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1 Introduction 

No-show appointments, defined as an appointment in which the patient did not present 
for treatment or cancelled the same day as the appointment, are problematic for prac-
tices at all levels of the health care system. No-shows are a missed revenue opportunity 
which can’t be recaptured for the practice, and which contribute to both decreased pa-
tient and staff satisfaction [3]. No-show appointments negatively impact both patients 
and care teams. The objective for the team’s proposed solution is to predict the proba-
bility of a patient not showing up for a medical appointment. This will be accomplished 
by (1) demonstrating the effectiveness of a machine learning model, (2) comparing this 
result to a traditional parametric model, and (3) predicting the probability of no-show 
appointments. Finally, some suggestions on operationalizing the outputs of the work 
for practices will be offered.  

The data comes from a large rural health center in southeastern Oklahoma. The 
health center is the largest provider of rural primary health care in Oklahoma and has 
approximately 125,000 patient encounters per year. With eight sites in six counties, this 
health center provides medical, dental, vision, and behavioral health services to approx-
imately 30,000 unique patients per year [4]. The center currently has a no-show rate of 
19.1% for medical appointments. This represents 132,337 no show appointments dur-
ing the period examined. The team chose to focus only on medical appointment no-
show predictions, as most encounters at this center are for medical visits. With an av-
erage per patient encounter revenue of $177.20 [3] and 132,337 no-show appointments, 
this translates into a direct financial impact of approximately $23,450,116 over the 
seven-year time span. It is clear from the scale of the financial impact a reduction in 
no-shows by 10% would represent a meaningful amount of revenue, estimated at 
$335,000 per year, for the center. Based on conversations with senior leadership at the 
center, this 10% reduction is an achievable operational target.  

Ethical considerations are important in all data science work. When operating in the 
healthcare sector, special attention must be paid to both the legal and ethical require-
ments for patient privacy. The research team was also concerned about the possibility 
of producing results which may be unintentionally biased. Bias in machine learning is 
a problem that can be obviated by awareness of the impact of data used to create the 
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model being biased and by being very transparent with the users of the information the 
system generates about any possible bias in the results. Unintended consequences of 
using historical data to train models has led to “an unnerving propensity for racial dis-
crimination” [5]. A discussion of patient privacy protection and the ethical uses of data 
historically used to discriminate will follow in the section on ethics. Given the power 
of predictive and prescriptive machine learning algorithms to effect change in practice 
patterns, it is incumbent on data scientists and practitioners of machine learning to fully 
consider the unintended effects of including data elements in the algorithms that could 
produce results inconsistent with the intent of the client. Federally Quality Health Cen-
ters (FQHCs) are specifically charged with the task of “Develop(ing) systems of pa-
tient-centered and integrated care that respond to the unique needs of diverse medically 
underserved areas and populations” [6]. Many of the patients served by FQHCs have 
been historically discriminated against, and it is a responsibility of data scientists to 
carefully consider the fact the data may contain information which could lead to inad-
vertent, yet still real discrimination.  

Data for this project comes from the FQHC described previously. The research team 
obtained seven years’ worth of appointment information, including the final appoint-
ment status indicating if a patient was seen, cancelled the appointment, or no-showed. 
This final appointment status is the labeled response variable. In addition to the ap-
pointment information, the team was provided with a limited set of clinical information 
including medical and behavioral health diagnoses, demographic information and pa-
tient financial information. The research team approached this problem as one to be 
solved using supervised machine learning since there is a labeled response to test pre-
dictions against. 

A review of the literature was conducted to determine the current state of research 
in this area. Most of the papers published used some type of parametric model, almost 
always ordinary least squares to predict a given days’ number of no-show appointments 
or logistic regression for binary classification to predict whether a patient will attend 
his or her appointment [7]. These types of analyses can be effective, but the authors 
have often left out variables which can add predictive power. While it is unclear why 
previous studies have minimized the number of features used in these statistical algo-
rithms, the goal is to determine how these results compare to more recent types of pre-
dictive model algorithms commonly grouped into the domain of machine learning. The 
team defines machine learning in the spirit of the following, “…the question is: How 
can computers learn to solve problems without being explicitly programmed?" [8]. Ma-
chine learning is taking data and using mathematical algorithms captured in computer 
code to determine patterns in data, then applying it to new data to make predictions. 
This definition fits the machine learning process used here to predict no show appoint-
ments. There are a wide variety of algorithms that fit in the loosely defined area of 
machine learning. The team chose to compare the performance of nine machine learn-
ing algorithms, including Adaptive Boosting (AdaBoost), Logistic Regression, Naïve 
Bayes, Support Vector Machine, Stochastic Gradient Descent, Decision Tree Classifier, 
Extra Trees Classifier (Extremely Randomized Trees), Random Forest Classifier, and 
eXtreme Gradient Boosting (XGBoost). The most successful algorithm is defined as 
one with high recall. AUC scores are generally reported in the academic literature but 
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concerns with implementing a model that emphasizes AUC over recall will be dis-
cussed in detail in the conclusions section.  For this problem, minimizing Type II errors 
is a priority. A Type II error here is a situation where the algorithm incorrectly posits a 
patient will show up for an appointment, but they do not present themselves for the 
scheduled appointment. The inverse situation, in which the prediction is a patient no-
show, but they do attend the appointment is less of a burden on the practice and has 
fewer negative sequalae for the patient than not receiving care. The prediction of no-
show, but the patient does attend, is the Type I error.  

The results for each of the algorithms will be compared using McNemar’s test to 
look for statistical significance between each algorithm’s performance. This statistical 
test will give confidence that the difference in algorithm performance is likely to be 
real and not an artifact of random chance.  

A classic parametric model, Logistic Regression, will also be tested for predictive 
ability and evaluated on the same metrics. Since the published research is primarily 
Logistic Regression, it was explicitly called out, since it gives a baseline to compare 
results and see if any of the selected algorithms provide a significant lift in performance.  

2 Ethics 

The ethical issues presented by the data and the machine learning application used 
here will be discussed in terms of the legal and ethical requirements for patient privacy 
as well as a discussion of attempts to address whether race and insurance status features 
in the data can be removed without impacting the accuracy of the model. In Federally 
Qualified Health Centers, uninsured patients typically make up a significant portion of 
the patient population. In fact, according to data from the Bureau of Primary Health 
Care, Health Resources and Services Administration, 23% of FQHC patients nationally 
are uninsured [9]. The first issue is in the context of protecting patient privacy and 
complying with state and federal laws regarding the use of patient information. The 
second issue is a larger discussion of how to try to reduce the impact of bias in the 
training data that can impact the predictions and make them biased as well. Healthcare 
presents a somewhat unique take on this issue as there are legitimate clinical conditions 
where mortality and morbidity risk factors are race-based. Since the predictive goal 
isn’t clinical, but operational, a determination will be made if features which have his-
torically been used as a basis for discrimination can be removed from the data without 
significant impact on the ability of the model to predict no-shows.  

