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Leveraging Natural Language Processing Applications and 

Microblogging Platform for Increased Transparency in Crisis 

Areas 

Ernesto Carrera1, Johnson Ekedum1, Austin Hancock1, Ben Brock2 
1 Southern Methodist University,  

2 Wells Fargo  
{ecarreraruvalcaba, jekedum, hancockma}@smu.edu, 

Ben.Brock@wellsfargo.com 

Abstract. Through microblogging applications, such as Twitter, people actively document 

their lives even in times of natural disasters such as hurricanes and earthquakes. While first 

responders and crisis-teams can help people who call 911, or arrive at a designated shelter, 

there are vast amounts of information being exchanged online via Twitter that provide real-

time, location-based alerts that are going unnoticed. To effectively use this information, the 

tweets must be verified for authenticity and categorized to ensure that the proper authorities 

can be alerted. In this paper, we create a Crisis Message Corpus from geotagged tweets 

occurring during 7 hurricanes in the United States. Using this annotated corpus, we train a 

machine learning classifier to identify requests for help in real time. Through a deep learning 

model, we remove tweets that are below our classification confidence threshold of 98%. Using 

this model in conjunction with a front-end dashboard can allow service teams in crisis areas to 

be notified of alert-tweets without having to sift through hundreds of non-relevant tweets. 

1   Introduction 

The deadliest U.S. hurricane in recent history was Hurricane Sandy in 2012. Out of the 147 deaths 

that occurred during the storm, at least 87 were caused by indirect events such as; hypothermia from 

power outages, electrocution from downed power lines, and car accidents [1]. During crisis 

situations, these types of “indirect” events may not be reported in the form of a 911 call leaving 

first-responders, relief workers, and others within the disaster area unaware of the danger. However, 

these are just the types of events that citizens may be noticing and discussing via social media 

platforms. 

Given the advent of new technologies, our ability to communicate with one another has evolved 

drastically. No longer are we solely reliant on conventional media outlets such as newspapers, radio, 

and TV to disseminate and ingest information. The development of smartphone technologies has 

made it possible for us to deliver or receive information within milliseconds. Mainstream social 

media platforms such as Twitter, Facebook, YouTube, and Snapchat have ousted the traditional 

media outlets for quick information dissemination and response, with 67% of Americans listing 

social media as a source from which they receive news [2]. 
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Twitter, as a major social media technology platform, is often used to spread news and updates 

around the world. Because of its multidirectional network communication effect and global usage, 

it could serve as a vital resource for situational awareness in times of disaster and crisis. However, 

leveraging it under time-critical situations is no easy task. With roughly 350,000 tweets sent per 

minute around the globe [3], manual analysis is not a tenable approach for this data. 

The process to make sense of these messy social media data to aid disaster and crisis management 

involves solving many data challenges including parsing unstructured data, filtering out irrelevant 

and noisy content, and handling information overload through the implementation of robust scalable 

storage and data-processing infrastructure. Recent advances in machine learning and artificial 

intelligence have made it possible for researchers and scientists to access and analyze new and 

bigger data sources than ever before. By combining artificial intelligence and machine learning with 

technologies like natural language processing we are able to uncover hidden insights from the 

massive amount of unstructured data. 

The scope of this paper falls in the new field referred to as "Crisis Informatics." The term was 

coined by Christine Hagar, in a paper presented in 2006 entitled “Using research to aid the design 

of a crisis information management course.” Crisis informatics is broadly defined as the 

interconnectedness of people, organizations, information, and technology during crises/disasters. 

Crisis informatics examines the intersecting trajectories of social, technical and information 

perspectives during the full life cycle of a crisis: preparation, response, and recovery. It is a growing 

field of inquiry and requires integrative and collaborative efforts from many disciplines in order to 

achieve effective and efficient crisis/ disaster preparedness and response [4].  

Stowe et al. [5] suggested an annotation schema of the data generated in Twitter before, during, 

and after Hurricane Sandy. The first annotation was to determine if the tweet was relevant to the 

natural disaster as the first filter from all the tweets generated during the crisis, then the relevant 

tweets were manually categorized into seven categories. Three people trained by domain experts 

classified the tweets. The categories defined were: Reporting, Sentiment, Information, Action, 

Preparation, Movement. While this is helpful to understand human behavior during the crisis, it does 

not provide specific insights into the type of help that people need. Our work aims to predict what 

critical resources are required during the crisis and serves as a guide to the humanitarian 

organizations in this matter.  

