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Abstract. This study examines the use of a machine learning framework for 

predicting seafloor depth and coastline. The world’s oceans obscure the 

majority of the Earth’s surface, and due to continual tidal motion, currents, and 

natural events, the seafloor changes constantly. The world’s oceans remain 

largely unsurveyed by modern technologies such as multi-beam sonar or are 

under-surveyed using antiquated techniques like lead-line. The increased 

availability and access of commercial imagery allows for the accurate 

prediction of bathymetric depths and the identification of coastline. DeepUNet 

is a sea-land segmentation deep learning model utilized to detect coastline.  

This study will modify the existing DeepUNet structure and preprocess the data 

using different techniques to ncrease accuracy of coastline detection.  A 

Recurrent Neural Network (RNN)will then be utilized against preprocessed 

data in order to predict depths and then compared to an interpolated seafloor 

generated from nautical charting data.  The results of this study indicate that 

derived bathymetry using deep learning techniques do not meet the 

International Hydrographic Organization (IHO) standards for inclusion in 

Safety of Navigation products. However, both tools allow the evaluation of 

areas in need of hydrographic surveying. 

 

 

1 Introduction 

 
 Maritime commerce accounts for 90%1 of all global trade yet detailed data exist 

for less than 5% of the ocean seafloor.2 Navigating oceans is unlike via land or air as 

the dangers lie obscured to the operators of the vessel. Underwater hazards comprise 

                                                           
1 International Chamber of Shipping. Shipping and World Trade. [Online.] http://www.ics-

shipping.org/shipping-facts/shipping-and-world-trade [Accessed 28 October 2018] 
2 Seafloor Mapping: The Foundation for Healthy Oceans and a Healthy Planet. How Much of 

the Seafloor is Left to Explore? [Online.] https://oceanexplorer.noaa.gov/world-oceans-day-

2015/how-much-of-the-seafloor-is-left-to-explore.html [Accessed 28 October 2018] 
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the most dangerous features for vessels in transit. If they remain uncharted, the 

navigation crew possesses few tools to detect them [1]. Hazards only appear on 

navigational products if reported, surveyed, or struck. Countries maintain few 

surveying vessels3, and those that do only survey domestic waters leaving vast areas 

lacking modern survey data. Much of the world relies on older methods for sounding 

measurement such as single beam sonar and lead line which lack the granularity of 

modern survey techniques. Changing coastlines affects many aspects of human and 

natural life ranging from political, such as changing boundaries, humanitarian such as 

post-disaster cleanup, to ecological impacts - such as fisheries and receding coastline. 

  Bathymetry is simply the depth measurement from some vertical plane to the 

bottom of the seafloor.  The vertical plane is usually set by a vertical datum.  The 

International Hydrographic Organization (IHO) defines satellite derived bathymetry 

as “depths processed from optical satellite imagery”.4 Satellite derived bathymetry 

was first conceived in the 1970s [8]. The recent increase of highly available, high 

resolution data allows for more analysis and more robust and verifiable results. The 

basic premise of derived bathymetry focuses on shallow water appearing lighter in 

color than deeper water. Using multispectral imagery, or imagery collected with 

multiple electromagnetic bands of light, the bands can be evaluated to determine areas 

of higher reflected sunlight intensity [8]. The United Kingdom Hydrographic Office 

(UKHO) does not presently consider derived bathymetry data suitable for inclusion in 

maritime safety of navigation charting products [2]. However, derived bathymetry 

could be utilized to highlight areas of potential new bathymetric surveys. 

 Coastline accounts for tidal changes and, as such, coastline is typically collected 

at the highest astronomical tide level or the mean highest high-water level. These are 

averages of the highest water levels over a set period. The HAT83 vertical datum is 

tied to highest astronomical tide and sometimes appears as a vertical reference for 

coastline measurements [4]. 

 

 

Figure 1.  Coastline Before (left) and After (right) 2011 Japanese Tsunami 

                                                           
3  Hydro-International. Ocean Survey – The World Market. [Online.] https://www.hydro-

international.com/content/article/ocean-survey-the-world-market [Accessed 28 October 

2018] 
4  International Hydrographic Organization. Satellite Derived Bathymetry. [Online] 

https://www.iho.int/mtg_docs/com_wg/CSPCWG/CSPCWG11-NCWG1/CSPCWG11-

08.7A-Satellite%20Bathymetry.pdf [Accessed 24 October 2018] 
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Coastlines are more prone to change than many other environments due to the 

constant tidal forces at play. Natural disasters such as earthquakes, tsunamis, 

hurricanes, and typhoons exacerbate the already harsh tidal forces and can rapidly 

reshape coastlines [4]. The tsunami that hit Sumatra in 2004 left large segments of 

coastline altered.5 The earthquake and resulting tsunami off Fukushima prefecture of 

Japan in 2011 shifted the entire island of Japan as much as 5m and dramatically 

altered the coastline along the eastern seaboard6 as shown in Figure 1. 

 The use of derived bathymetry and detection of coastline from satellite imagery 

allows the producers of global navigational data to quickly add or update data on 

existing nautical charts. The added information keeps mariners safe from harm and 

increases awareness of potential hazards. The use of imagery to detect coastline can 

highlight the impact of natural disasters, reflect changes to political and 

administrative boundaries, and allow for better humanitarian relief. Automated and 

remote methods allow for the evaluation of large areas and focus survey resources to 

areas showing the large coastal changes or potential hazards to navigation. 