 

2.1 Federal Privacy and Ethics 

In using healthcare data that contains patient information, the first ethical rule is 
always to keep in mind both the intent and the letter of the regulatory language protect-
ing patient privacy. Every attempt was made to follow the most current guidelines set 
out under the Health Insurance Portability and Accountability Act (HIPAA), as 
amended by the Health Information Technology for Economic and Clinical Health 
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(HITECH) and Omnibus Final Rule. The remainder of the paper will only discuss ag-
gregated statistics, and no Protected Health Information (PHI) will ever be shared. The 
algorithms that will be compared will take PHI as inputs, but the outputs and the metrics 
used to optimize and score the algorithms don’t use PHI in any form. This makes re-
producibility of the results somewhat problematic, which is a shortcoming of this pro-
cess. Further, the discussion in this paper is centered on the specific algorithms and data 
optimizations needed for this unique data set. The results achieved are intended to only 
assess and improve the operations of the specific facility providing the data. A discus-
sion of the algorithms and data optimizations is had, but no claims as to the generaliza-
bility of the knowledge disseminated are made. This document and the associated find-
ings are intended as a case study in operational improvement only.  

With these caveats in mind, the research team did exchange Business Associate 
Agreements with the facility to ensure a continuous chain of privacy and security pro-
tections to the PHI provided. In addition, the research team held all PHI in a HIPAA 
compliant cloud storage, and all local processing was done on machines which were 
encrypted and had sufficient password and physical access restrictions in place. In ad-
dition, once the project was completed, the PHI was deleted from the researcher’s ma-
chines, the storage mediums were overwritten with commercial grade data cleaning 
software, and the original source data files were removed from the HIPAA compliant 
cloud storage vendor. Taken together, these measures should ensure patient privacy and 
confidentiality is protected.  

2.2 Discrimination via Machine Learning 

 
Machine learning “…may already be exacerbating inequality in the workplace, at 

home and in our legal and judicial systems” [10]. Other authors posit, “Approached 
without care, data mining can reproduce existing patterns of discrimination, inherit the 
prejudice of prior decision makers, or simply reflect the widespread biases that persist 
in society” [11]. These concerns are also potentially present in this work, since the team 
captured and used race, ethnicity, gender, and socio-economic factors as potential 
model features. All variables presented in the data sets were screened for predictive 
power in the presented workflow. The team kept these factors in mind during the pro-
cess of applying models to the data. If the data contains features which could produce 
discriminatory outputs, then the team has a responsibility to examine both the original 
source data and the outputs of the process to see if it’s possible to eliminate, minimize, 
or at least put those biases into context. As it happened, after screening for feature im-
portance, only age was determined to be a significant factor in predicting no-shows. 
Deeper analysis of the age variable determined any effect of age bias was in favor of 
older patients, as younger adults tended to have higher probabilities of missing appoint-
ments. The goal is to provide transparency of the process so those using the outputs are 
aware of any potential bias and can adjust the actions they take based on this 
knowledge. The team did work with the center to explain the impact of age on the 
outputs to ensure their understanding of this issue. 
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To be clear, missing a medical appointment isn’t inherently biased. Patients are 
given the opportunity to schedule appointments without any regard for any potentially 
biased condition. FHQC’s are as close to a color-blind system of care that exists in the 
United States. As safety net providers of last resort, people of color and low income are 
disproportionately over-represented in the patient mix of partner center providing the 
data. People of color make up 18% of the patients served as compared to only about 
12% of the population in the service area of the center. Women make up 65% of the 
patient population compared with 52% of the population in the service area. Finally, 
67% of the patients live at or below 100% of the Federal Poverty Level income [4]. The 
patients of this center are economically disadvantaged, with a heavily female patient 
population, and a higher percentage of people of color as compared to the population 
in the service area. These numbers make clear the center serves all the patients who 
seek treatment.  

A concern is ensuring the model is as accurate as possible while not leading users to 
potentially act inadvertently in a biased manner based on the outputs and recommenda-
tions of the algorithms. Since machine learning really does learn from the past, there 
are multiple recent instances of machine learning and artificial intelligence (AI) sys-
tems returning results which were interpreted as racist or sexist. In 2015, Google’s pho-
tos application, which uses machine learning to label images returned a label of ‘gorilla’ 
for several photos submitted of African American people [11]. These results demon-
strate while data itself isn’t biased, insufficient ability to distinguish between two alter-
natives is still a very real problem. Outputs unable to differentiate with sufficient accu-
racy can be interpreted as biased. The team spent a significant amount of time working 
to ensure the features and outputs of the data don’t suffer this shortcoming.  

3 Method 

For this study, various methods were used to acquire and prepare the data, ranging 
from database extraction via SQL scripts to data cleaning in Python. This segment will 
also review a first attempt at implementing a machine learning algorithm. This section 
begins with an overview of the data set itself, followed by data preparation, and then a 
discussion on variable screening and selection.  

3.1 Data Acquisition and Description 

The data was obtained from the center’s electronic medical record system by staff 
of the center. Data was extracted from the local database by a series of custom SQL 
queries and the resulting comma separated value files were uploaded to a HIPAA com-
pliant cloud data store. In the original data set, there were 988,461 unique appointments. 
The data set can be thought of as a combination of metadata about an appointment and 
patient demographics. Demographic data includes features such as marital status, vet-
eran status, income, poverty percent, number of family members supported (depend-
ents), race, and ethnicity. Appointment metadata includes features such as the depend-
ent variable (i.e. did the appointment occur), medical provider name, reason code for 

5

Denney et al.: Predictions of No-Show Appointments in Primary Care

Published by SMU Scholar, 2019



visit, and primary care physician name. For this study, appointments rescheduled, pend-
ing, or canceled are removed. The reason is twofold. First, those appointment status 
reasons are associated with force majeure events. Second, the same appointment status 
reasons do not represent the same financial burden as no-shows. A rescheduled or can-
celed appointment may allow the operation enough time to adjust the schedule assum-
ing there is a significant queue of patients, whereas a no-show does not allow the oper-
ation enough time to make an attempted recovery from the schedule disruption. Another 
aspect of the pending, rescheduled, and canceled appointments is simply missing data. 
For example, it is not known how many days in advance an appointment was canceled, 
or rescheduled. Finally, pending appointments are dropped, as they do not present a 
financial burden to the operation.  

3.2 Data Preparation 

The electronic medical records represented in the data set required cleaning before 
proceeding with an analysis. While the data set required significant effort to extract and 
parse, the missing values are not excessive: of all features considered, the average per-
cent missing values is 1.48%.  

3.2.1 Data Cleaning 

3.2.1.1 Missing Values and Imputation Data preparation is an iterative process. The 
first step is locating and correcting missing values. By far the most common missing 
value was the Pat Cv1 Plan Class variable, which is the indicator for insurance coverage 

type. 
Figure 1: Most common missing values 

 
After consultation with the subject matter expert (SME), and since this variable is cat-
egorical, imputation of these values used the mode. The other missing categorical var-

2238
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iables were imputed the same way. Similarly, after consulting with the same SME as-
sociated with the facility, the continuous numerical fields were imputed using the me-
dian values. With the missing values accounted for and values imputed, the next step 
was to look for skewness. 

