Slop: A Strategic Multiple Store Location Model for a Dynamic Environment

Dale D. Achabal
University of Santa Clara

Vijay Mahajan
Southern Methodist University

David A. Schilling
Ohio State University

Follow this and additional works at: https://scholar.smu.edu/business_workingpapers

Part of the Business Commons

This document is brought to you for free and open access by the Cox School of Business at SMU Scholar. It has been accepted for inclusion in Historical Working Papers by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu.
SLOP: A STRATEGIC MULTIPLE STORE LOCATION MODEL FOR A DYNAMIC ENVIRONMENT

Working Paper 84-110*

by

Dale D. Achabal

Vijay Mahajan

David A. Schilling

Dale D. Achabal
Associate Professor of Marketing
Director of Retail Management Institute
University of Santa Clara

Vijay Mahajan
Herman W. Lay Chair of Marketing
Edwin L. Cox School of Business
Southern Methodist University
Dallas, Texas 75275

David A. Schilling
Associate Professor of Management Sciences
Ohio State University

*This paper represents a draft of work in progress by the authors and is being sent to you for information and review. Responsibility for the contents rests solely with the authors. This working paper may not be reproduced or distributed without the written consent of the authors. Please address all correspondence to Vijay Mahajan.
Abstract

This paper develops a strategic multiple store location decision model (SLOP) to address the issue of uncertainty in planning the long-term development of an optimal network of stores in a dynamic market environment. In the presence of high uncertainty about the future environment, a multiunit company may find that the optimal network of store locations selected at the time of original planning may be suboptimal in the long term. This complexity in the planning process may arise from the uncertainty in predicting the future market environment. By incorporating a set of alternative future scenarios, the model allows the planner to maintain flexibility by preserving future location options in the development of an optimal network of stores.
Introduction

In recent years, a number of approaches have been proposed to evaluate the location of potential stores. Of the various approaches, the analog method (Applebaum 1968) and multiplicative competitive interactive (MCI) models seem to be the most popular approaches. MULTILOC, (Achabal, Gorr, and Mahajan, 1982) a recent extension of the MCI model, addressed the multiple store location decision faced by many multi-store retailers in optimally penetrating a given market area. However, one of the facets of the retail location decision that is receiving greater attention is the potentially dramatic impact of the changing locational environment (see, for example, Ghosh and McLafferty 1982, Ghosh and Craig 1983).

The market state which exists at the time of the original planning decision may bear little similarity to that which will exist in the future. This uncertainty about the future environment may be caused by a number of factors such as changes in population growth patterns, shifts in demographic profiles, emergence of new competitors, and/or changes in the location strategy of existing competitors. In the presence of high uncertainty about the future environment, a multi-store company may find that the optimal spatial configuration of stores selected at the time of original planning may be suboptimal in the long term.

This complexity in the planning process may arise from the uncertainty in exactly predicting the nature of the future market environment. When forecasting models are applied to medium and long-range planning efforts, where the assumption of constancy is invalid, the result is a most probable future condition based on the expected outcomes of the events forecasted. This approach typically involves the development of a single forecast of the nature of demand at some future time period. This forecast may represent the results of a
consolidation of expert predictions or, possibly, reflect the projection of a single individual or firm. This description of the future is subject to a high degree of variance, and in these situations a multiple store location strategy based on a single "most probable" state may not be desirable. Further, reliance on a single forecast may lead to the development of an inferior configuration of stores in a market area; one that by its very nature is extremely expensive and difficult to alter.

An alternative approach to cope with the uncertainty in predicting the future environment is to integrate several scenarios of the future into the location decision process. A set of alternative futures can be developed simply by combining best-case and worst-case scenarios with the most probable future, or by identifying events within the planning horizon that will alter historical trends (Vanston, et al. 1977; O'Connor 1978; Linneman & Klein 1979). Such scenarios would be conditional forecasts—a future state that is contingent upon the outcome of a specified event.

While there has been a significant stream of research on the dynamic location of facilities (see e.g. Scott 1975; Sheppard 1974), the incorporation of alternative futures has received less attention (Schilling 1976, 1980; Ghosh and McLafferty 1983). When alternative scenarios are defined, the task of picking the correct one as the basis for location planning remains (Schilling 1982). In reality, however, there is a greater likelihood of selecting the correct scenario at some future time than at the present. This is due to the continual reassessment of prior scenario probabilities permitted by the new information about the market environment available to the decision maker over time. If a manager can delay choosing a location for a portion of a multiyear planning horizon, he or she is more likely to select a future location configuration that
will more closely match the future environment than if the selection were required immediately. A closer examination of the problem setting will reveal how this decision can be postponed.

In a typical multi-store operation concerned with penetrating a new market area, or expanding in current markets, not all the stores would be built simultaneously. Instead, their construction would be spread out over the planning period (e.g., five stores a year). The planning period, then, can be defined as covering the time until the entire system is completed. In addition, it can be assumed that, within the planning horizon, each of the stores is considered permanent (i.e., there are no relocations) since firms typically must commit to leases for a minimum of five to ten years. In effect, then, the design of the final configuration of stores is a series of irreversible decisions.

At each decision point, the planner is faced with the problem of siting a store that will become a part of the final locational configuration. Unfortunately, the construction of a store at a given site precludes consideration of all alternative configurations that do not include a store at that location. Every time a decision is made (a store is built), alternate locations are preempted; that is, future alternative configurations are eliminated from consideration (Schilling 1982). In order to maintain flexibility, it would be useful to make decisions that minimize options foreclosed or, equivalently, maximize options available to the location analyst.