 

2 Background 
 

2.1 Bathymetric Survey Techniques 

 The predominant technique of modern bathymetric surveys is the utilization of 

multibeam sonar arrays.  Modern bathymetric surveys utilize multibeam sonar arrays 

towed behind the survey vessel. Side-scan sonar is frequently utilized in addition to 

the multibeam sonar to better visualize a 3-dimensional surface and to aid in 

identifying objects and hazards on the seafloor [12]. Multi-beam sonar works by 

emitting a soundwave across a broad area and waiting for the return wave back. Once 

corrected for water properties an accurate depth is established. Multibeam sonar 

differs from older single beam sonar by broadcasting over a larger area. The track 

lines navigated by the survey vessels are broader and gaps between tracks appear less 

frequently as a result. In addition to depths, surveys measure other features such as 

salinity, turbidity, and temperature. These measurements will aid in the post-

processing of the survey data as many factors affect the speed sonar travels through 

water. If performed near shore, a survey of nearby coastline could also be performed 

to update existing coastline records [12]. The result of a bathymetric survey generates 

a three-dimensional surface depicting the seafloor and containing depth information 

as well as multiple reports highlighting hazards, objects, and navigational aids in the 

surveyed area [12].  

                                                           
5 University of Vermont. Coastline Changes to Aceh from the Great 2004 Sumatra-Andaman 

Earthquake. [Online] https://serc.carleton.edu/vignettes/collection/25462.html [Accessed 08 

November 208]  
6 Physics Today. Insights from the Great 2011 Japan Earthquake. [Online] 

https://authors.library.caltech.edu/28770/1/Lay2011p16763Phys_Today.pdf [Accessed 05 

November 2018] 
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Table 1. IHO S-44 Survey Categories and Standards 

 
 

 Modern bathymetric surveys follow guidelines outlined in the S-44 standards 

and of the International Hydrographic Organization and shown in Table 1 [12]. These 

standards discuss the methods and procedures for conducting a bathymetric survey. 

Several orders of survey exist that determine the minimum accuracy and spacing 

between depth measurements of the survey data.  A 1A survey is necessary for most 

shallow water areas frequently transited by large vessels [12]. Hydrographic offices 

conduct surveys around the world, but survey resources are limited and prone to 

political and natural disruptions. When planning surveys in foreign waters, a 

hydrographic office must obtain permission of the host country whose waters will be 

surveyed. This usually involves data sharing agreements and non-disclosure 

agreements to prevent commercial sale of the data. Once permission is granted, a 

survey team will plan and conduct the actual survey [12].  

 

2.2 Remotely Sensed Data 

Remotely sensed data consists of sensor data collected via a remote platform 

such as a satellite or plane. This data usually takes the form of a raster datatype 

comprised of many individual pixels that contain the sensor measurements. Typically, 

this data comes in the form of electromagnetic measurements collected at regular 

intervals and pieced together into images. 7  Collection sensors consist of 

measurements across a broad spectrum of the electromagnetic spectrum. Visible light, 

infrared, ultraviolet, microwave and radio waves are all examples of different bands 

                                                           
7 BC Open Textbooks. Nature of Geographic Information Chapter 8 – Remotely Sensed Image 

Data. [Online] https://opentextbc.ca/natureofgeographicinformation/chapter/1-overview-7/ 

[Accessed 30 October 2018] 
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of electromagnetic radiation. [13]  

Multispectral imagery can be utilized for a broad range of analysis by 

manipulating the individual bandwidths of electromagnetic radiation4. Everything 

reflects or emits EM radiation and exhibits different spectral response patterns. By 

measuring an individual objects spectral response pattern, the different bands can be 

utilized to highlight reflectivity or emission of specific bands. Thus, band 

manipulation can aid in identifying specific materials, vegetation, or the presence of 

water. 

 The data in those pixels are constrained by the sensors of the platform. The 

capability of the remote sensors is defined by the spatial, spectral, and radiometric 

resolution4. Spatial resolution measures the geographic area an individual pixel 

covers. Resolution varies widely across platforms with the best resolutions only 1 

square meter all the way up to resolutions kilometers in size. Spatial resolution affects 

the granularity of what features can be detected. If a single pixel measures 30 square 

meters, then a small house measuring 15 square meters will not show up on the 

image. Radiometric resolution measures the precision of the sensor for a specific 

electromagnetic band4. EM radiation moves in waves thus the radiometric resolution 

measures the area under the wave. The more bytes allocated to a pixel for a specific 

EM range, the greater the radiometric resolution. Spectral resolution by comparison 

measures the sensors ability to detect small changes in wavelength. Thus, spectral 

resolution determines the minimum threshold for change to the height of the wave 

that the sensor can detect. [13] 

 

 

2.3 Derived Bathymetry Techniques 

In contrast to the techniques described previously, which take direct 

measurements from survey vessels, derived bathymetry from remotely sensed data 

relies heavily on understanding and adjusting for the physical properties of water, the 

seafloor, and the atmosphere. Water conditions vary widely at small and large scales 

which must be accounted for in the interpretation of Imagery.  The variance of 

physical properties of seafloor materials can also affect interpretation of imagery. 