3.2.1.2 Skewness Having data with a very large range of values can impact the results 
of the analysis. To solve this, the team looked for numeric variables with a large range 
of values. These features include Income – Annual, Income – Gross, and Percent Pov-
erty. The histogram below in Figure 2 shows an example of the skewness present. In 
this case, the data ranged in value from 0 (a valid value as some patients are homeless 
and unemployed) to in excess of $250,000,000 per year. Although outlier detection 
hasn’t yet been performed, it is obvious here additional cleaning steps will have to be 
taken. A natural log transformation was done on these variables to reduce the skewness 
and return the values to a more normal distribution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Raw annual income histogram 

3.2.1.2 Outlier Detection A crucial step in preparing data for machine learning prob-
lems is outlier detection. In the context of this problem, outlier detection becomes a 
necessity after simply inspecting the distribution of the continuous features. For exam-
ple, some patients have an annual income exceeding $250 MM. Similarly, other pa-
tients claim more than forty dependents. It is beyond the scope of this project to inves-
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tigate such extremes, but in the given data set, such observations are outliers. Addition-
ally, most features are categorical and verified by the data provider. For example, the 
data set containing diagnoses are known to be correct. A simple check of categorical 
features to ensure consistency was completed; none of the categorical features were 
marked as a concern for outlier detection.  

The concern is finding outliers in a multivariate data set rather than plotting each 
continuous feature. One goal of this exercise is to capture the interactions of the features 
collected. Additionally, a multivariate outlier detection method provides greater effi-
ciency. Outlier detection is valuable because for the algorithms benchmarked, outliers 
will impact each one to varying degrees of severity.  

To address the multivariate outlier detection problem, the Isolation Forest algorithm 
was used to identify possible outliers. Many other outlier detection algorithms, “con-
struct a profile of normal instances, then identify anomalies as those that do not conform 
to the normal profile … this leads to two major drawbacks: (i) these approaches are not 
optimized to detect anomalies … (ii) many existing methods are constrained to low 
dimensional data and small data size because of the legacy of their original algorithms” 
[12].  

Isolation Forest, “proposes a different approach that detects anomalies by isolating 
instances, without relying on any distance or density measures … anomalies are ‘few 
and different,’ which make them susceptible … to isolation. Because of the suscepti-
bility to isolation, anomalies are more likely to be isolated closer to the root of an iTree 
[ isolation tree]” [12]. The Isolation Forest algorithm is an ensemble technique: mean-
ing that many isolation trees are used to locate the ‘isolated’ instances.  

After applying the Isolation Forest algorithm to the data set, certain features such as 
income and the number of dependents most certainly contain outliers. First, observe 
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Figure 3 and Figure 4. From this visual, the outlier score (x-axis) is plotted against the 
feature’s recorded values (y-axis).  

Figure 3: Outlier scores: log normal income 
 

Gross income is presented on a logarithmic scale in Figure 3 and the associated iso-
lation score is found on the x-axis. The graph shows excessive income is associated 
with a lower, and therefore, more anomalous score. Likewise, patients who report high 
dependents are flagged as outliers in Figure 4. 

Figure 4: Outlier scores: number of dependents 
 
Now the anomalous observations are visualized, the best plan for proceeding with 

any potential anomaly is to discuss validity before simply removing. After meeting with 
subject matter experts associated with the facility, it was determined the observations 
with very high income and/or dependents are not valid. To overcome this, an upper 
threshold on income and the number of dependents was applied. The features with 
threshold applied were left in the data set so they could be evaluated for value to the 
algorithms to be selected in the screening process.  

3.2.2 Feature Engineering Even with the large amount of data extracted from the pa-
tient electronic medical records, there are many more features to explore by simply 
deriving from the raw features. Feature engineering is an often overlooked, yet critical 
aspect of model building. Additionally, feature engineering can be thought of as the 
‘art’ aspect of data science: “As with many questions of statistics, the answer to ‘which 
feature engineering methods are the best?’ is it depends. Specifically, it depends on the 
model being used and the true relationship with the outcome” [15]. The approach taken 
to feature engineering was a deliberately naïve approach: creating and testing features, 
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then consulting with subject matter experts as a sanity check. This iterative process of 
feature engineering, testing, and consultation with SMEs gives confidence the final set 
of features are both statistically and practically relevant and significant. 

While the electronic medical records provide a substantial amount of useful data, 
there are many ways to augment this data via feature engineering. “Feature engineering 
is the act of extracting features from raw data and transforming them into formats that 
are suitable for the machine learning model. It is a crucial step in the machine learning 
pipeline, because the right features can ease the difficulty of modeling, and therefore 
enable the pipeline to output results of higher quality” [14]. Feature engineering must 
be done with care as it opens the door for data leakage, which refers to the unintended 
transfer of information between the training and test data sets. First, several features 
were created from the provided actual appointment date and the date the appointment 
was booked. Using provided dates of appointment scheduled date and actual appoint-
ment date, the length of time between when the appointment was scheduled and when 
it should occur was calculated. This yielded the number of days elapsed between the 
dates as a potential feature. The team hypothesized that more urgent appointments will 
have a shorter lead time, and thus an increased probability of making the scheduled 
appointment. Conversely, the appointments with a longer lead time are hypothesized to 
have a higher associated probability of missing the appointment. The date of appoint-
ment also allowed for extraction of such potentially useful features as time of the month 
(beginning or end) and the day of week. The appointment date also allowed inclusion 
of features which are weather related. For example, the creation of a season variable as 
a proxy for weather data. The reason for this decision is while actual precipitation data 
is predictive as determined by an early prototype model, careful consideration of the 
end usability of the model is important. The vision for the model in production is to 
refresh the data frequently for retraining. It would be a herculean effort to continually 
update the patient predictions whenever a weather forecast is published. Additionally, 
utilizing weather forecasts for future appointments only adds more variability in the 
model. As such, season is utilized as a proxy for general weather trends. 

Another feature derived from the electronic medical records is age at the time of the 
appointment. Age also allows for further classification into distinct bins to capture gen-
erational differences. A patient’s zip code is also considered as a potentially relevant 
feature. Zip code, city name, and state are all generated features and candidates for 
model inclusion. It is important to note that while the data came from a center in Okla-
homa, there are a few out of state patients from neighboring states. When considering 
zip codes, the driving distance for each patient to make their appointment was calcu-
lated. In an exploratory analysis, the team realized several patients moved during the 
training and testing time period. To deal with this change over time, the primary key 
for distance calculations was a unique combination of patient ID and appointment date.   