"Option" as defined by Schilling (1982) is a future configuration of stores. An option is foreclosed (that option cannot be obtained) when a facility is located somewhere other than at one of the sites dictated by the option. Certainly some options perform worse than others, so that there are some options a location planner would not mind foreclosing. It follows that the
process for identifying options should consider only those final configurations that provide desirable profitability in a specified scenario.

Now consider a pair of options, each providing desirable profitability in a specific (different) scenario, that also have a number of locations in common. A store in the common set can be constructed and both options will remain viable; neither option has been foreclosed. In fact, the decision between these two competing options can be delayed as long as only the common stores are built. In this way, the decision maker can delay selecting an ultimate configuration until more information and better predictions are available on which future will actually occur. Further, if the two options provide the best possible performance in their associated future, then, as long as only common stores are being built, there is no sacrifice in the total system profitability of the final set of stores. The decision maker has not lost the opportunity to construct the optimum location pattern for either future. Additionally, the planner has acquired time to revise and update forecasts, therefore increasing the probability that the final locational configuration will correspond to the actual optimal configuration desired at the end of the planning horizon.

If some reduction in the performance of the final set of store locations is permitted, options could be identified that have an even greater number of common stores and therefore can support an even longer grace period. During this period, the interim level of sales performance should be maintained since the common stores would tend to serve areas of demand common among the scenarios. These areas would, in most situations, correspond to the current state, which forms the core for future growth. Thus, constructing common stores first provides service for current demand. Similarly, the sites that are not shared by the options would tend to serve areas where demand is expected to
arise sometime in the future. The analysis of options, then, is ultimately concerned with identifying a set of locational configurations, where the number of configurations (options) in the set is equal to the number of scenarios under evaluation. Each option in the set would provide a desired level of profitability in its associated scenario and would also have a higher number of store sites in common with the other members of the set. For example if two future scenarios were being evaluated, options would be developed in pairs, with each pair having a designated number of common store locations.

In sum, the planner can decrease the risk associated with relying on a single forecast by considering several future scenarios and identifying good locational configurations for each with as large a similarity in site selection as possible. In essence, the configurations represent contingency plans and the common sites provide the potential for maintaining the viability of those contingency plans. The analysis of options permits the planner to retain much of the flexibility of the present while continuing to analyze and preserve future location options towards the development of a network of stores. The development of this model, termed SLOP (Strategic Location with Options), is presented in the next section. The SLOP model is subsequently applied to the data developed by Huff and Blue (1966) to illustrate its use in multiunit store location decisions in a dynamic environment.

Options Analysis for Multiple Store Location Decisions

In order to develop the model, suppose that 'R' new stores are proposed for a market consisting of 'S' existing stores with 'M' customer originating areas. Given a proposed configuration of new store sites and other attributes of the new
stores, the following MCI model provides predictions of the probability 'P' of a customer originating in area 'i' shopping at new store 'r' in future 't':

\[P_{irt} = \frac{\prod_{k=1}^{K} \beta_{kt} \prod_{r=1}^{R+S} A_{irkt}}{\sum_{r=1}^{R+S} \prod_{k=1}^{K} \beta_{kt} A_{irkt}} \]

where

\[r = 1, \ldots, R \] are new stores and \(R+1, \ldots, R+S \) are existing stores;
\[A_{irkt} \] = k-th attribute describing the new or existing store (r), attracting customers from area i, \(k=1, \ldots, K \), in future \(t=1,2,\ldots,T \);
\[\beta_{kt} \] = estimated parameter associated with the k-th attribute in future \(t \).

Such probability estimates allow the estimation of expected patronage, sales, and profit from each new store (see e.g., Achabal, Gorr and Mahajan 1982) in each future scenario.

While store size and distance are the attributes utilized later to illustrate options analysis for the multiple store location decision problem, calibration of MCI models in empirical studies should be based on consumer surveys and customer origin studies to determine the most significant attributes in each market in each scenario (see, e.g., Jain and Mahajan 1979; Stanley and Sewall 1976). Furthermore, if consumer research indicates that situation-specific segmentation is a factor (Miller and Ginter 1979), the model should be modified; for example, demand at each customer origin area 'i' could reflect work-based plus home-based shopping trips.

The options analysis of multiple store location and design problems requires the selection of a subset of 'R' store locations out of 'N' potential locations as
well as choices on particular values for the attributes, such as store size, for each site. Suppose that for each scenario, attribute $A_{i r k t}$ can take on v_k values; for example, $k=1$ may signify distance, so that $v_1 = 1$; $k = 2$ may signify store size, with large, medium, and small sizes under consideration, so that $v_2 = 3$; etc. If all combinations of values for the 'K' attributes are possible at a site, then across all scenarios there are $L \approx (v_1)(v_2) \ldots (v_K)$ distinct store designs. Managerial judgment may serve to limit attention, however, to a more restricted set of designs appropriate for specific sites within a market.