Likewise, the seafloor is comprised of many different materials and each of those 

materials exhibit their own physical properties which can affect interpretation of 

imagery. The atmosphere plays a role in affecting the interpretation of imagery. All 

these factors must be accounted for when deriving depths from remotely sensed data. 

[9] 

 

 

Figure 2.  Spectral Reflectivity of Water vs. Vegetation 

5

Dickens and Armstrong: Machine Learning of Derived Bathymetry and Coastline Detection

Published by SMU Scholar, 2019



How water reflects and absorbs EM radiation, plays a large role in derived 

bathymetry techniques. The primary property examined by derived bathymetry is the 

reflectivity of EM bands. Water reflects each band at varying rates and measuring this 

reflectivity allows for prediction of depth. This is not without complications. Figure 2 

shows the reflectivity of water and vegetation where vegetation exhibits lower 

spectral reflectance at most wavelengths than vegetation.  This means that the near 

infrared bands will not penetrate water beyond a depth of 1-2 feet, while the lower 

wavelengths will travel deeper.  When the angle of the sensor and the solar angle 

interact with water’s natural reflectivity, sun-glint may occur. Sun-glint is light 

reflected directly back at the sensor that shows up as a glare [8]. Additionally, many 

other factors affect into the reflectivity of water such as turbidity and salinity. 

Turbidity measures the particulate matter in the water and high turbidity can lead to 

increased reflectivity. Salinity measures the salt content of the water and can also 

affect the reflectivity and the speed at which EMR travels through water. Both 

measures affect overall water clarity. [12] 

Many different materials comprise the seafloor in each area, and these can vary 

within a short distance. Coral, sand, rocks, and mud are all examples of different 

bottom materials of the seafloor. Each material has their own physical properties 

including how they reflect different bands of EM. Some of these materials can greatly 

impact the clarity of the water as well [9]. 

Any attempts to derive depths or characteristics from remotely sensed imagery 

must adjust for atmospheric interference. The atmosphere reflects some of the EM 

bands algorithms must adjust for this loss. Clouds prevent collection of data over 

areas and provide a confounding element if not adjusted for by either removing pixels 

of suspected clouds or otherwise correcting by using other bands such as Near 

Infrared that can more readily penetrate clouds [3]. 

The foundation of derived bathymetry stems from two well established 

algorithm models by Lyzenga and Stumpf. Both provide prediction capabilities where 

error increases in deeper water. At depths greater than 40 meters the models become 

unreliable. 

The Lyzenga model uses multiple algorithms for depth determination from 

imagery. Chief among these algorithms is the depth-estimation algorithm that factors 

in the other algorithms that correct for sun-glint and uses the reflectance model to 

determine deep-water signal correction [8]. The weakness of the model comes from 

variations of bottom reflectance that are unaccounted for although these can be 

mitigated using multiple spectral bands [8]. 

Stumpf developed an algorithm for deriving bathymetric depths from remotely 

sensed imagery that allows for different reflectance of bottom materials [9]. The 

Stumpf model consists of two parts: a linear model and a ratio model. The Stumpf 

model also allows for training to be introduced using existing sounding data [9]. 

 

2.4 Coastline Extraction Techniques 

In imagery, the boundary between land and water is easy to detect using 

traditional methods such as histogram thresholding or equalization. Any approach for 

coastline detection must account for several factors including atmospheric 

interference, differing coastline materials, and tidal influences [5].  Equalization 

shifts colors in pixels to equal frequency across the image. The result increases the 
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contrast of the image and exaggerates differences between light and dark sections of 

the image [10]. Histogram thresholding is an iterative process that reduces each pixel 

to a binary black/white for even greater exaggeration. The iterative nature weighs the 

histogram in each successive processing of the image and binning values as lighter or 

darker [10].  Figure 3 shows an example of both equalization and thresholding. 

 

 

Figure 3.  Example of Equalization and Histogram Thresholding 

 

This paper uses a deep learning model that effectively classifies each pixel as a 

binary like thresholding with edge detection filters to increase the accuracy of the 

extracted coastline [10]. Edge detection is used to extract edges between pixel edges. 

The process is useful for creating linear features such as coastlines. The blur filter is a 

common method to reduced noise and allows for greater contrast and easing the 

processing requirements of later steps. Histogram thresholding then creates a 

segmented image where the binary elements represent water and land [10]. 

 

2.5 Deep Learning Techniques 

Deep learning is a machine learning discipline that involves the creation and 

implementation of large neural networks and typically involves large amounts of data 

with more complex models.  These deep networks benefit from increased scale via 

feature learning which allows these networks to self-correct. Neural networks are not 

a new concept and a great deal of research has occurred on this topic in the past 70 

years8. Neural networks attempt to simulate the way a brain works by replicating 

dense interconnected nodes to aid in problems of pattern recognition and decision 

making.  