While it is relevant to consider some general aspects about a patient such as driving 
distance, age, and others, it is potentially significant to consider a patient’s past missed 
appointments. For example, if a patient has missed many appointments in the past, his 
or her past behavior could be a potential feature for predicting future behavior. This 
feature is also an area of caution: incorrectly grouping and sorting patients could result 
in data leakage. To handle any data snooping issues, a lookback window was derived 
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for each patient. The lookback window operates such that the last time a patient was 
seen either results in a penalty of one if he or she missed their appointment or zero if 
the patient kept their appointment. For each appointment, this lookback window is up-
dated. Additionally, a cumulative score of past missed appointments was created. As 
with age, this permits further classification into low, medium, and high-risk patients. 
While this feature is one that is both intuitive and supported by current research, it also 
is an area of caution when considering the care needed when preparing training and 
testing data sets that do not ‘peek’ into the future.  For example, if predicting a month 
of appointments as a batch, only consideration of the patient’s past behavior at the time 
of the actual appointment should be added to the model. No future appointments should 
ever be considered in this feature.  

In addition to the features discussed, research and subject matter experts both en-
couraged inclusion of indicators for chronic medical conditions. These were derived by 
matching disease indicators from claims submitted after the visit on the same date as 
the appointment. Chronic conditions were defined as one or more of a diagnosis of 
diabetes, hypertension, depression or anxiety. Depending on the date of the claim, if 
the International Classification of Diseases (ICD) version 9 (ICD9) or version 10 
(ICD10) claim code for a chronic conditions was present, they were coded by assigning 
the feature of the condition name to a binary code of 1 for present or 0 for absent. A 
feature was added to indicate if two or more of the chronic conditions are present. Med-
ically complex patients like these are challenging to manage from the standpoint of the 
care team and successful treatment of these patients often requires regular appoint-
ments. If these patients are more likely to miss appointments, interventions can be fo-
cused on them to try to get them in for care. To avoid data leakage, the chronic condition 
features were updated after every completed visit to reflect the information that would 
be available at the time the next visit was scheduled. The same sliding window approach 
was applied to only consider diagnoses at the current time; no future appointment data 
was used to determine if a patient has a condition. For new patients, these features were 
set to zero, as documented health conditions are not available at the time of scheduling 
a new appointment.  

The features created, in addition to the raw data found in the electronic medical rec-
ords are all candidates for the predictive model. By creating these features, a plethora 
of potential variables was added to the data. After encoding categorical features, there 
were nearly 1,000 unique predictors to consider for the model. As indicated, a naïve 
approach to feature selection was taken considering all features first and then subject 
matter experts provided sanity checks regarding the features which might be relevant 
to the issue.  

3.2.3 Feature Screening As with feature engineering, it is difficult to overstate the 
importance of not allowing data leakage in this study. Feature screening allows another 
opportunity for leakage to occur. An example of this common mistake is when a data 
set is combined into an aggregate set consisting of all observations in a study. Then, a 
feature screening algorithm is utilized on the aggregated data set. After features are 
selected, the smaller subset of critical predictors is split into training and test data sets. 
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This is a common mistake in data analytics and machine learning problems that intro-
duces bias to the modeling process, as features were selected on observations from both 
training and testing sets.  

To overcome any data leakage issues, 2018 appointments were set as the test data. 
Model performance on this data set indicates the predictive power of the algorithm in 
the real world and is the best reflection of how this model will behave in production. 
As a part of the process, the necessary steps to remove all 2018 appointments from the 
data set used to screen and select predictive features were taken.  

The team chose to try two different algorithmic solutions to feature screening, Ran-
dom Forest Classifier and XGBoost. Both are common methods of feature screening 
and since peak performance of the model is of interest here, a comparison and contrast 
of the results of both algorithms with this data set are examined.  

A Random Forest Classifier is a popular tree-based approach for feature screening; 
the Random Forest algorithm utilizes a multitude of decision trees to reach a solution 
and helps determine the most significant features via an ensemble technique known as 
bagging: “Random Forests … decorrelates the [decision] trees. As in bagging, we build 
a number of decision trees on bootstrapped training samples … each time a split in a 
tree is considered, a random sample of m predictors is chosen as split candidates from 
the full set of p predictors. The split is allowed to use only one of those m predictors. A 
fresh sample of m predictors is taken at each split, and typically the team chose 𝑚≈"𝑝   
that is, the number of predictors considered at each split is approximately equal to the 
square root of the total number of predictors” [16]. When applied as a screening algo-
rithm, each features’ index, which can be thought of as relative importance as a predic-
tor, is determined by the average decrease in the Gini index, whereas the Gini index is 
a measure of impurity: smaller values are better than larger values, with zero being 
perfect. The Gini index for a binary classification problem is seen below. 𝑃%&	is the 
proportion of data points in region 𝑅_𝜏 in class k, where k =1 [15]. 

 	

𝑄	,	(𝑇) = 	1𝑝%&(1 −	𝑝%&)
4

&56

 

Strong predictors will decrease the Gini index, “we can add up the total amount that the 
Gini index is decreased by splits over a given predictor, averaged over all β trees” [16]. 
In a nutshell, the goal is to find the top predictors in the data set that ultimately predict 
no-show status; simply use the average decrease in the Gini index to arrive at which 
features help to accomplish the analysis goals. With a data set of nearly 1,000 features, 
it is necessary to apply a feature screening algorithm such as a Random Forest Classifier 
to help identify the critical few features in the study. 

Care must be taken when taking such a naïve approach to remove multicollinearity after 
an initial screening, as there are redundant features returned, such as gross income, an-
nual income, and percent poverty. Gross income and annual income are highly corre-
lated (r = .986). Additionally, annual income and percent poverty are also highly cor-
related (r = .999). Steps were taken to remove these correlated features. These features, 
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derived via a feature selection algorithm, were reviewed with a subject matter expert 
associated with the facility. The screening technique identified the features in Figure 5, 
below, as relevant predictors for no-show status 

 

 

 

 

 

 

Figure 5: Random Forest Features 

The team also completed feature screening on the training data set by applying 
XGBoost. The selection of XGBoost as a secondary screening algorithm was made 
because, while computationally expensive, it gives the team another ensemble tree-
based approach to selecting the best features among a possible 1,000 demographic, ge-
ospatial, and medical predictors. The team also focused on how XGBoost differs from 
a Random Forest Classifier as additional justification in applying two different algo-
rithms in feature selection. First, consider one of the fundamental differences between 
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boosting and bagging. Random Forest, based on bagging, constructs the trees in the 
ensemble in parallel, or independent of other trees. XGBoost, on the other hand, con-
structs trees in the ensemble sequentially; each new tree reduces the previous prediction 
errors. Both methods are ensemble techniques, but differ in the way each ensemble is 
built. XGBoost, just as Random Forest, allows a determination of feature importance. 
XGBoost feature importance is determined by each feature’s gain. Gain, in this context, 
can be thought of as the contribution of a feature, similar to the Random Forest feature 
screening. With this interpretation in mind, XGBoost was employed, in addition to 
Random Forest, to determine which features should be used in the final algorithm. The 
top ten features selected by XGBoost are seen in Figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: XGBoost features 
While this list of top features confirms some of the findings the research team antic-

ipated, such as the days elapsed between book date and actual appointment date, it is 
never wise to settle on one subset of predictors based solely on one algorithm.  