The decision variables are:

$$x_{jlt} = 1, \text{ if a store of design } l \text{ is to be constructed at location } j \text{ in future scenario } t, j=1, \ldots N, t=1, \ldots T.$$
$$= 0, \text{ otherwise}$$

$$w_{jt} = 1, \text{ if a store of design } l \text{ is to be constructed at location } j \text{ in all scenarios.}$$
$$= 0, \text{ otherwise}$$

It is now possible to write the SLOP model:

$$\text{Minimize } Z = \sum_{t=1}^{T} \left(\sum_{i=1}^{M} \sum_{j=1}^{N} C_{ijt} E_{ijt} P_{ijt} - \sum_{j=1}^{N} \sum_{l=1}^{L} F_{jlt}(x_{jlt} + w_{jt}) \right)$$

subject to

$$\sum_{l=1}^{L} (x_{jlt} + w_{jt}) \leq 1 \quad j=1, \ldots N \quad t=1, \ldots T \quad (3)$$

$$\sum_{j=1}^{N} \sum_{l=1}^{L} (x_{jlt} + w_{jt}) = R \quad t=1, \ldots T \quad (4)$$
Equation (2) in the model is a scalar representation of a multiple objective function measuring profits in each future scenario (Marglin 1967). The priority weights, λ_t, reflect the trade-offs among the scenarios. It can be set equal to one or varied to reflect the relative importance of the scenarios. Establishment of a specific set of weights can be used to reflect a subjective estimate by the decision maker of the likelihood of occurrence of the specific scenarios under evaluation. As is the case in the setting of any parameters in a mathematical model it is, of course, desirable to perform an analysis to evaluate the sensitivity of the solution to these weights. In addition, there are numerous techniques available to the decision maker for establishing appropriate objective weights (see, e.g. Cohon 1978; Zeleny 1982).

Total expenditures by consumers in area 'i' in future scenario 't', E_{it}, are fixed and assumed independent of the network of stores. The sum yields the expected revenue from the R new stores for each future scenario, while the multiplication by fraction C_{jt} provides profits before deducting fixed costs. F_{jt} is the fixed cost of a store of design 't' at site 'j' in future 't'.

Equation (3) restricts the number of stores at any given site to be no more than one. Equation (4) ensures that exactly R stores will be located and designed while equation (5) sets the number of common stores (H) across the scenarios.
In equation (6), the subscript \(k_{j}^{t}\) refers to \(t\)-th value of attribute \(k\), \(j = 1, \ldots, N\) are potential locations for new stores, and \(j = N+1, \ldots, N+S\) are existing locations. The MCI model, equation (1), is extended in equation (6) to include the decision variables \(x_{j}^{t}\) and \(w_{j}^{t}\). As is evident from equation (6) for each scenario, any change of a site or design alternative has a complex effect on \(P_{ij}^{t}\).

The SLOP model, equations (2)-(6), is a comprehensive statement of the multiple-store location and design problem with options, and represents an extension of the retailing models presently in the literature. Note that if, for example, \(H=0\) in equation (5), i.e., no common sites, the problem reduces into \(T\) separate statements of the original (single scenario) MULTILOC model. Equation (5), in fact, ties these separate problems together, constraining the solution for each problem to have the required number of common sites. On the other hand, if \(H=R\), that is, all stores are in sites common to all scenarios, the SLOP model reduces to the special case presented by Ghosh and McLafferty (1982).

Solution Procedure

Since the objective function of the SLOP model is nonlinear and nonconcave, it is not possible to solve using exact optimization techniques. A complete enumeration of all feasible store configurations often is not practical or even possible because of the extremely large number of alternatives. Consequently, a simple heuristic based on the vector substitution method described by Teitz and Bart (1968) was developed and used in the illustration discussed later in the paper (see, also, Cornuejols, Fisher and Nemhauser, 1977; Achabal, Gorr and Mahajan, 1982; Ghosh and McLafferty, 1982).
Beginning with an initial location/configuration, the interchange heuristic proceeds by attempting to improve the current solution. A single pass consists of comparing each location/configuration combination of the current solution in turn with all location/configuration possibilities not in the current solution. Whenever a location/configuration is encountered that improves the current solution, an interchange is made. The now inferior location/configuration in the current solution is removed and the superior location/configuration is substituted. Before an interchange is made, care must be taken that condition (3) of the SLOP model is not violated: interchanges that produce two stores at the same location are not carried out. Passes are made until no (significant) improvement is made in the objective function (2) from one pass to the next.

As discussed earlier, the SLOP model requires evaluation of two types of locations: sites which are common to all scenarios (recall there are H of them), and sites which are unique to each scenario (the remaining (R-H) sites). In order to find the common sites (among scenarios) and the unique sites (for each scenario), the substitution in the interchange heuristic is performed on each of the locations. Briefly, the following steps are needed to implement the heuristic:

a) Given an initial solution, for each store common to all scenarios and for each site available to a common store, interchange the current common store to the test site. Evaluate the profits of the resultant interchange. If the interchange results in improvement, locate the common store at the test site. If not, retain the current common site.

b) Perform (a) for each site and for each store until the required number of common stores have been located with no further improvement in profits.
c) For each store not required to be common among scenarios, and for each site available to a unique store in this scenario, relocate the current unique store to the test site. Evaluate the total profits of the resultant change. If the interchange produces an improvement in the total profits, locate the current unique store at the test site. If not, retain the current unique site.

d) Perform (c) for each unique site in the scenario.

e) Perform (c) and (d) for each scenario.

f) Return to (a) until significant further improvement in total profits is not possible.

