposed method obtains accurate estimates with the
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maximum error 1.54×10−3 p.u. The root mean square errors (RMSEs) of these estimated

voltages in all MCSs are used to evaluate the overall estimation performance of this nonlinear

DSSE method.

 

Figure 2.3. Comparison in the estimation errors of the proposed method and the MAEs that

may happen in a random sampling of measurements.

Moreover, the maximums of the RMSEs are compared with the MAEs of the proposed

method at all buses, shown in Table 2.2. In contrast to the WLS-based method in a Monte

Carlo trial, the proposed method obtains the states more accurately. Also, the estimation

accuracy of our method is close to that of the baseline method in 1000 MCSs, and however,

the latter requires considerable sets of samplings.

Table 2.2 compares the computational efficiency of the proposed method with that of

the WLS-based method. The CPU time of the proposed method accounts for about 12% of

the average one that this nonlinear method takes in a single Monte Carlo trial, i.e., 20.30 vs

174.79 milliseconds.
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Table 2.2. Comparison in accuracy and computation time

Algorithm Type
Maximum Errors or RMSEs [p.u.]

CPU Time
Real Part Imaginary Part

Proposed Method 1.541×10−3 1.451×10−4 20.30 [ms]

WLS-based DSSE 1.681×10−3 1.842×10−4 174.7 [s] for 1000 trials

2.4.2. Robustness Analysis

This section discusses influence factors, such as operating condition and measurement

redundancy, to illustrate the robustness of the proposed method.

Considering the impacts of DG penetration on voltage profile, we investigate the esti-

mation results of the proposed method in various operation ranges, i.e., 0.90∼0.95 p.u. and

0.9∼1.1 p.u., shown in Table 2.3. The comparison between these cases illustrates that a

narrower voltage range around 1.0 leads to higher estimation accuracy and computational

efficiency of the proposed method. Table 2.3 validates the robustness of this method for

various operating conditions.

Table 2.3. Estimation performance in robustness analysis

Robustness Analysis
Maximum Errors or RMSEs [p.u.] CPU Time

Real Part Imaginary Part [ms]

Voltage Profile
0.90∼0.95 1.652×10−3 1.607×10−3 20.43

0.90∼1.1 1.831×10−3 1.793×10−3 21.41

Measurement Redun.
1.221 1.330×103 1.693×10−4 18.30

1.265 1.029×103 1.642×10−4 17.11

The measurement redundancy shown in Table 2.1 is 1.176, and we further test the pro-

posed algorithm with other measurement redundancies by adjusting the number of measure-

ments and their locations. Table 2.3 gives the estimation performance of these tests, which

shows that the efficacy of this method does not depend on the measurement arrangements.

Also, the higher measurement redundancy leads to the overall improvement in estimation

accuracy and computational efficiency.
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In Fig. 2.2, the maximum absolute errors (MAEs) of the real and imaginary parts of

voltages in 1000 times of MCSs are used to evaluate the estimation accuracy of the nonlinear

DSSE method in [15]; Fig. 3 also lists the errors of the estimated voltages in the proposed

method. It implies in Fig.3 that a single Monte Carlo trial may produce significant estimation

errors that reach up to around 5.34× 103 p.u., while the proposed method obtains accurate

estimates with the maximum error 1.54 × 103 p.u. The root mean square errors (RMSEs)

of these estimated voltages in all MCSs are also used to evaluate the overall estimation

performance of this nonlinear DSSE method. Moreover, the maximums of the RMSEs at all

nodes are compared with those of the errors of the proposed method, shown in Table 2.3. It

concludes that in contrast to a Monte Carlo trial, the proposed method estimates the states

via a single run accurately and robustly; the estimation accuracy of this method is close to

that of 1000 MCSs, which require considerable sets of samplings and high computational

cost.

2.5. Conclusion and Discussion

This chapter presents a highly efficient DSSE algorithm using the Taylor series of com-

plex numbers and interval arithmetic techniques. The proposed method provides a highly

efficient substitute of nonlinear DSSE methods without the use of PMU measurements. Nu-

merical simulations illustrate the accuracy and efficiency of the proposed method in tackling

nonlinear measurements with Gaussian noises.

Owing to the characteristics of distribution systems, several other factors associated

with distributed energy resource (DER) penetrations further increase the challenges and

difficulties of DSSE, which are delineated as follows:

Accurate point forecasts for DER outputs are difficult. The power outputs of

DERs are mostly dependent upon the weather conditions and multiple ambient factors. Wind

speed is regarded as a typical deciding factor of wind power, while the power generation of

a photovoltaic cell mainly depends on solar radiation and ambient temperature [26]. Since

accurate quantification of wind speed or solar radiation is difficult to obtain, their forecasting
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errors inevitably lead to considerable forecasting errors of DER outputs [27].

DER operates with unbalanced and bidirectional power flows. Conventional

distribution power flows in one direction, i.e., from central power plants to customers, while

the reverse flow from customers to the grid occurs with DERs integrated. In addition,

practical power systems at the distribution level operate with unbalanced power flow, which

is usually the case where multiple DERs are installed in distribution systems [26].

Lack of meters at DER installations. Due to currently limited metering and com-

munication infrastructure, distribution systems are generally underdetermined with poor

observability. Besides, the assumption that measurement devices are mounted at DER

installations might be impractical owing to the lack of specific agreements between DER

operators and distribution system operators (DSOs) [28].

Spatial correlations of DER outputs. DERs that belong to the same geographical

area present similarity in power outputs. Weather conditions and field operations (e.g.,

active power curtailment or reactive generation control) affect the correlation between DERs

at different nodes of the system [29].

All the above challenges deserve further investigation. Therefore, by updating the pro-

posed DSSE algorithm in this chapter, Chapter 3 will formulate the uncertainty from DER

integration to develop high-performance DSSE in three-phase unbalanced distribution sys-

tems.
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Chapter 3

Interval State Estimation with Uncertainty of Distributed Generation and Line

Parameters Integrating PMU Data

3.1. Literature Review

Distribution system state estimation (DSSE) is largely driven by the diffusion of dis-

tributed generation (DG) such as wind turbine generators (WTGs) and photovoltaic (PV)

panels [30]. DG has advantages of low investment costs, flexible and eco-friendly operations,

and low power losses. However, the variability and intermittency of DG pose significant

uncertainty to DSSE [31]. Apart from the uncertainty from these emerging DG units, inputs

to DSSE also contain measurements with noises and imprecise line parameters. For example,

the uncertainty of line parameters originates from varying field ambient conditions and aging

wirings. While the uncertainty of measurements is commonplace and their impacts on the

DSSE are investigated in [32], multiple other uncertainties besides DG uncertainty in DSSE

call for innovative solutions.

Uncertainty studies that account for the variable and stochastic nature of input data

in conventional DSSE are pursued by Monte Carlo (MC) simulation, as reviewed in [13].

In these studies, DG power outputs are assumed available in real time via measuring in-

struments installed by distribution system operators (DSOs) [33] or in the form of pseudo-

measurements that follow Gaussian distributions [34]. Nevertheless, these assumptions might

be impractical due to 1) currently limited metering and communication infrastructure, and

2) lack of specific agreements between DG operators and DSOs [28]. Moreover, the stochastic

nature of DG outputs weakens the assumption that the DG outputs follow a known family

of parametric distributions [15]. As discussed in [17, 26, 35–40], the statistical data of DG

outputs are a prerequisite in MC simulation, however, such information may not be available
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in practice. In addition, these methods based on MC simulation require plenty of runs for

various combinations of measurement samplings and/or DG outputs and thus are generally

applied for evaluating the overall accuracy of state estimators [32].

Motivated by the deficiencies of these methods, interval state estimation (ISE) is proposed

to obtain the boundaries of state variables, which provide more intuitive information such

as the upper and lower bounds of these states [17]. In ISE, all data with uncertainty are

modeled as inputs in the interval form, since the upper and lower limits are available in most

practical cases. For example, the range of line parameters can be specified (e.g., within ±

5% of their nominal values) [40].

Boundary optimization methods such as [17, 35–37] are proposed to address the ISE

problem by maximizing and minimizing the state variables that meet all constraints from

measurements. For instance, in [17], a constrained nonlinear programming approach using

the measurements from supervisory control and data acquisition (SCADA) systems is used

to obtain the ranges of states in transmission systems. The solving method is applied to

distribution systems in [37]. However, with more PMUs or micro-PMUs emerging at the

distribution level, this approach cannot deal with hybrid measurements including PMU data.

Moreover, the authors of [37] did not consider the uncertainty of line parameters. In addition,

the limitation of these optimization-based methods is that lower and upper bounds of each

state variable need to be computed separately, and thus the total number of the optimization

models for all states proliferates with the scale of the distribution systems. This leads to

their low efficiency in the solving process.

Recent efforts to apply interval arithmetic to study uncertainties in power system opera-

tions are noteworthy, such as power flow calculation in [38], reliability evaluation in [39], and

ISE in [40] and [41]. In ISE, interval arithmetic deals with the uncertain inputs that lie within

a certain interval and enables the direct computation towards the bounds of state variables.

For instance, focusing on transmission systems, an ISE model with only PMU measurements

is formulated as interval linear equations in [40], and the ranges of states with the line param-

eter uncertainty are solved. However, such a high PMU deployment is not available at the
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distribution level, and the impacts of DG uncertainty are not considered. Further research

is conducted in active distribution systems. In [41], an iterative Krawczyk-operator algo-

rithm is used to obtain interval states, which takes the solution solved by interval Gaussian

elimination (IGE) as initial values of the states. Nevertheless, IGE presents the drawback

of “wrapping effect”, where the widths of intervals expand since each interval variable is

treated independently. When IGE is applied to distribution systems with high uncertainty,

this over-conservatism is further intensified. As a result, the IGE-based Krawczyk operator

(IKO) is computationally expensive to obtain final states since the initial states are far from

them [37]. In addition, all DG outputs in [41] are assumed to obey Gaussian distributions.

As mentioned above, this assumption may not be practical.

To sum up, the existing studies still lack generality in modeling to formulate multiple

uncertainties, and most of them focus on the modeling for a single type of uncertainty in

DSSE. Moreover, the direct impacts of uncertain DG outputs on DSSE are not fully addressed

in unbalanced distribution systems. The existing ISE methods are established on the strong

assumptions that the probability information or real-time measurements of DG outputs are

available. In addition, the limitations of the solution strategies for the existing ISE models,

including conservative estimation results and time-consuming solving process, persist.

We propose a novel and fast ISE algorithm considering multiple uncertainties of DG

outputs and line parameters in unbalanced distribution systems. As a solid reference to

DSOs, the upper and lower bounds of state variables are provided by the proposed algorithm

with hybrid SCADA and PMU measurements. First, based on the interval prediction for

DG power outputs, an ISE model is formulated in interval arithmetic. Moreover, the model

consider the line parameter uncertainty, and a weighted least square (WLS) criterion is

integrated to deal with these hybrid measurements. Finally, a modified Krawczyk-operator

(MKO) algorithm, which enables fast and accurate computation towards the bounds of state

variables, is presented to obtain the interval solution of the proposed ISE model.

3.2. Hybrid DSSE Algorithm and Interval Arithmetic
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3.2.1. DSSE with Hybrid Measurements

Recent research interests focus on the applications of PMUs to DSSE, since PMUs mea-

sure voltage and current phasors with high sampling precision and short update cycles [28].

Considering that a limited number of PMUs are installed in distribution systems due to

their high technical and financial costs, hybrid state estimators incorporate conventional

SCADA data with PMU data to improve estimation accuracy. Moreover, by adopting the

state variables in the rectangular form, hybrid DSSE integrating PMU data results in a linear

estimator, while conventional estimators with SCADA data are nonlinear [14].

Based on [13] and [42], the hybrid estimator in [43] is used owing to its improved and

recognized performance, where the voltage at a slack node (i.e., a substation) and branch

currents are chosen as state variables. In three-phase distribution systems, the state vector

is expressed in rectangular coordinates as

x =
[
va,b,cslack,r, v

a,b,c
slack,x, i

a,b,c
1r , . . . , ia,b,cNr , i

a,b,c
1x , · · · , ia,b,cNx

]
(3.1)

where va,b,cslack,r and va,b,cslack,x are the real and imaginary parts of the three-phase substation

voltage, and ia,b,clr and ia,b,clx are the real and imaginary parts of the three-phase current at

branch l, l = 1, 2, . . . , N . The superscripts a, b, and c denote the phase indices.

In the hybrid estimator, power flows and power injections at loads are obtained by

SCADA systems or pseudo-measurements, while PMUs provide the magnitude and phase an-

gle measurements of voltages and currents. Moreover, the three-phase power measurements

are converted into equivalent currents by

zIkr + jzIkx =

[
zPk

+ jzQk

Vk

]∗
(3.2)

zIpr + jzIpx=

[
zPp + jzQp

Vp

]∗
(3.3)

where zIkr and zIkx (or zIpr and zIpx) are the real and imaginary parts of the current at node

k (or at branch p), and Vk and Vp are the voltage phasors at node k and connected to branch
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p, respectively; zPk
and zQk

(or zPp and zQp) denote the active and reactive powers at node

k (or at branch p). [·]∗ denotes the complex conjugate.

The hybrid DSSE process in an unbalanced distribution system is iteratively implemented

in the following steps [42]:

1. Backward Sweep: Get initial values of branch currents by a backward approach. An

initial voltage at each node is set as the substation voltage Vslack, and (3.2) is used to

calculate current injections through nodal power injections as follows:

zIkr + jzIkx =

[
zPk

+ jzQk

Vslack

]∗
(3.4)

Next, these injections are used to obtain branch currents.

2. Forward Sweep: The branch currents in step 1 and the substation voltage are used

to calculate initial nodal voltages.

3. Calculate h(x), and then update system state variables as

∆xk = (HT (xk)WH(xk))
−1
HT (xk)W [z − h(xk)] (3.5)

4. Update the branch currents by xk+1 = xk + ∆xk, then calculate nodal voltages by

forward sweep in step 2.

5. If ∆xk is less than a pre-set tolerance, stop the iterative process. Otherwise, use these

updated voltages to calculate the equivalent currents by (3.2) and (3.3), then go to

step 3.

To improve the computational efficiency in the above iterative process, a linear approx-

imation technique in [44] is used, where each nodal voltage is fixed as Vslack to calculate

equivalent currents in (3.2) and (3.3). This approximation is based on two observations for

practical distribution systems, that 1) the voltage drops along feeders do not exceed 5%,

since voltage phase differences are very small [22], and 2) nodal voltages are usually kept
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within normal operation limits (0.95 to 1.05 p.u.) [45]. Then, the Jacobian matrix is inde-

pendent of x and highly sparse, and the general formulas (2.3) and (2.4) are updated with

h(x) = Hx as:

∂J/∂x = HTWz−HTWHx = 0 (3.6)

x = (HTWH)
−1
HTWz (3.7)

The constant Jacobian elements of this estimator are briefly listed below, and more details

about H can be referred to [43].

1) PMU voltage measurements

For the PMU voltage at node k, the measurement function is shown as

h(x) = ha,b,cVkr
+ jha,b,cVkx

= (va,b,cslack,r + jva,b,cslack,x)−
∑

p∈Ik
(ia,b,cpr + jia,b,cpx )zp (3.8)

where Ik denotes a set of line segments from the slack node to node k, and p ∈ Ik ; zp is

the 3×3 impedance matrix of branch p, and va,b,cslack,r, v
a,b,c
slack,x, i

a,b,c
pr , and ia,b,cpx as state variables

are defined in (3.1). Also, the off-diagonal elements with non-zero values in zp reflect the

coupling effect among three-phase lines, and zp can be shown as:

zp =


Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

 =


raap rabp racp

rbap rbbp rbcp

rcap rcbp rccp

+ j


xaap xabp xacp

xbap xbbp xbcp

xcap xcbp xccp


where the diagonal and off-diagonal elements such as Zaa and Zab denote the self-impedances

and mutual impedances between two phases, respectively, shown as Fig. 3.1. Besides, the

mutual impedances between any two phases may not be the same each other due to the

unbalanced nature of the system.

Take the A-phase voltage at node k as an example, the non-zero Jacobian elements of
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Figure 3.1. Three-phase line model in unbalanced distribution systems

the function (3.8) are expressed as:

∂haVkr
∂vaslack,r

= 1
∂haVkx
∂vaslack,x

= 1

∂haVkr
∂iapr

= −raap
∂haVkr
∂iapx

= xaap
∂haVkx
∂iapr

= −xaap
∂haVkx
∂iapx

= −raap

∂haVkr
∂ibpr

= −rabp
∂haVkr
∂ibpx

= xabp
∂haVkx
∂ibpr

= −xabp
∂haVkx
∂ibpx

= −rabp

∂haVkr
∂icpr

= −racp
∂haVkr
∂icpx

= xacp
∂haVkx
∂icpr

= −xacp
∂haVkx
∂icpx

= −racp

where raϕp denotes the mutual or self-resistance at branch p, p ∈ Ik, and xaϕp denotes the

mutual or self-reactance, ϕ = a, b, c. These phase indices are omitted for simplicity below.

2) PMU current measurements

For the PMU current at branch p,h(x) = hIpr + jhIpx = ipr + jipx, and the only nonzero

Jacobian elements are shown as:

∂hIpr
∂ilr

=


1, when p = l

0, elsewhere

∂hIpx
∂ilx

=


1, when p = l

0, elsewhere

where l denotes the index of all branches.
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3) Power measurements including line flows and power injections

For the power injections at node k, the Jacobian elements only has nonzero values of +1

and −1, since the measurement function holds based on Kirchhoff’s current law:

h(x) = hIkr + jhIkx = iin,r + jiin,x −
∑

(iout,r + jiout,x) (3.9)

where iin,r + jiin,x and iout,r + jiout,xas state variables denote the input and output currents

at node k, respectively.

Besides, the Jacobian elements of the equivalent currents at branch p from the corre-

sponding line flows only have nonzero values of +1, similar to PMU current measurements.

3.2.2. Interval Arithmetic and Interval Prediction of DG

An interval number is defined as a compact set [a] = [al, au] = {a ∈ R |al≤a≤au}, and

similarly, an interval vector is defined as a vector with interval elements [26].

When meters are not available at DG locations, effective forecasting techniques are uti-

lized to obtain DG power outputs as pseudo-measurements for achieving system observability

[1]. Due to the difficulty in accurate forecasts for instantaneous wind speeds or solar radia-

tions, their forecast errors inevitably result in considerable forecast errors of DG outputs [46].

Hence, DG outputs in the interval form are modeled to quantify the uncertainty levels in in-

terval predictions, which is more feasible in practice [26]. Conventional pseudo-measurements

originate from the historical or forecast data on generator production and load consump-

tion. Moreover, they obey Gaussian distributions with high-level noises as in [34] or are

represented as other known distribution information as in [28]. In the proposed algorithm,

we relax these assumptions and use the interval prediction of DG outputs. Further, the in-

terval DG outputs are deemed as another form of pseudo-measurements in DSSE to obtain

the interval estimate of states in the subsequent section.

3.3. General ISE Framework and Proposed Algorithm
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3.3.1. ISE Model with Multiple Uncertainties

In this section, an ISE model with multiple uncertainties in DSSE is proposed, where

measurements with noise, uncertain DG outputs, and imprecise line parameters are consid-

ered. The above highly efficient estimator is used to achieve fast monitoring of distribution

networks with these uncertainties.