Imran et al. [6] also proposed annotations to tweets during the natural disaster events. They 

created a corpus in which the annotations were made by Stand-By-Task-Force using an application 

called MicroMappers. The tweets were normalized to address, typos, single and multi-word 

abbreviations, phonetic substitutions, and words without spaces. They also created a language model 

to solve the problem of Out of Vocabulary (OOV) words in the dataset using Bayes Theorem. The 

data used to train the language model comes from the Wiktionary, the British National Corpus, and 

the Spell Checker Oriented Word Lists (SCOWL). 

   Researchers have also focused on the evacuation responses of residents in the areas that it is 

prone to natural disasters. Martin et al. [7] leveraged geotagged tweets to measure compliance with 

evacuation orders. Data used in this study came from tweets generated before, and after the hurricane 

Matthew that impacted the Southeastern coast of the United States.  
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More specifically, this study analyzed three South Carolina conglomerates and tracked how many 

Twitter users evacuated, their evacuation destination and return date.  This helped authorities to 

deploy efforts in areas with a low percentage of people displaced. 

   A novel approach in the incorporation of geotagged data extracted from social media was 

implemented by Aulov et al. In their research, social media data is used as physical observations to 

adjust the parameters in the General NOAA Operational Modeling Environment (GNOME). 

GNOME is the NOAA forecast model that implements an oil spill trajectory prediction [8]. The 

framework was tested in the Gulf Spill oil caused by BP in 2010. The latitude and longitude are 

extracted from the images posted on Flickr with the query "BP oil spill", and filtering information 

related to protests of BP or other events not related directly to the location of the spill. This gave 

them the ability to generate a series of maps with the sightings of oil at different times and outlined 

a method to calibrate the parameters of the model such as rates of the oil spill, the diffusion 

coefficient, and other model parameters. 

   During times of natural disasters, such as hurricanes, it is difficult to know where help is needed 

and what type of help is required. Using geo-tagged tweets from cities effected by Hurricane 

Michael, we build an annotated corpus to categorize tweets by the type of information being 

discussed. We then pass this data into our natural language classifier to build real-time probability 

projections of at-risk areas. 

   In Section 2 we discuss how natural language processing methods can be used to understand 

text. In Section 3 we outline the data that we use for our Crisis Message corpus, as well as our 

collection parameters. In Section 4 we define our approach for the construction of our complete data 

pipeline and discuss the methods involved. Section 5 contains the results of our findings. In Section 

6 we discuss the ethical implications that a process such as ours entails. Section 7 presents our 

conclusions for the paper. 

 

2 Natural Language Processing 

Natural language processing, often abbreviated to as NLP, is the ability of a computer to 

comprehend human language. It sits at the intersection of Computer Science, Linguistics and 

Machine Learning. 

   The field of NLP has benefited immensely from the recent innovations in Machine Learning, 

particularly from Deep Learning techniques. Its further divided into Speech Recognition, Natural 

Language Understanding and Natural Language generation. 

   In this paper we examine existing NLP methods for social media applications that’s directed 

towards extracting useful information from social media platform. This includes applications such 

geo-location detection, sentiment analysis, entity and topic detection, text summarization and word 

vector representation. 
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2.1 Geo-location Detection  

The identification of geo-location information is one of the important topics in semantic analysis. 

Geo-location could be a region, city or point represented as longitude and latitude. Automatic 

detection of event location in times of crisis situations such as hurricane is important for timely 

response and safety measures 

   We could easily obtain geo-location from the user profiles of people who have subscribed on 

the social network service, however due to privacy reasons, not all users will provide a precise 

information about their location. Therefore, other methods like deducing the location from the 

communication network or from the content of a text could be used. 

2.2 Sentiment Analysis  

Opinion mining, which is also known as sentiment analysis, aims to determine the attitude of a 

speaker, writer, or text information with respect to some topic or the overall contextual polarity or 

emotional reaction to a document, interaction, or event. It is often used to categorize into three 

levels, document level, sentence level, and entity level  

 

• Document level: The goal is to determine the overall sentiment of an entire document. This 

level looks at the document as a single entity. 