Implementation of the interchange heuristic requires specification of a starting location configuration. Since optimality cannot be guaranteed, the starting solution can be expected to influence the quality of the final solution. An advisable solution strategy, therefore, is to apply the heuristic to several randomly selected starting location configurations. Our experience, however, is that the solution procedure is relatively robust and that only two or three starting points are required to produce consistent results. This result was also reported by Achabal, Gorr, and Mahajan (1982) in their research in developing the MULTILOC model.

Illustration

To illustrate the SLOP model, the data set developed by Huff and Blue (1966) is employed. Briefly, the retail facilities described in this data set are food stores located in a market area divided into 80 cells (see Figure 1). The problem in this illustration is to determine the optimal location pattern for four stores that a new firm wishes to open in the market area over a multi-year
planning horizon. A major difficulty in making this multi-period location decision could arise from a situation in which, for example, projections provided by two groups of professional market researchers or urban planners do not coincide. That is, the nature of the future environment is uncertain and dichotomous. These inconsistencies could occur in a variety of ways including differing market area, population forecasts, projected income levels, changing zoning regulations, likely future competitive locations, etc.

To illustrate, two alternative futures are developed that focus on differential projections of population growth in the market area. The forecasts are based on the initial data set developed by Huff and Blue (1966) and represent hypothetical population projections. One projection (Future 1) forecasts a major increase in population to occur in the southwest portion of the market area. This growth, depicted in Figure 2, is projected to be concentrated in market area cells 8-10, 12-14, and 27-32. A second projection (Future 2), depicted in Figure 3, indicates that the majority of the growth in the market is anticipated to occur in the "suburbs," i.e. the cells located in the northeast and northwest areas of the market.

Given these two future scenarios, the problem is to determine 1) if the variation in projections will have a major effect on the optimal set of locations for the firm, and 2) what locations appear to be "good" locations in either scenario. If the firm concentrates on constructing facilities at the common locations first, it will be possible to gather additional information in subsequent periods to reduce the uncertainty associated with the future development of the market.

In order to investigate the above problem, calibration of the SLOP model was done using the log-transform procedure developed by Nakanishi and Cooper
(1974). The values of the parameters β_k, as reported in Achabal, Gorr and Mahajan (1982), for store size and distance are 2.0059 and -0.3673, respectively, with an associated r^2 of 0.63. Using an initial solution for both futures, the SLOP model was then run to identify the best locations in both Future 1 and Future 2 using the interchange heuristic. The model was solved to generate facility configurations from zero to a maximum of four sites in common between the scenarios. For expository purposes, and without loss of generality, both futures were assumed equally likely to occur ($\lambda_t = 1, \ t = 1, 2$ in equation 2). These results are summarized in Table 1. The following comments are warranted on these results:

a) The data in the last column in Table 1 suggest that irrespective of the two future scenarios, the best strategy for the firm is to locate the first store in cell 36. Since this location is common to the best location mix under both scenarios (see the first row, zero common sites, in Table 1), by locating the store in this cell, the firm is clearly able to preserve its future location options. Note, however, that besides this cell, the solution for Future 1 indicates locating the other three stores in cells 36, 46 and 47. The Future 2 solution, on the other hand, suggests locating the other three stores in cells 37, 43 and 58.

b) After locating the first store in cell 36, if no additional information is available about the actual likelihood of occurrence of either one of the scenarios, future options can be preserved if the firm builds the second facility in cell 37 followed by the third in cell 46. Note that both of these locations are not in the best location configuration of individual scenarios (in the first row in
Table 1, zero common sites, cell 37 is in the best location configuration for Future 2 and cell 46 is in Future 1). However, location of additional stores in these cells collectively provides a hedge against market-related uncertainty by maintaining future options.

In sum, the results in Table 1 suggest a masterplan that the firm can follow to locate the four stores within an uncertain market environment. As the market begins to develop and additional information is available about actual growth patterns, the firm can use Table 1 to assist in selecting the best location mix. For example, after locating two common stores, cells 36 and 37, if the growth patterns suggest the occurrence of scenario 1, the best strategy for the firm then is to locate the two final facilities in cells 35 and 46.

The masterplan, while preserving future options, provides the sequence that the firm can follow to locate stores while maintaining a hedge against uncertainty regarding the marketplace scenarios. This is clearly an advantage that is currently not offered by any of the multiple store location models. To further illustrate this advantage, the MULTILOC model was run to generate the four best locations on the original data developed by Huff and Blue (1966) yielding the best location mix of cells 35, 36, 37 and 46 with a total profit of $88,527. Three of these locations, cells 35, 36 and 46, are also included in the best location mix for Future 1 while two of them, cells 36 and 37, are included in the best location mix for Future 2 (see the first row, zero common sites, in Table 1). However, since the MULTILOC model does not provide the sequence in which these stores should be located, location of the first store in cell 35 could not have provided the firm with a desired hedge against uncertainty. In addition to not appearing in the best location mix for Future 2, this location (cell 35) also does not appear in the best set of four common sites for both futures.
While the above discussion has focused on evaluating the impact on alternative locational configurations of two scenarios dealing with projected population growth in the market area (i.e. alternative demand projections), it is important to note that other scenarios could deal with factors that would actually effect the parameters of the SLOP model. Further, recent projections of the future market environment focusing on emerging trends in retailing (see Sheth 1983) indicates that many consumer shopping patterns will likely change in the decade ahead. For example, the work by Berry (1979) suggests that the "time buying" consumer will become less willing to travel to stores to make purchases of all classes of goods and services. This has the effect of raising the value of the beta in the SLOP model associated with distance. While this represents only one example, such analyses allow the decision maker to evaluate a broad spectrum of future scenarios within the SLOP framework.