The impacts of the uncertainty sources on the deterministic estimation model (3.6) are

analyzed and then updated into an interval estimation model as

 [H1]

H2


T  W 1 0

0 I


 [H1]

H2

 [x] =

 [H1]

H2


T  W 1 0

0 I


 [z1]

[z2]

 (3.10)

where [x] is an interval state vector, and [x]∈Rn×1; [z1] denotes an interval measurement

vector, and [z1]∈Rm1×1 , while [z2] denotes an interval vector of DG power outputs, and

[z2]∈Rm2×1; [H1] and H2 are the Jacobian matrices of the measurements and the DG

outputs, and [H1] ∈ Rm1×n, H2∈Rm2×n; W 1 is the weighted matrix of the measurements,

and W 1∈Rm1×m1 ; I is an identity matrix, and I ∈ Rm2×m2 .

The top-row equation describes the relationship between the measurements and [x]; the

bottom-row equation provides the constraints for the states related to DG outputs. The

uncertain outputs of DG are modeled as pseudo-measurements of the system according to

their interval predictions mentioned in Section 3.2.2. Note that only solving the equation set

at the top row in (3.10) may not obtain the solutions of these state variables. This is owing

to practical engineering concerns that the measurements of DG outputs are not available at

all DG locations. As a result, the top-row system with measurements may be unobservable

by DSSE due to the lack of necessary measurements [33]. The formula (3.10) ensures that

an interval solution not only meets a WLS criterion for all measurements but also follows

the relationship with these interval DG outputs.

According to different uncertainty sources, the details of (3.10) are discussed for clarity.

1) Measurements. Power measurements are converted to equivalent currents by (3.4),
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then [z1] is expressed as

[z1] =


[U l,Uu]

[I l, Iu]

[Ieq,l, Ieq,u]

 (3.11)

where U l and I l represent the lower bounds of voltage and current vectors from PMU

measurements, and Ieq,l is the lower bound of equivalent current measurements, while Uu,

Iu, and Ieq,u represent the corresponding upper bounds.

The 3σ deviation criterion about the mean in a Gaussian distribution covers more than

99.7% of the area of the distribution is used to obtain [z1] based on measurements with

noises [34]. For any measurement Zm with a random noise e∼N(0,σ2), Zm ∈ [Z0−3σ,Z0+3σ],

where Z0 represents the true value. Hence, Z0 ∈ [Zm − 3σ, Zm + 3σ], and this measurement

is modeled as an interval enclosing the corresponding true value.

2)DG outputs. The upper and lower bounds of DG outputs as pseudo-measurements

are transformed to equivalent currents by (3.4), respectively. [z2] =[IDG,l, IDG,u], where IDG,l

and IDG,u represent the lower and upper bounds of the equivalent currents. As discussed in

(3.9), the Jacobian matrix H2 related with DG outputs only has nonzero elements of +1 and

−1. Besides, we relax the strong assumption that the statistical information of these DG

outputs is known, i.e., there is no requirement of the knowledge of the mean and covariance

of DG outputs. Such correlations can be translated into respective DG output intervals and

then the proposed method can be still applicable. The detailed consideration of the DG

correlation will be left for our future work.

3) Line Parameters. The uncertainty of line parameters is evaluated in a range based

on their nameplate values [40]. In the adopted estimator, the uncertain line parameters are

only present at the locations corresponding to PMU voltage measurements, i.e., in (3.8) and

in the matrix [H1] of (3.10). Hence, with the line parameter uncertainty, H1 is updated

into an interval matrix [H1] in (3.10).
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3.3.2. General ISE Framework

The impacts of multiple uncertainties on ISE are decoupled in (3.10), and thus an ISE

framework is proposed to deal with different combinations of multiple uncertainties to obtain

the bounds of state variables. The model (3.10) is expressed in a compact form:

[H ]TW [H ] [x] = [H ]TW [z] (3.12)

where [H ] =

 [H1]

H2

, and [H ] ∈ Rm×n;W =

 W 1 0

0 I

, andW∈Rm×m; [z] =

 [z1]

[z2]


, and [z]∈Rm×1; m is the total number of the measurements and DG prediction intervals,

and m = m1 +m2.

In order to avoid computing the interval multiplication in [H ]TW [H ], which is com-

putationally expensive, a dummy interval vector [y] is introduced into (3.12) as suggested

in [47]. Then, an equivalent equation is obtained:

 [H ] −I

0 [H ]TW


[x]

[y]

 =

 [z]

0

 (3.13)

where I is an identity matrix, and I∈Rm×m; [y] ∈ Rm×1.

The formula (3.13) is further expressed below for brevity:

[A] [X] = [B] (3.14)

where [A] =

 [H ] −I

0 [H ]TW

, and [A] ∈ R(m+n)×(m+n); [B] =

 [z]

0

, and [B] ∈

R(m+n)×1; [X] =

 [x]

[y]

, and [X] ∈ R(m+n)×1.

The model (3.14) is straightforward to realize the mutual transformation between differ-
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ent combinations of uncertainties. This transformation is shown in Fig. 3.2. A general ISE

model considering three types of uncertainties is formulated as (3.14) and named Model IV,

while Model I is a basic ISE model only considering the measurements with noises. When

meters are available at all DG units, with the DG measurements merged into [z1], Model IV

is simplified into Model III, where [A1] =

 [H1] −I

0 [H1]TW 1

, and [B1] =

 [z1]

0

. In

another case, Model IV is simplified into Model II, when parameter identification techniques

or the assumption with accurate line parameters are adopted, i.e., [H1] is fixed as H1.

Figure 3.2. Uncertainties of DSSE in interval arithmetic. The model complexity increases

from Model I to Model IV.

3.3.3. MKO Algorithm for Solving ISE Models

In this section, an MKO algorithm in interval arithmetic is proposed to efficiently solve

the compact ISE model in (3.14). The interval symbols [·] are omitted here for clarity.
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For the interval system AX = B , its solution set in the interval form is expressed as∑
(A,B) = {X̃ : aX̃ = b,∀a ∈ A and ∀b ∈ B}, where X̃, a, and b are the corresponding

deterministic vectors or matrices. Moreover, its interval solution hull X is the interval vector

with the smallest radius containing
∑

(A,B).

A Krawczyk operator is widely employed as a solver for linear interval equations [48].

The core of this operator is to utilize an approximate interval solution X(0) that contains

the final solution hull as an initial value, then gradually approach the final solution hull by

the following iterative process:

X(i+1) =
(
CB + (I −CA)X(i)

)
∩X(i) (3.15)

where C is a preconditioning point matrix, and the inverse of C is the midpoint matrix of

A, expressed as

C−1 = Mid [A] =


Mid [a11] . . . Mid [a1,m+n]

...
. . .

...

Mid [am+n,1] . . . Mid [am+n,m+n]


where Mid [·] is the median function of an interval variable.

It is deduced that with this matrix C that satisfies ‖I −CA‖ < 1, where ‖·‖ is any

subordinate norm, (3.15) converges according to the fixed point theorem [49]. The iterative

process runs until ‖X(i+1) −X(i) ‖∞≤ε, and we set ε = 10−4. Hence, the Krawczyk operator

avoids the issue of interval extension when the tolerance of variables in the iterative process

is sufficiently small, and the interested readers can refer to the proof in [49].

Next, the above Krawczyk operator is modified to improve algorithmic performance in

both accuracy and efficiency. In the proposed MKO algorithm, two computational strategies,

Strategy One and Strategy Two, are jointly used to solve (3.14) quickly and accurately:

1) Strategy One: Start from an initial solution X(0), which is closer to the final solution
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Figure 3.3. Solution hulls of a 2-dimensional interval equation

hull compared to the one that IGE produces.

In the Krawczyk operator, an initial solutionX(0), which meets X̃ ∈X(0) and
∑

(A,B) ⊆

X(0), is required to start the iterative process. A straightforward approach to getting X(0)

is IGE, which is used in [41] as an extension of Gaussian elimination in interval arith-

metic. However, IGE largely expands the widths of interval solutions due to its over-

conservatism [50]. In addition, IGE is expensive to compute since its forward elimination

and back substitution procedure cannot be parallelized.

To address the limitations of IGE, a tighterX(0) is obtained by the following theorem [24].

Theorem 1. If C satisfies ‖I −Ca‖ = β < 1, X̃ = a−1b and ‖·‖ is any subordinate

norm, then
∥∥∥X̃∥∥∥≤‖Cb‖1−β .

Proof. From aX̃ = b, we have X̃ = Cb+ (I −Ca)X̃, and hence

∥∥∥X̃∥∥∥≤‖Cb‖+ ‖I −Ca‖
∥∥∥X̃∥∥∥→(1− β)

∥∥∥X̃∥∥∥≤‖Cb‖
where β < 1 exists for C, which is the inverse of the midpoint matrix of A.

Since ‖Cb‖∞≤ ‖CB‖∞ and ‖I −Ca‖∞≤ ‖I −CA‖∞, an initial vector X(0) is defined

as

X(0) = ([−α, α], . . . , [−α, α])T (3.16)
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where α =
‖CB‖∞

1−β and β = ‖I −CA‖∞. ‖·‖∞ is the infinite norm of a vector.

The tighter initial solution in (3.16), which is closer to the final solution hull compared

to the IGE solution, largely improves the efficiency of the iterative process. A schematic

diagram in Fig.3 illustrates the phenomenon, where the accurate solution set of the interval

equation constitutes a star-shaped area [48].

2) Strategy Two: Modify an enclosure of the difference between the solution at the ith

iteration X(i) and an approximate solution, rather than X(i). This modification, combined

with Strategy One, guarantees that the proposed algorithm produces the final solution at

least as tight as the original Krawczyk operator.

First, the approximate solution Xs, which is a point solution located at the center of the

solution space, is calculated by multiplying C by the midpoint vector of B:

Xs = C(Mid [B]) (3.17)

Let d = X −Xs, and get an equivalent interval equation Ad = B − AXs. The initial

solution for this equation is d(0) = X(0) −Xs, where X(0) is calculated by (3.16).

Applying (3.16) to the enclosure d(i+1) gives a modified residual Krawczyk iterative

process

d(i+1) =
(
C (B −AXs) + (I −CA)d(i)

)
∩ d(i) (3.18)

until ‖d(i+1) − d(i) ‖∞≤ε.

A final solution is computed by X(i+1) = Xs + d(i+1). The final solution produced

by (3.18) is at least as tight as the original Krawczyk operator in (3.15), which is verified

through the sub-distributive law for interval arithmetic.

Theorem 2. Sub-distributive Law [50]. For interval variables x, y, and z, the law

holds

x(y + z) ⊆ xy + xz (3.19)
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Apply Theorem 2 to (3.18), and we have

Xs+C (B −AXs)+(I−CA)d(i) ⊇ CB+(I−CA)
(
Xs + d(i)

)
= CB+(I−CA)X(i)

(3.20)

where X(i) = Xs + d(i).

The formula (3.20) implies thatX(i+1) = Xs+d
(i+1) ⊇ (CB+(I −CA)X(i+1))∩X(i+1),

i.e., the final solution hull provided by the original Krawczyk operator contains the one that

the MKO algorithm solves. Hence, the proposed algorithm obtains a tighter boundary than

the original Krawczyk operator. Moreover, if A and B are thin (an interval with zero radius

is defined as a thin interval), the residual B −AXs is enclosed with fewer rounding errors

than B [24]. These features lead to the higher accuracy and less memory space of the

proposed algorithm, since many thin interval elements exist due to the highly sparse A and

B shown in (3.13), i.e., 0 = [0, 0].

3.4. Simulation Result

The proposed algorithm is tested on unbalanced IEEE 13-bus and 123-bus distribution

systems [25]. The 13-bus system is modified by adding two single-phase PV units at buses

675 and 684, and a three-phase wind farm at bus 680, shown in Fig. 3.4. The 123-bus system

is modified by adding six DG units, and the installation details of these DG units are listed

in Table 3.1. Based on the weather data [51] shown in Fig. 3.5, at 12:00 am, the wind speed

interval is [8.886, 9.805] m/s, and the solar radiation interval is [191.246, 286.870] W/m2.

The interval outputs of PVs and WTGs are obtained by the method in [26], and constant

power factors are used [15]: [106.72, 149.53] kW for PVs, 0.95 lagging and [84.52, 103.31]

kW for WTGs, 0.85 lagging. For these DGs, the upper and lower bounds of reactive power

are calculated by QDG,u = PDG,utanφ and QDG,l = PDG,ltanφ , where PDG,u and PDG,l are

the upper and lower bounds of power outputs, and φ is the power factor angle.

For simulation purposes, the deterministic DG outputs and constant line parameters that

fall in the corresponding intervals are used to obtain true values of voltages, currents, and
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Figure 3.4. One-line diagram of unbalanced IEEE 13-bus system

Table 3.1. DG placements in 123-bus system

# No. node Type Phase # No.node Type Phase

1 14 PV C 4 250 WTG A, B, C

2 61 WTG A, B, C 5 300 PV A

3 151 WTG A, B, C 6 450 PV A

powers by the power flow program. Measurements are obtained by adding Gaussian noises

to these true values. The following conditions are applied to maximum percentage errors of

hybrid measurements in Table 3.2: 0.7% for magnitudes and 0.7 crad (10−2 rad) for phase

angles in PMU data [52], 2% for active and reactive powers of SCADA data, and 10% for

active and reactive powers at load nodes as pseudo-measurements [37]. Besides, these hybrid

measurements with different sampling rates can be pre-processed for synchronization by the

method in [53]. Note that meters and statistical information of power outputs at some DGs

are not available, e.g., DGs at buses 680 and 675 in the 13-bus system. Conventional DSSE

defines such systems as unobservable, i.e., DSSE fails due to lack of key measurements. In

these cases, the proposed algorithm provides the ranges of state variables with the aid of
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prediction intervals of DG outputs via Model II and Model IV.

 

 

 

Figure 3.5. DG profiles during one day (a) Wind speed (b) Solar radiation

3.4.1. Result Analysis

The proposed algorithm is tested with Model II on the 13-bus system, provided that

accurate line parameters are known. In this section, we display the voltage magnitude

results of different methods considering that they are more concerned by DSOs in practice,

and these voltage magnitudes are calculated from state variables.
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Table 3.2. Measurement locations in test systems

Measurement Placement Location

Type 13-bus System 123-bus System

SCADA 632-633, 645-646, 684-652
1-7, 9-14, 15-16, 13-52, 18-35,

44-45, 57-60, 76-77, 86-87, 99-100, 110-112

PMU 650, 671 149, 8, 25, 54, 97, 108

True Values from Power Flow
IKO

Proposed Method
LP

 
     

 

Figure 3.6. Voltage magnitude results of the proposed algorithm

40



The estimation results of the proposed algorithm, a linear programming (LP)-based

method, and the IKO method in [41] are compared with true values of voltages, and the

three-phase voltage magnitudes in these methods are intuitively displayed in Fig. 3.6. The

proposed method provides the tight bounds that all possible state variables fall in under

multiple uncertainties, and these ranges contain the true values of voltages. However, the

voltages solved by the LP-based method deviate a lot from the true values at some buses

and even exceed the normal operation voltage range (0.95 ∼ 1.05 p.u.). This is because this

method does not consider the various weights of hybrid measurements in the test system.

Moreover, the sums of these voltage widths between the proposed method and the IGE-

based method are numerically shown in Table 3.3. The widths of voltages for the proposed

algorithm are narrower than the IGE-based method.

3.4.2. Effect of Parameter Uncertainty

The proposed algorithm is applied to two situations in which the line parameters are

determined or in certain ranges, via Model II and Model IV, respectively. To investigate the

influence of uncertain line parameters, two cases are designed:

Case 1 : Constant line parameter vector, P 0.

Case 2 : Line parameters change in [0.95P 0, 1.05P 0].

Two indices Q1 and Q2 are used to evaluate the precision of interval estimation:

Q1 =
1

n

n∑
i=1

(xi − xi) (3.21)

Q2 = max(|xi − x̃i| , |x̃i − xi|) (3.22)

where xi and xi are the upper and lower bounds of the ith interval variable, and x̃i denotes

the true value of the ith state variable. Q1 is the average value of interval widths, and Q2 is

the maximum deviation relative to the true values. The interval estimation with smaller Q1

and Q2 has better accuracy.

To verify the effectiveness of the proposed algorithm, in Case 1 and Case 2, the deter-
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Table 3.3. Detailed comparison in voltage results

Sum of width Proposed Method IKO

[V] Re. Part Im. Part Re. Part Im. Part

Phase A 471.05 260.47 471.08 260.49

Phase B 365.64 214.67 365.65 214.69

Phase C 393.31 215.95 393.34 215.97

ministic DSSE algorithm in [43] without linear approximation runs for 3000 times of MC

trials. In these MC trials, random DG outputs in their predication intervals are regarded as

the inputs to the DSSE method in Case 1, while the random combinations of deterministic

DG outputs and line parameters that fall in the corresponding intervals are used in Case 2.

The minimum and maximum values of these state variables in all MC trials are collected

and compared with the interval estimation results of the proposed algorithm.

Limited by space, the voltage results at the even-numbered nodes of the 123-bus system

are depicted in Fig. 3.7, where the true values of these states are also marked. The interval

results of both methods are shown as similar in the two cases. Concretely, the accuracy

indices Q1 and Q2 in Fig. 3.7(b) are 0.0196 and 0.0163 in the proposed algorithm, while

they are 0.0182 and 0.0171 in MC simulations. These results illustrate that under multiple

uncertainties, the proposed algorithm obtains the tight boundaries of state variables via a

single run, compared with thousands of times of MC runs. Also, the comparison between Fig.

3.7(a) and Fig. 3.7(b) demonstrates that the line parameter uncertainty further intensifies

the variability of state variables. With these imprecise line parameters, the proposed method

provides the ranges that all possible values of states fall in, as a reliable reference to system

operators, shown as Fig. 3.7(b).

3.4.3. Robustness Tests

The robustness of the proposed algorithm is tested on the 123-bus system. Based on

Case 2, three cases are established, where the true values of DG outputs lie on the edge of

interval predictions, i.e., asymmetric intervals. These cases are designed below.
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Table 3.4. Estimation accuracy in robustness tests

Accuracy Indices Case 3 Case 4 Case 5

[p.u.] Q1 Q2 Q1 Q2 Q1 Q2

Phase A
Re. Part 0.020 0.018 0.020 0.017 0.019 0.017

Im. Part 0.014 0.013 0.014 0.012 0.013 0.014

Phase B
Re. Part 0.017 0.017 0.017 0.015 0.016 0.016

Im. Part 0.012 0.015 0.012 0.013 0.012 0.012

Phase C
Re. Part 0.020 0.019 0.020 0.016 0.020 0.017

Im. Part 0.012 0.012 0.012 0.013 0.012 0.012

Case 3 : The intervals of PV and WTG outputs are still [106.72, 149.53] kW and [84.52,

103.31] kW. Their true values are fixed at 107 kW and 85 kW in power flow calculation,

respectively, to generate the measurements for ISE.

Case 4 : True values of PV and WTG outputs are 149 kW and 85 kW, respectively.

Other settings are the same as the ones in Case 3.

Case 5 : True values of PV and WTG outputs are 149 kW and 103 kW, respectively.

Other settings are the same as the ones in Case 3.

Table 3.4 summarizes the accuracy indices Q1 and Q2 on three phases in these cases. It

is concluded that these estimation results are not significantly affected by the extent of the

deviation of DG interval predictions relative to their true values. In contrast, the true values

of DG outputs in [37,41] are always assumed in the center of their intervals, which may not

be robust due to the variability of DG outputs.

Table 3.5. Comparison in balanced and unbalanced 123-bus system

Dimensional Analysis Balanced Unbalanced

State Variables:[x] 238× 1 714× 1

Measurements and DG Outputs: [z] 296× 1 888× 1

Augmented Variables: [X] 534× 1 1602× 1

Coefficient Matrix: [A] 534× 534 1602× 1602
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3.4.4. Computational Efficiency

Numerical experiments are carried out to investigate the computational efficiency of the

proposed algorithm. All the tests are performed in MATLAB with the INTLAB toolbox

using a 2.5 GHz, 8 GB of RAM, Intel Core i5 computer.