The top features indicate time variables are top drivers in predicting no-show status. 
These results are consistent with results found in the literature. From an ethical per-
spective, it is observed that race and ethnicity are not considered top drivers in model 
performance. As the study continues, and more features are added, removing race and 
ethnicity completely may be the best path forward to minimize racial bias in the model. 
A significant overlap in the selected features between the two screening algorithms is 

14

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 2

https://scholar.smu.edu/datasciencereview/vol2/iss1/2



seen. As indicated, a naïve approach to the feature selection was taken, implying no 
features were removed prior to feature screening. To resolve the issue of which subset 
to use, the team presented the findings to a subject matter expert associated with the 
facility. The XGBoost features were selected by the subject matter expert based on ex-
perience in the field. Because of the significant overlap, the decision to use features 
selected by XGBoost was not considered detrimental to the development of the algo-
rithm. 

3.2.4 Class Imbalance In the data set, the no-show appointments only represent 
13.47% of the response variable, appointment status, as seen in Figure 7, below: 

 

 
Figure 7: Appointment outcome distribution. 

 
This class imbalance leads to a unique set of challenges in statistical machine learning. 
With an imbalanced data set, reporting a classification algorithm’s accuracy is decep-
tive; simply classifying all labels as ‘Occurred’ (true negative) yields an accuracy better 
than chance, thus misleading the audience to believe an algorithm is more predictive 
than the actual performance. In this study, accuracy  

 

 ((𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁))  
  
 (1) 

 
is reported, but success is defined in terms of recall  
 

 (𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)). 
  
 (2) 
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In the analysis, the imbalanced nature of the data is addressed by implementing the 
Synthetic Minority Over-sampling Technique (SMOTE) algorithm. By utilizing the 
SMOTE algorithm, “the minority class is over-sampled by creating synthetic examples 
rather than by over-sampling with replacement … The minority class is over-sampled 
by taking each minority class sample and introducing synthetic examples along the line 
segments joining any/all of the k-nearest neighbors” [19]. The creation of the synthetic 
data points in the training sample allows the decision boundary of the classification to 
become much more pronounced for the ‘no-show’ class. The inclusion of the new syn-
thetic points allows the classifier to better learn the feature/target mapping: “More gen-
eral regions are now learned for the minority class samples rather than those being sub-
sumed by the majority class samples around them” [19]. For illustrative purposes on 
the importance of applying SMOTE, a Random Forest Classifier was used to predict 
no-show status in the data set because a non-linear, non-parametric ensemble method 
makes no a priori assumptions about the data set and gives a strong first pass attempt 
to model the relationship. Once again, the purpose of this method is to illustrate the 
boost in recall when SMOTE was applied. The Random Forest was trained on 70% of 
the center’s appointments, with a 30% independent holdout test data set. The test data 
performance results in a recall of 55%, with an overall accuracy of 67%, as derived 
from the confusion matrix in Figure 8. The impact of SMOTE cannot be overstated in 
this model. It is evident that SMOTE allowed the model to determine a more distin-
guishable decision boundary for the minority class: no-show appointments. The benefit 
of using SMOTE on the training data is not trivial when evaluating the test data perfor-
mance: recall of the no-show class is 13% when SMOTE is not implemented. However, 
once SMOTE is used to balance the classes, recall of the no-show class is 56%, as seen 
in Figure 8.  

Figure 8. Confusion matrix after SMOTE for class imbalance 
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3.3 Machine Learning Process 

After reviewing predictive features with the subject matter experts, the features re-
ceived a high acceptance rate. Before beginning the modeling details, it is important to 
emphasize the model, once in production, is most likely going to make predictions on 
a regular batch basis. Because of this restriction, there will be multiple test data sets. 
Test data was segmented into months January through October 2018. While time is an 
important component in this analysis, the software is not performing a traditional time 
series ‘forecast’ of missed appointments; the importance of time is most relevant in that 
predictions are made considering a patients past no-show performance and chronic dis-
ease status at the time of making the appointment. 

 In machine learning, the first step is always to understand what type of problem one 
is attempting to solve. Working with the clinic and their subject matter experts, a clear, 
concise objective was developed. The question of interest/objective is to “Attempt to 
predict no-show medical appointments and provide our staff with information on which 
patients are at a high risk of no-shows.” The second step is to determine what types of 
algorithms are appropriate and what volume of data is available to answer the objective. 
The team examined the available data, as well as the data sources available for use in 
this research problem. The examination of all available features indicated a clear re-
sponse variable: ‘Appt Status Desc.’ This feature is a simple text field indicating 
whether an appointment occurred or did not occur. Since the data set has a labeled 
outcome variable, also known as a response variable or dependent variable, the problem 
is narrowed down to that of a supervised learning problem with a binary outcome. With 
the second step, determining what type of problem to solve now complete, the next step 
is to select various classes of algorithms to attempt to solve the question of interest. In 
a field experiencing the rate of change currently occurring in machine learning, it is 
difficult to stay abreast of all the rapid advancements in research, optimization, open-
source libraries, and algorithms. The team is simply applying the best resources to solve 
the question of interest: predicting no-show appointments with the best accuracy and 
recall possible and outlining steps to operationalize this classification model.  

The approach taken in this analysis is through the lens of statistical machine learning. 
While the goal is to provide the primary care facility with the best actionable insight 
possible, due diligence must be taken to evaluate a myriad of classifiers. The perfor-
mance of each will be addressed. The approach taken was to build linear classifiers and 
incrementally add complexity with nonlinear models in a progressive manner. This ap-
proach was taken so to allow for careful consideration of each model in isolation, the 
associated pros and cos, and limitations before advancing to newer approaches. How-
ever, during the research of this analysis, new and useful algorithms were discovered. 
The full list of classification methods considered spans classical and recent develop-
ments in machine learning: Logistic Regression, Naïve Bayes, Stochastic Gradient De-
scent, Decision Tree Classifier, Extra Trees Classifier (Extremely Randomized Trees), 
Random Forest Classifier, Adaptive Boosting (AdaBoost), Support Vector Machine, 
and Extreme Gradient Boosting (XGBoost). Since the team had many excellent classi-
fiers available to select from, a survival of the fittest approach was taken; each algo-
rithm followed the same training and testing regime. The top contenders after initial 
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screening of algorithm performance were given further scrutiny and tuning. The algo-
rithm average recall scores can be seen in Figure 9, below. The most expensive mistake 
to make in this domain is a false negative. If the model predicts the patient will attend 
the scheduled appointment, and he/she does not, there are significant financial and op-
erational impacts. It is essential that false negatives also be kept at a minimum, as the 
intention is to put this model into production. A model that effectively balances false 
positives and false negatives will result in a new operating regime for the facility as 
there will be a noticeable step change in the percent of no-show appointments. 

Figure 9: Average recall score 
 

It is observed that Adaptive Boosting has the clear advantage among all algorithms 
considered. It’s not surprising to see a boosting algorithm leading more traditional ap-
proaches. It is worthwhile to explain boosting, its mechanics, and associated benefits. 
Since the highest scoring model on the test data set was AdaBoost, a brief explanation 
of the theory of boosting is in order.  