Conclusions

This paper proposed an important extension of the MULTILOC model (Achabal, Gorr, and Mahajan 1982), the SLOP model, which represents a model formulation and solution procedure useful in developing an optimal configuration of stores in a changing market environment. Given uncertainty associated with forecasting the dynamic environment, a great deal of flexibility can be achieved in developing a set of store locations by preserving future location options. In this way, location strategies can be formulated that allow decision makers to maintain future financial performance levels while minimizing the impact of uncertain events on their organizations.
When compared to the multiple store location decision models presented to date in the literature, the SLOP model offers a number of additional advantages. By integrating the location decisions with future scenarios of the dynamic market environment, SLOP provides an opportunity to assess the impact of uncertainty on the desirability of specific locations and to estimate the associated profitability. Further, its output aids in the development of a masterplan that a firm can follow in selecting the best location strategy at any stage of market penetration given the available information on the future environment. By preserving future location options, the SLOP model allows the planner to clearly consider his various location alternatives, to hedge his risk, and to maintain flexibility in adapting to a complex and changing environment.
REFERENCES

Miller, Kenneth E. and James L. Ginter (1979), "An Investigation of Situational Variation in Brand Choice Behavior and Attitude," Journal of Marketing Research, 16 (February), 111-123.

<table>
<thead>
<tr>
<th>No. of Sites in Common</th>
<th>Future 1</th>
<th></th>
<th>Future 2</th>
<th></th>
<th>Total profit ($) (both futures)</th>
<th>Common Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Profit ($)</td>
<td>Cell Locations</td>
<td></td>
<td>Profit ($)</td>
<td>Cell Locations</td>
</tr>
<tr>
<td>0</td>
<td>120,968</td>
<td>35,36,46,47</td>
<td></td>
<td>136,196</td>
<td>36,37,43,58</td>
<td>257,165</td>
</tr>
<tr>
<td>1</td>
<td>120,968</td>
<td>35,36,46,47</td>
<td></td>
<td>136,196</td>
<td>36,37,43,58</td>
<td>257,165</td>
</tr>
<tr>
<td>2</td>
<td>120,875</td>
<td>35,36,37,46</td>
<td></td>
<td>136,196</td>
<td>36,37,43,58</td>
<td>257,071</td>
</tr>
<tr>
<td>3</td>
<td>120,875</td>
<td>35,36,37,46</td>
<td></td>
<td>135,867</td>
<td>36,37,46,58</td>
<td>256,742</td>
</tr>
<tr>
<td>4</td>
<td>120,413</td>
<td>36,37,46,56</td>
<td></td>
<td>135,376</td>
<td>36,37,46,56</td>
<td>255,789</td>
</tr>
</tbody>
</table>

Table 1
Summary of SLOP Results
Spatial Distribution of Customer Statistical Areas and Existing Food Store Locations

FIGURE 1
The following papers are currently available in the Edwin L. Cox School of Business Working Paper Series.

79-100 "Microdata File Merging Through Large-Scale Network Technology," by Richard S. Barr and J. Scott Turner

79-101 "Perceived Environmental Uncertainty: An Individual or Environmental Attribute," by Peter Lorenzi, Henry P. Sims, Jr., and John W. Slocum, Jr.

80-100 "Implementing the Portfolio (SBU) Concept," by Richard A. Bettis and William K. Hall

80-101 "Assessing Organizational Change Approaches: Towards a Comparative Typology," by Don Hellriegel and John W. Slocum, Jr.

80-102 "Constructing a Theory of Accounting--An Axiomatic Approach," by Marvin L. Carlson and James W. Lamb

80-103 "Mentors & Managers," by Michael E. McGill

80-104 "Budgeting Capital for R&D: An Application of Option Pricing," by John W. Kensinger

80-200 "Financial Terms of Sale and Control of Marketing Channel Conflict," by Michael Levy and Dwight Grant

80-301 "Controlling the Performance of People in Organizations," by Steven Kerr and John W. Slocum, Jr.

80-400 "The Effects of Racial Composition on Neighborhood Succession," by Kerry D. Vandell

80-801 "Comparison of the EEOCC Four-Fifths Rule and A One, Two or Three σ Binomial Criterion," by Marion Gross Sobol and Paul Ellard