Table 3.6. CPU time in different cases

CPU time [s]
Case 1 Case 2

13-bus 123-bus 13-bus 123-bus

Proposed Method 0.0099 0.847 0.012 0.965

MC (3000 trials) 89.52 5655.5 89.78 6209.7

LP 2.560 164.68 - -

IKO 8.994 795.57 9.957 911.50

The dimensional analysis towards the ISE model in the balanced and unbalanced 123-bus

systems is given in Table 3.5. The comparison shows that the unbalanced system leads to a

higher-dimensional interval equation. Also, the complexity in unbalanced systems intensifies

low efficiency of the existing methods such as [41], which is proposed in balanced systems.

Further, in both unbalanced systems, the CPU times of the proposed algorithm, MC simu-

lations, the LP-based method, and the IKO method are summarized in Table 3.6. It shows

that the proposed algorithm solves the ISE model in less than one-hundredth amount of

time, compared with other methods.

Table 3.7. Computation time in 123-bus system

CPU Time [s]
Time for Iteration Average Time in

Initial Solution [s] Number Single Iteration [s]

Proposed Method 0.876 2 0.0445

IKO 908.30 8 0.400

Algorithmically, the LP-based method requires solving the equal-scale minimum and

maximum problems for n times, where n is the total number of state variables. It should be

noted that the LP-based method cannot deal with the uncertain line parameters as in Case
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2. Also, as discussed in Section 3.3.3, the initial intervals provided by IGE are much wider

than the final solution hull, and the iterative process of the IKO method is time-consuming.

The comparative analysis between the proposed algorithm and the IKO method is shown in

Table 3.7. It is concluded that the high computational efficiency of the proposed algorithm

firmly holds in the 123-bus unbalanced system.

3.4.5. Results of Model I and Model III

We test the proposed algorithm via Model I and Model III on the 123-bus system, i.e.,

DG outputs can be obtained by meters or pseudo-measurements. Two cases are designed

below.

Table 3.8. Estimation accuracy in robustness tests

Accuracy Indices Case 6 Case 7

[p.u.] Q1 Q2 Q1 Q2

Phase A
Re. Part 0.0135 0.0107 0.0136 0.0124

Im. Part 0.0078 0.0090 0.0080 0.0122

Phase B
Re. Part 0.0116 0.0106 0.0120 0.0121

Im. Part 0.0068 0.0093 0.0070 0.0117

Phase C
Re. Part 0.0138 0.0116 0.0139 0.0133

Im. Part 0.0080 0.0084 0.0081 0.0118

Case 6 : Constant line parameter vector, P 0. Also, the DG outputs are modeled as

pseudo-measurements following known Gaussian distributions, and their maximum errors

are 10% of active and reactive powers [37].

Case 7 : Line parameters change in [0.95P 0, 1.05P 0]. Other settings are the same as the

ones in Case 6.

The indices Q1 and Q2 in both cases are shown in Table 3.8. Besides, we list the compu-

tation time of these cases in Table 3.9. The comparison between these two cases illustrates

that less uncertainty leads to tighter interval results and higher computational efficiency.
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Table 3.9. CPU time in 123-bus system

CPU time [s] Case 6 Case 7

Proposed Method 0.633 0.720

MC (3000 trials) 5178.2 5750.3

LP 135.57 -

IKO 300.44 316.36

3.5. Conclusion

This chapter proposes a novel and fast ISE algorithm with multiple uncertainties in

unbalanced distribution systems. We establish a general ISE framework that simultaneously

considers imprecise line parameters, measurements with noises, and uncertain DG outputs.

An MKO algorithm is proposed to solve these ISE models and obtain the upper and lower

bounds of state variables for better monitoring systems under the coordinated impacts of

these multiple uncertainties. The proposed algorithm is tested on unbalanced 13-bus and

123-bus distribution systems. In contrast to MC simulations and the existing alternatives,

the proposed algorithm encloses tighter boundaries of state variables in a faster manner.

This dissertation will focus on the applications of the proposed DSSE algorithm to bad data

or cyberattack detection in active distribution systems later.
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Chapter 4

Graph-based Faulted Line Identification Using PMU Data in Distribution

Networks

4.1. Introduction

Faults are regarded as an important type of reliability events, which may immensely affect

normal system operation. In the past decade, 22.2 million customers in California experi-

enced about 6000 outage hours resulted from sustained faults [54]. Extensive studies on fault

location are developed in meshed transmission systems (e.g., [55–57]). However, distribution

systems are largely different from transmission systems due to their radial topology and lim-

ited real-time meters. Consequently, these existing fault location methods in transmission

systems cannot be applied to distribution systems. On the other hand, increasingly perva-

sive installation of distribution-level phasor measurement units (PMUs), i.e., micro-PMUs,

improves the system monitoring significantly. Compared with conventional meters, PMUs

provide more accurate measurements of voltage and current phasors at a high resolution.

Several emerging applications of PMUs include distribution system state estimation (DSSE),

fault detection, and faulted line location [58]. For instance, the authors of [59] applied data-

driven techniques with PMU data to detect the presence of a fault in distribution systems;

however, these detection algorithms cannot identify the location of the faulted line.

Quick and accurate location of faults in distribution systems helps the utilities to clear

the faults and accelerate the system restoration; however, this is a challenging task as the

mal-trip or fail-to-trip of the protection devices may lead to inaccurate location of the fault.

The chances of such unfavorable events grow with the bidirectional power flow and the

increasing penetration of distributed generators (DGs). The authors of [60] pointed out that

conventional protection devices such as fault indicators may fail to clear a fault under the
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bidirectional current flow conditions. Also, the overcurrent-based protection devices may not

be able to locate high-impedance faults in distribution systems since it is difficult to identify

the small fault currents [61].

The existing fault location methods are classified into three main types: 1) traveling wave-

based, 2) training-based, and 3) impedance-based. The traveling wave-based algorithms

(e.g., [62, 63]) locate a fault by utilizing the arrival time of the original and reflected waves

generated by the fault. These methods require high-speed communication and high sampling

rate measurements that may not be prevalent in distribution networks. Besides, the training-

based fault location methods, such as artificial neural networks (ANN) [64] and support

vector machine (SVM) [65], require a large number of high-quality measurements as training

datasets and thus suffer from a high computational burden in a training process.

Recent efforts are devoted to proposing impedance-based location methods in distribution

systems [66–70]. For instance, the authors of [67] proposed the fault location methods

focusing on single-phase to ground faults. However, [67] can only localize a faulted area,

rather than yielding an exact faulted line. Emerging works are applying PMU measurements

to fault location by constructing generalized impedance-based location methods [60,68–70].

We conclude that the search strategy in these works is to select each bus or each line as the

candidate fault source and then calculate the values of the self-defined objective function

for each candidate. Then, the fault location is determined by minimizing or maximizing

these function values. Specifically, the authors of [68] used a state estimation technique with

sufficient PMU data to identify the fault at a distribution line. However, these PMUs are

assumed available at each bus, which is impractical due to economic and technical restrictions

in distribution systems. Further efforts are put into fault location with a fewer number of

PMUs, such as [69, 70]. The approach in [70] requires equipping with PMUs at all DGs.

This arrangement may not be practical due to a limited number of available PMUs. Also,

this method does not consider high-impedance faults, which are regarded as an untraceable

fault type in system operation. The authors of [70] defined a fault as a generalized reliability

event and presented an optimization model to locate the event bus by PMU data and pseudo-
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measurements recorded at load/DG buses. Also, due to the presence of local minimums in

the objective function, the method needs to compare all local minimums to obtain a global

one. Further, the global minimum of this function points to the final faulted bus. However,

this process may increase computational complexity due to this traversal search strategy.

Various influence factors, such as fault types, fault impedances, DG penetration, and

measurement errors, may degrade the effectiveness of the existing fault location methods.

To mitigate these impacts, this chapter proposes a graph-based fault location method using

advanced DSSE techniques with PMU data in unbalanced distribution systems. The core of

the proposed method is to determine the faulted line by comparing the weighted measurement

residuals (WMRs) of DSSE in different topologies/graphs. This idea, as a typical application

of state estimation, is proposed in [57, 68], where the power systems are observable by an

adequate number of PMUs. In comparison, the proposed method only requires a limited

number of PMUs in distribution networks for such an application. Specifically, we present

an efficient distributed DSSE algorithm to restrict the search region in a shorter feeder

between two adjacent PMUs. Further, in the shorter feeder, the fault source is identified at

the exact line by applying the DSSE methods to a hierarchical structure. The hierarchical

structure built on the graph theory is presented in Section 4.3 and captures the graphs,

subgraphs, and paths in the network.

4.2. Theoretical Basis

This section describes the theoretical basis for applying DSSE to fault location. We

introduce a classical state estimator and further extend it to an advanced DSSE method

using measurements from a limited number of PMUs.

Developed from this classical estimator, the branch current based DSSE method inte-

grating PMU data is regarded as a computationally efficient method due to its constant

and sparse-structured Jacobian matrix, as reviewed in [14]. Therefore, this section uses the

branch current based DSSE method proposed in [43] for the fault location task. Also, the

voltage at the slack node and branch currents are chosen as state variables, and we express
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these states in a three-phase network as

x =
[
vaslack,r, v

a
slack,x, . . . , v

c

slack,x
, ia1r, i

a
1x, · · · , icLx

]
(4.1)

where vϕslack,r and vϕslack,x denote the real and imaginary parts of the ϕ -phase slack node’s

voltage, and ϕ ∈ {a, b, c}; iϕlr and iϕlx denote the real and imaginary parts of the branch

current at branch l, l = 1, . . . , L, and L is the number of branches. In the following, the

phase index ϕ is suppressed for simplicity.

Here, the measurement vector includes the PMUs’ recorded magnitudes and phase angles

of voltages and currents as well as power measurements from pseudo-measurements, and

the latter provides the historical or forecasting data with a low-level accuracy of power

consumption/production at loads/DGs [70]. We list the measurement functions for voltages,

currents, and powers in this estimator as follows:


hVkr(x) = zj = zVkr , k ∈ ψV

hVkx(x) = zj = zVkx , k ∈ ψV
(4.2)


hIpr(x) = zj = zIpr , p ∈ ψI

hIpx(x) = zj = zIpx , p ∈ ψI
(4.3)


hPk

(x) = zj = zPk
, k ∈ ψS

hQk
(x) = zj = zQk

, k ∈ ψS
(4.4)

where zj denotes measurement j and is expressed as 1) the real and imaginary parts of

voltages, zVkr and zVkx , 2) the real and imaginary parts of currents, zIpr and zIpx , or 3)

the real and reactive powers, zPk
and zQk

; hVkr(x), hVkx(x), hIpr(x), hIpx(x), hPk
(x), and

hQk
(x) denote the corresponding measurement functions; ψV and ψI are the sets of nodes and

branches with voltage/current measurements from limited PMUs installed in the distribution
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system, and ψS is the set of load/DG nodes; k and p are the indices of nodes and branches,

respectively.

For k ∈ ψS, the pseudo-measurements at node k are further converted into equivalent

currents in (4.4) by

zeqIkr + jzeqIkx =

[
zPk

+ jzQk

Vk

]∗
(4.5)

where zeqIkr and zeqIkxare the real and imaginary parts of the equivalent injection current at node

k; Vk as the voltage phasor at the node is updated during the DSSE procedure, since the

PMU measurement of Vk is not available at each node; [·]∗ denotes the complex conjugate.

By the processing in (4.5), the Jacobian matrix is independent of xt, i.e.,H(xt) = H [43].

The measurement functions of (4.2), (4.3), (4.5), and Jacobian elements of H are listed

below.

1) Voltages

The voltage measurement function of the PMU at node k ∈ ψV is expressed as:

hVkr + jhVkx = vslack −
∑

p∈Ik
(Rp + jXp)ip (4.6)

where Ik denotes a set of line segments from the slack node to node k, and p ∈ Ik. Rp

and Xp denote the 3×3 resistance and reactance matrices of branch p. Also, the complex

variables ip= ipr + jipx and vslack= vslack, r + jvslack,x are the voltage phasor at the slack node

and the current phasor at branch p. The Jacobian elements of (4.6) for p ∈ Ik are constant,

expressed as:

∂hVkr
∂vslack,r

= 1
∂hVkr
∂vslack,x

= 0
∂hVkx
∂vslack,r

= 0
∂hVkx
∂vslack,x

= 1

∂hVkr
∂ipr

= −Rp
∂hVkr
∂ipx

= Xp
∂hVkx
∂ipr

= −Xp
∂hVkx
∂ipx

= −Rp

2) Currents

The current measurement function of the PMU at branch p ∈ ψI is shown as

hIpr + jhIpx = ipr + jipx (4.7)
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where ipr and ipx denote the real and imaginary parts of the current states, and thus the

Jacobian elements are present at:

∂hIpr
∂ilr

=


1, when p = l

0, elsewhere

∂hIpr
∂ilx

= 0

∂hIpx
∂ilr

= 0
∂hIpx
∂ilx

=


1, when p = l

0, elsewhere

where l denotes the branch index, and l = 1, . . . , L.

3) Power Injections

The power measurements presenting at node k ∈ ψS are converted into equivalent current

injection by (4.5), and then the current measurement function is expressed as

heqIkr + jheqIkx =
∑

l∈Λ′k
(ilr + jilx)−

∑
l∈Λk

(ilr + jilx) (4.8)

where ilr and ilx as state variables denote the real and imaginary inflow and outflowing

currents at node k , and Λ′k and Λk denote the set of branches with the inflow and outflow

currents at node k, respectively. The Jacobian elements of (4.8) are calculated by

∂heqIkr
∂ilr

=



1, when l ∈ Λ′k

−1, when l ∈ Λk

0, elsewhere

∂heqIkr
∂ilx

= 0
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∂heqIkx
∂ilr

= 0
∂heqIkx
∂ilx

=



1, when l ∈ Λ′k

−1, when l ∈ Λk

0, elsewhere

The complete DSSE procedure can be found in [43], and the next section gives the details

of the modified DSSE method for faulted line identification.

4.3. Graph-Based Faulted Line Identification Method

This section proposes a graph-based fault location method that leverages the above DSSE

method to narrow down the searching area and then locate the faulted line.

We consider a distribution network as a graph G(V , E), where V and E denote the sets of

vertices (nodes) and the edges (branches), respectively. A PMU is installed at the substation,

and other PMUs are installed at a limited number of nodes along the feeder. Each of

these PMUs measures the nodal voltage and the currents on the branches connected to that

node [43]. We define a subgraph GK(VK , EK) as the subset of G(V , E) that connects two

adjacent PMUs, PMUs K and K + 1, where K = 1, . . . ,M − 1 and M≥2. Here, M is

the number of PMUs installed in the network. Fig.4.1 shows the schematic diagram of the

subgraphs. In the figure, G1 is a subgraph that includes the branches and nodes between

PMUs 1 and 2, while G2 contains those between PMUs 2 and 3.

We briefly describe the proposed fault location method:

1. Step One: Using a distributed DSSE algorithm, the searching area for the fault is

restricted to the feeder between two adjacent PMUs, i.e., a certain subgraph.

2. Step Two: The location of the fault is further identified as the faulted line.

4.3.1. Step One: Identifying the Faulted Subgraph

This step proposes an efficient DSSE algorithm in GK to identify the subgraph that con-

tains the faulted line, i.e., the faulted subgraph. By the graph partition and the subsequent
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 Figure 4.1. A sample of radial distribution networks with three PMUs. The dotted lines

with arrows at nodes denote the laterals (if present)

network equivalence, the DSSE method leverages the PMU and pseudo-measurement data in

GK and runs in parallel for these subgraphs with shorter feeders, i.e., distributed DSSE [71].

1) Network Equivalence

In each subgraph, we suppose that the vertex of GK acts as the root node of this subgraph.

The lateral connected to PMU K+1 is also included in GK , while the lateral at the root

node of GK is included in the last subgraph, i.e., GK−1. Fig. 4.2 shows the schematic

diagram of GK in this design. At node k ∈ VK , one type of the following measurements

exist and VK = VK1 + VK2 + VK3: 1) Only PMU data (i.e., the measurements of PMU K

at the root node), and let k ∈ VK1; 2) PMU data (i.e., measurements of PMU K + 1) and

pseudo-measurements, and k ∈ VK2; 3) Only pseudo-measurements, and k ∈ VK3.

To reduce the impact of the graph partition on the power flow in the original network

shown as Fig. 4.2(a), we do the equivalent current calculation at node k ∈ VK2. Specifically,

the real and imaginary parts of the injected current at node k in GK , zsubIkr
and zsubIkx

, are

equivalently calculated by

zsubIkr
+ jzsubIkx

= (zeqIkr + jzeqIkx) + (zIkr + jzIkx) (4.9)

where zeqIkr and zeqIkxdenote the real and imaginary parts of the injection currents of pseudo-
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measurements obtained by (4.5), and zIkr and zIkx are the real and imaginary parts of the

current to the downstream network measured by PMU K + 1, shown in Fig. 4.2(b). For

simplicity, (4.9) does not show the measurement noises.

At node k ∈ VK1∪VK3, the measurement functions (4.5) – (4.8) hold.

2) Identification Metric

We use the WMR in DSSE as the metric to determine the faulted subgraph. In normal

operation, assume measurement noises follow Gaussian distribution, WMRs obey a Chi-

square distribution with at most m − n degrees of freedom [19]. With a limited number

of PMUs installed in distribution systems, the degree of freedom is low and equal to the

number of these PMUs. Therefore, the values of a WMR in each subgraph fluctuate within

a limited range under the impact of measurement noises, when no faults occur.

On the other hand, according to [57], a fault introduces an additional unknown fault

current IF injected to the ground or other phases, while the DSSE equations are built on

the precondition IF = 0. If a fault occurs in GK , the presence of the fault violates the

state estimation relationship and leads to a high WMR in the faulted subgraph; The DSSE

in normal subgraphs have low WMRs even under the impact of measurement noises [68].

Hence, the faulted subgraph is determined by selecting the maximum of WMRs:

K∗ = arg max
K

JK K = 1, . . . ,M − 1 (4.10)

where JK denotes the WMR in subgraph K calculated by (2.2).

Based on the state estimator presented in (2.1) – (2.5), we conclude the procedure for

identifying the faulted subgraph below:

1) Considering GK(VK , EK), the measurements in each subgraph are collected to form

the Jacobian and weight matrices, i.e., HK and WK .

2) For K = 1, . . . ,M − 1, the DSSE process in subgraph K is shown in the following

steps:

a. Initialization–forward-backward sweep [72]: Set the initial voltage at each node as the
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Figure 4.2. Subgraph K (a) Embedded in the whole feeder (b) Decoupled with other sub-

graphs. The reference directions of branch currents measured by two PMUs are shown.

voltage of the root node Vroot, and calculate the current injections of power measurements

by

zeqIkr + jzeqIkx =

[
zPk

+ jzQk

Vroot

]∗
(4.11)

zsubIkr
+ jzsubIkx

=

[
zPk

+ jzQk

Vroot

]∗
+ (zIkr + jzIkx) (4.12)

where (4.11) is used for k ∈ VK3, and (4.12) holds at k ∈ VK2; Vroot comes from the voltage

measurement from the PMU at the root node.

