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ASL Reverse Dictionary  

ASL Translation Using Deep Learning 

K.J. Price1, Ann Nelson1, Rosalie Multari2 
1 Master of Science in Data Science, Southern Methodist University, 

 Dallas, TX 75275 USA 
2 Sandia National Laboratories, Albuquerque, NM 87123 

Abstract. The challenges of learning a new language can be reduced with real-

time feedback on pronunciation and language usage. Today there are readily 

available technologies which provide such feedback on spoken languages, by 

translating the voice of the learner into written text. For someone seeking to learn 

American Sign Language (ASL), there is however no such feedback application 

available. A learner of American Sign Language might reference websites or 

books to obtain an image of a hand sign for a word. This process is like looking 

up a word in a dictionary, and if the person wanted to know if they were doing 

the sign correctly; or to know what a sign means, there is no way of checking. 

Because of this, the automated translation of ASL has been an active area of re-

search since the early 2000’s.   Researchers have investigated numerous ways of 

capturing hand signs, as well as numerous methods for recognizing or categoriz-

ing the captured data. In this work, we demonstrate an ASL translation system 

based on Convolutional Neural Networks (CNN), that provides a practical appli-

cation for the real-time translation of 29 ASL signs, including 26 alphabet signs 

and three additional signs (‘space’, ‘delete’, and ‘nothing’). This application can 

be used to translate a hand sign for a person learning ASL as well as to facilitate 

communication between an ASL-signer and a non-signer.  The CNN model used 

in this study is based on the Keras VGG16 [1] pre-trained model and pre-pro-

cessed images. It has 100% accuracy when predicting on a hold-out/cross-vali-

dation testing dataset.  The keys to achieving this high precision in automated 

sign translation are 1) good input images, 2) starting from a pre-trained model 3) 

fine-tuning of the model.  This paper discusses the use of contrast limiting adap-

tative histogram equalization (CLAHE) image pre-processing to enhance the in-

put images,  provides a high-level overview of convolution neural networks 

(CNN), discusses the use of the VGG16 [1]  pre-training model as a starting point 

for the CNN network and the fine-tuning of the resultant model, and provides an 

overview of the web application implemented for real-time ASL translation.  The 

results of experiments used to assess the strength and generalization capabilities 

of the model are also detailed. 

Keywords: Language Translation, Reverse Dictionary. 
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1 Introduction 

The World Health Organization estimates that there are about 466 million deaf people 

in the world (about 5% of the world’s population), with 34 million of them being chil-

dren (March 2018) [2].  They further estimate that, by 2050, over 900 million people 

will have a disabling hearing loss.3 There is estimated to be about 500,000 deaf or hard 

of hearing people in the United States today who use American Sign Language (ASL) 

as their primary language for communication [3]. ASL is also used by many people 

who suffer from aphasia (the inability to speak) due to a stroke or other brain damage.  

The number of aphasic ASL users is not known. Most hearing people do not know ASL.   

Much work has been done to facilitate communication between the individuals who are 

deaf and those who are not. The current interpretative technologies available are non-

automated, third-party people-centric (in-person or via remote video) solutions. Many 

people seek to learn ASL, so they can communicate with their ASL-signing co-workers, 

or family members.  Many schools and community programs offer ASL-language clas-

ses. However, the independent study of ASL is hampered by the lack of feedback tech-

nology for accessing the learner's proficiency and accuracy of signing. 

   A significant amount of research has been done to develop automated methods for 

translating ASL from sign to text.  Using Deep Learning, we demonstrate a sign lan-

guage translation system that provides high accuracy in the simplest way possible, 

while increasing the vocabulary in a scalable way using a Convolution Neural Network 

(CNN). 