80-900 "Bank Portfolio Management: The Role of Financial Futures," by Dwight M. Grant and George Hempel
<table>
<thead>
<tr>
<th>Volume</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-902</td>
<td>"Hedging Uncertain Foreign Exchange Positions," by Mark R. Eaker and Dwight M. Grant</td>
<td></td>
</tr>
<tr>
<td>80-111</td>
<td>"Sources of Performance Differences in Related and Unrelated Diversified Firms," by Richard A. Bettis</td>
<td></td>
</tr>
<tr>
<td>80-112</td>
<td>"The Information Needs of Business With Special Application to Managerial Decision Making," by Paul Gray</td>
<td></td>
</tr>
<tr>
<td>80-113</td>
<td>"Diversification Strategy, Accounting Determined Risk, and Accounting Determined Return," by Richard A. Bettis and William K. Hall</td>
<td></td>
</tr>
<tr>
<td>80-114</td>
<td>"Toward Analytically Precise Definitions of Market Value and Highest and Best Use," by Kerry D. Vandell</td>
<td></td>
</tr>
<tr>
<td>80-115</td>
<td>"Person-Situation Interaction: An Exploration of Competing Models of Fit," by William F. Joyce, John W. Slocum, Jr., and Mary Ann Von Glinow</td>
<td></td>
</tr>
<tr>
<td>80-116</td>
<td>"Correlates of Climate Discrepancy," by William F. Joyce and John Slocum</td>
<td></td>
</tr>
<tr>
<td>80-117</td>
<td>"Alternative Perspectives on Neighborhood Decline," by Arthur P. Solomon and Kerry D. Vandell</td>
<td></td>
</tr>
<tr>
<td>80-121</td>
<td>"Project Abandonment as a Put Option: Dealing with the Capital Investment Decision and Operating Risk Using Option Pricing Theory," by John W. Kensinger</td>
<td></td>
</tr>
<tr>
<td>80-122</td>
<td>"The Interrelationships Between Banking Returns and Risks," by George H. Hempel</td>
<td></td>
</tr>
<tr>
<td>80-123</td>
<td>"The Environment For Funds Management Decisions In Coming Years," by George H. Hempel</td>
<td></td>
</tr>
<tr>
<td>81-100</td>
<td>"A Test of Gouldner's Norm of Reciprocity in a Commercial Marketing Research Setting," by Roger Kerin, Thomas Barry, and Alan Dubinsky</td>
<td></td>
</tr>
<tr>
<td>81-200</td>
<td>"Solution Strategies and Algorithm Behavior in Large-Scale Network Codes," by Richard S. Barr</td>
<td></td>
</tr>
<tr>
<td>81-201</td>
<td>"The SMU Decision Room Project," by Paul Gray, Julius Aronofsky, Nancy W. Berry, Olaf Helmer, Gerald R. Kane, and Thomas E. Perkins</td>
<td></td>
</tr>
<tr>
<td>81-300</td>
<td>"Cash Discounts to Retail Customers: An Alternative to Credit Card Performance," by Michael Levy and Charles Ingene</td>
<td></td>
</tr>
<tr>
<td>81-400</td>
<td>"Merchandising Decisions: A New View of Planning and Measuring Performance," by Michael Levy and Charles A. Ingene</td>
<td></td>
</tr>
</tbody>
</table>
81-501 "Job Redesign: Improving the Quality of Working Life," by John W. Slocum, Jr.
81-600 "Managerial Uncertainty and Performance," by H. Kirk Downey and John W. Slocum, Jr.
81-601 "Compensating Balance, Rationality, and Optimality," by Chun H. Lam and Kenneth J. Boudreaux
81-800 "The Chinese-U.S. Symposium On Systems Analysis," by Paul Gray and Burton V. Dean
81-900 "Forecasting Industrial Bond Rating Changes: A Multivariate Model," by John W. Peavy, III
81-110 "Improving Gap Management as a Technique for Reducing Interest Rate Risk," by Donald G. Simonson and George H. Hempel
81-112 "The Significance of Price-Earnings Ratios on Portfolio Returns," by John W. Peavy, III and David A. Goodman
81-113 "Further Evaluation of Financing Costs for Multinational Subsidiaries," by Catherine J. Bruno and Mark R. Eaker
81-114 "Seven Key Rules for Successful Stock Market Speculation," by David Goodman
81-115 "The Price-Earnings Relative as an Indicator of Investment Returns," by David Goodman and John W. Peavy, III
81-117 "Sequential Information Dissemination and Relative Market Efficiency," by Christopher B. Barry and Robert H. Jennings
81-118 "Modeling Earnings Behavior," by Michael F. van Breda
81-120 "The Price-Earnings Relatives - A New Twist to the Low-Multiple Strategy," by David A. Goodman and John W. Peavy, III
82-100 "Risk Considerations in Modeling Corporate Strategy," by Richard A. Bettis

"Imperfect Information, Uncertainty, and Credit Rationing: A Comment and Extension," by Kerry D. Vandell

"Equilibrium in a Futures Market," by Jerome Baesel and Dwight Grant

"A Market Index Futures Contract and Portfolio Selection," by Dwight Grant

"Selecting Optimal Portfolios with a Futures Market in a Stock Index," by Dwight Grant

"Market Index Futures Contracts: Some Thoughts on Delivery Dates," by Dwight Grant

"Optimal Sequential Futures Trading," by Jerome Baesel and Dwight Grant

"Teaching a Financial Planning Language as the Principal Computer Language for MBA's," by Thomas E. Perkins and Paul Gray

"Put Budgeting Back Into Capital Budgeting," by Michael F. van Breda

"Information Dissemination and Portfolio Choice," by Robert H. Jennings and Christopher B. Barry

"Reality Shock: The Link Between Socialization and Organizational Commitment," by Roger A. Dean