Neural networks consist of many nodes, referred to as neurons, or units, 

arranged in a series of layers as shown in Figure 3. Each layer contains connections to 

the previous layer and to a further layer. On one side, the input neurons receive data 

for analysis. This starts the process of learning. At the end of the network are the 

output neurons which relay the results of analysis [11]. In between the input and the 

                                                           
8  MIT News. Explained: Neural Networks. [Online] http://news.mit.edu/2017/explained-

neural-networks-deep-learning-0414 [Accessed 4 November 2018] 
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output neurons are a series of neurons referred to as hidden neurons which form the 

bulk of the network. Connections between nodes and layers are represented 

numerically and referred to as a weight. A positive weight means that a connection is 

beneficial while a negative weight indicates an inhibitive relationship between the two 

nodes. [11] 

 

 

 

Figure 4.  Basic Neural Network Architecture 

 

Information can flow through the network in two ways. Feedforward or 

backpropagation.  Feedforward refers to data flowing through a network in only a 

single direction. The input nodes will take the data and feed it to the next layer. Each 

layer passes the data onto the next layer until the resulting data ends up in the output 

nodes [11]. Not all neurons transmit data to the next node, however. Inputs are 

multiplied by the weights and must meet a threshold in order to be passed to new 

nodes. Backpropagation creates a feedback element for neural networks. This takes 

the actual output and compares it to the expected output and uses the difference 

between them to modify the weights of the connections [11]. In this manner, the 

weights of the edges continue to be re-calculated as new data comes in. Eventually, 

the edge weights will stabilize once the neural network processes enough training 

data. [11] 

Neural Networks find uses in many places. Much of their use focuses on 

simple decision making or feature classification and extraction. Due to the iterative 

process and feedback propagation, neural networks are ideal for pattern detection, 

which is a form of classification. Given enough training data, a neural network can 

eventually distinguish elements of images such as a dog or cat. In this study neural 

networks will be used to detect areas of shallow water and land-water boundary. [11] 

 

2.6 Neural Network Types and Structures 

Many different types of neural networks exist from simple artificial neural 

networks (ANN), to more complex networks, including convolutional neural 

networks (CNN), generative adversarial networks (GAN), and recurrent neural 

networks (RNN).  The list of neural network types continues to expand with time as 

researchers develop new methods to address certain issues and topics [11].  Many of 
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these neural network types utilize the same components within their structures, but 

either layer or organize them differently. 

A simple ANN, shown in figure 4, also called a perceptron, consists of a series 

of inputs, hidden nodes, and outputs.  All nodes are fully connected, and activation 

moves from an input to an output without any back propagation.  For simple ANNs 

there is only ever a single hidden node layer between the input and output. [11] 

 

 

Figure 5.  Basic Recurrent Neural Network Architecture 

 

Recurrent neural networks, like the one shown in figure 5, take the input and 

output nodes of an ANN and connect them with a new node type, recurrent nodes.  

These recurrent nodes are also called context sensitive nodes because they consider 

the decisions of past iterations.  These past iterative states influence the current 

decision.  In this case RNNs are extremely useful for ordered data and time-series 

analysis. 

Convolutional neural networks use convolutional layers to operate on three-

dimensional data such as images.  CNNs use a sliding frame that processes a small 

subset of the input image at a time.  This frame moves along the image and 

processes the image by using the convolutional layers to simplify the image section 

by removing unnecessary information.  As the frame moves along it can also up-

sample the existing section to add detail and recreate an image.  CNNs are usually 

used for image recognition and feature detection [11]. 

 

2.7 DeepUNet Structure 

DeepUNet was developed as a symmetrical and sequential network with 

recurrent plus connections built into the structure to treat an image as ordered data.  

The basic structure of DeepUNet consists of a convolutional block designed to use the 

RGB channels of remotely sensed imagery and output binary feature maps as shown 

in Figure 5.  The network does not utilize fully connected layers but rather a series of 

sequential convolutional blocks strung together.  These blocks work to both 

deconstruct and simplify the image to produce ideal results and then reconstruct a 

suitable output.  These convolutional blocks are also connected via plus connections 

that pass the input of the previous block to the next block.  In this way DeepUNet 
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can consider the context in the current process.  At the end of the network is a 

SoftMax layer that produces the final segmentation map with the binary output. [20]  

 

 

Figure 6.  DeepUNet Structure implemented by Ruirui Li et al [20] 

 

The convolutional blocks in DeepUNet serve two purposes as mentioned 

previously.  They either down sample the RBG channels and make predictions or 

they up sample to produce an optimal output.  These convolutional blocks consist of 

a series of layers as shown in Figure 6. In the early stages of the network the 

convolutional blocks consist exclusively of DownBlocks.  Each DownBlock consists 

of a series of convolutional nodes which pass along the activation function, in this 

case a rectified linear unit (ReLu).  ReLu layers are commonly used as activation 

layers after linear operations to introduce non-linearaity.  In the past tanh and 

sigmoid were used but ReLu offers greater computational efficiency.  At the end of 

each block the output is passed via a maxpooling layer with 2x2 kernel and step size.  