• Sentence level: the goal at this level of analysis is limited to the sentences and their 

expressed opinions. Within this level, we are able to determines whether a sentence 

expresses a positive, negative or neutral opinion.  

• For Entity-level: Within this level, a sentiment scope within which each named entity is 

embedded, this predominantly decides the sentiment information associated with the entity 

 

Using sentiment analysis our focus is on recognizing emotional sentences in tweet based on 

polarity: positive and negative. We find that extracting sentiments during a disaster may help 

emergency responders develop stronger situational awareness of the affected areas. Such 

information can also be used to help assess the extent of the devastation and find people who are in 

specific need during an emergency situation 

2.3 Event / Entity Extraction 

This is a type of section of NLP that works on extracting the specific knowledge of certain incidents 

from texts. It is very important in social media context because people tend to post many messages 

about trending events, and many users read those comments in order to locate the information they 

need.  

After extracting tweets, we use a bag of words approach and query the Twitter with manually 

selected keywords frequently appearing in flood emergency posts, Accident, flood, power outage, 

collapse etc. In addition, we limit the potential geographic scope of event to the geographical area 

of interest. 
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Event/ Entity detection in Twitter and other social media can be used for emergency situation 

awareness like hurricane, events can be detected and classified by key entities and then updates on 

the situation can be processed in order provide help where it’s needed. 

2.4 Text Summarization  

Automatic text summarization is a part of natural language processing. It is often used to find a 

subset of data which contains the "information" of the entire set. Such techniques are widely used 

in industry today. Micro-blogging platforms such as Twitter generate massive volume of data for 

most real-world events on a daily basis. Sifting through the noise and redundancy to understand the 

important aspects of a tweet is a very challenging task.  

   Text summarization can aid to extract relevant key information in a tweet, providing a concise 

summary of an event.  

2.5 Word Vector Representation  

Word vectors representations are widely used in Natural Language Processing applications. Vectors 

are convenient since we can use the concept of distance between vectors to find similarities between 

words. In this paper, we explore word2vec distributed representations of words. Word2vec proposes 

two architectures: Continuous Bag of Words Model (CBOW) and Continuous Skip-gram Model. 

The former aims to predict the current word based on the context and the later predicts surrounding 

words given the current word [9]. 

 

 

 

Fig. 1. Word2vec model representation [9] 
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3   Data 

The data that we use contains geotagged tweets for 7 hurricanes that made landfall in the United 

States. The historical Twitter information that is available to query through the platform’s search 

control is dependent upon four parameters: latitude/longitude geocode, search radius, begin data, 

and end date.  

   Unlike the approach taken by prior research which identified tweets pertaining to a natural 

disaster by using a tweet’s “hashtag” [6,10], which will return any tweet that contains the hashtag 

regardless of location, our approach will search tweets based on the location from which the tweet 

was sent. By using the location of a tweet, rather than merely a keyword search, our query will only 

return tweets that originated from within the area of the disaster itself. This is key when the objective 

is to create a corpus containing tweets identifying hazards and requesting the aid of first responders 

or from relief organizations. In order to produce an accurate location, we first determine the path of 

the hurricane and identify the cities which fall within this path. We then pass these individual search 

coordinates into the Twitter search control, along with a radius of 15 miles, to create an overlapping 

search pattern across each city, as shown in Figure 2. While this will cause some overlap between 

cities, any duplicate tweets can easily be filtered out. The major benefit of this approach is time 

saved by restricting our search to only cities within the path of the hurricane as well as only 

identifying cities from which a user was tweeting. If a search zone does not contain any geotagged 

tweets, nothing is returned for that area. 

 

 

Fig. 2. Twitter search zones overlaid onto path of Hurricane Michael. The grey and yellow shadings on the 

map indicate the width of the hurricane in terms of hurricane force. The direct path of the hurricane is shown 

with a red and yellow line, indicating the hurricane category at that point in time (red for category 3, yellow 

for category 1). The red circles represent the search radiuses passed to the Twitter API. 
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   To collect only tweets that were sent during the time that each hurricane was active over the 

United States, we need to pass to the Twitter search control the parameters “since” and “until” as 

the “begin” and “end” date search criteria. Using these search criteria allows us to focus only on 

tweets which were happening during the crisis. We use the dates that each hurricane made initial 

landfall up until the hurricane was downgraded to a tropical storm or until the hurricane was no 

longer over the United States with some additional days added to account for tweets which request 

help in the days after a hurricane has passed over a city.  