"Reporting on the Annual Report," by Gail E. Farrelly and Gail B. Wright

"A Linguistic Analysis of Accounting," by Gail E. Farrelly

"Optimal Land Use Planning," by Richard B. Peiser

"Variance and Indices," by Michael F. van Breda

"The Pricing of Small Business Loans," by Jonathan A. Scott

"Collateral Requirements and Small Business Loans," by Jonathan A. Scott

"Validation Strategies for Multiple Regression Analysis: A Tutorial," by Marion G. Sobol
82-700 "Credit Rationing and the Small Business Community," by Jonathan A. Scott
82-701 "Bank Structure and Small Business Loan Markets," by William C. Dunkelberg and Jonathan A. Scott
82-800 "Transportation Evaluation in Community Design: An Extension with Equilibrium Route Assignment," by Richard B. Peiser
82-801 "An Expanded Commercial Paper Rating Scale: Classification of Industrial Issuers," by John W. Peavy, III and S. Michael Edgar
82-802 "Inflation, Risk, and Corporate Profitability: Effects on Common Stock Returns," by David A. Goodman and John W. Peavy, III
82-803 "Turnover and Job Performance: An Integrated Process Model," by Ellen F. Jackofsky
82-806 "Analytical Review Developments in Practice: Misconceptions, Potential Applications, and Field Experience," by Wanda Wallace
82-807 "Using Financial Planning Languages for Simulation," by Paul Gray
82-808 "A Look at How Managers' Minds Work," by John W. Slocum, Jr. and Don Hellriegel
82-900 "The Impact of Price Earnings Ratios on Portfolio Returns," by John W. Peavy, III and David A. Goodman
82-901 "Replicating Electric Utility Short-Term Credit Ratings," by John W. Peavy, III and S. Michael Edgar
82-902 "Job Turnover Versus Company Turnover: Reassessment of the March and Simon Participation Model," by Ellen F. Jackofsky and Lawrence H. Peters
82-903 "Investment Management by Multiple Managers: An Agency-Theoretic Explanation," by Christopher B. Barry and Laura T. Starks
82-904 "The Senior Marketing Officer - An Academic Perspective," by James T. Rothe
82-905 "The Impact of Cable Television on Subscriber and Nonsubscriber Behavior," by James T. Rothe, Michael G. Harvey, and George C. Michael
82-110 "Reasons for Quitting: A Comparison of Part-Time and Full-Time Employees," by James R. Salter, Lawrence H. Peters, and Ellen F. Jackofsky
82-111 "Integrating Financial Portfolio Analysis with Product Portfolio Models," by Vijay Mahajan and Jerry Wind
82-112 "A Non-Uniform Influence Innovation Diffusion Model of New Product Acceptance," by Christopher J. Easingwood, Vijay Mahajan, and Eitan Muller

82-113 "The Acceptability of Regression Analysis as Evidence in a Courtroom - Implications for the Auditor," by Wanda A. Wallace

82-114 "A Further Inquiry Into the Market Value and Earnings' Yield Anomalies," by John W. Peavy, III and David A. Goodman

82-120 "Compensating Balances, Deficiency Fees and Lines of Credit: An Operational Model," by Chun H. Lam and Kenneth J. Boudreaux

82-121 "Toward a Formal Model of Optimal Seller Behavior in the Real Estate Transactions Process," by Kerry Vandell

82-123 "Compensating Balances, Deficiency Fees and Lines of Credit," by Chun H. Lam and Kenneth J. Boudreaux

83-100 "Teaching Software System Design: An Experiential Approach," by Thomas E. Perkins

83-102 "An Interactive Approach to Pension Fund Asset Management," by David A. Goodman and John W. Peavy, III

83-105 "Robust Regression: Method and Applications," by Vijay Mahajan, Subhash Sharma, and Jerry Wind

83-106 "An Approach to Repeat-Purchase Diffusion Analysis," by Vijay Mahajan, Subhash Sharma, and Jerry Wind

83-200 "A Life Stage Analysis of Small Business Strategies and Performance," by Rajeswararao Chaganti, Radharao Chaganti, and Vijay Mahajan

83-201 "Reality Shock: When A New Employee's Expectations Don't Match Reality," by Roger A. Dean and John P. Wanous

83-202 "The Effects of Realistic Job Previews on Hiring Bank Tellers," by Roger A. Dean and John P. Wanous

83-204 "Differential Information and the Small Firm Effect," by Christopher B. Barry and Stephen J. Brown
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>83-300</td>
<td>"Constrained Classification: The Use of a Priori Information in Cluster Analysis,"</td>
<td>Wayne S. DeSarbo and Vijay Mahajan</td>
</tr>
<tr>
<td>83-400</td>
<td>"Small Businesses, the Economy, and High Interest Rates: Impacts and Actions Taken in Response,"</td>
<td>Neil C. Churchill and Virginia L. Lewis</td>
</tr>
<tr>
<td>83-500</td>
<td>"A Closer Look at Stock-For-Debt Swaps,"</td>
<td>John W. Peavy III and Jonathan A. Scott</td>
</tr>
<tr>
<td>83-501</td>
<td>"Small Business Evaluates its Relationship with Commercial Banks,"</td>
<td>William C. Dunkelberg and Jonathan A. Scott</td>
</tr>
<tr>
<td>83-503</td>
<td>"Differential Information and the Small Firm Effect,"</td>
<td>Christopher B. Barry and Stephen J. Brown</td>
</tr>
<tr>
<td>83-504</td>
<td>"Accounting Paradigms and Short-Term Decisions: A Preliminary Study,"</td>
<td>Michael van Breda</td>
</tr>
<tr>
<td>83-506</td>
<td>"Initial Observations from the Decision Room Project,"</td>
<td>Paul Gray</td>
</tr>
</tbody>
</table>
83-800 "Multiple Key Informants' Perceptions of Business Environments," by William L. Cron and John W. Slocum, Jr.