Then, obtain the initial branch currents x0 by a backward sweep method. Use x0 and

Vroot to calculate initial nodal voltages Vk by a forward sweep method.

b. Obtain h(x) using (4.6) – (4.8), and calculate ∆xt and update the new state variables

by xt+1 = xt+ ∆xt. Calculate the latest voltages Vk based on the new states by the forward

sweep.

c. If ∆xt is less than a pre-set tolerance or t reaches the maximum iteration number,

yield JK using (4.1) as the WMR of GK ; otherwise, use the latest Vk to calculate injection

currents by (4.5) or (4.9), then go to step b.
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3) Procure the faulted subgraph K∗ using (4.10).

Finding the faulted subgraph at this stage reduces the computation burden associated

with locating the faulted line in subgraphs without faults.

4.3.2. Step Two: Locating the Faulted Line

Once we obtain the faulted subgraph GK∗ by Step One, a similar WMR metric based on

the DSSE technique is developed to identify the exact line that a fault lies at. Also, we use

the following definitions to present Step Two in GK∗ .

Definition 1 (Paths in a subgraph). A path in a subgraph is a set of interconnected

edges that begins with the root node of the subgraph. A path that a fault is located in is a

corrupted path.

Definition 2 (Adjacent Paths and Boundary Edge). Two paths denoted by Ps−1

and Ps, s = 1,. . . , S, are defined as adjacent paths, and if Ps−1 ⊆ Ps and Ps = Ps−1 ∪ {ε},

where ε is the boundary edge that connects two vertices ν and µ, ν ∈ Ps−1 and µ ∈ Ps.

All paths in a faulted subgraph share a starting vertex (root), and different paths are

formed by radially expanding the topology of GK∗ . The paths Ps in each subgraph are

sorted by their depth. The shortest path in the subgraph K∗ only includes one edge, while

the longest path is the whole subgraph GK∗ .

In theory, the WMRs in two neighboring paths without fault current injections should

be close to each other; the WMR of DSSE in a path is low if there is no fault in the path,

while WMR is significantly high once faults occur in the path. Therefore, we convert the

fault location problem into a problem of searching for the corrupted path that includes the

fault, and this corrupted path is characterized by abnormally high WMR in DSSE. To find

the corrupted path, DSSE runs for each path in GK∗ , and the sending-end branch currents

in the corresponding path are chosen as state variables shown in Fig. 4.3. We apply the

58



DSSE algorithm in Step One for path s and calculate the WMR by

WMRs = [zs − hs(x)]TW s[zs − hs(x)] (4.13)

where zs and hs (x) denote the measurement vector and measurement functions for path s,

and s = 1,. . . , S; W s denotes the diagonal weight matrix for this path.

According to Definition 2, if a fault occurs at the boundary edge ε, we have

WMRs � WMRs−1 (4.14)

where WMRs and WMRs−1 are the WMRs in paths Ps−1 and Ps calculated by (4.1),

respectively. To find the faulted boundary edge, set the user-defined identification thresholds

to quantize the relationship in (4.14):


WMRs−1≤ ε

WMRs > ε

(4.15)

where ε denotes the identification threshold for evaluating the abnormally high WMR.

We consider that various fault conditions may occur, and they are unpredictable for

system operators. As a result, although a proper identification threshold is beneficial for fault

location, the specific value of this threshold is difficult to determine when the fault location,

fault impedance, and fault type are unknown. Similar to [55] and [73], the identification

threshold ε could be properly selected by using historical or simulation data of different

faults to enforce (4.15). Also, it is efficient to run the efficient DSSE method for verifying

the relationship in (4.15), since the Jacobian matrix Hs for path s is sparse and independent

of state variables.

Illustrative Example: To clarify the procedure of the proposed method, let us consider

a 5-node subgraph shown in Fig. 4.3, where l= {1, 2, 3, 4, 5}, and a lateral is connected to

node 3. There are three paths: 1-2, 1-3, and 1-5 in this subgraph. Path 1-3 is the set of
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Figure 4.3. Sample network of a 5-node subgraph, and a lateral is connected to node 3

shown as a dotted line. (a) A fault occurs at branch 3-5. (b) A fault occurs at branch 3-4.

Table 4.1. State variables and measurements in a 5-node subgraph

s Ps State Variables x Measurements zs

1 1-2 i1, i2 zV1 , zi1 , z
eq
i2

2 1-3 i1, i2, i3, i4 zV1 , zi1 , z
eq
i2
, zeqi3 , z

eq
i4

3 1-5 i1, i2, i3, i4, i5 zV1 , zI1 , zi2 , z
eq
i2
, zeqi3 , z

eq
i4

branches from node 1 to node 3, including the lateral 3-4. Table 4.1 lists the state variables

and measurements used in these paths, and we show Hs for path s = 1, 2, and 3, which

are marked by three block matrices, respectively. In Fig. 4.3(a), the fault is located at the

boundary edge between paths 2 and 3 by the proposed method, i.e., branch 3-5; the source

of the fault in Fig. 4.3(b) is located at the boundary edges between paths 1 and 2, i.e.,

branches 2-3 and 3-4, and there are two boundary edges due to the existence of a lateral. In

the case that a fault occurs at a lateral as Fig. 4.3(b), the fault source could be located at

the lateral or the only upstream branch connected to it, even when there is no PMU installed

60



at the lateral. Granting complete observability on laterals may not be of economic interest,

and therefore, in many practical cases, it is sufficient to identify the faulted laterals [70].
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We summarize the proposed algorithm in the pseudo-code. Owing to the hierarchical

graph-subgraph-path structure in the proposed method and the adaptation of the advanced

DSSE method, the search along the faulted subgraph is more efficient, compared with the

ones considering the whole distribution feeder.

4.3.3. PMU Placement

The identification accuracy of the proposed method relies on the number and locations of

PMUs. As the number of PMUs increases, the size of a partitioned graph in the distribution

network will be smaller. This would increase the measurement redundancy defined as the

ratio of the number of measurements to that of states. The minimum number of PMUs to be

installed in a distribution feeder is two. Moreover, with more PMUs installed, the location

performance and computational efficiency of the proposed method can be improved.
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Algorithm 1 Graph-based Faulted Line Identification Algorithm

1: Input: System model and measurement data.

2: While: The presence of a fault is detected, and its location is unknown.

3: Step One:

Run the distributed DSSE algorithm for GK in parallel, and obtain GK∗ by (4.10).

4: Step Two:

Let s = 1, and obtain zs and hs(x). Then, calculate WMRs by (4.13)

5: if WMRs > ε then

The faulted line is identified as the first branch in GK∗ .

6: else

7: for s = 2 to S do

8: if WMRs−1 ≤ ε and WMRs > ε then

9: The boundary edge between paths s− 1 and s is located as the faulted line.

10: end if

11: end for

12: end if

13: Output: the faulted line.

To guarantee the observability for faulted lines, the following conditions presented in

earlier research about meter placement are considered:

1) PMU measurements are available at a substation and nodes in the main feeders that

have many downstream nodes. Such design is suggested in [71] and [72] to provide improved

observability with a limited number of PMU measurements.

2) PMUs can be installed at the ends of feeders or long laterals to ensure the observability

and identify the faulted lateral if necessary [69,70].

To maximize the location accuracy using a certain number of PMUs, an optimal PMU

placement method presented in [74] can be implemented by considering the probability of

various fault types’ occurrence. However, the optimal meter placement is a complicated

multi-objective optimization problem, involving multiple impact factors, such as the in-

stallation cost, estimation accuracy, and faulted line observability, etc. We adopt a meter
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placement scheme with a low measurement redundancy following the above-mentioned con-

ditions, which illustrates the potential of the proposed method for faulted line identification

with limited PMU installations. 
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Figure 4.4. Single-line diagram for the three-phase 34-node test feeder

4.4. Case Study

We test the proposed algorithm on a three-phase unbalanced 24.9kV, IEEE 34-node

test feeder. The test system is modified by adding three DGs (two synchronous generators

and one PV [69]) into the original systems and simulated in PSCAD, and the proposed

location method runs in MATLAB. The detailed models of these DGs can be found in [75].

Fig. 4.4 shows the PMU and DG placement in the system, where five PMUs are installed

and the nameplate capacity of DGs is 500kVA. The procedure adopted by PMUs to obtain

voltage or current phasor measurements is described in Appendix A. Illustrated as Table

4.2, the propose graph partition in Section 4.3 divides the system into four subgraphs, i.e.,

GK ⊆ G and K = 1, 2, 3, 4.

Assume that measurement noises obey Gaussian distributions. Moreover, the maximum

errors of magnitudes and phase angles for PMU data are 1% of the true values and 0.01 rads,

respectively, while the maximum errors for the powers recorded by pseudo-measurements at

load/DG nodes are 20% of the true values. Also, smart meters can be installed at DGs

for accurately monitoring power outputs, and the maximum errors of these outputs are 3%.
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Table 4.2. Measurement information of subgraphs

Subgraph GK PMU K PMU K + 1 Nodes in GK

G1 1 2 1-12

G2 2 3 9-18

G3 3 4 17-29

G4 3 4 25-34

By collecting measurements at the DG nodes, distribution system operators (DSOs) do not

require the specific DG models. Moreover, DG operators may not share these detailed models

and control policies with DSOs due to a lack of agreements between them. However, DSOs

can still monitor their power dispatch by the measurement data [75].

4.4.1. Faulted-subgraph Identification

This section shows the identification performance of the proposed method in Step One for

faulted subgraphs. We test the proposed algorithm with single-phase LG faults, which are

set at three branches in each subgraph, e.g., branches 3-4, 7-8, and 10-11 in G1. Moreover,

these faults are placed at the beginning (0.25Ll), in the middle (0.5Ll), and at the end

(0.75Ll) of the lines, and Ll denotes the corresponding line length. In each fault location,

fifty sets of measurements are generated by Monte Carlo simulations. Also, considering nine

fault locations for each subgraph, 9×50=450 fault scenarios for two influence factors (fault

locations and measurement noises) in each subgraph are tested. In all tests, the subgraphs

with the highest values of the identification function JK correctly point to those faulted

subgraphs. The values of JK across K = 1, 2, 3, 4 for these faults are shown in Fig. 4.5,

where we average the WMRs of each subgraph for conciseness. As discussed in Section ó,

WMR greatly increases in the faulted subgraph, indicating that the fault is located at that

subgraph. For example, when a fault occurs in G1, J1 is abnormally higher than J2, J3, and

J4. This leads to an immediate conclusion that the fault is located in G1.

Furthermore, we test the two-phase line-to-line faults with 50 Ω fault impedance in GK ,

and Fig. 4.6 depicts JK in all subgraphs. We observe that the maximum of JK correctly
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Figure 4.5. Identification results in different faulted subgraphs, where we set LG faults on

phase A with 100 Ω impedance in GK .

indicates the location of the faulted subgraph. Also, the identification performance for the

faulted subgraph is not influenced by fault types and fault impedances.

4.4.2. Faulted-line Location

We test various fault scenarios to evaluate the location performance of the proposed

method. Fig.4.7 shows the WMRs for different paths in the faulted subgraph for LL faults

on phases B and C on branch 3-4 in G1, where we run 100 Monte Carlo simulations for

random combinations of measurement noises. In this figure, the WMRs of the normal paths

are much lower than those for the corrupted paths. Also, with the radial expansion of

paths, the WMRs of the corrupted path that the boundary edge 3-4 lies in have high values.

Consequently, branch 3-4 is identified as the faulted line.

We further evaluate the location accuracy of the proposed method by calculating the

probabilities of two types of test results: 1) the faulted branch is correctly located and 2) an
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Figure 4.6. Identification results in different faulted subgraphs. LL faults on phases B and

C with 50 Ω fault impedance. 
 

 
 

 

 

  

  

 

 

Figure 4.7. Location results in G1, when LL faults with 10Ω fault impedance occur at

branch 3-4. The secondary y-axis shows the WMRs at the corrupted path in 100 Monte

Carlo simulations.
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Table 4.3. Performance with different fault types (50 Ω impedance)

Fault Type α β 1− α− β Max Error

G1 94.50% 4.67% 0.83% 2 branches

G2 95.75% 4.25% 0% 1 branch

G3 96.83% 3.17% 0% 1 branch

G4 95.67% 4.33% 0% 1 branch

immediate neighboring branch of the faulted branch is determined as a faulted one [70]:

α = N0/Nt (4.16)

β = N1/Nt (4.17)

where N0 and N1 denote the number of the tests in these two cases, respectively, and Nt is

the total number of the tests; also, 1 − α − β is used to calculate the probability of other

results, i.e., other branches are determined as a faulted line.

We calculate these accuracy indices α and β in scenarios with various fault types and

fault impedances, where Nt = 1200 is set to obtain statistical results in each scenario, and

here the identification threshold ε = 500.

1) Fault Type

The impacts of various fault types on the location accuracy of the proposed algorithm

are investigated. Four fault types denoted as LG, LL, LLG, and LLL, are tested. We list

the location results of these fault types in Table 4.3. It is shown that the proposed method

enables correct faulted line location with various fault types and reaches 94% and higher

accuracy.

2) Fault Impedance

We test the impacts of fault impedances on the accuracy of the proposed algorithm. We

set different fault impedances at each branch of G2, and Table 4.4 shows the accuracies of

this method to locate faults with these impedances. Especially, the proposed method enables
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accurate locations of bolted faults, owing to the existence of the fault injection currents with

high magnitudes. The results in Table 4.4 show that the proposed method enables correct

fault-line location with multiple fault impedances.

Table 4.4. Performance with different fault impedances (LL faults)

Fault Type α β Max Error

0Ω 100% 0% 0 branches

10Ω 94.67% 5.33% 1 branch

50Ω 94.83% 5.17% 1 branch

100Ω 100% 0% 0 branch

200Ω 95.08% 4.92% 1 branch

The proposed method is tested with high-impedance LG faults (100, 200, 500, 800, and

1000 Ω) at branch 3-4 to show the sensitivity towards magnitudes of fault currents. Fig.4.8

shows the probabilities of the correct location of the faulted branch, where Monte Carlo

simulations with 400 samples of measurements are used. The location probabilities are higher

than 88% under these various current injections. The reason is that the measurement errors

of voltages and currents are proportional to the measurement values, while the measurement

weights are inversely proportional to them. While smaller fault current injections occur, as

the weights of measurements are higher in this case, the WMR will be high. We conclude

that the proposed method works effectively when the fault impedance is not higher than

1000 Ω in the test system. Once the fault impedance exceeds about 2000 Ω, the proposed

approach may not observe the small fault injection at long branches in the 34-node system.

4.4.3. Robustness and Sensitivity Analysis

We investigate the robustness and sensitivity of the proposed method against various

measurement noises and identification thresholds.

1) Measurement Errors

We conduct robustness analysis concerning higher measurement noises. We set the mea-

surement noises of PMUs as 2% in magnitudes and 0.02 rads in phase angles, while consider-
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Figure 4.8. Performance for high-impedance LG faults at branch 3-4.

ing the maximum errors of pseudo-measurements as 10%, 30%, and 50%. Table 4.5 lists the

accuracy of the proposed algorithm with these measurement noises. As shown, even with

high pseudo-measurement errors up to 50%, either the correct line or its immediately neigh-

boring line is identified. It implies that such high-level noises do not degrade the location

performance since DSSE takes the weights of measurement noises into full account. Also,

the location performance of this algorithm is robust against measurement errors.

Table 4.5. Performance with higher measurement errors (LG, 50 Ω impedance)

Max Error of PMU Data Max Error of Pseudo-meas. α Max Error

2%, 0.02 rad

10% 94.67% 1 branch

30% 94.50% 1 branch

50% 94.42% 1 branch

2) Identification Threshold

We test the location performance of the proposed method with various identification
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thresholds ε. Fig. 4.7 shows that the WMRs in the corrupted paths are much higher than

those for the normal paths. Further, different thresholds are set in the cases of Section 4.4.2,

and the location accuracy with these thresholds is calculated and listed in Table 4.6. We

conclude that the identification threshold could be properly selected to maintain a desirable

identification sensitivity.

Table 4.6. Impact of identification thresholds

Threshold ε α β 1− α− β Max Error

100 88.69% 10.35% 0.96% 2 branches

500 95.92% 3.91% 0.17% 2 branches

1000 97.08% 2.92% 0% 1 branch

2000 97.25% 2.75% 0% 1 branch

4.4.4. Impact of Line Parameters

Line parameters in distribution systems are subject to changes with environmental con-

ditions. Considering this uncertainty, the range of line parameters is generally set within

±5% of their nominal values [20]. Therefore, we consider the variation in line parameters to

evaluate the accuracy of the proposed method.

Table 4.7. Location accuracy with uncertainty in line parameters

Maximum Errors of Line Parameters α β Max Error

2% 100% 0% 0 branch

5% 97.5% 2.5% 1 branch

10% 95.5% 3.25% 2 branches

We use Monte Carlo simulations to generate 400 test scenarios, where imprecise line

parameters are assumed to obey Gaussian distribution with various maximum deviations

and zero means. Table 4.7 lists the location accuracy of the proposed algorithm, and the

maximum errors are 2%, 5%, and 10% of true values of line parameters. Also, LG faults
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with 100 Ω are set on different branches in G2. With 5% deviation in the line parameters,

either the correct faulted line or its immediate neighboring branch is identified.

We conclude that inaccurate line parameters degrade the location accuracy of the pro-

posed method, and hence line calibration in power systems is necessary periodically.

4.4.5. Computational Efficiency

Numerical experiments for different faults are performed to demonstrate the computa-

tional efficiency of the proposed algorithm. We run this method on a PC with 2.6 GHz i5,

and 8GB RAM using MATLAB 2017b.

Table 4.8. CPU time in test system

Fault Subgraph Average CPU Time [ms]

G1 14.28

G2 13.50

G3 14.27

G4 9.98

Table 4.8 lists the average CPU time of the proposed method, including two steps, for

faulted line identification in these test systems. It shows that once the measurement data are

collected, this algorithm locates the faults within 15 milliseconds in the 34-node distribution

system. Compared to the traversal search strategy for a whole feeder, the proposed method

runs in parallel for feeders with a reduced size, which improves the computational efficiency

for application to the larger-scale networks. It should be noted that owing to the increase

in the number of nodes in subgraphs of this larger-scale system, the proposed method takes

a longer CPU time, i.e., about 20 ms, for faulted line identification. With more PMUs

installed, the number of nodes in a subgraph decrease, and the computational efficiency of

this method can be further improved.

4.5. Conclusion
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This chapter proposes a graph-based faulted line identification algorithm using PMU data

in distribution systems. We present a distributed DSSE algorithm to identify the faulted

subgraph efficiently, and this method significantly reduces the searching scale and speeds up

the subsequent fault location procedure. Further, we conveniently determine a faulted line by

applying a hierarchical graph-subgraph-path structure to the DSSE method. The proposed

method is suitable for radial distribution systems and can be updated by incorporating

the linear measurement functions proposed in [42] for weakly meshed distribution systems.

In the case of inadequate PMU and DGs installed at the distribution level, the proposed

method enables accurate faulted-line location. Extensive simulations verify the accuracy and

efficiency of this method under various fault scenarios.
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Chapter 5

Semi-supervised Deep Learning for False Data Injection Attack Detection

5.1. Introduction

Power distribution systems are transforming into smart grids with the development of

advanced communicating devices, such as phasor measurement units (PMUs) and smart

meters, which facilitate the system monitoring and control. However, the high dependence on

information technology also increases vulnerability from malicious cyber-attacks [76]. Among

common attacks in cyber-physical systems, false data injection attacks (FDIAs) are regarded

as one of the most challenging threats against secure system operation. An unobservable

FDIA can circumvent the conventional bad data detection (BDD) mechanism based on

measurement residuals of state estimation [8]. Without the aids of the effective detection

mechanism, attackers can stealthily launch the FDIA multiple times, which degrades the

performance of the state estimation algorithm and may render a significant threat to the

grids [30].