The downblocks follow several iterations growing successively courser in block size 

starting at 320x320 and ending up with 10x10 block before sending to the 

UpBlocks.[20] 

After ideal results are passed from the DownBlocks, the UpBlocks begin 

rebuilding the original structure of the image with the optimal results.  The 

UpBlocks follow a symmetry to the DownBlocks where they start at 10x10 pixel size 

and finish with 640x640 pixels, the size of the original input.  The DownBlocks are 

similar in structure as well except they use an upsample node in the front of the block 

to add greater precision to the results.  The results are again passed along from block 

to block in the same manner.  The symmetry between Up and Down blocks is 

purposeful.[20] 
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3  Related Works 

The topics of derived bathymetry and coastline detection are not new, and a 

great amount of valuable research exists on the topics and different implementations 

of the two subjects. The basis for these methods relies on older methods or provide a 

more limited scope of assessment than this paper. 

Peter Etnoyer put forth a paper in 2005 outlining a comparison between satellite 

derived global relief data to echosounder-derived multibeam survey values in the Gulf 

of Alaska. Using existing data, the paper found that positioning of the sea mounts in 

the derived relief data was generally consistent with existing bathymetric survey data. 

However, the seamounts explored typically varied in depth by 192 meters. The study 

also found that the cell size of the remotely sensed data directly impacted the 

accuracy of the relief and whether the seamounts were detected. The study suggests 

using higher resolution imagery for the relief creation to alleviate the cell size issue. 

[1] 

At the 2013 Hydro International Conference a team from the University of New 

Hampshire, led by Shachak Pe’eri, presented their findings from a study performed 

using LANDSAT imagery and existing derived bathymetry algorithms to map 

shallow water. They found that the process holds merit for the purpose of 

reconnaissance as the end product did not meet current mapping and charting criteria 

in accordance with the IHO S-55 and S-44 standards. These issues are caused by the 

large cell size of LANDSAT imagery. [2] 

Two groups in 2008 and 2010 researched the use of coastline change detection 

using remotely sensed data. Ali Asghar Alesheikh, et al exams common techniques 

using remotely sensed data and creates a new technique merging those to detect 

changes in coastline. This new technique uses histogram thresholding and band ratio 

analysis. [4] Xuejie Li et al, uses similar techniques combined with ground truthing to 

evaluate the changes of coastline in the Pearl River Estuary in China. Using 

traditional techniques and sediment plume distribution the study determined large 

areas of coastal change that will impact human development in the area. [5] 

A study on machine learning analysis for mapping land-cover was performed by 

John Rogan et al and utilized two classification trees and an artificial neural network. 

The study evaluated the performance of the machine learning approaches by 

evaluating accuracy, sensitivity, and resistance to training data deficiencies. The study 

found that the neural network created a change map most like one a human would 

generate. [3] 

Machine learning and remotely sensed data appear in a study by Yun-Jae 

Choung et al in 2017. This study uses remotely sensed data and compares two 

methods, a water column method used in surveying and a support vector machine 

algorithm. The two methods were compared and the SVM method was found more 

accurate in producing a coastline where the plane between hydrosphere and 

lithosphere is well-defined. Both processes performed poorly in areas where the 

separation between land and water was less defined. [6] 

Yun-Jae Choung’s research is similar in nature to that of Zhang Hannv, Jiang 

Qigang, and Xu Jiang in 2013. In their paper they apply a SVM model for feature 

extraction and classification to LandSat7 data to extract coastline. They then use this 

data to modify existing coastline data within the framework of a GIS system. Unlike 
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previously cited research they attempt to adjust the algorithm for different coastline 

features such as sandy, rocky, or mangrove to create an accurate coastline and define 

characteristics of the coastline for analysis purposes. [7] 

Predicting bathymetry values from remotely sensed imagery using machine 

learning processes Haibin Su et al. used a regression-kriging technique to predict 

bathymetric values.  They developed an interpolated surface using their regression-

kriging technique and compared specific points to the interpolated surface where 

ground-truth existed.  This met with broad success and increased accuracy compared 

to the previous log-linear models standard at the time. [19] 

In recent years many researchers have focused on the use of machine learning 

algorithms for the purpose of feature classification useful for coastline detection. 

Several studies used deep learning for feature classification on imagery such as 

Yongyang Zu et. al. who utilized CNNs to classify buildings in remotely sensed 

imagery.  This process used semantic segmentation via a CNN in order to separate 

buildings from everything else, or clutter [14].  Ruirui Li et al developed a deep fully 

convolutional network with symmetrical up and down blocks called DeepUNet for the 

purpose of sea-land segmentation.  This algorithm builds off older structures like 

SeNet and U-Net and modifies them to include edge detection algorithms.  The 

results prove highly accurate compared to older models [20].  

More researchers are beginning to pay attention to the importance of the 

hydrographic realm when looking at machine learning.  Shan Liu et al developed a 

use for an BPANN to estimate bathymetric depths by introducing localization factors 

to the BPANN.  This occurs by adjusting weights the further the a depth prediction 

is made from the ground truth points.  The results increase accuracy over traditional 

regression methods [15].  Omar Makboul et al developed a traditional ANN model 

for estimating depths from remotely sensed data near Alexandria, Egypt.  The 

accuracy of which is lower than the previous study but still provide a greater accuracy 

and confidence level than older regression methods. [17] 

The previous studies lay an impressive groundwork for evaluating the 

usefulness of deep learning techniques for the purpose of bathymetry estimate 

prediction and coastline feature classification. Previous studies examined the use of 

SVM and other classification techniques for coastline feature extraction. The use of 

neural networks was examined for terrestrial land-cover mapping as well as 

hydrographic implementations.  This study will seek to differentiate itself by 

modifying the DeepUnet for coastline detection and using RNN for bathymetric 

prediction. 