83-803 "Business Synergy and Profitability," by Vijay Mahajan and Yoram Wind

83-804 "Advertising, Pricing and Stability in Oligopolistic Markets for New Products," by Chaim Fershtman, Vijay Mahajan, and Eitan Muller

83-805 "How Have The Professional Standards Influenced Practice?" by Wanda A. Wallace

83-806 "What Attributes of an Internal Auditing Department Significantly Increase the Probability of External Auditors Relying on the Internal Audit Department?," by Wanda A. Wallace

83-807 "Building Bridges in Rotary," by Michael F. van Breda

83-808 "A New Approach to Variance Analysis," by Michael F. van Breda

83-810 "Taxes, Insurance, and Corporate Pension Policy," by Andrew H. Chen

83-900 "Networks with Side Constraints: An LU Factorization Update," by Richard S. Barr, Keyvan Farhangian, and Jeff L. Kennington

83-901 "Diversification Strategies and Managerial Rewards: An Empirical Study," by Jeffrey L. Kerr

83-903 "Network Generating Models for Equipment Replacement," by Jay E. Aronson and Julius S. Aronofsky

83-904 "Differential Information and Security Market Equilibrium," by Christopher B. Barry and Stephen J. Brown

83-905 "Optimization Methods in Oil and Gas Development," by Julius S. Aronofsky

83-907 "Security Price Reactions Around Corporate Spin-Off Announcements," by Gailen L. Hite and James E. Owers

83-110 "Microcomputers in the Banking Industry," by Chun H. Lam and George H. Hempel

83-111 "Current and Potential Application of Microcomputers in Banking -- Survey Results," by Chun H. Lam and George H. Hempel

83-114 "The Effect of Stock-for-Debt on Security Prices," by John W. Peavy, III and Jonathan A. Scott

83-115 "Risk/Return Performance of Diversified Firms," by Richard A. Bettis and Vijay Mahajan

83-120 "Conglomerate Merger, Wealth Redistribution and Debt," by Chun H. Lam and Kenneth J. Boudreaux

83-121 "Differences Between Futures and Forward Prices: An Empirical Investigation of the Marking-To-Market Effects," by Hun Y. Park and Andrew H. Chen

83-122 "The Effect of Stock-for-Debt Swaps on Bank Holding Companies," by Jonathan A. Scott, George H. Hempel, and John W. Peavy, III

84-100 "The Low Price Effect: Relationship with Other Stock Market Anomalies," by David A. Goodman and John W. Peavy, III

84-101 "The Risk Universal Nature of the Price-Earnings Anomaly," by David A. Goodman and John W. Peavy, III

84-104 "Bank Performance as the Economy Rebounds," by Jonathan A. Scott and George H. Hempel
84-105 "The Optimality of Multiple Investment Managers: Numerical Examples," by Christopher B. Barry and Laura T. Starks
84-200 "Microcomputers in Loan Management," by Chun H. Lam and George H. Hempel
84-201 "Use of Financial Planning Languages for the Optimization of Generated Networks for Equipment Replacement," by Jay E. Aronson and Julius S. Aronofsky
84-300 "Real Estate Investment Funds: Performance and Portfolio Considerations," by W. B. Brueggeman, A. H. Chen, and T. G. Thibodeau
84-301 "A New Wrinkle in Corporate Finance: Leveraged Preferred Financing," by Andrew H. Chen and John W. Kensinger
84-400 "Reaching the Changing Woman Consumer: An Experiment in Advertising," by Thomas E. Barry, Mary C. Gilly and Lindley E. Doran
84-401 "Forecasting, Reporting, and Coping with Systematic Risk," by Marion G. Sobol and Gail E. Farrelly
84-402 "Managerial Incentives in Portfolio Management: A New Motive for the Use of Multiple Managers," by Christopher B. Barry and Laura T. Starks
84-603 "Small Business Bank Lending: Both Sides are Winners," by Neil C. Churchill and Virginia L. Lewis
84-700 "Assessing the Impact of Market Interventions on Firm's Performance," by Richard A. Bettis, Andrew Chen and Vijay Mahajan
84-702 "On the Assessment of Default Risk in Commercial Mortgage Lending," by Kerry D. Vandell
84-800 "Density and Urban Sprawl," by Richard B. Peiser
84-801 "Analyzing the Language of Finance: The Case of Assessing Risk," by Gail E. Farrelly and Michael F. van Breda
84-802 "Joint Effects of Interest Rate Deregulation and Capital Requirement on Optimal Bank Portfolio Adjustments," by Chun H. Lam and Andrew H. Chen
84-803 "Job Attitudes and Performance During Three Career Stages," by John W. Slocum, Jr. and William L. Cron

84-900 "Rating a New Industry and Its Effect on Bond Returns: The Case of the A T & T Divestiture," by John W. Peavy, III and Jonathan A. Scott

84-901 "Advertising Pulsing Policies for Generating Awareness for New Products," by Vijay Mahajan and Eitan Muller

84-110 "SLOP: A Strategic Multiple Store Location Model for a Dynamic Environment," by Dale D. Achabal, Vijay Mahajan, and David A. Schilling