 
Table 1. Hurricanes and dates used to query Twitter API. 

 

 

   Using these cities and dates, we created an array in python to pass the searches to the Twitter 

API in the correct format for each hurricane. These queries resulted in approximately 5,000 tweets 

which were then extracted to excel. Once extracted, we manually labeled each tweet into one of 11 

categories which we use to bin tweets by content. The categories we use to bin each tweet include; 

Alert: Down Trees, Alert: Flooding, Alert: Misc., Alert: Power Outage, Alert: Road Closure, Alert: 

Structural Damage, News, Personal, Request, Supply Center, Update: Power On. We created these 

specific categories to properly allocate the incoming tweets into a context that is beneficial to a crisis 

management worker whose tasked with identifying tweets which provide information on public 

needs and dangers while filtering out tweets which require no action on the part of first responders 

or the crisis management team.  
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Fig. 3. Number of tweets by type. 

 

   The category imbalance as seen in Figure 3 is very apparent. This type of imbalance is to be 

expected when working with social media platforms since people naturally use it as a medium of 

self-expression and general communication rather than specifically as a means of notifying crisis-

teams during a disaster. Our approach is designed to read in these ‘Personal’ tweets, determine that 

they are not alerts that need to be addressed, and ignore them. 
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4   Approach 

 
Fig. 4. Data and pipeline flow 

 

4.1 Data Ingestion 

API is an abbreviation for “Application Programming Interface”. This is a way for software to 

access the Twitter platform. It supports a large number of functions for interacting with Twitter, 

specifically for acquiring a Twitter dataset which includes retrieving, searching and filtering tweets. 

A number of tools already exist to help interact with Twitter API; these tools may vary in capabilities 

but what these tools share in common is that they all use Twitter’s public API. However, the Twitter 

public API has a number of limitations one of which is the ability access to historical tweets. This 

is very limited in the sense that we’re only able to search and retrieve tweets within the last 7 -9 

days of a user’s timeline.  

   In order to overcome this challenge, we used the Selenium package. Selenium is a web browser 

automation tool. Its primarily used for automating web applications for testing purposes, however, 

its functionalities go beyond automation. It could also be used to interact with the browser, acting 

as a web scraper which allows us to process the HTML of a Web Page to extract data within tags 

and elements in a page. Using Selenium, we were able to communicate with the search element 

within Twitter, passing in search query criteria to pull down relevant historical tweets across 

geographical location on interest. 

Once we had the tweets pulled in, we next needed to classify them. To do this, we read each tweet 

and manually assigned it to one of our 11 categories; Alert: Down Trees, Alert: Flooding, Alert: 

Misc., Alert: Power Outage, Alert: Road Closure, Alert: Structural Damage, News, Personal, 

Request, Supply Center, and Update: Power On. 

4.2 Data Cleaning 

Phase 2 of the pipeline is very time consuming and laborious. Twitter data comes with its own 

anomalies like missing parameters, hashtags, misspelt keywords. irrelevant features, etc. It is very 
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important that we do a cleanup exercise and take only the information which is important to the 

problem asked, knowing that the results and output of our machine learning model are only as good 

as what we put into it. 

   We used a number of preprocessing techniques such as escaping HTML characters, decoding 

data, removal of stop words, expressions, special characters. Afterwards We manually annotate our 

data into different buckets based on nature of tweet. 

4.3 IBM Cloud Services 

Once we have collected, cleaned and stored relevant tweets, we focus on enriching the data by using 

Watson Developer Cloud services in steps 3, 4, and 5 of our pipeline. We annotated tweets using 

Watson knowledge studio, classified images within tweets using Watson image recognition and 

extracted sentiments, topics, keywords and entities within text using Watson Natural language 

understanding. Using IBM’s natural language classifier model, which includes multiple Support 

Vector Machines (SVMs) and a Convolutional Neural Network (CNNs), we were able to train our 

preprocessed data. Accuracy is determined using a series of real time tweets to test the validity of 

the model. 