4  Data 

4.1 Data Selection 

The training and test data used for both the derived bathymetry and coastline 

sections of the study consists of 376 multispectral images collected from the 

Orbview-3 satellite and downloaded from the USGS EarthExplorer API an example 

can be seen in figure 7.  Only images with less than 10% cloud cover were selected, 

as cloud cover can provide a confounding factor when performing analysis. 
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 The sensor collected the images between 2005 and 2007 and focus on the 

region of the Pacific covering Micronesia, the Mariana Islands, Marshall Islands, 

Guam, and Wake Island.  The Orbview-3 platform collected multispectral imagery at 

the 4 meter resolution and the images are orthorectified, or projected, to the World 

Geodetic System 1984 (WGS1984) datum.9 Multispectral bands range from 450 to 

900 nm wavelengths which comprise the blue, green, red, and near infrared bands.  

The spatial resolution is 1 meter by 1 meter pixels and the swath width of the images 

covers a range of 8 kilometers.   

This region of the world was selected for analysis due to the low turbidity and 

clearness of the water.  Remotely sensed data under ideal conditions can only 

penetrate roughly 30 meters of water depth, and the Pacific islands have clear water, 

low turbidity, and still contain a wide variety of coastlines and bathymetric features to 

make training a model possible. 

To verify depth predictions and coastline detection, existing nautical charts from 

the National Oceanic and Atmospheric Administration (NOAA), UKHO, and 

international charts are utilized.  These charts exist in a digital format orthorectified 

in WGS1984.  The sounding information on the charts will be compared to the 

derived depths output by the deep learning model in a visual comparison. 

 

 

Figure 7.  Example Image from OrbView-3 

5  Methods 

5.1 Data Preparation 

The first step of data preparation involves resizing the images to the same size 

and aspect ratio and aligning the band channels of the multispectral imagery.  This 

                                                           
9  Orbview-3 [Online] https://space.skyrocket.de/doc_sdat/orbview-3.htm [Accessed 4 

November 2018] 
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ensures that no shifts between images exist.  To combat the small sample size and to 

allow for limited processing power, the images are cropped into 640x640 pixel tiles.  

Only tiles that contain a sea-land boundary are used in this analysis.  This expands 

the original limited set of remotely sensed images to 27,785 samples. Next, the 

images are normalized to create a standard range for each channel of each pixel.   

 

 

Figure 8.  Interpolated depths from nautical chart soundings. 

 

Ground truth data is generated from the nautical charts by interpolating a depth 

surface from the depth values, as in the example interpolation shown in figure 8.  

These values are augmented by hazard depths where available.  The interpolated 

surfaces are not ideal for this analysis but are the only source of bathymetric data 

readily available to the public.  Interpolated data is not ideal since that means the test 

data predictions will be compared to estimations rather than actual ground truth, 

excepting the control points for the interpolation. 

 

5.2 Building the Models 

The basic structure of the models used will come from existing models for 

seafloor segmentation or sea-land segmentation neural networks.  The bathymetric 

deep learning model will use an RNN structure while the coastline model will utilize 

the DeepUNet CNN model.  These will be modified to attempt to create more 

accurate results, increase output resolution, and decrease processing time. 

 

5.3 Bathymetric RNN Construction 

For bathymetric modeling, a RNN was chosen, because sounding depths usually 

are found near other sounding depths of like values.  The seafloor can be considered 

a continuous surface where any changes in the seafloor occur over a wider area.  

While isolated depths and shoals exist, they are an exception.   

The core structure of the bathymetric RNN remains the same for a simple RNN.  

The RNN uses a masked convolution to split each pixel input into three layers, one 

each for the RBG bands.  The connections between nodes in these layers are 
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weighted with the sum of all outputs from the previous layer.  A function is applied 

and these weights plus the initial value is passed onto the next node.  In this way, the 

context of the pixel is preserved, and each node learns from the previous. 

 

5.4 Coastline Modified DeepUNet CNN Construction 

The modifications performed in this study will break the symmetry to maximize 

accuracy while decreasing the distortion from the original input.  Figure 9 details the 

specific modifications used in this study.  The kernel size remains the same for each 

convolutional layer in the upblock, 3x3 as do the kernel size of 64 and 32. 

 

 

Figure 9.  Modified DeepUNet Structure 

 

In order to accomplish these goals two changes are made.  An additional 

convolution layer is added to each of the down blocks in the hopes that it will increase 

the accuracy of the result passed via the maxpooling layer to the next block.  

Breaking the asymmetry of DeepUNet, an additional up block is added at the tail end 

with a final size of 1280 pixels.  This allows the SoftMax layer to reduce the size 

and end up with an output image of equal pixel size to the input with minimal 

distortion and artifacts. 

 

5.5 Training the Models 

Training of the Bathymetric RNN consist of 100 epochs with a backpropagation 

of 12 pixels.  This is executed on the derived images from the original 376 images.  