Some research on FDIA construction is reported in different application scenarios in

DC power systems, while recent work in AC transmission systems emerges due to their

reactively accurate analytical models [77, 78]. Liang et al. [79] conducted a comprehensive

survey on construction methods for FDIAs. On the other hand, many results using various

statistical and probabilistic techniques are reported to defend against FDIA in DC system

state estimation, such as sparse optimization [80] and Kalman filter [81]. However, these

methods require information on measurement data distributions and system operation states,

and once these perquisites change, detection for FDIAs may become ineffective and outdated.

Recently, with the fast development of advanced metering infrastructure that collects

a massive volume of data, machine-learning and data-driven techniques are being widely
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applied to power system operation because of their powerful capability of extracting useful

information and flexible extensibility [82]. Also, various learning-based techniques for detect-

ing FDIAs in transmission systems have emerged, including deep belief networks (DBN) [83],

support vector machines (SVM) [84,85], and deep neural networks (DNN) [86]. For instance,

He et al. [83] proposed a conditional DBN-based method with a restricted Boltzmann ma-

chine for detecting compromised data in DC power systems. The authors of [84] proposed

a semi-supervised learning approach based on mixture Gaussian distribution and SVM for

detecting FDIAs against state estimation in DC transmission systems, and since a linear sys-

tem model is used to generate the measurement data, principal component analysis (PCA) is

used for extracting the data feature. However, real-world utilities widely employ AC power

system models, and these algorithms, such as [80, 83–85], performed on DC power systems,

ignore the complexity of power systems or the sophistication of unobservable attacks by the

conventional BDD mechanism. To overcome this deficiency when dealing with unobservable

attacks in AC transmission systems, [86] uses wavelet transform and DNN techniques to

capture the inconsistency of abnormal and normal measurements by analyzing the state dy-

namics. Nevertheless, the method in [86] requires measurements with labels from continuous

samplings that may be unavailable in practical operation and leads to a high computational

burden. Note that most existing machine-learning algorithms for detecting FDIAs such

as [83] and [86] are supervised and test the abnormal data that differ in some manner from

the labeled data available during training. However, the datasets collected from practical

cyber-physical systems are partially labeled due to expensive labeling costs [87]. Moreover,

the scale of unlabeled data is usually much larger than that of the labeled data in practice,

and these extensive unlabeled data seldom take part in the supervised learning process. This

absence leads to the loss of useful information, even the failure in this process.

In contrast to the work in transmission systems, there is a handful of research related

to FDIAs at the distribution level, although the vulnerability of distribution systems has

been discovered over the years [79]. For instance, Dai et al. [88] presented two simple

yet powerful cyber-attack methods targeting feeder automation and introduced a search

74



theory-based method for modeling the probability of feeders being attacked. Deng et al.

[89] proposed an FDIA model with limited knowledge of system states, which exposes the

feasibility of attacks without being detected by the current BDD mechanism. Then, they

extended this work focusing on balanced networks to unbalanced distribution systems in [44];

these systems are more consistent with practical models. Motivated by these studies on

constructing unobservable FDIAs in distribution systems, reliable system operation demands

countermeasures against these FDIAs urgently.

This chapter proposes an adversarial autoencoder (AAE)-based detection algorithm for

unobservable FDIAs in distribution systems. Considering the high dimensionality and non-

linear correlated nature of measurements, we apply autoencoders to dimension reduction

and feature extraction of measurement datasets in the three-phase unbalanced networks.

Further, we integrate the autoencoders into an advanced generative adversarial networks

(GAN) framework [90], which successfully detects abnormal measurements under FDIAs by

capturing the unconformity between anomalies and secure measurements. Also, because of

the expensive labeling costs and potential missing labeled data in practical systems, this

method only requires unlabeled data and a few labeled data from measuring instruments by

leveraging the powerful generation capability of GAN and thus is semi-supervised learning.

5.2. State Estimation and FDIA

5.2.1. BDD based on Estimation Residuals

Section 2.2.1 introduces classical state estimation theory [10]. The relationship between

redundant measurements and state variables is depicted as:

z = h(x) + e (5.1)

where x is an n-dimension state vector, and z is an m-dimension measurement vector;

h(x) is the measurement function about x; the measurement noise vector e obeys a Gaus-
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sian distribution e ∼ N(0,R) is a covariance matrix and is usually considered diago-

nal, R = diag [σ2
1, σ

2
2, . . . , σ

2
m], and σ2

i denotes the variance of the ith measurement error,

i = 1, 2, . . . ,m.

The state variables are obtained via a WLS criterion that minimizes the sum of weighted

measurement residuals J as:

x̂ = arg min J = arg min[z − h(x)]TW [z − h(x)] (5.2)

where W is a weight matrix of measurements to quantify the trust levels of diverse mea-

surements, and W = R−1.

In three-phase unbalanced distribution systems, the system states are chosen as the

voltage phasors at all buses and expressed as

x = [va1, v
b
1, · · · , vcn] (5.3)

where vϕj denotes the ϕ-phase voltage phasor at bus j, ϕ = {a, b, c} and j = 1, 2, . . . , n; n

is the number of the buses in the system.

The measurement vector z in DSSE generally includes 1) voltage and current phasors

from distribution-level PMUs, 2) power flows recorded by supervisory control and data acqui-

sition systems, and 3) power injections from smart meters or pseudo-measurements, including

load consumption and DG [20]. The detailed formulation of the measurement functions h (x)

can be found in Section 2.2.2. The DSSE model is nonlinear since PMUs are not installed

at each node in a practical distribution system [10]. Then, the solution of the DSSE model

is solved iteratively based on the Newton-Gauss process (2.3)-(2.5).

Considering the sampling errors of various measuring instruments and potential malicious

cyberattacks, the conventional BDD mechanism of state estimation applies the LNR test

[79]. The LNR test calculates the measurement residual r and the normalized measurement
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residual vector rN to test the existence of bad measurements:

rN =
|r|√

diag(SR)
(5.4)

where r = z−h(x̂); S represents the measurement sensitivity matrix of this estimator, and

S = I −H(HTWH)
−1
HTW .

The LNR test is used to detect the presence of bad data due to malicious cyber-attacks,

faulty sensors, or topological errors, expressed as:

max
i
rNi

H1

≷

H0

λ (5.5)

where rNi denotes the ith element of rN , and i = 1, 2, . . . , M ; H0 and H1 represent the

hypotheses without and with bad data or false data injection, respectively, and the threshold

λ is set to some predetermined significant level.

5.2.2. On the Existence of Linear Approximation of DSSE

The power flow equations already contain the linear relationships (2.7) and (2.8) between

x and PMU measurements, together with nonlinear relationships between x and power

measurements. The authors of [91] proposed linear approximation theorems and the error

analysis to establish a linear model between the voltages and powers. Based on [91], [44]

proposes an FDIA construction model in the distribution system.

In [91], the complex power measurements at node k or at branch i-j can be converted to

the equivalent currents as

Ik eq = (Sk/V slack)
∗ (5.6)
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I ij eq = (Sij/V slack)
∗ (5.7)

where V slack denotes the voltage at the substation.

The DSSE model with this approximation is expressed as

z = [V k, I ij, Ik eq, I ij eq]
T = [I,Y br,Y bus,Y br eq]

Tx+ e (5.8)

where the Jacobian matrix H = [I,Y br,Y bus,Y br eq]
T and I denotes the identity matrix;

Y br is a matrix composed of all the Y ij at {i, j} ∈ ψI and zero elements, Y bus (or Y br eq) is

a matrix composed of all the Y k (or Y ij) at k ∈ ψS (or {i, j} ∈ ψS) and zero elements.

This linear approximation solution is closer to the nonlinear solution provided by (2.11),

compared with a linear solution by simplifying the AC distribution system as a DC model.

The conclusion is validated by the case study in [44,91]. Based on this linear approximation,

an unobservable FDIA in three-phase distribution systems can be constructed by the method

presented in the next section.

5.2.3. Unobservable FDIA

The objective of FDIAs is to mislead system operators to consider xa = x + c as the

estimated state vector, where c is the deviation of normal system states x [8]. The attackers

can manipulate the received measurements at a control center into za = z + a, and a is an

injected attack vector. Also, the measurement residual vector of za is expressed as

ra = za − h(x+ c) = z + a− h(x+ c). (5.9)

To circumvent the detection method in (5.4), the attack vector should be constructed as

a = h(x+ c)− h(x). (5.10)

78



The attack can bypass the residual-based detection, if the normalized residual vector rNa

satisfies the condition

max
i
rNa,i ≤ λ. (5.11)

Here, we refer to the attack as an unobservable FDIA with a well-structured attack vector

a that enforces (5.11). By launching such an FDIA, the attacker can inject estimation errors

without being detected by the conventional LNR test.

5.3. Construction of FDIA

To evaluate the FDIA detection capability, this section introduces an unobservable attack

construction method in distribution systems. Assuming that an attacker has limited ability

to hack into meters, they can use the attack method proposed in [44] for constructing FDIAs

without paying high calculation costs.

Emerging research indicates that approximately linear models for state estimation in dis-

tribution systems exist and provide convenience for hackers to launch unobservable FDIAs,

e.g., [44,89]. Specifically, the linear formulas in these DSSE methods approximate the nodal

voltages in equivalent current measurements as the substation voltage V slack. This approxi-

mation originates from two observations for distribution systems: 1) the voltage magnitudes

are close to each other, i.e., 0.95 ∼ 1.05 p.u., and 2) the voltage phase angle differences are

very small, such as 0.1 degrees per mile. Take the three-phase power flow measurement at

branch i-j, Sij, as an example, convert the power measurement into an equivalent current

measurement by I ij eq ≈ (Sij/V slack)
∗, and then the measurement function can be expressed

as

h(x) = Y ij(vi − vj) ≈ I ij eq (5.12)

where Y ij ∈ C3×3 denotes the nodal admittance between nodes i and j, which is constant,

and hence, h (x) is linear about the state variables x = {vi,vj}; [·]∗ denotes the complex
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conjugate.

More details of the linear approximation can be found in Section 5.2.2. Then, due to the

existence of the nearly linear relationship in DSSE, the estimator (5.1) can be expressed in

a linear form as

z̃ = Hx̃+ e (5.13)

where z̃ and x̃ denote the measurement and the closed-form estimated vector.

When the attack vector a is injected, the compromised measurement residual ra can be

expressed as [44]

ra = z̃a −Hx̃ = z̃ + a−H [x̂+ (HTWH)
−1
HTWa] (5.14)

If a = Hc, the compromised measurement residual ra after the attack is the same as

the measurement residual r before the attack, as follows.

ra = z̃ −Hx̂+Hc−H(HTWH)
−1
HTWHc = z̃ −Hx̂ = r (5.15)

If the residual r can bypass the LNR test, the compromised residual ra with malicious

data can also bypass this test by (5.11). Furthermore, to construct an attack vector that

meets a = Hc, let A = H(HTH)
−1
HT and A ∈ RM×M , and solve a by the following

equation:

Aa = AHc↔ Aa = a↔ Ba = 0 (5.16)

where B = A − I and I is an identity matrix. Assume that the maximum number of

measurements that hackers can compromise is K, and express the attack vector as a =

[0, ai1 , . . . , 0, aik , . . . , 0]T and 0 <k ≤ K. Also, the elements ai with i ∈ {i1, . . . , ik} are

the unknown variables to solve. Then Ba = 0 is equivalent to B′a′ = 0, where a′ is
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the k-dimension vector that removes zero-value elements in a, and B′ is the matrix that

removes the corresponding columns at the locations related to these zero-value elements

in a, B′ ∈ RM×k. If rank(B′) < k, there is at least one non-zero solution in B′a′ = 0.

Moreover, a′ can be obtained by a′ = (I−B′+B′)d, where B′
+

is the pseudo inverse of B′,

and d is an arbitrary non-zero vector, d ∈ Rk×1.

Attackers can successfully launch unobservable attacks by the attack model (5.16). There-

fore, the mechanism for detecting the unobservable FDIAs demands an effective solution.

5.4. Proposed Detection Mechanism

This section proposes a deep learning mechanism for detecting unobservable FDIAs in

three-phase distribution systems; Fig. 5.1 provides an overview of the proposed AAE-based

detection mechanism. We define the detection problem for unobservable FDIAs or outliers

represented by the attack vector a as a binary classification problem with the detection

indicator α:

α=


0 if a = 0

1 if a 6= 0

(5.17)

In the AAE-based detection algorithm, the measurement vector z including three-phase

voltages, currents, and powers are collected as the inputs of AAE, where only a limited

number of them is labeled with α = 0 or 1. Compared with the conventional LNR test, the

learning-based detection method is fully data-driven and does not require the knowledge of

system knowledge of topology and parameters, i.e., h(x). Furthermore, we train the AAE

network to extract the node-to-node and phase-to-phase features of normal and abnormal

data, and then detect the presence of an unobservable FDIA. To evaluate the detection

performance, we generate unobservable attacks by the method introduced in Section 5.3,

while the normal dataset comes from the nonlinear distribution system model in Section

2.2.2.
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Figure 5.1. An overview of the proposed FDIA detection mechanism

Figure 5.2. Structure of autoencoders with three fully connected hidden layers
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5.4.1. Autoencoders and GAN

1) Autoencoders

Autoencoders are widely used for dimension reduction and feature extraction of highly

dimensional and correlated data [92]. Fig. 5.2 shows a classical structure of autoencoders,

including an encoder and a decoder. Specifically, the autoencoders learn a mapping from an

input X to a hidden code Y and the mapping is parameterized as q(Y |X) = q(Y |X;θ)

with the parameters θ that we want to learn.

Define p (X) as the prior distribution and p(Y ) as the prior distribution that we want

to impose on the code. The encoding function of the autoencoders q(Y |X) defines an

aggregated posterior distribution q (Y ) on the hidden code vector as

q(Y ) =

∫
q(Y |X)pd(X)dX (5.18)

where pd (X) denotes the data distribution of X.

Encoder: The mapping fθ transforms the input X into Y and is expressed as

fθ(X) = s(wXj + b) (5.19)

where w and b denote the weight matrix and offset vector, respectively, and θ = {w, b},

w ∈ Rh×M , and b ∈ Rh×1; h denotes the number of the hidden units; Xj ∈ RM×1 is the jth

vector of the input samples X, j ∈ {1, 2, . . . , Nd}, and X ∈ RM×Nd , where Nd is the number

of these samples; s(·) denotes the squashing nonlinearity of the neural network.

Decoder: The hidden code Y is then mapped back to a reconstruction X ′ in the input

space, i.e.,X ′ = gθ′ (Y ). This mapping gθ′ is called the decoder, and based on the parameters

θ′ = {w′, b′}, it is shown as

gθ′(Y ) = s(w′Y + b′). (5.20)

The autoencoders optimize the network parameters by minimizing the mean square error
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between X and X ′ as the reconstruction cost, LR [92]:

arg min
θ,θ′

LR =
1

Nd

‖X −X ′‖2
(5.21)

The parameters θ and θ′ are usually backpropagated by stochastic gradient descent

(SGD) in the training process. The convergence proof of autoencoders can be found in [93].

2) GAN

GAN establishes a min-max adversarial game between two neural networks, a generator,

G, and a discriminator, D, shown as Fig. 5.3. The generator produces the measurement

data samples (fake samples) that follow the distribution of the original training data (real

samples), while the discriminator distinguishes between the generated data samples and

these real samples. In a nutshell, GAN is alternatively trained in two stages: a) update

the discriminator with fixed generator parameters to distinguish the real samples from the

generated samples, and b) update the generator with the fixed discriminator parameters

to fool the discriminator with its generated fake samples. The solution of the two-player

game is globally optimal, and [90] provides the proof of this optimality and the convergence

analysis.

Because of limited labeled measurements available for training in practical power systems,

we use GAN to aid the autoencoders in shaping the hidden code for accurately detecting

FDIAs, which is detailed later.

5.4.2. Adversarial Autoencoder

This section introduces the structure of AAE and its training procedure for FDIA de-

tection. Here, the input X is a measurement dataset with P labeled samples {(z1, α1) ,

(z2, α2) , . . . , (zP , αP )} and Q unlabeled samples {zP+1, zP+2, . . . ,zP+Q}, where αp = 0 or

1 denotes the label of the pth set of measurements, p = 1, . . . , P and P � Q. As the

inputs of AAE, X ∈ RM×Nd , where M is the number of measurements in (5.1) and here the

number of the samples Nd = P + Q. Each sample of z is further represented in the neural
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Figure 5.3. The learning process of GAN

networks by Xj, and j ∈ {1, 2, . . . , Nd}, shown in (5.19).

In AAE, the encoder learns how to encode a given data into a prior distribution, while the

decoder learns a deep generative model that matches the aggregated posterior distribution of

the hidden representation from the encoder to an arbitrary prior distribution. Fig. 4 shows

the combination and division of work of the autoencoders and GAN in the attack detection

task.

In Fig. 5.4, Y l and Y u denote the hidden representation for the labeled and unlabeled

inputs, and qθ (Y u,Y l |X) and pθ′(X|Y u,Y l) denote the encoder and decoder in this semi-

supervised learning, respectively. Assume the data generated by Y l and Y u, named Y ′l and

Y ′u, follow a two-dimensional categorical distribution for the binary classification problem in

(5.17) and Gaussian distributions, respectively, i.e.,Y ′l ∼ Cat(2) and Y ′u ∼ N(0, I). Here,

adding the Gaussian noises is to stabilize the GAN training [90]. Also, we assume that the ag-

gregated posteriors p (Y l) and p (Y u) obey Gaussian distributions. To match the aggregated

posterior to the prior distributions of the mixture data, the encoder qθ (Y u,Y l|X) works

as the generator of GAN. In the meantime, the adversarial network has two discriminators,

Dcat and Dgauss, for the labelled and unlabeled inputs, respectively.

We train the AAE network at three stages: the reconstruction phase, the adversarial
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Figure 5.4. Semi-supervised AAE architecture: (a) in reconstruction phase, (b) in adversarial

phase, and (c) in supervised phase.

phase, and the supervised phase [94]. The batch normalization technique is used to improve

the training speed, performance, and stability of neural networks. We introduce the training

procedure of AAE below and show it in pseudo-code.

1) Reconstruction Phase

The AAE detector first works as traditional autoencoders in this phase, shown in Fig.

5.4(a), and both the encoder and decoder are trained to minimize the total reconstruction

loss, LR, for the labeled and unlabeled inputs X as in (5.21).

2) Adversarial Phase

In this phase, the encoder qθ (Y u,Y l|X) is reserved for training the discriminators and

generator, illustrated in Fig. 5.4(b) the discriminators Dcat and Dgauss to distinguish the true

samples of the categorical from Gaussian priors from the generated samples. Here, the goal

of a discriminator is to maximize the probability that Y l or Y u comes from the generated

data rather than from the true sample distribution, i.e., its confidence score. Hence, we

formulate the loss function of Dcat for the labeled data as

maxDcatV (Dcat, G) = EY ′l∼Cat(2) [logDcat (Y ′l)] + EYl∼p(Y l) [log (1−Dcat (G (Y l)))] (5.22)

where EY ′l and EY l
denote the expectations under the corresponding distributions.
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Then, we express the loss function of the generator G as maxG V (Dcat, G) = EY l∼p(Y l)

[logDcat (G (Y l))], which is equivalently written as

min
G
V (Dcat, G) = EY l∼p(Y l) [log (1−Dcat (G(Y l)))] . (5.23)

A two-player minimax game for the labeled data is formulated by combining (5.23) with

(5.22) as

minG max
Dcat

EY ′l∼Cat(2) [logDcat (Y ′l)] + EYl∼p(Y l)[log(1−Dcat (G (Y l)))] (5.24)

Similarly, the objective function for the unlabeled data is expressed as follows:

min
G

max
Dgauss

EY ′u∼N(µ,
∑

) [logDgauss (Y ′u)] +EY u∼p(Y u) [log (1−Dgauss (G(Y u)))] (5.25)

3) Supervised Phase

Using only the labeled data, the autoencoders continue to update the encoder network,

shown in Fig. 5.4(c). Train the encoder for the labeled data by minimizing the cross-entropy

as the supervised cost by

min
θ
LS = Eq(Y l)[−log p(Y l)] (5.26)

where the aggregated posterior distribution q(Y l) is calculated by (5.18), and p(Y l) is the

distribution of Y l inherited from the results in the adversarial phase. During this train-

ing, we use the Adam optimization technique to computes adaptive learning rates for each

parameter. Adam is straightforward to implement and computationally efficient and has

little memory requirements [95]. This technique is widely used as a replacement of SGD in

the application research of GAN [90], especially for the optimization of objective functions

with high-dimensional parameters spaces. Specifically, Adam computes bias-corrected first

and second moment estimates. We provide the pseudo-code of Adam, where the default
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hyperparameters in [95] are used.