4.4 Cloud Object Storage 

In step 6 we securely move our processed data into cloud object storage. Data is stored, encrypted 

and dispersed across multiple geographic locations. This data can be accessed over HTTP using a 

REST API. 

4.5 Shiny Web App 

The final step of our pipeline is our front-end dashboard. This dashboard, built using R Shiny, allows 

the user to see all classified tweets mapped by their GPS coordinates. As can be seen in Figure 5, 

the application color codes each tweet marker by our model’s predicted classification allowing the 

user to locate specific events in real-time. 
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Fig. 5. R Shiny dashboard of classified tweets during Hurricane Sandy. 

 

    

5   Results 

With the primary goal of this work being to create a manageable set of alert tweets that will be 

passed to a disaster response team, IBM’s Deep Learning-as-a-Service (DLaaS) model performs the 

better of our two approaches. Below, we analyze why that is. 

In our first approach, we were attempting to use ‘Personal’ as a category a tweet could be in. 

While it is easy to manually read a tweet and classify it as ‘Personal’, it is much more difficult to 

have a machine learning model come to the same conclusion. This approach was attempting to find 

a common structure within each tweet category by using the tf-idf vectors, which for categories with 

a common theme, works very well. However, due to the inherent randomness that such a large 

category as ‘Personal’ contains, this method was creating a structure when none exists. Figure 6 

displays the t-distributed stochastic neighbor embedding (t-SNE), of all ‘Personal’ tweets. This 

technique reveals similarities between tweets of the same class. From this figure, you can see that 

the tweets within this category simply do not have a single strong commonality. 
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Fig. 6. t-SNE corpus visualization of ‘Personal’ tweets. 

 

What Figure 6 highlights is that while there is not a single shared structure within this category, 

there are smaller clusters. This is a strong indicator that we needed a different approach to handle 

these more general tweets. These smaller groupings were taking over the category and applying 

their structure to the classifier. This, combined with the large class imbalance, caused our model to 

misidentify many of our alert categories as personal. To combat this, it was necessary to not use 

‘Personal’ as a category, but rather to identify anything that does not belong in one of the other 

classes as ‘Personal’. This is an important distinction which is explored further in the analysis of 

our deep learning model. 

The deep learning model was created to address the classification of ‘Personal’ tweets. Rather 

than take the approach of treating ‘Personal’ as a structure within tweets that needed to be identified, 

we treated it as a catchall that tweets would fall into if they were not strongly associated with one 

of our other classes. We did this by training a new model on all categories except for personal.  

This new model was then used to create confidence predictions on what class a tweet would 

belong to (Figure 7). By taking this approach, we could say that if a tweet has a confidence value 

for a given category at a certain threshold then assign that tweet to the category, otherwise consider 

the tweet ‘Personal’. Taking this approach, we set the confidence threshold to be 98% and produced 

our final model. While this value may seem high, the primary goal of the model is to sift through 

thousands of tweets and only return tweets which need to be addressed by crisis-teams. Keeping a 

highly-selective threshold in place is more efficient than allowing a large number of ‘Personal’ 

tweets to overwhelm the output, especially since this method is meant to supplement, rather than 

replace, traditional means of requesting assistance during natural disasters. This final model 

produced a precision score of 93% and a recall score of 91% (Figure 8). 
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Fig. 7. Model evaluation using test data 

 

 

 

 

Fig. 8. Confusion matrix of deep learning model. 
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6   Ethics 

In this section, we evaluate the potential ethical issues that could arise derived from the work 

presented in this paper and a proposal on how to mitigate them.  For that purpose, we frame the 

assessment using the ACM Code of Ethics [11]. The primary items in the code for potential violation 

are: 1.4 Be fair and take action not to discriminate and 1.6 Respect of Privacy. 

   The first aspect that the ACM code of ethics outlines with regards respect of privacy is that a 

computing professional should become conversant in the various definitions and forms of privacy 

and should understand the rights and responsibilities associated with the collection and use of 

personal information [11]. The data used in the analysis comes from Social Media Websites 

(SMWs), and for that reason, we reviewed the terms and conditions of the two SMWs leveraged 

(Twitter and Instagram).  Twitter places special attention not to share information with any public 

sector entity (or any entities providing services to such entities) for surveillance purposes, including 

but not limited to: investigating or tracking Twitter's users or their Twitter Content; and, tracking, 

alerting, or other monitoring of sensitive events (including but not limited to protests, rallies, or 

community organizing meetings) [12]. Because of this term, the idea of sharing the corpus for 

additional research purposes with public entities that are in charge of providing safety during natural 

disasters such as Federal Emergency Management Agency (FEMA) or Department of Public Safety 

it is not possible. However, we are allowed to provide these agencies with the model generated in 

this paper for its implementation.  