3.3.1 Boosting Boosting is a sequential process that combines multiple weak classifiers 
that ultimately yield a model committee that performs much better than any individual 
weak model. Each weak classifier is combined into an ensemble. Boosting performs in 
such a way that “base classifiers are trained in sequence, and each base classifier is 
trained using a weighted form of the data set in which the weighting coefficient associ-
ated with each data point depends on the performance of the previous classifiers. In 
particular, points that are misclassified by one of the base classifiers are given greater 
weight when used to train the next classifier in the sequence” [18]. The greatest ad-
vantage to boosting is the weighting of the classifiers. This iterative process allows 
improvements when a classification task is not straightforward, as most problems are 
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not in business settings. In boosting, the incorrect predictions alter the weighting coef-
ficient as the training process progresses, “At each stage of the algorithm, AdaBoost 
trains a new classifier using a dataset in which the weighting coefficients are adjusted 
according to the performance of the previously trained classifier so as to give greater 
weight to the misclassified data points” [18]. An illustrative example of how boosting 
works in the training process can be seen in figure 10. 

 Figure 10. Boosting process for training data – adapted from Bishop, et. Al [18] 
 
In Figure 10, the blue arrows represent a portion of the training data. The weak clas-

sifiers are denoted by 𝑌𝑚(𝑥) and weights are represented by 𝑤𝑛
(𝑚). Recall from the 

previous definition that this subset is weighted, depending on the previous classifiers 
performance. The green lines indicate the sequential nature of training in Adaptive 
Boosting. The resulting algorithm, YM(x), is an ensemble of the individual weak clas-
sifiers. The individual models are combined in the final classification model.  

It is clear how boosting is a benefit to this problem. As one can imagine, modeling 
human behavior may not be optimally achieved on a simple, single decision tree. Some 
features in the model are clear and distinct, and on their own, may provide healthcare 
providers a good heuristic for when a patient will not show for an appointment, such as 
days elapsed between booking date and actual appointment date. However, as consid-
eration is given to other less obvious predictors such as income level and geospatial 
attributes, the prediction task becomes more complicated, as the features in concert re-
quire the pattern recognition obtained via machine learning.  

3.3.2 Boosting Results With the most successful model identified as AdaBoost and 
visualized in Figure 11, a focus on the specific results of AdaBoost are in order.  
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Figure 11: Recall comparison on test data of top 3 algorithms 

3.4 Model Explanation 

3.4.1 General Model Interpretation One of the most challenging aspects of presenting 
machine learning models to a customer is the ability to clearly interpret a complex 
model. The winning solution, based on boosting, is a clear example. The proposed so-
lution to this problem is an ensemble. Ensemble models, while effective, can be difficult 
to interpret. There exists a trade-off between interpretability and model performance. 
In the study, it was observed that Logistic Regression, a linear model, offers decent 
results. This model could be easily explained to the customer. However, consider the 
lift in recall achieved through Adaptive Boosting. This increase in recall translates to a 
significant savings for the customer. Because the winning solution is a tree-based 
model, it is not difficult to determine feature importance as discussed in the feature 
engineering section. The difficulty lies in helping the customer understand what is go-
ing on ‘under the hood.’ More specifically, in the case of the solution, the team sought 
to find patients that increase the probability of a no-show and attempt to isolate the 
model effects.  

To aid in understanding how the model functions, the team presents an interpretation 
of the top features using SHAP (SHapley Additive exPlanations). “SHAP assigns each 
feature an importance value for a particular prediction. Its novel components included: 
(1) the identification of a new class of additive feature importance measures, and (2) 
theoretical results showing there is a unique solution in this class with a set of desirable 
properties” [25]. SHAP provides a model-agnostic approach to interpretation: ensemble 
methods and deep learning models alike become less of a black-box approach.  

The concept of SHAP is that the model under evaluation is trained on all possible 
feature subsets. During this process, Shapley values derive an importance metric for 
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each feature that influences the model prediction. This metric is calculated by training 
two separate models: one contains the feature in question, the other excludes the fea-
ture.  

Using a sample of 100 patients from October 2018, a decision was made to imple-
ment Shapley values for model interpretation, as well as some insight on when the fa-
cility may want to intervene. Red is associated with increased probability of missing an 
appointment, while blue is associated with decreased probability of missing an appoint-
ment. The values are visualized in Figure 12.  

The figure below shows a clustering of patients and their associated probability of 
missing an appointment in October 2018 where the y-axis represents the probability of 
missing an appointment and the x-axis represents each patient in the sample. The most 
at-risk patients can be thought of as those associated with the leftmost cluster of model 
predictions in red. This type of clustering would be useful in scheduling and actively 
double booking appointment time slots. However, the goal is to isolate the most im-
portant features. By doing so, the facility could identify thresholds of predictor values 
that could be used to increase communication to at-risk patients.  

Figure 12: Sample cluster of patients’ no-show probability 
 
The top three features found in the ensemble are:  
i. Time elapsed between booking date and appointment date (TimeElapsedDays) 
ii. Cumulative sum of past missed appointments (csum) 
iii. Age of patient (AgeAtActualAppt) 
 
It is hypothesized that elapsed days is a predictor of patient behavior as it relates to 

no-show status. There are many possible reasons for patients which can affect a no-
show: priorities change, significant life events occur, and people become forgetful. 
While at the level of the individual patient, no insight is available, some trends over the 
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population can be determined as reflected in the sample below. By examining the effect 
of this feature on the model’s predictions, an expected trend in Figure 13 is seen. 

 

Figure 13: Impact of elapsed time on probability of no-show 
 

The research team interprets the effect of this feature as greater time elapsed between 
booking the appointment and the actual appointment is associated with a higher proba-
bility of missing the appointment. Further insight can be drawn: notice the step changes 
present. There are slight elevated probabilities for appointments booked fifteen to 
twenty days in advance. However, the largest step change is seen when the appointment 
is booked approximately thirty days in advance. This probability continues to increase 
after a sixty-day interval between book date and appointment date. It may be ideal for 
patients who book appointments approximately one month in advance to receive addi-
tional communication reminding the patient of the appointment. Appointments booked 

six months in advance may also require more attention.  
Figure 14: Impact of previous missed appointments on probability of no-show 

 
The patient’s missed appointment history was found to be the second most influen-

tial feature in the model. However, it is unclear from the model exactly when a patient’s 
past missed appointments changed their classification to a mild no-show risk to that of 
elevated risk.  
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The cumulative score, calculated by means of a lookback window, is an intuitive 
predictor. If a patient missed many appointments before, he or she may continue this 
behavior for future appointments. The Shapley values help visualize that missing at 
least two appointments is the beginning of an elevated probability of missing an ap-
pointment. This relationship is seen in Figure 14. A step change is noticeable from the 
fifth missed appointment to the sixth. Likewise, there is a significant step change from 
the eighth missed appointments to the ninth. Finally, once a patient misses eighteen or 
more appointments, the probability continues to increase. These critical changepoints 

will be crucial for healthcare facilities to manage. It is not implied that these change 
points are permanent; retraining the model and monitoring accuracy are assumed steps 
to be known at this point. However, these change points can be taken as heuristics for 
providers.  