Algorithm 2 AAE Training Process

1: Input:Learning rate γ, mini-batch size, the number of epochs.

2: for t = 1 to Nep do

3: Sample mini-batch.

4: Reconstruction Phase

5: Calculate LR by (5.21) and update θ and θ′ by descending the gradients:

fθ ← ∇θLR,θ ← θ − γ Adam (fθ)

gθ′ ← ∇θ′LR,θ
′ ← θ′ − γ Adam (gθ′)

6: Reconstruction Phase

Obtain the hidden representation of the encoder qθ (Y u,Y l|X) and sample from the

prior distributions, and calculate the confidence scores of Dgauss and Dcat.

Discriminator: Train the discriminators to update their network parameters when

fixing the generator parameters

Generator: Update qθ (Y u,Y l|X) as the generator with the fixed discriminator pa-

rameters.

7: Supervised Phase: Using only the labeled data, update the encoder to minimize LS

by (5.26).

8: end for

9: Output:the encoder qθ(·).

5.5. Case Study

We test the proposed AAE-based algorithm on three-phase unbalanced benchmarks:

IEEE 13-bus and 123-bus distribution systems [25]. These systems are modified by adding

DG units; more details about the location and types of these DG units are provided in [20].

The measurement arrangement of these systems is listed in Table 5.1. The true values of mea-

surements and states are obtained by running power flow program and DSSE in MATLAB,

and the proposed AAE-based algorithm runs in Python. Measurements with noises consist

of voltage phasors, current phasors, and complex powers, and these measurement noises obey
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Table 5.1. Measurement locations in test system

Measurement Placement Locations

Types 13-bus System 123-bus system

Power Flow
650-632,645-646, 149-1,9-14,15-16,18-35, 44-45,

684-652 76-77, 86-87, 99-100, 110-112

Power Injection 8 load/DG nodes 91 load/DG nodes

Voltage/currents
650, 671

149, 14, 18, 25,

from PMUs 60, 76, 97, 108

Gaussian distributions [96]. Specifically, the maximum meter noises of PMUs [52] are 1%

of the true values for voltage/current magnitudes and 0.01 rads for the phase angles, and

assume that a PMU measures the nodal voltage and the currents at the branches connected

to this bus; the measurement errors of power data at limited branches and all load/DG nodes

from smart meters are 3% of the true values [97].

Dataset Structure: The input of the proposed AAE detector is the collection of the

measurement vector z. In the modified 13-bus system, there are 11 nodes by closing the

switch installed at the branch 671-692; the state vector, x∈R66×1, is composed of the three-

phase voltage magnitudes and voltage phase angles, and 17 measurement phasors in Table

5.1 produce a measurement vector, z∈R102×1. In the modified 123-bus system, there are 119

nodes due to three normally closed switches and one normally open switch; x∈R714×1 and

z∈R870×1. We record 5,000 sets of measurements from Monte Carlo simulations and generate

other 5,000 sets of measurements under unobservable FDIAs by the attack construction

methods proposed in Section 5.3 and [8]. In the training process, 80% of measurements are

chosen as the training dataset and the rest are used for evaluating detection performance.

Further, for semi-supervised learning, we label 1,000 sets of measurements with a ratio of

1:1 as the secure and attacked data. These secure and attacked data are fed to the proposed

AAE detector for offline training.

Neural Network Specification: The learning rate is chosen as 0.0001, and the number of

epochs is 400. The encoder, decoder, and discriminators have two layers of 1,000 hidden units

89



with a ReLU activation function, and a sigmoid activation function is used in the output layer

of the autoencoder. Y l and Y u are two-dimensional for the binary classification problem.

We use the Adam optimization method to train these neural networks with mini-batches of

64 samples for optimizing all the loss functions.

5.5.1. Unobservable FDIA

We investigate the detection performance of the conventional BDD method under unob-

servable attacks to show its insufficiency. Assuming that an attacker has access only to at

most K measurements from half the number of all meters, we randomly choose k in (0, K]

to generate a k-sparse attack vector a in these systems. Also, the DSSE method in Section

2.2.2 runs 5,000 Monte Carlo simulations under no attacks, and we choose the maximum of

rN in all trials as the detection threshold, λ0.

Fig.5.5 lists the results of the LNR test under these FDIAs in the 13-bus system, and we

compare these results with those with no attacks. We find that these FDIAs are unobservable

by the LNR test, since all the residuals are located under the detection threshold. For

instance, we construct FDIAs targeting on the A-phase and C-phase voltages at buses 611,

671, and 680 by constructing a sparse attack vector with k = 4, and Fig.5.6 shows the

estimated states under this unobservable attack. The unobservable FDIA can stealthily

compromise the state estimation for voltage magnitudes to make them violate the operation

ranges, e.g., below 0.95 p.u. at some buses in Fig.5.6. Estimated states with such significant

biases may mislead the decisions made by system operators for voltage regulation.

5.5.2. Detection Performance

Targeting at finding these FDIAs, we evaluate the detection performance of the proposed

method in the 13-bus and 123-bus distribution systems. All simulation and training are

conducted on a computer with a 2.5 GHz Intel Core i5 CPU and 8 GB of RAM.

We calculate the true positive (TP), the true negative (TN), the false positive (FP), and

the false negative (FN) rates, which are defined in Table 5.2. For instance, TP denotes the
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Figure 5.5. The LNR results under unobservable FDIAs and no attacks

 

Figure 5.6. Estimation results of voltages under no attacks and an unobservable attack
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Table 5.2. Definitions of performance indices

Attacked Secure

Classified as attacked TP FP

Classified as secure FN TN

probability that a measurement classified as attacked is actually exposed to an attack. We

evaluate the learning ability of the proposed method by the values of precision (Prec), recall

(Rec), and accuracy (Acc) [85]. The precision values are used to evaluate the classification

performance for the attacked measurements, while the recall values measure the probabil-

ity that the secure measurements are not misclassified as attacked. The overall detection

performance is measured by the index Acc. Furthermore, we calculate these three indices by

Prec =
TP

TP + FP
(5.27)

Rec =
TP

TP + FN
(5.28)

Acc =
TP + TN

TP + TN + FP + FN
(5.29)

Table 5.3 shows the detection accuracy, training time, and detection time of the proposed

method in two test systems. The proposed algorithm used for detecting the attacked metering

data has a detection error of 3.75% in the 13-bus system, while the detection error is 2.15%

in the 123-bus system. Also, the average computation time of the proposed method is 9.30

and 14.81 milliseconds in the 13-bus and 123-bus systems, which can satisfy the requirement

of online detection. Without the use of graphics processing unit (GPU), the training time

reaches about four hours in the 123-bus test system. Moreover, we further try the fine-tuning

technique [98] for neural network training based on the original hardware configuration, the
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Table 5.3. Detection performance of proposed algorithm

Performance 13-bus System 123-bus system

Training Labeled 100% 100%

Accuracy Unlabeled 96.35% 98.95%

Detection Accuracy 96.25% 97.85%

Average Detection Time 9.30 ms 14.81 ms

Training Time 2.5 hours 4 hours

new training process shows that this time (four hours) is shortened to less than two hours.

5.5.3. Other Semi-supervised Techniques

To evaluate the detection performance of the proposed AAE method, we compare the pro-

posed method with other data-driven detection techniques. We employ the semi-supervised

support vector machine (S3VM) proposed in [85] for attack detection as the baseline. More-

over, for a fair comparison, we adopt the semi-supervised autoencoders (SS-AE) and update

the k-nearest neighbor (k-NN) method [99] into a semi-supervised version.

Table 5.4 lists the detection performance of these methods. With limited labeled data for

training, our approach has a higher detection accuracy owing to the powerful combination

of autoencoders and GAN. For instance, the proposed algorithm achieves a high detection

accuracy of up to 95%, while the S3VM-based scheme has a worse performance with a de-

tection accuracy of less than 80%. Our conclusion is similar to that of Ozay et al. [85] that

extensive unlabeled samples in the training dataset largely degrade the classification perfor-

mance of the SVM method. Moreover, owing to the adoption of the advanced generative

models in AAE, the detection accuracy of the proposed method is higher than that of the

individual SS-AE algorithm without the use of generative models. Therefore, the proposed

method is more competitive.

5.5.4. Impacts of Measurement Noises

To test the robustness against measurement noises in the proposed detection method, we
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Table 5.4. Comparison with other semi-supervised methods

Semi-supervised Algorithm
Detection Accuracy [%]

13-bus System 123-bus system

Proposed Method 96.25 97.85

S3VM [85] 73.60 76.65

k-NN [99] 84.90 86.55

Autoencoders [92] 91.85 92.40

investigate the impact of various noise levels of measurement data on the detection accuracy

in the 123-bus distribution system. In the case with no installation or malfunction of smart

meters at load/DG nodes, we use pseudo-measurements with higher errors (e.g., 10% of the

true values), which are obtained from the historical or forecasting data of customer loads

and DG production, to realize the system observability. In experiments, the maximum errors

of the power measurements are set to vary from 4% to 12%. Fig. 5.7 shows the detection

results of the proposed method, SS-AE, and S3VM under these noise levels.

It implies in Fig.5.7 that the proposed algorithm achieves a detection accuracy of more

than 94% even with the maximum measurement errors of up to 12% of the true values; this

finding illustrates the robustness of the proposed detection method against measurement

noises. In comparison, the detection accuracy of the SS-AE and S3VM approaches decreases

when dealing with higher measurement errors. We conclude that the detection accuracy of

the proposed method still remains high when the noise level of the test dataset increases

in distribution systems. This is because the adopted generative model has the capability of

better shaping the distribution of the hidden code of autoencoders to make the measurement

data distinguishable.

5.5.5. Sensitivity Analysis

1) Impact of Amount of Labeled Data

We investigate the detection performance when using relatively fewer labeled data during

the training. We set the different amount of the labeled data, ranging from 500 to 1250 in
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Figure 5.7. Detection accuracy with maximum measurement errors ranging from 4% to 12%.

Table 5.5. FDIA detection with fewer or more labeled data

Number of labeled data Prec [%] Rec [%] Acc [%]

500 91.17 92.26 91.70

750 93.18 94.98 94.15

1000 94.16 96.78 96.25

1250 95.47 97.83 96.70

the 13-bus test system. Table 5.5 provides the confusion matrix and evaluation indices of

the proposed algorithm, in which the number of training samples is 8,000. More labeled data

during the training leads to a more accurate detection performance. However, with 500 sets

of data labeled, the proposed method detects the unobservable FDIAs with precision, recall,

and accuracy values of about 91.17%, 92.26%, and 91.70%, respectively, which illustrates

the detection effectiveness of this method.

2) Impact of Different Attacks

Considering that there are some potential FDIAs that are not fully investigated and thus

are not labeled in the training stage, we test the detection performance towards new attacked

samples. New attacked samples here are defined as those that are not labeled in the training

stage and produced by different attack construction methods from that of those historical

known FDIAs. This case study can be summarized as “using few attacked samples to detect
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Table 5.6. Data structure in sensitivity analysis

Data in Number of Number of attacked data

stage of normal data From [5] From [20]

Training Labeled 8% 0 2%

(8000) Unlabeled 78% 2% 10%

Test (2000) 50% 40% 10%
∗ The numbers in the brackets denote the size of the samples.

Table 5.7. Comparison of detection performance in two cases

Performance with Number of labeled attacked data

400 training epochs 400 160

Training Labeled (800) 100% 100%

accuracy Unlabled (7200) 95.75% 93.15%

Detection accuracy 94.95% 91.60%
∗ The numbers in the brackets denote the size of the samples.

more new samples” by adopting the generative models.

Specifically, the attacked samples with labels in the training dataset are only from the

construction method in [44], and the ratio of these samples to all the training samples is low,

i.e., 2%, shown in Table 5.6. Furthermore, we use the method in [8] to constructs different

attacks from those labeled samples, and these attacked samples without attaching labels are

randomly chosen and put in the training and test dataset as new attacks. These details of

the adopted training and test datasets are shown in Table 5.6, and here only 160 attacks are

labeled. Other settings are the same as Section 5.5.1.

Shown in Table 5.7, the detection accuracy of the unlabeled data in the training decreases

to 93.15%, compared with 95.75% in the case study where 400 attacks are labeled in the

total 800 labeled data. In the test stage, the proposed method detects the unobservable

FDIAs with an accuracy of 91.60% in the 123-bus system. We conclude that the limited

attacked data that are labeled in the training process degrade the detection performance of

the semi-supervised learning.
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Table 5.8. Confusion matrix of FDIA detection with fewer labeled data

Actual Classified Classified Prec Rec

label as attacked as secure [%] [%]

Attacked (994) 923 71
92.86 90.49

Secure (1006) 97 909
∗ The numbers in the brackets denote the size of the samples.

More details about the test performance can be found in Table 5.8. These “new attack”

influence the recall value more obviously, and this index is 90.49%. However, the detection

performance of the proposed algorithm might be acceptable, since only 2% of the attacked

data is labeled in the training stage.

5.6. Conclusion

This chapter proposes a semi-supervised AAE-based algorithm for detecting FDIAs in

smart distribution systems. In the case of only a small fraction of labeled measurement

data, the proposed method leverages a state-of-the-art GAN framework to realize the effec-

tive detection of unobservable FDIAs that bypass the conventional BDD method. Compared

with other semi-supervised learning techniques, the proposed algorithm has a high and ro-

bust detection accuracy owing to the powerful combination of autoencoders and GAN. The

proposed detection method is fully data-driven and does not depend the specific estimation

methods and system knowledge. Numerical simulations validate the detection performance

of this method.
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Chapter 6

Deep Reinforcement Learning Based Volt-VAR Control in Smart Grids

6.1. Introduction

Electric power systems currently adopt volt-VAR optimization (VVO) to improve oper-

ational efficiency and reduce power losses in distribution systems. About 10% of the energy

losses occur during transmission and distribution to customers, while 40% of the total losses

occur at the distribution side, according to the U.S. Energy Information Administration [100].

Research shows that effective VVO control on various regulating devices, such as automatic

voltage regulators (AVRs) and switchable capacitors, can realize voltage regulation as well

as loss reduction. As a typical tool in the distribution management system (DMS), the

primary goal of VVO is to keep voltages at all buses within a normal operation range, e.g.,

0.95∼1.05 p.u., according to ANSI C84.1 standard. This topic is further motivated by the

penetration of distributed generation (DG), since bidirectional power flow in active distri-

bution systems raises the risk of voltage violation [101]. The DG units equipped with smart

inverters have the flexible capability of absorbing or providing reactive power [102]. Thus,

a VVO tool with an effective control strategy on these smart inverters can enhance the

operational performance of distribution systems with DG penetration [103].

Traditionally, VVO is modeled as a mixed-integer nonlinear programming (MINLP) prob-

lem established on optimal power flow (OPF) [104]. Due to the existence of integer variables

and nonlinear voltage-dependent load models in systems, the VVO formulation is nonconvex

and NP-hard [105]. More research converts this problem to various optimization problems,

namely, mixed-integer quadratically constrained quadratic programming (MIQCQP) and

mixed-integer quadratic programming (MIQP), etc. [106, 107]. However, the iteration pro-

cess in these methods is time-consuming. This low computational efficiency originates from
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two reasons: 1) the comprehensive modeling of various control devices largely increases the

complexity of these optimization models, and 2) the combination of action variables from

multiple control devices results in a huge searching space [108]. On the other hand, these

studies run in a centralized manner and adopt linear or nonlinear power flow formulation

for single-phase distribution systems to simplify the modeling complexity, such as [104–107]

and [109–112]. However, the three-phase unbalanced operation of distribution systems is

more consistent with practice, and these approaches can be computationally demanding and

do not guarantee optimal performance.

Table 6.1. Literature review of VVO methods in distribution systems

Method Reference

Model practical consideration
Single/multiple

ZIP Accurate three-phase Smart

load power flow inverters agent(s)

[108] X × × -

Model-based [113] × X × Multiple agents

[114] X × X -

DRL-based
[115,116] × × × Single agent

This Chapter X X X Multiple agents

To reduce the computational burden of these centralized algorithms, the decentralized

or hierarchical methods, such as [108], [113], and [114], are used for VVO in unbalanced

distribution systems. For instance, dividing the feeder into several regulating zones, the au-

thors of [108] formulated a linearized power system model to solve a zone-based optimization

problem in each stage via MIQP and then performed a multi-stage coordinated operation

to achieve the overall voltage regulation. Unfortunately, the iterations recorded in [108]

reach up to thousands and take hundreds of seconds due to this multi-stage operation. Also,

these approximation techniques may cause accuracy losses in power flow calculation and lead

to suboptimal control strategies. Recently, [114] develops a bi-level VVO formulation, and

the lower level models a MILP problem using a nearly linear power flow, while the upper

level solves a quadratically constrained nonlinear programming (QCNP) problem based on
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nonlinear power flow approximation.

The physical model-based methods mentioned above highly depend on specific optimiza-

tion models and have limited capability in rapidly adapting to time-varying DG/loads in

distribution systems. To address the limitations of these model-based approaches, recent ef-

fort applies reinforcement learning (RL) to power system operation, such as [117] and [118].

Furthermore, deep reinforcement learning (DRL) combining deep learning with RL is re-

garded as valuable alternatives to model-based methods, due to its strong exploration ca-

pability of neural networks (NNs) towards nonlinear high-dimensional searching spaces. For

example, the DRL-based methods proposed in [119] adaptively provide the voltage setpoints

for generators in transmission systems. However, the existing voltage control methods via

DRL, such as [119] and [120], only focus on adjusting voltage profiles without looking into

the potential of VVO in power loss reduction.

Recently, the authors of [116] extended their work in [115] and solved a constrained

Markov decision process for VVO in the DistFlow environment via a constrained soft actor-

critic algorithm. However, [116] and [115] do not consider voltage-dependent loads and smart

inverters installed at DG units, both of which are widely used in practical distribution sys-

tems with renewable integration [104,114]. On the other hand, the DistFlow equations may

suffer from high errors in power flow, loss, and voltage calculations in power networks with

heavy load and high renewable penetration [121]. Such inaccuracies are more pronounced

when operating power factors deviate from unity, e.g., in systems with DG participating in

voltage regulation or high r/x ratios. Also, coordinated VVO control on various regulating

devices has not been fully investigated in three-phase unbalanced distribution systems. A

literature review of the VVO methods in such systems is shown in Table 6.1. Most of the

existing RL-based VVO methods adopt a single agent, and if directly applied to larger-scale

systems with multiple regulation devices, they have a slower learning speed due to a huge

searching space of variables [122].