At the end of training measures of fit are calculated using a mixture of the different 

RBG bands of the image.  Table 2 shows that the R2 doesn’t look very impressive at 

this point, but the data may also not be linear in relationship either.  The best R2 

seems to occur when using the red and blue bands (3 and 2 respectively).  However, 

the differences between bands looks marginal. 
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Table 2. Bathymetry RNN Measures of Fit 

Measures of Fit 
Bands R2 RMSE 

Green, Red 0.691 0.884 
Green 0.699 0.814 

Blue, Green 0.697 0.876 
 

Training for the coastline CNN consists of 1000 epochs of the 376 images.  

GPU processing power was utilized to speed up the processing from simply using the 

CPU as well as to accommodate the larger than usual tile size for this study.  A 

learning rate of 0.1 is selected initially.  This is adjusted downward to 0.05 once half 

the samples are processed.  The momentum for this model was set high at 0.9. 

The overall accuracy of the model over several epochs is shown in figure 10 

while the loss is shown in figure 11.  These show a lower than expected initial 

accuracy but otherwise follow a standard training pattern given the momentum and 

learning rate used.  The expected accuracy was nearer to the DeepUNet accuracy 

while the actual overall accuracy of the model reached 95.41%. 

 

 

Figure 10.  Accuracy of DeepUNet Modifications over Epochs 

 

 

Figure 11.  Loss of DeepUNet Modifications Over Epochs 
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6  Results 

6.1 Derived Bathymetry Results 

This section contains the final output results of the bathymetric prediction RNN 

model.  It also discusses the verification of the results by comparing to modern 

nautical charts as well as calculating the Mean Absolute Error (MAE) in meters to 

compare to the IHO standards for vertical accuracy. 

 

 

Figure 12.  Derived Bathymetry Grid with Ground Truth Points 

 

The result of the RNN for derived bathymetry creates a heat map of depth 

predictions, as shown in Figure 12.  The heat maps can be compared to existing 

digital nautical data or, as in the case of this study, reviewed using digital charts.  

Known depths from hydrographic charts are compared to the depths predicted by the 

RNN, a sample of such appear in Table 3.   
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Table 3.  Bathymetry Known Depth vs. Predicted 

Bathymetry 
Site Known Depth RNN Depth 

1 14.4m 13.53m 
2 10.2m 8.4m 
3 5.1m 8.07m 
4 10.8m 13.82m 
5 15.3m 13.28m 
6 5.7m 8.51m 
7 10.5m 9.74m 
8 19.1m 14.12m 
9 24.3m 22.51m 

10 32m 35.94m 
 

From this data, the residuals are calculated, and the MAE in meters of total 

vertical uncertainty is obtained.  Depths from 1200 sounding points are used to 

evaluate the MAE with the result being 3.216 meters.  This fails to meet the IHO 

specifications of 0.5 meters for category 1a and 1b surveys by a wide margin (Table 

1).   

 

6.2 Coastline Detection Results 

This section contains the final output results of the coastline detection model, 

including the verification of the results by comparing to modern nautical charts as 

well as looking at error and loss results for the model after processing.   

 

 

Figure 13.  Modified DeepUNet Output 
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Final binary feature maps from the modified DeepUNet model are a binary 

white and black image, an example of which is figure 13.  This is similar to the 

output generated from a thresholding process.  In these images the white section 

represents water while the black represents the land.  This result is compared to 

digital coastline data.  Even without comparing to the ground truth data, several 

issues can be seen in figure 12, such as the artifacts on the right side of the feature 

map and the water that appears inland. 

Figure 14 shows a transparent raster nautical chart superimposed on the binary 

feature map.  In addition to the artifacts circled on the right and the inland water, 

several errors appear.  In the uppermost portion of the image, the feature map 

appears to detect coastline further out to sea than shown on the chart.  This is likely 

due to the imagery taken at a timeframe closer to low-tide, and some of the intertidal 

zone is captured as coastline.  The middle circle also appears to show the same issue 

but the DeepUNet did pick up the natural channel inland with high accuracy. 

 

 

Figure 14.  Coastline Output Overlayed with Raster Chart 

 

Over all 376 images, the results of the modified DeepUNet appear to fall short 

of DeepUNet.  Table 4 shows the evaluation metrics for the modified DeepUNet.  

While all of these metrics are positive, the overall precision and recall of DeepUNet 

are both 99.04% [20].   This is likely the result of artifacts being introduced into the 

system with the additional upsampling block. 
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Table 4.  Modified DeepUNet Coastline Model Metrics 

Model Precision F1 Recall 
Modified 

DeepUNet 
95.41% 94.20% 92.12% 

DeepUNet 99.04% 98.71% 99.04% 

 

6.3 Comparison to Previous Studies 

This section contains a comparison of the modified DeepUNet for coastline 

detection presented in this paper with the SVM model used in the Dejan Vukadinov, 

Raka Jovanovic, and Milan Tuba report [10] and the original DeepUNet model [20].  

An analysis of the differences between the results of each as well as the potential 

benefits of both models will be presented.  Finally, a look at the stumbling blocks for 

each model will also be considered. 