Figure 15: Impact of patient age on probability of no-show 
 
The third most influential feature in the model is age. The Shapley values are seen 

in Figure 15. It was hypothesized that older patients have less of appetite for missed 
appointments due to the inherent risk of aging and failing health. From the Shapley 
values, it can be seen younger patients are associated with a higher probability of miss-
ing an appointment. However, after approximately age 55, the probability of missing 
an appointment decreases significantly.  

One final look at the sample is presented in Figure 16. This time, a simple plot of the 
100 patients as they are presented to the model is seen. This test period demonstrated 
superb results: recall was 72% and the AUC was .70. Further mining and pattern recog-
nition is recommended for the facility to reap the full benefit of this model; this type of 
visualization is useful for finding more clusters of at-risk patients and strategy devel-
opment for preventing more no-shows. 
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Figure 16: Probability of no-show by patient  
 

3.4.2 Unique Patient Explanation Now the impact of the top predictive features is 
better understood, further establishment of trust in the algorithm using Local Interpret-
able Model-agnostic Explanation (LIME) can be created. LIME allows for demonstra-
tion of the model on individual predictions; anyone can see the predicted probabilities 
and the impact all features have on the model. LIME allows for a patient-by-patient 
basis to understand the predictions. Ultimately, Shapley values and LIME can be used 
in conjunction to better understand the output of any machine learning model. LIME 
excels as an exploratory data analysis tool that gives intuitive explanations for model 
predictions at a local level, rather than global. LIME enables the team to gain the trust 
of the end-users, “Understanding the reasons behind predictions is, however, quite im-
portant in assessing trust, which is fundamental if one plans to take action based on a 
prediction, or when choosing whether to deploy a new model” [20].  

One of the key differentiators of LIME is the predictions are made locally, rather 
than globally. This can be confusing to end-users who may not have much experience 
with machine learning models. As such, the concept of local predictions warrants fur-
ther discussion. “Although it is often impossible for an explanation to be completely 
faithful unless it is the complete description of the model itself, for an explanation to 
be meaningful it must at least be locally faithful, i.e. it must correspond to how the 
model behaves in the vicinity of the instance being predicted … local fidelity does not 
imply global fidelity: features that are globally important may not be important in the 
local context, and vice versa” [20]. As an illustrative example of the local predictions, 
consider the graphic in Figure 17. 

The model example in Figure 17 has a clearly nonlinear decision boundary much 
like the general model explanation. The bold red cross is the subject of predictive in-
terest. “LIME samples instances, gets predictions using f, and weighs them by the prox-
imity to the instance being explained (represented here by size). The dashed line is the 
learned explanation that is locally (but not globally) faithful” [20]. Equipped with this  
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Figure 17: Decision boundary visualized 

 
understanding of LIME, a few examples of explaining the boosting algorithm are in 
order. The dataset utilized is from a sample of patients in October 2018.  

Patient 270 in this sample is chosen for the demonstration of LIME. Some quick 
facts about this patient reveal that this individual has a history of making appointments, 
had little time between booking the appointment and the actual appointment, and was 
84 years old at the time of booking.  

LIME gives the prediction probabilities in Figure 18. 

Figure 18: LIME predictions for patient 270 
 
LIME gives, for all features in the model, a simple association: either a feature is 

associated with no-show or is associated with making an appointment. From this out-
put, it can be concluded this patient was predicted as “show” because: low number of 
missed historical appointments, not in 20-33 age bin, negligible days between booking 
date and appointment, no dependents, and travel distance to facility. Meanwhile, other 
factors at play increased the no-show probability such as reason for appointment, health 
conditions, and a high poverty percent in the county of residence. The model predicted 
this patient would ‘show’ for this appointment, or a label zero. The actual result was 
the patient made the scheduled appointment; this prediction is a true negative.  
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To further demonstrate the power or LIME, another patient is considered. The pa-
tient being evaluated is again sampled from the October 2018 appointments (patient 
#95). LIME gives a no-show probability greater than 50%. This patient was predicted 
to no-show; the actual outcome was the patient did not show. Using the output from 
LIME, the team developed the following display to aid end-users understand feature 
impact for this at-risk patient in Figure 19: 

Figure 19: Patient 95 classification factors 
Model explanation tools like LIME and SHAP give confidence to users to act upon 

this model. While ten months of superb results in terms of accuracy and recall were 
seen, SHAP and LIME help researchers and users untangle the model and understand 
why the results in Figure 19 were obtained. Aside from an academic exercise, LIME 
and SHAP help explain the model’s predictions to end users: an essential step in estab-
lishing trust in the model’s predictive output. 

4 Traditional Statistical Approaches 

As indicated, the current research in predicting no-show appointments mostly uti-
lizes linear models.  Per research and a literature review, the first attempt to model no-
show appointments was by Dove and Schneider in 1981 [22]. The study utilized ordi-
nary least squares to predict a given days’ number of no-show appointments. The results 
of the study were statistically significant, inspiring other such studies and inspiring a 
new statistical process control mindset to healthcare operations. In 2014, Erdem et al. 
conducted a similar study. The biggest difference was the problem was transformed 
from a regression problem to that of classification. This study also resulted in statisti-
cally significant findings [23]. Erdem et al. achieved an area under the curve (AUC) 
between 0.64 and 0.70 in multiple iterations of their model [23]. Later, in 2017, 
Goffman et al. attempted a larger scale study of predicting no-show appointments. The 
methodology utilized was similar, but more effort was placed on feature engineering. 
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The results were a significant improvement. This study predicted across multiple facil-
ities and resulted in an AUC ranging between 0.71 and 0.763 across the various facili-
ties in the study [24]. 

5 Model Deployment 

The FQHC fully intends to use this machine learning model in production to reduce 
the count of no-show appointments and thus, reduce operating costs and waste. While 
the model predicts reasonably well, upkeep is necessary. At a minimum, the team pro-
poses retraining this model monthly. Furthermore, it is also to update information about 
each patient before the model is retrained. For example, if a patient had missed three 
appointments in January 2018, it is essential to update that patient’s history of missed 
appointments, as a higher probability of missing an individual appointment is likely 
when one has missed appointments in the past. Other considerations should be made 
and updated as the model is in production such as changes in zip code, income changes, 
and the number of dependents. A reasonable recommendation for keeping an updated 
database is to ask all patients to update these important features annually. Another area 
of consideration is how to handle new patients. For these instances, it is proposed that 
all new patients be assigned a low risk profile, or zero missed appointments, until be-
havior dictates otherwise.  