Targeting at auto-adaptive voltage control under time-varying operating conditions, we

propose a data-driven and model-free VVO approach via multi-agent DRL (MADRL) in
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unbalanced distribution systems. The proposed method is novel since we cast the multi-

objective VVO problem for distribution systems to an intelligent DQN framework. In this

framework, we consider the statuses/ratios of capacitors, AVRs, and smart inverters as action

variables. These actions are determined via the agents that are trained by interacting with

their environment, i.e., the distribution system. Moreover, by customizing a reward function

that effectively guides the DQN training process, this method realizes dual goals on power

loss reduction and voltage regulation simultaneously.

6.2. System Model of Unbalanced Distribution Networks

Unlike transmission systems, distribution networks have radial or weakly meshed topolo-

gies with lines of a high r/x ratio, which may make the traditional Newton-Raphson power

flow method fail to converge [21]. The efficient forward-backward sweep method provides

exactly accurate power flow results without any approximation, even in large-scale unbal-

anced distribution systems. Hence, this method is widely used in power flow calculation for

radial distribution systems.

We adopt the ZIP model in distribution systems, which is a voltage-dependent load

model widely used in related research, such as [112, 114]. The ZIP load models for active

and reactive powers at bus i are depicted as

Pϕ
i = Pϕ

i,0

[
kp,1

(
|Uϕ

i |
U0

)2

+kp,2(
|Uϕ

i |
U0

)+kp,3

]
(6.1)

Qϕ
i = Qϕ

i,0

[
kq,1

(
|Uϕ

i |
U0

)2

+kq,2(
|Uϕ

i |
U0

)+kq,3

]
(6.2)

where Pϕ
i and Qϕ

i denote the ϕ -phase active and reactive powers at bus i, respectively, and

ϕ = {a, b, c}; kp,1 +kp,2 +kp,3 = 1, and kq,1 +kq,2 +kq,3 = 1; Pϕ
i,0 and Qϕ

i,0 denote the ϕ -phase

active and reactive powers at the nominal voltage U0; |Uϕ
i | represents the ϕ -phase voltage

magnitude at bus i.

101



We briefly introduce the procedure of the forward-backward sweep method for power flow

calculation in unbalanced distribution systems as follows:

1. Current Injection Calculation. Initialize three-phase voltages at all buses as the values

of nominal voltages. In each iteration, the three-phase current injections at bus k are

calculated by 
Iak,in

Ibk,in

Ick,in

=


(Sak/U

a
k )
∗

(Sbk/U
b
k)
∗

(Sck/U
c
k)
∗

 (6.3)

where Sϕk = Pϕ
k + jQϕ

k denotes the ϕ –phase complex power of load consumption or

DG production at bus k and is considered as the ZIP model in (6.1) and (6.2) ; Uϕ
k

denotes the ϕ -phase voltage at bus k in the current iteration, and k = 1, 2, . . . , N ; [·]∗

represents the complex conjugate.

2. Backward Sweep. Starting from the end bus of the feeder, we calculate the receiving-

end current Im at branch n - m via the Kirchhoff’s current law:

Im =


Iam

Ibm

Icm

 =


Iam,in

Ibm,in

Icm,in

+
∑

l∈N (m)


Ial

Ibl

Icl

 (6.4)

where N (m) denotes the set of the downstream branches connected to bus m, and Iϕl

denotes the sending-end current on phase ϕ at branch l.

The sending-end current In at branch n - m is calculated based on (6.4) by

In = cnm


Ua
m

U b
m

U c
m

+ dnm


Iam

Ibm

Icm

 = cnmUm + dnmIm (6.5)
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where cnm and dnm are determined by the line parameters at this branch, cnm =

Y abc + 1
4
Y abcZabcY abc and dnm = I + 1

2
ZabcY abc; Zabc ∈ C3×3 denotes the three-phase

line impedance matrix at branch n- m, and Y abc ∈ C3×3 is the shunt capacitance

matrix; I denotes an identity matrix.

3. Forward Sweep. Starting from the root bus and moving towards the end bus of the

feeder, the nodal voltage at bus m is calculated from the voltage at bus n and the

sending-end current by

Um = anm


Ua
n

U b
n

U c
n

− bnm

Ian

Ibn

Icn

 = anmUn− bnmIn (6.6)

where anm = I + 1
2
ZabcY abc and bnm = Zabc.

The iterative procedure continues until the voltage differences at all nodes in two succes-

sive iterations satisfy

∆U k =
∥∥∥U (t+1)

k −U (t)
k

∥∥∥
∞
< ε k ∈ {1, 2, . . . , N} (6.7)

where U
(t)
k and U

(t+1)
k denote the three-phase voltages at bus k at iterations t and t+ 1, and

ε denotes the iteration tolerance.

The flowchart of power flow calculation is shown in Fig. 6.1. Furthermore, we calculate

the total active power loss in the whole system based on the nodal voltages at all buses by:

Ploss =
∑

m:n→m
real(UT

nmInm) (6.8)

where Unm denotes the three-phase voltage drop at branch n-m, and Unm = Un−Um; Inm

is the three-phase current through the line impedance, and Inm = Z−1
abcUnm; the function

real(·) takes the real part of the complex number, and (·)T denotes the transpose of a vector.

103



Figure 6.1. Flowchart of the forward-backward sweep method

Power flow calculation requires prior knowledge of the network topology. For distribution

networks with an unknown topology, efficient topology identification methods, such as [123],

should be adopted for further system monitoring and control.

6.3. Proposed VVO Algorithm
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This section integrates the models of switchable capacitor banks, AVRs, and smart in-

verters into the power flow calculation to evaluate the impacts of the status changes of these

regulating devices on system operation. Leveraging these changes as control actions, we

propose a multi-agent DQN-based VVO method to realize effective voltage regulation and

power loss reduction.

6.3.1. Voltage Regulation Devices

1) DG With Smart Inverters

We develop a per-phase model of smart inverters installed at DGs. Various voltage control

strategies can be used in these smart inverters. Here, we assume these smart inverters adopt

the reactive power control (RPC) strategy, and voltage droop control can also be used by

updating the backward-forward sweep method.

i. RPC

Assume a DG unit with the smart inverter installed at bus k and the active power of DG

outputs is known, and its nominal per-phase capacity is Sϕdg,k. In RPC, the ϕ - phase reactive

power provided or absorbed by this DG unit at bus k can be expressed as the following box

constraint [114]:

Qϕ

dg,k
≤ Qϕ

dg,k ≤ Q
ϕ

dg,k (6.9)

where Q
ϕ

dg,k denotes the maximum reactive power of this DG unit installed at bus k, and

Qϕ

dg,k
= −Qϕ

dg,k; Q
ϕ

dg,k =
√

(Sϕdg,k)
2 − (Pϕ

dg,k)
2
, and Pϕ

dg,k denotes the ϕ -phase active power;

here we define the control variable as aϕdg ∈ [−1, 1], and Qϕ
dg,k = aϕdgQ

ϕ

dg,k. The dispatchable

range of Qϕ
dg,k is relatively narrow since a high power factor (e.g., 0.95) is preferable during

DG operation.

ii. Droop Control

In voltage droop control at bus k, the inverter output voltage U k are controlled by the

droop characteristics defined by the following equation [124]:

U k −U k,0 = kq(Qdg,k −Qk,0) (6.10)
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where U k − U k,0 denotes the three-phase voltage deviations from their rated values, U k,0;

Qdg,k − Qk,0 is the variation of the three-phase reactive powers delivered by the power

converter to compensate such deviations; the parameter kq represents the slope of the voltage

droop characteristic.

For each Qdg,k computed by the action that the proposed DRL agent gives, the nodal

voltage can be obtained by (6.10). The backward-forward sweep process can be further

modified for power flow calculation in droop-regulated distribution systems or microgrids by

using the method proposed in [125]. This process can be found in the dotted part of Fig.

6.1.

2) Capacitor Bank

We adopt the three-phase model of capacitor banks. Specifically, we define the reac-

tive power provided by the capacitor installed on phase ϕ as a function of the control

variable, aϕc ∈ {0, 1}, which indicates the status (on/off) of this capacitor. The capaci-

tor provides reactive power when it is connected, i.e., aϕc = 1, and the reactive power at bus

k is calculated by the following nonlinear function of Uϕ
k .

Qϕ
c = aϕc (Uϕ

k )2Bϕ
k (6.11)

where Uϕ
k denotes the ϕ -phase voltage of the capacitor installed at bus k, and Bϕ

k denotes

the susceptance of the capacitor on phase ϕ.

3) Voltage Regulator

A voltage regulator with a regulating range of ±10% is used in distribution systems, and

the series and shunt impedance of the voltage regulators are neglected since their values can

be regarded as extremely small [114]. Define aϕr as the step for the voltage regulator on

phase ϕ. For example, in a 32-step regulator, aϕr takes values between 0.9 and 1.1 at a step

of 0.00625 p.u. The control variable for the regulator is defined by

aϕr =
33∑
j=1

bjαj (6.12)
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where αj denotes the binary variable for the jth regulator step position, and
∑33

j=1 αj = 1 ;

bj ∈ {0.9, 0.90625, . . . , 1.1} and ϕ ∈ {a, b, c}.

For branch n - m that with the regulator installation, an additional bus n′ is introduced

between buses n and m. The impacts of the regulators installed at this branch on the voltage

Un and current In are quantified by [21]:

U ′n = ArUn (6.13)

I ′n = DrIn (6.14)

where U ′n denotes the three-phase voltage at bus n′, and I ′n denotes the three-phase current

that flows out from this regulator; Ar = diag{aar , abr, acr}, and Dr = A−1
r .

In the power flow calculation, we replace Un and In with U ′n and I ′n at the locations of

regulators to run the forward and backward sweeps in (6.5) and (6.6).

To introduce the control strategies of smart inverters into the DQN-based VVO frame-

work, we discretize the action space of aϕdg to handle the performance of these actions in RL.

This processing method is widely accepted and used for flexible Q-learning or DQN appli-

cations, such as [126, 127]. Here, we suppose that DG operators have a certain number of

strategies for each control interval (6.9) in practice [128], and aϕdg can take values between

−1 and 1 at a step of 0.1.

Fully considering all setting changes of the capacitor banks, smart inverters, and AVRs,

the power flow calculation process in (6.3)-(6.7) is updated by integrating (6.9)-(6.14), along

with the voltage-dependent loads modeled by (6.1) and (6.2).

The objective of conventional VVO is to keep the nodal voltages in a normal range (e.g.,

0.95 to 1.05 p.u.) and concurrently minimize total active power loss [109, 110]. Hence, the
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optimization model for this purpose can be formulated as

a = arg min Ploss (6.15a)

s.t. unbalanced power flow equations in (5.1)-(5.7) (6.15b)

0.95 ≤ |Uϕ
k | ≤ 1.05 (6.15c)

where |Uϕ
k | denotes the voltage magnitude on phase ϕ at bus k, and ϕ = {a, b, c}; Ploss is

calculated by (6.8).

Under time-varying operating conditions, the effective power flow calculation acts as the

environment for DQN agents, and the details of the proposed VVO algorithm are shown in

the next section.

6.3.2. MADRL Design for VVO

In an RL process, a NN is defined as an agent, and the part where the agent takes control

actions is the environment. Massive episodes of training are applied to the agent, and in the

environment, the load consumption and DG production in a distribution system vary in each

episode. The agent is required to take control actions with respect to the given operating

condition to achieve VVO. The dimension of the action space increases explosively with the

number of controllable devices installed in the three-phase distribution system. Also, a single-

agent DQN is challenging to efficiently provide actions due to the extremely high dimension

of the joint action space [122]. To improve computational efficiency and ensure scalability

for VVO, we propose a multi-agent DQN-based algorithm. The interaction between multiple

agents and the environment is depicted via three elements: state s, action a, and reward rt

at episode t. We describe these elements for VVO below.

1) State and Action

The action vector for the VVO problem decided by all agents is expressed as

a = [a1, a2, . . . , aNi]
T (6.16)
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where ai denotes the control action that originates from the statuses of three-phase smart

inverters, regulators, or capacitors, i.e., aϕr , aϕc , and aϕdg, and ai ∈ Ai; Ai represents the

searching space of the ith action, and i ∈ {1, 2, . . . , Ni}.

For the action vector a provided by the agents, the environment provides three-phase

voltages at all buses in distribution systems, which act as the states of the DQN. Moreover,

these states are expressed as s = [U 1,U 2, . . . ,UN ], where U k = [Ua
k , U

b
k, U

c
k ] and k =

{1, 2, . . . , N}.

2) Reward

To solve the optimization model (6.15), we construct a reward interpreter of DQN by

putting the voltage constraints into the objective function. The proposed reward interpreter

has the following characteristics:

• If the constraint (6.15c) is violated, a significant penalty M is imposed on the reward

of the DQN, which moves the voltages into the normal range [109]. To accurately

quantize the voltage deviation degree in the whole distribution system, the reward

function at all the time steps is calculated by

rt = −M
∑
ϕ

∑
k

[max(|Uϕ
k | − 1.05, 0) + max(0.95− |Uϕ

k | , 0) ] (6.17)

where the more significant the degree of voltage violation is, the more negative reward

the DQN agents obtain.

Remark. The primary goal of VVO is to make all voltage magnitudes within a normal

operating range. Otherwise, the VVO problem has no feasible solution. Therefore, before

calculating the power loss reduction, the proposed reward function firstly examines whether

the current actions lead to a voltage violation. The agents must avoid providing the actions

that result in the voltage violation as much as possible.

• When the voltage constraint (6.15c) is not violated, we calculate the reward value at

episode t by

rt = M+(P
t

loss,0 − P
t
loss) (6.18)
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where P t
loss denotes the active power loss based on the current action variables, and

P t
loss,0 denotes the one that takes the default actions at episode t, both of which are

calculated according to the corresponding states; M+ > 0 denotes an incentive factor

that motivates the agents to obtain a greater positive reward; rt > 0 implies that the

proposed DQN further reduces the power loss after conducting the new action given

by the agents at episode t.

Remark. In the case of no voltage violation, we set the reduction of power losses compared

with the default settings of the regulation devices as the reward, rather than the absolute

power loss at the current episode. Doing so is to guarantee that the agents always attempt

to improve their policy based on the default actions, when facing new operational conditions.

Moreover, this design coordinates with voltage constraints in (6.15c) and make agents learn

in the direction of obtaining a greater positive reward. It is because either the voltage

violation or increasing power loss has a negative reward, which informs the agents that the

actions being taken are undesirable.

6.3.3. Multi-agent DQN Algorithm

This section describes the learning process of the proposed MADRL algorithm. The NN

structure of agent j is depicted in Fig. 6.2, where the input is state s, and the output is

the action to be taken by this agent. The NN-based agent is trained to learn the mapping

between the state and action, i.e., an action-reward Q function, by maximizing the possible

reward.

1) Multi-agent Operation

MADRL is capable of solving more complex tasks through the cooperation of individual

agents effectively. In our VVO framework, the agents’ training process can be summarized

as “centralized learning, decentralized execution”, which belongs to the concurrent learning

category in multi-agent training schemes and is computationally efficient [122]. Moreover,

the multi-agent DQN distributes the global control actions to each agent that performs

coordinated RL by exploring the shared environment. Specifically, each agent takes actions
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Figure 6.2. The NN structure for agent j.

based on their local observations, and the action choice is evaluated by the overall Q value

of the combined actions from all agents under a specific state.

Here, let j denote the serial number of an agent, and j ∈ {1, 2, . . . , n}, where n is the

number of agents. Considering various regulating devices, the actions of all the devices are

assigned to multiple agents, shown in Fig. 6.3; assume there are Nj actions in agent j. Due

to the existence of heterogeneous regulation devices, all agents can perform in parallel by

distributing the actions’ searching space as uniformly as possible, i.e., making the dimension

of the joint space in each agent close to each other. For example, we can assign one action of

a per-phase 32-step regulator to agent 1 and five actions from multiple capacitors to agent

2, and then dim(A1) = 33 and dim
(∏6

i=2Ai
)

= 25 = 32. It is noted that the agents require

no physical information of these actions, such as their locations and phases in the system.

When sent to the environment, these actions are executed at the corresponding locations for

effective power flow calculation.

During the learning process, efficient communication among these agents is conducted

to select the optimal actions via their shared observation of the current state s and the

latest action a, shown as Fig. 6.3. Moreover, the information exchange among the agents

is the current actions that these agents jointly take, a. In each training episode, based

on the current state s, the agents provide the new control actions to the environment.

Specifically, in agent j, the new action participating in the local learning process is a′(j) =
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Figure 6.3. Multi-agent DQN training loop

[a1, . . . , aj−1, a
′
j, aj+1, . . . , an]T , where a′j is the latest control policy from this agent, and the

rest of the actions ai, i ∈ {1, 2, . . . , n}\j, are reserved from the last episode. Then, collect

the control action a′j from a′(j) in all these agents, and form the new action vector for the

whole distribution system, a′ = [a′1, a
′
2, . . . , a

′
n]T .

The environment, i.e., the power flow calculation procedure, then implements the joint

action a′ and get a new reward and a new state s′, until the training process terminates.

2) Offline Training and Online Test

According to our customized reward function (6.17) and (6.18), the new state s′ and the

corresponding system power loss are interpreted into the immediate reward r after taking

action a at state s. For t = 1, 2, . . . , Nep, agent j updates the action-reward Q function at

episode t via the following Bellman equation:

Qt+1
j (s,a) = Qt

j(s,a) + α(rt + γmaxQt
j(s
′,a′)−Qt

j(s,a)) (6.19)
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where γ ∈ [0, 1] is a discount rate, and α denotes the learning rate of the DQN.

An experience replay technique is used to store the latest Nb sets of the agents’ experience

in episode t, i.e., the transition tuple (s,a, rt, s′), to a replay buffer M. We sample a mini-

batch memory D from the replay buffer to improve the generality of the agents towards

diverse states. The agent j is trained by D together with the current transition tuple.

Moreover, the stochastic gradient descent on NN parameters θj for the agent is conducted

using the following loss function Lj(θj), which enforces the Bellman equation (6.19):

Lj (θj) = E
[(
rt + γmaxQt

j(s
′,a′)−Qt

j(s,a)
)2
]

(6.20)

where we define the target Q function as y=rt + γ · maxQt
j(s
′,a′) , and E(·) denotes the

expectation function.

The Q function iteratively updates following (6.19), shown as Qt+1
j (s,a) = E(rt +

γmaxQt
j(s
′,a′)). Such iterations converge to the optimal action-value function, Qt

j → Q∗j as

t→∞ [129].

During the training process, we apply the ε-greedy policy [120] to select the actions effi-

ciently, as it encourages each agent to fully explore the corresponding action space. Specif-

ically, as the training continues, the action selection relies more on the action policy from

Qt
j(s
′,a′), shown as:

aj = πj(s) =


random action from Aj, if ξ < εt

arg maxa′j∈Aj
Qt
j(s
′,a′), otherwise

(6.21)

where πj denotes the action selection policy for agent j, and 0 <ξ < 1 is a random number;

the searching criteria εt is updated based on the last episode by a decay factor η, i.e.,

εt = εt−1η.

The pseudo-code summarizes the offline training process of the proposed MADRL algo-

rithm. When the training process terminates, the agent j with parameter θ∗j is applied to

113



the test cases, where new operating conditions in the distribution system are fed. For each

test case, these well-trained agents provide the action policy by

aj = Q∗j
(
s,a;θ∗j

)
j ∈ {1, 2, . . . , n} (6.22)

These actions from all agents are combined by (6.16) and given to the environment as the

solution of the model (6.15) for online system VVO control.