   The other derivative concerning respecting privacy that the ACM establishes is the minimum 

amount of personal information necessary to be collected, in the preparation of the data for analysis, 

we eliminated the names and Twitter IDs to avoid the risk of identification of the users. 

   The principle 1.4 of the ACM "Be fair and take action not to discriminate" says that the use of 

information and technology may cause new, or enhance existing, inequities.  There are on-going 

discussions regarding the population bias that exhibit the use of SMWs data given that different 

demographic groups may participate in social media platforms at different rates [13].  Several 

studies have identified significant biases along gender, age, race, income, education, and urban/rural 

lines [13]. Therefore, the model may not be representing the needs of unrepresented groups during 

natural disasters. The potential users of the model will have to rely on additional resources to identify 

the needs of the whole population. Thus, the model serves only as a component of the entire strategy 

of the crisis' management. 

7   Conclusions 

The results of the deep learning model offer an immediately applicable method of identifying tweets 

of interest for crisis-teams during hurricanes. While some ‘Alert’ tweets will be filtered out of the 

model, the greater number that are identified will still help in saving lives in natural disaster zones.  

   As more data is gathered from other events, the model will continue to get better at identifying 

these alert messages sent from those in need. With less than ¼ of the tweets in this dataset being 

non-Personal, our data faced a class imbalance that was difficult from the start. While we were able 
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to build a model that worked around this imbalance, getting more ‘Alert’ tweets from future 

hurricanes will help the model get better at identifying this type of tweet structure. 

Tweet categories sometimes share a lot of the same words, even though they are categorized into 

different groups. For example, the categories ‘Alert: Power Outage’ and ‘Update: Power On’, both 

commonly contain the words ‘power’ and ‘lights’ even though they are not the same category. These 

types of overlapping categories are common. One way to approach getting better prediction 

accuracies in situations like this would be to add sentiment analysis to the model. For instance, 

‘Alert: Power Outage’ tends to include highly negatively scored words while ‘Update: Power On’ 

tweets tend to have a very positive tone. By adding in a sentiment layer to our model, it may be 

possible to separate these tweet categories more effectively. 

Another problem that can occur is a ‘Personal’ tweet being misidentified as an ‘Alert’. This could 

happen when a tweet is talking about other people experiencing an alert, but the Twitter user is not 

personally experiencing that event. For example, many people would tweet that their prayers were 

with those who had lost power. Manual annotation looks at this and can see that this is not someone 

who needs help, while a text-based algorithm sees ‘lost power’ and assigns a category. Like the 

problem with sentiment style tweets, more data is needed along with an in-depth sentence structure 

analysis to include a layer to handle these types of instances. 

The results of the observational study presented in this paper are only applicable to information 

generated from Twitter in the English language during hurricanes taking place in the United States 

of America. For that reason, we would like to extend this work in several aspects. The first element 

is to include information from additional SMWs. Secondly, gather historical posts from other 

countries that speak English, and which also experience hurricanes strikes (e.g., Australia). These 

two aspects will help us to have a more robust corpus and expand the results to other geographies 

in the event of hurricanes. A third item for expanding this paper is to gather data from non-English 

speaking countries.  

The fourth inclusion to the frameworks is to determine if the emojis in the post constitutes an 

element that can increase the prediction of the model. Lastly, Facebook, Watson, and Google 

provide tools for image recognition, we added that information to our dataset, but we did not include 

it as part of the features analyzed in the model. Therefore, we could also probe how the pictures 

attached to the posts in the social media websites can be leveraged to either enhance the performance 

of the model or as a way of validating that text corresponds to an "Alert" category. 

Given the enhancement of the predictions produced by using deep learning models, we would 

also like to train the data using other architectures offering out-of-the-box models such as Caffe, 

Torch, and TensorFlow to compare them and select the one with better performance metrics. 
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