Perhaps the most difficult question from an implementation standpoint is how to 
intervene when a patient is predicted to miss an appointment. While this decision is 
ultimately up to the facility, a tiered system based on the probability predicted is pro-
posed. For those predicted to not make their appointment, the probability associated 
with that prediction must be considered before acting. One suggestion is to simply dou-
ble book those with a high probability of not making the appointment. For those who 
are slightly over the prediction threshold, it is recommended that the facility attempt to 
contact the patient. For example, a phone call, text, or email would likely suffice to 
remind patients of upcoming appointments. This two-pronged approach merely pro-
poses some suggestions for action that will be the responsibility of the facility. The 
Goffman study [24] is notable here as a possible source of potential interventions, as 
they did a rigorous comparative study of different interventions and their efficacy.  

6 Results 

6.1 Comparison of Results 

Adaptive Boosting outperforms the other algorithms in the study in terms of recall 
and accuracy. However, while robust, Adaptive Boosting is not without competition. It 
was seen previously that Support Vector Machine and Logistic Regression also offer 
compelling results. To make the final determination, McNemar’s test for statistical sig-
nificance is used. The results are presented in Table 1. McNemar’s test for significance 
is appropriate on classification models when the number of instances each classifier got 

27

Denney et al.: Predictions of No-Show Appointments in Primary Care

Published by SMU Scholar, 2019



correct and incorrect is known. McNemar’s test for significance compares each algo-
rithm in a pairwise fashion; a conclusion on distinct pairs significance of results is re-
viewed. Additionally, McNemar’s test is a nonparametric test, meaning there are no 
strict distribution assumptions to meet.  

The test statistic is calculated as: [25] 

𝜒 =	
(𝑏 − 𝑐)B

𝑏 + 𝑐  

 
Table 1: Generic confusion matrix values for McNemar’s Test 

 Test 2 Positive Test 2 Negative Row Total 
Test 1 Positive a b a + b 
Test 1 Negative c d c + d 
Column Total a + c b + d n 

 
The null and alternative hypotheses are  
𝐻D: 𝑝F = 𝑝G 
𝐻6: 𝑃F ≠ 𝑃G 
If it can be found that p > alpha, then the conclusion is to fail to reject the 𝐻D. This 

would indicate there is no difference in the classifiers’ errors. However, if p < alpha, 
reject 𝐻D. This indicates there is significant difference in the classifiers’ errors. For 
this experiment, a significance level of 0.05 was used. The results of the Adaptive 
Boosting McNemar test are presented in Table 2: 

 
Table 2: McNemar’s Test Results 

Comparison Result 
Ada Boost vs. Logistic Regression Significant at level 0.95 
Ada Boost vs. Naïve Bayes Significant at level 0.95 
Ada Boost vs. Support Vector Machine Significant at level 0.95 
Ada Boost vs. Stochastic Gradient Descent Significant at level 0.95 
Ada Boost vs. Decision Tree Significant at level 0.95 
Ada Boost vs. Extra Trees Significant at level 0.95 
Ada Boost vs. Random Forest Significant at level 0.95 
Ada Boost vs. XG Boost Significant at level 0.95 

 
The McNemar test indicates if there is a significant difference in the count of errors. 

The research team observe statistical significance in the test results: it was determined 
to reject 𝐻D in each pairwise comparison of the leading algorithm, Adaptive Boosting. 
The conclusion is each pairwise comparison of algorithms has a different proportion of 
errors on the test period of January 2018 to October 2018. The other two leading algo-
rithms, Logistic Regression and Support Vector Machine, show significance on most 
pairwise comparisons. However, one differentiating factor is that only Adaptive Boost-
ing shows significance on all pairwise comparisons.  

After concluding AdaBoost the best algorithm for this prediction task, analysis of 
algorithm performance throughout each month of test data was performed. Addition-

28

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 2

https://scholar.smu.edu/datasciencereview/vol2/iss1/2



ally, a second round of testing with a slightly lowered probability threshold was con-
ducted. This approach allows a presentation of both a conservative approach to identi-
fying no-show patients and an aggressive approach. More true positives are gained by 
lowering the probability threshold, but this approach also incurs more false positives. 
If the customer simply wishes to communicate via text message or email for appoint-
ment reminders to those likely to miss an appointment, the aggressive prediction thresh-
old may be an acceptable approach. However, if the site wishes to employ the algorithm 
for purposes of double-booking, the conservative approach is likely more appropriate. 
Figure 20 illustrates the recall for the two methods on each month of the test period for 
the top three performing algorithms.  

Figure 20: AdaBoost vs logistic regression recall scores in 2018 
 
 With both methods, some seasonality in the results is observed. For example, notice 

the cyclicality present in the summer months. The benefit of the sliding window ap-
proach is apparent in Figure 20. By considering changes in age, zip code, diagnoses, 
and behavior, the team was able to obtain better recall results month over month, while 
maintaining an average accuracy of approximately 68%.  

Another challenge in this prediction task is the fact of modeling human behavior. 
One way the team helped guard against model performance degradation is to include 
whether a patient is being seen for the first time or not. While this feature plays a role 
in maintaining good accuracy and recall, the algorithm exhibits slight degradation as 
the percent of new patients increase. It is also hypothesized that summer vacation and 
holidays during this period could be responsible for the cyclicality. Further work on the 
algorithm will derive additional features to address this observed seasonality.  
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7 Conclusions 

Determining the probability of a patient ‘no-showing’ an appointment can yield sig-
nificant financial and operational improvements for health care providers. For patients, 
practices who actively identify and intervene with patients to reduce no shows help 
patients overcome barriers to care and to have better health outcomes. The research 
team demonstrated a process to intake clinical, demographic, financial, and other types 
of data and successfully used a modern machine learning algorithm to predict the prob-
ability of no-show appointments. Using a survival of the fittest approach to nine differ-
ent algorithms, including a classical statistical model and newer machine learning tech-
niques, yielded a clear winner, AdaBoost. AdaBoost outperformed all the other algo-
rithms in a statistically meaningful manner. A direct comparison of AdaBoost and Lo-
gistic Regression shows AdaBoost to be more effective at predictions on this data set. 
This is the first time the team is aware of a direct comparison between Logistic Regres-
sion, commonly used in the previous literature on this topic, and a variety of machine 
learning algorithms has been conducted. Interestingly, Logistic Regression outper-
formed five of the new machine learning models and was in a three-way tie for second 
place using metrics for recall and accuracy. Properly constructed machine learning 
models can outperform traditional statistical methods, but caution is required to ensure 
Occam’s Razor is respected by baselining performance with a classical, simple, easy to 
understand model first. Once a baseline for performance is obtained, then properly de-
signed tests and comparisons of results can be implemented to determine if additional 
performance can be gained.  

Implementation of the model would be straightforward once the data is properly 
cleaned and formatted. AdaBoost doesn’t have large computing overhead and is per-
formant enough for this use case without any additional customization or tuning. With 
the ability of the model to provide information back to the clinic in a meaningful way, 
the expectation is the implementation will reflect the results observed in the test data. 
It is the intent of the authors and the clinic to implement this model into production as 
a pilot project. If the results of the pilot are successful, then a full roll-out to the entire 
organization would follow. In addition to providing the risk scores and classifications, 
the research team will work with the clinic to design studies to determine the effective-
ness of a number of interventions to additionally reduce no-shows.  
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