Algorithm 3 Multi-agent DQN Training Process

1: Input:Distribution system model and the action space Aj for agent j, j ∈ {1, 2, . . . , n}.

2: Initialization: the learning rate α, the discount rate γ, the decay factor η, and the size

of replay buffer Nb.

3: for t = 1 to Nep do

4: Initialize state s, and obtain action a by the ε -greedy policy (6.21).

5: for j = 1 to n do

6: Get reward rt by (6.17) and (6.18), and new state s′ by power flow calculation, and

store them as a transition (s,a, rt, s′) in replay buffer.

7: Get the current Q vector at state s by agent j

8: Sample from the replay buffer to obtain tuple
(
s(i),a(i), rt(i), s′(i)

)
, and i =

1, 2, . . . , Nd.

9: Set y = rt + γmaxQt
j(s
′,a′)

10: Train and update agent j by performing gradient descent on (20).

11: end for

12: end for

13: Output:All agents with parameters θ∗j .

6.4. Case Study

We test the proposed algorithm on the radial three-phase unbalanced IEEE 13-bus and

123-bus distribution systems [25]. We modify the 13-bus system by adding two single-

phase PV units at buses 675 and 684, and a three-phase wind turbine generator at bus
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Figure 6.4. Three-phase unbalanced 13-bus distribution system

680, illustrated in Fig. 6.4. Six DG units are added at buses 13, 18, 60, 151, 250, and

300 in the 123-bus systems, and the installation capacity of these DG units is set as 300 or

500 kVA [130]. Here we randomly place the DG units, and similar settings are also used

in [130] and [15]. The optimal placement method of DGs can be found in [131] and is not

the focus of this chapter. Table 6.2 lists the specifications of control devices, including smart

inverters installed at the DG units in both test systems. We can see that taking the action

variables for all these devices into account results in high-dimensional joint decision space.

We assume that there is no distinction on the per-phase action of regulators located on the

same bus, and this assumption also applies on the smart inverters. For example, in the

13-bus system, all six actions produce a 24 × 21 × 33 = 11, 088 combinations of all these

actions; for the 123-bus test system, and the dimension of the combinations of all 13 actions

is 26 × 53 × 54 = 5, 000, 000. The details of the adopted multiple agents can be found in

Table 6.3.

In the baseline, the actions are initially set as default to calculate (6.18), where no

capacitor bank is connected in these systems, and the steps of AVRs and the power factors

of smart inverters are set as 1 as default [132]. The proposed algorithm runs in MATLAB
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Table 6.2. Installation settings of control devices

Device Type
13-bus System 123-bus System

No.bus/branch Phase No.bus/branch Phase

Regulators 650-632 A,B,C

150-149 A,B,C

9-14 A

25-26 A,C

60-67 A,B,C

Capacitors

83 A,B,C

611 C 88 A

675 A,B,C 90 B

92 C

13 C

Smart Inverters 684 C 18 A,B,C

16 A,B,C

by using the Reinforcement Learning Toolbox, and we build the learning environment, i.e.,

three-phase distribution system operation. The load data are collected at each node from

smart meters in the test systems, according to [116] and [115]. For offline training and online

test, we randomly generate 9,000 and 13,000 operating conditions (episodes) with 80% to

120% of random fluctuations of base loads/DGs in these two systems, respectively [120].

Moreover, in the test phase, new operating conditions are used as test cases, and Table 6.3

gives the number of training episodes and test cases, Nep and Ntest.

DQN Specification: The NNs used here have three fully connected layers, and the learning

rate is chosen as 0.0001. The NN agents in the proposed method use rectified linear unit

(ReLU) activation functions in the hidden layers and sigmoid functions in the output layer.

Table 6.4 also summarizes the parameters of the adopted multi-agent DQN in the two test

systems.

6.4.1. Learning Performance

We investigate the learning performance of the proposed method. We test the proposed
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Table 6.3. Parameter settings of multi-agent DQN

Parameter 13-bus System 123-bus system

Size of hidden layers {35,20,30} {120,60,30}
η 0.999 0.9995

γ 0.95 0.95

Nd 500 2000

Nep 8000 9000

Ntest 1000 4000

n 3 6

N1 = 16 N1 = 64

Nj for j ∈ {1, 2, . . . , n} N2 = 21 N2 ∼ N4 = 5

N3 = 33 N5, N6 = 25

M+ 1 10

M 100 100

algorithm on the 123-bus system, and Fig.6.5 shows the reward values in the training process

and moving average rewards in successive 200 episodes. We observe that the DQN agents’

control policies result in negative rewards (rt < 0) due to limited positive learning experiences

and not yet optimized action policies in an earlier learning phase. These negative rewards

illustrate that at the beginning, the action policies are incapable of maintaining the system

voltages within 0.95∼1.05 p.u. and reducing power loss at the same time, according to (6.17)

and (6.18). However, during the training process, the agents gradually evolve and obtain

positive rewards (rt > 0) more and more frequently. Moreover, rt > 0 implies that there

is no voltage violation and the power loss is further reduced by taking action a′, compared

with the performance before a′ is taken. Also, the average reward in the training process

continuously increases, which shows the DQN’s ability in realizing the VVO.

Furthermore, for online test, 4,000 new cases are fed to these trained agents. These

agents demonstrate an effective control performance for VVO, which is characterized by the

positive rewards in these cases, as shown in episodes from 9,000 to 13,000 of Fig. 6.5. We

conclude that the proposed DQN enables the power grid to self-learn with the “cognitive”
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function of VVO control by mimicking the human mind. Eventually, these trained agents

can implement effective control policies when confronted with new operating conditions.

Table 6.4. Performance of voltage regulation

System Scale Nv Mm Sv

13-bus System 998 1,000 99.8%

123-bus System 4,000 4,000 100%

Figure 6.5. Multi-agent DQN training process in the IEEE 123-bus system

6.4.2. VVO Performance

This section demonstrates the VVO performance of the proposed model-free MADRL

method when facing random operating conditions, in terms of voltage regulation and power

loss reduction, both of which are implemented online by this method simultaneously.

1) Voltage Regulation

To evaluate the voltage control performance of the proposed VVO method in the test

cases, we define the success rate in voltage regulation, Sv, as follows.

Sv = Nv/Mv (6.23)
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where Mv denotes the number of those test cases that exist voltage violation before adopting

the proposed VVO algorithm, and Nv denotes the number of those cases that avoid the

voltage violation issue by using this method. Moreover,a higher Sv illustrates that the

proposed algorithm has a better control performance in voltage regulation.

Table 6.4 summarizes the statistical results of the proposed algorithm in test cases.

Specifically, before employing the proposed method in the 13-bus system, voltage violation

exists in the 1,000 test cases, and our algorithm achieves a control success rate of 99.80%

in voltage regulation. For a larger-scale three-phase 123-bus system, the VVO task becomes

more challenging due to the so-called “curse of dimensionality.” However, the proposed

MADRL method obtains a success rate of 100%.

We randomly select a test case in the 13-bus system to compare the voltage magnitudes

with the control from the proposed method and the baseline, and Fig. 6.6 depicts these

three-phase voltage magnitudes at each bus. It can be seen that in the baseline control, the

A-phase and C-phase voltage magnitudes at buses 611, 652, 671, 675, and 684 violate the

normal voltage operation limits; after adopting the control actions provided by the agents,

the voltages at all these buses fall within the normal operating range. Moreover, we compare

the voltage profiles with the control from the baseline and the proposed VVO method, in

terms of the minimum, maximum, and average of voltage magnitudes, in Table 6.5. It is

shown that the proposed method avoids voltage violation by jointly dispatching these devices,

and these DG units with smart inverters are directed to provide reactive powers for voltage

lift.

2) Power Loss Reduction

Here we show the performance of power loss reduction in those test cases that are dis-

cussed above for voltage regulation. Fig. 6.7 demonstrates the power loss of the baseline

and the proposed approach in 50 test cases that are randomly selected in the 13-bus system.

We conclude that the proposed method enables effective power loss reduction.

To further quantify the loss reduction performance in these two test systems, we calculate
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Figure 6.6. Three-phase voltage magnitude comparison before and after VVO control in the

13-bus system.

the reduction of power loss in each test case by

∆P i=P i
loss,0 − P i

loss (6.24)

where ∆P i denotes the difference in the ith test case between the active power losses with

the control strategies from the baseline and the proposed method, i.e., P i
loss,0 and P i

loss;

i = 1, 2, . . . , Ntest, and these active power losses are calculated by (6.8).

Table 6.6 summarizes the average and maximum of ∆P i in two test systems and implies

that the proposed method enables power loss reduction in all test cases. Specifically, in

the 13-bus system, the average power loss reduction obtained by the proposed algorithm

is 45.38 kW. In the 123-bus system, these statistic data are 75.23 kW for the mean power

loss reduction and 28.38% for the loss reduction percentage. We conclude that the pro-
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Figure 6.7. Power loss comparison before and after control in the 13-bus system.

posed DQN-based method effectively realizes dual goals on power loss reduction and voltage

regulation.

6.4.3. Computation Time

We carry out numerical experiments to investigate the computational efficiency of the

proposed method. All the tests are performed using MATLAB on the machine equipped

Table 6.5. Voltage comparison in the IEEE 123-bus system

Voltage Magnitude Profile [p.u.] Phase A Phase B Phase C

Min. Voltage 0.9070 0.9115 0.9191

Baseline Max. Voltage 1.0300 1.0300 1.0300

Aver. Voltage 0.9372 0.9526 0.9552

Min. Voltage 0.9710 0.9958 0.9819

The proposed method Max. Voltage 1.0393 1.0418 1.0421

Aver. Voltage 1.0002 1.0256 1.0213
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Table 6.6. Performance of power loss reduction

System Scale
Average Maximum The prop. of

∆P i [kW] ∆P i[kW] ∆P i > 0

13-bus System 45.38 67.79 100%

123-bus System 75.23 86.36 100%

with a 2.5 GHz Intel Core i5 CPU and 8 GB of RAM.

In the online test phase, the average executive time of all test cases in the 13-bus and

123-bus systems is 21.7 and 46.2 milliseconds, respectively, which is promising to meet with

the requirement of real-time implementation in power systems. The proposed algorithm still

shows the high computational efficiency in the unbalanced 123-bus system. Moreover, the

proposed MADRL method is competitive when dealing with a high-dimensional action space

that exists in three-phase distribution systems.

6.4.4. Comparison with Existing Reward Design

Besides the baseline, where all regulation devices keep their default actions, another

benchmark is set up by using the reward design proposed in [116], which does not consider

voltage regulation as the primary objective of VVO and directly uses the big penalty. For

a fair comparison in the DRL-based VVO methods, we adopt the following reward function

in this benchmark and apply the same environment and training conditions as the proposed

method.

rt = −P t
loss −M [count( |Uϕ

k | > 1.05 or |Uϕ
k | < 0.95)] (6.25)

where P t
loss denotes the power loss, and the function count(·) is defined as the number of

per-phase voltage violations across all nodes in episode t.
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Table 6.7. Comparison of voltage regulation in the 13-bus system

Reward Function Mv in each experiment
Sv

Aver. Min

(6.17) and (6.18)
1,000 99.40% 99.76%

in the proposed method

(6.25) 1,000 90.02% 77.10%

Figure 6.8. The comparison of the learning performance for VVO

Table 6.7 compares the online test performances of both of the reward functions in the

multi-agent DRL approach. It is shown that with no consideration of the priority of voltage

violation in the VVO problem, the reward function in (6.25) may fail to avoid voltage

violation, and the average success rate in voltage regulation is only 90.02%. In contrast, the

proposed method has a 99.76% average success rate.

Fig. 6.8 depicts the learning performance of these two reward design schemes in five
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random experiments [115]. The dark-colored curves denote the average performances of

rewards in all these experiments, and the light-colored regions are the error bounds. We

conclude that with no consideration of the priority of voltage violation in the reward design,

the reward function used in (6.25) results in unstable learning performance for VVO.

6.5. Conclusion

This chapter proposes a novel and real-time DQN-based VVO algorithm in unbalanced

distribution systems. Integrating the voltage-dependent loads, DG penetration, and three

types of voltage regulating devices into distribution system operation, we establish the ef-

ficient power flow calculation as the environment of the DQN. Via the interaction between

the environment and multiple agents, the proposed VVO method adaptively chooses control

actions to enable voltage regulation and power loss reduction. This algorithm realizes a

promising VVO performance in two unbalanced distribution systems.

Several state-of-the-art policy gradient methods, such as proximal policy optimization

(PPO) [133], have the capability of further mitigating the scalability issue. On the other

hand, the proposed MADRL method can use the distributed learning by dividing the whole

distribution systems into multiple sub-areas to improve the control performance. The dis-

tributed control algorithms are already proposed in model-based voltage control methods

such as [134], and our future work also combines these approaches with state-of-the-art DRL

techniques for VVO.
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Chapter 7

Conclusion and Future Work

7.1. Summary

To construct a next-generation smart grid, this dissertation explores novel methodologies

for the design, modeling, and application of situational awareness for distribution system

monitoring and control. The proposed situational awareness framework consists of a series of

promising solutions in distribution system state estimation (DSSE), cyberattack detection,

and voltage control. These solutions cover two aspects – methodological innovations and

interdisciplinary development using the state-of-the-art of applied mathematics and machine

learning, and they are summarized below:

• Methodology Innovation for Renewable Integration: We explore efficient math-

ematical analytic models and methodologies to address the uncertainty issue from high

penetration of distributed energy resources (DERs) in practical distribution system op-

eration. Chapter 2 proposes a highly efficient DSSE algorithm using the Taylor series of

complex numbers and interval arithmetic techniques. Furthermore, We discuss the im-

pacts of DERs on distribution system operation and the subsequent challenges. Chap-

ter 3 establishes a general interval state estimation (ISE) framework that considers

imprecise line parameters, measurements with noises, and uncertain DER outputs si-

multaneously. A modified Krawczyk-operator algorithm is proposed to solve these ISE

models and obtain the upper and lower bounds of state variables for better monitoring

systems under the coordinated impacts of these multiple uncertainties. Case studies

illustrate the proposed DSSE methods are capable of overcoming the ever-present poor

observability issue in the distribution management system (DMS) due to lack of me-

ters and stochastic outputs of renewables, and works conveniently with limited phasor
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measurement units (PMUs) in three-phase unbalanced distribution systems. Chapter

4 applies a distributed DSSE algorithm to faulted-line identification by integrating

PMU data. This method running in a distributed manner has lower computation cost

and enables fast faulted line identification within several tens of milliseconds. Our ap-

proach considers the impact of distributed generation (DG) penetration on distribution

system operation, and its location performance is independent of fault types and fault

impedances. Furthermore, the proposed algorithm is robust against high-level noises

in measurements.

• Knowledge Integration Through Interdisciplinary Studies: We expect to bridge

the gap between modern power system research and state-of-the-art communication,

machine learning (ML), and artificial intelligence (AI) techniques by using measure-

ment data from the supervisory control and data acquisition (SCADA) system, PMUs,

and advanced metering infrastructure (AMI) systems. The cyclic tendency of power

system operation exists, and the strong daily, weekly, and seasonal cycles ought to be

used for data mining and algorithmic training. As novel endeavors, we apply DSSE

to data-driven cyberattack detection via deep semi-supervised learning and generative

models in Chapter 5 and volt-VAR optimization (VVO) via multi-agent deep reinforce-

ment learning, represented by deep Q-networks, in Chapter 6. We show the proposed

data-driven situational awareness technologies, combining sophistication and flexibility,

are highly applicable to practical systems and have good potentials to improve opera-

tion efficiency in real-world power grids. Moreover, in the proposed DRL-based control

scheme for voltage regulation, dispatching DG outputs via smart inverters synergizes

with power loss reduction.

7.2. Technical Prospect and Outlook

Upon this dissertation, a hybrid model-based and data-driven situational awareness

framework is proposed. As far as methodology is concerned, the proposed ISE algorithms

can outperform the weighted least square (WLS)-based state estimation that is dominate

for a long time, in terms of the computational efficiency and superiority in capturing the
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effects of stochasticity and variability of renewable resources on DSSE. This method can

be further extended to other DSSE-based operational scenarios. Meanwhile, data-driven

and learning-based techniques are expected to upgrade the current monitoring and control

paradigm of distribution systems in broader DSSE applications. Taking the DER uncer-

tainty into account, distribution system monitoring and control still demand more plausible

and interpretable solutions. We discuss briefly future works in the following aspects, which

serve robust and reliable system operation facing more practical and harsh conditions:

• Topology identification. Topology identification in distribution networks is to de-

termine the connectivity among nodes in the case of unknown topology changes due

to network reconfiguration, repairs, maintenance, and load balancing. In practice,

distribution system operators (DSOs) might have partial or no knowledge of basic

network topologies, especially on the connectivity of DERs in secondary distribution

networks since the utilities may not own them. Furthermore, there are many ad-hoc

connections of plug-and-play DER components, which makes the problem even more

complicated. Some existing works in the literature, such as [135], formulate this prob-

lem as a mixed-integer programming problem, and however, how to leverage abundant

historical data from micro-PMUs or smart meters to identify the topology structure

by voltage correlation analysis awaits further investigation.

• Network parameter calibration. The assumption that network parameters are

accurate is a prerequisite in the conventional DSSE procedure. However, it is rarely

the case in practice, since the network parameters change in field ambient and aging

wirings. Higher penetrations of DERs call for improvement in the accuracy of those

varying parameters for accurate system monitoring and other line model-based appli-

cations. Therefore, parameter estimation procedures are designed to calibrate these

network parameters, also for avoiding manual inspections that are hard to carry out

in densely populated urban areas.

• State recovery with missing data. Missing measurement data at key buses, which

can be caused by various reasons such as sensor failures and unreliable communication,

are extremely possible to result in poor observability and even unobservability of system
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states. In this case, the existing DSSE methods fail to provide effective states for system

monitoring and control. Hence, reliable system operation demands an effective solution

to state recovery with missing data.

• Dynamic DSSE. With the increasing penetration of DERs, responsive loads, and mi-

crogrids, distribution systems are subject to different types of dynamics such as sudden

load shedding. The currently used steady-state power system models demand further

update to capture the system dynamics in a short time-frame [136]. Computationally

efficient and flexible dynamic state estimation approaches still urgently need to be

extended to distribution systems with high penetration of DERs.

• Data synergy and fusion of heterogeneous data. Distribution systems are under-

going a rapid growth of advanced metering infrastructure, especially the development

of PMUs and popularization of smart meters. Nevertheless, this leads to a compli-

cated scenario where a set of diverse sensors feed the DSSE with heterogeneous data

at different sampling and update frequencies. Furthermore, only a handful of efforts

are working to implement adaptive synchronization of multi-rate data for situational

awareness. There is an expectation about how the lagging SCADA data automatically

follow the faster updating PMU measurements, and it still remains an open issue.
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Appendix A

PMU Latency for Faulted Line Identification

The proposed method in Chapter 4 leverages post-fault phasors from PMUs. Fig. A.1

shows the diagram of a waveform for fault currents and the latency of the proposed method

for faulted line identification. According to [68], considering the duration of transients, i.e.,

T1, there is a short latency between 0 and 20 ms before measuring the steady-state phasors by

PMUs. Later, to obtain accurate post-fault synchrophasors, the discrete Fourier transform

(DFT) method is used to process a dataset of raw-sampled waveforms [55], [137]. The time

window T2 for PMUs to get post-fault phasors is about two to three periods derived by a

fundamental frequency, e.g., 30 ms. Moreover, according to IEEE Standard C37.118, the

shortest length of the observation window can reach up to 17 ms [52].
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 Figure A.1. The diagram of a waveform of fault current and the latency of the proposed

method in identifying a fault.
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