 

Table 5.  Comparative Accuracy of Coastline Detection Methods 

Overall Precision 

Modified 

DeepUNet 

DeepUNet 
SVM Regression 

95.41% 99.04% 80.72% 88.40% 

 

Deep learning models clearly outpace other machine learning methods and 

traditional regression methods for determining coastline.  Table 5 shows that while 

the original DeepUNet stands as the most precise method, the modified deep learning 

model follows closely behind.  Support vector Machines performed poorest of all 

methods but that is partially accounted for in the study as issues correcting for 

coastline type (rocky, sandy, etc) [10].  While the modified DeepUNet showed less 

precise results than DeepUNet, this lends clear evidence that deep learning models for 

coastline detection and derived bathymetry should be explored. 

7  Ethical Considerations 

The use of derived bathymetry and coastline change detection via remotely 

sensed imagery is not without ethical considerations. Formal bathymetric surveys 

typically occur in territorial waters and with the permission of the host country. Often, 

this permission comes with the request that survey findings are not made publicly 

available and the host country receives a copy of the data. Many countries are remiss 

to provide access to territorial waters to foreign entities understanding that 

bathymetric survey information could be used by militaries to aid subsurface 

navigation by military vessels. 
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While coastline detection’s primary purpose involves safety of navigation and 

humanitarian aid in the unfortunate case of a natural disaster or other crisis, it too can 

be utilized for military purposes. Coastline plays an important role in amphibious 

operations. Typically, coastline is surveyed in a similar manner to bathymetry via an 

official survey of record, and - if performed by a foreign power, they must receive 

permission from the host country. Using remotely sensed data to determine the 

coastline circumvents that process as the data is generated from satellites or other 

remote sensors. 

Malicious state actors utilize derived bathymetry to lay claim and expand 

influence in areas of the ocean where no land exists.  A derived bathymetric dataset 

could be utilized to determine areas such reefs, atolls, and shoals that can be built 

upon to create artificial islands and make claims of territorial waters and exclusive 

economic zone.  While derived bathymetry was not used in existing cases, the 

buildup of shallow water by states seeking to expand their influence is a great worry 

in many regions of the world and derived bathymetry could play a role in both 

expanding or refuting this practice.  

8  Conclusions 

The results of this study show modest accuracy results in predicting depths with 

a RNN.  The accuracy decreases as the depths increase, although this is expected as 

confounding factors such as turbidity, salinity, and seafloor composition can 

confound sensors.  The accuracy from this process does not meet the criteria for an 

IHO category 1a survey for vertical accuracy, and thus, the data should not be used to 

supplement actual safety of navigation products.   

The modification of the DeepUNet CNN model added two additional 

components to the up-sampling and down-sampling blocks.  The results were a 

slight drop in accuracy but a higher resolution of the output image.  This traded 

some accuracy for a higher resolution output.  This also led to greater processing 

times though, so the additions may not ultimately be worthwhile due to artifacts and 

inconsistencies with the output.  The use of this coastline for safety of navigation 

products is not recommended.   

The intent behind this study was not to replace or augment actual safety of 

navigation products, but to rather inform decision makers of where significant 

divergence exists between the modelled data and existing charted data.  This allows 

valuable resources to be allocated towards the most critical areas.  The outputs of 

these bathymetric predictions and coastline detection models can be used to detect 

areas of significant change in unexpected areas and can be used to check the veracity 

of existing data.  The use of deep learning to predict bathymetric depths and detect 

coastline allows for the effective deployment of valuable and limited survey resources 

to ground truth the most critical areas for maritime safety of navigation.  
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9  Future Work 

This study compared derived bathymetry to existing nautical charting products 

due to limitations on resources and publicly available data.  Additional research 

should include the comparison of derived bathymetric outputs from the neural 

networks with more robust survey data in the form of bathymetric attribute grids, the 

standard output of most modern multi-beam surveys.  This could provide a pixel by 

pixel comparison of the derived bathymetry for better accuracy and error rates and 

would likely lead to better models.  Additional information could be integrated into 

the model in order to properly identify specific features such as hazardous rocks and 

the model can be adjusted to determine the bottom characteristics of the seafloor. 

Additional work on the coastline detection could focus on combining other 

sensors in order to more accurately depict coastlines.  Single aperture radar provides 

a great method for separating water from other landforms as water has high 

absorption of radio wavelengths and water shows up distinctly black compared to 

other landforms that reflect higher levels of radio waves.  This could be combined 

with multispectral imagery to highly define the water area while the multispectral 

imagery better defines the actual land boundary.  Ideally more recent remotely 

sensed data would be utilized to determine change between charted and actual 

coastline.  This study uses older data due to availability. 

One of the key issues with using remotely sensed data to observe oceans are the 

effects of tides on the results.  Safety of Navigation products rely on a safety margin 

and thus they use depths taken at the lowest astronomical tide (LAT) for a given area.  

This holds especially true the closer the depths move towards land.  Similarly, 

coastline typically refers to the highest tide marker with the area between lowest tide 

and highest tide known as the intertidal region.    As such, remotely sensed imagery 

should account for the precise time of LAT in order to properly predict depths while 

taken at high tide to detect the appropriate coastline.  This study did not factor in the 

time the imagery was taken or the tides in these regions.  This likely played a role in 

lowering the overall accuracy of the results. 
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