  ASL was first introduced in 1814, by Dr. Thomas Hopkins Gallaudet [4]. This vis-

ual, gestural language is the preferred communication method of the Deaf community 

and has its own vocabulary and grammar, which is different from English.  It was de-

veloped by Deaf people to communicate with Deaf people.  There are three primary 

forms of sign language in use in the United States: ASL, Pidgin Signed English (PSE), 

and Signed Exact English (SEE).   PSE was developed to bridge the communication 

gap between hearing and non-hearing individuals.  The hand gestures used in PSE are 

taken from ASL, but the sentence structure is in English word order.  Often a PSE user 

will speak or mouth words while signing.  When sign language translation is provided 

in a public forum, PSE is typically being used, as the translator will be saying or mouth-

ing English words and grammar while signing.  SEE was developed in the 1970s, to 

help deaf children learn English. It is a complete representation of the English language, 

and therefore the easiest for parents of deaf children to learn. SEE is usually accompa-

nied by verbalization of the words. Many of the SEE signs are based on ASL with 

prefixes, suffixes, tenses, and adding “-ing” to words.  Because of the structural differ-

ences, ASL is not accompanied by spoken English and can be difficult for English 

speakers to learn. 

  Co-workers, friends and family members of people who are deaf often seek to learn 

ASL in order to aid their communication.  There is no technology available today which 

will help the student understand if they are performing ASL signs correctly.  Currently, 

there is no home-use application for translating ASL However, a business-level system 

was introduced on Q1 2017, which provides sign-to-voice translation and voice-to-text 

providing real-time secure and private communication [5]. 

At the beginning of the project, we envisioned building a web-based system that 

would provide real-time sign-to-text classification along with ASL-to-English 
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translation (dealing with the differences in grammar between the two languages).   

Given the scope of the work needed to develop the fully envisioned system and the 

given time constraints for this study, we have limited the scope of the work to a subset 

of the fully-envisioned system, diagrammed in Figure 1. 

 

 
Fig. 1. Schematic of the fully-envisioned image processing system for sign language transla-

tion.  The components denoted by a star ( ) have been incorporated in this study. 

 

  For the fully-envisioned system, we believed a CNN-based classification model 

would be highly effective for the image classification portion module.   Natural Lan-

guage Processing (NLP) and Natural Language Understanding (NLU) would be used 

to improve sign identification and re-orient grammar and sentence structure to clearly 

translate ASL to English. The most straightforward manner is to translate SEE (as the 

grammar matches that of English) however, SEE is not the primary language used by 

the Deaf.  Because of the larger user-base, as well the NLP challenge with grammar 

differences between ASL and English, we decided to pursue translating ASL to Eng-

lish.  

The translation system we developed uses deep learning techniques to identify the 

26 finger-spelling alphabet signs and three additional signs (‘space’, ‘delete’, and ‘noth-

ing’).  In prior research automated translation has been accomplished using algorithms 

built with methods such as Support-Vector Machine (SVM)6, K-Nearest Neighbors 

(KNN)7, and Haar-like8 methods, to name a few.  Only one previous study used CNN. 

Koller and Bowden9 used paired captured video images with closed-captioned text, to 

loosely label the video images.  They were able to achieve about 50% test accuracy 

with a CNN model. 

  This work focuses only on the first stage of the fully-envisioned system, translation 

of ASL signs, so the next steps to accomplishing the fully-envisioned system would be 

to employ Natural Language Processing (NLP) and Natural Language Understanding 

3

Nelson et al.: ASL Reverse Dictionary

Published by SMU Scholar, 2019



 

 

(NLU) to extend the translation and understanding of the words, into phrases and con-

textual meaning, thereby enabling the restructuring of the ASL grammar to match Eng-

lish grammar.   After this, the next stages would be to 1) add hand position detection 

within the ‘active space’ of ASL signs, 2) enable the translation of motion-based signs 

and 3) utilize natural language processing and natural language understanding to inter-

pret ASL grammatical structure. 

   In this work, we accomplished the translation of hand signs by 1) using the 

KAGGLE Hand Signs database [10] to train the application to identify finger spelling. 

The CNN model provides 100% accuracy when predicting on a hold-out/cross-valida-

tion testing dataset for the classification of 29 ASL signs, including 26 alphabet signs, 

and three additional signs (‘space’, ‘delete’, and ‘nothing’).    

  The JavaScript-based web application ( https://asl-dictionary.net/ ) developed in 

this project, captures the hand position of the user.  It has a frame capture rate of 1 

frame per second.  The application uses the video camera on the user’s system, making 

the application easily accessible, easy-to-use, and economical.  After capturing the im-

age, the data is passed through the CNN model, and the top three predicted values of 

the imaged hand sign and their confidences values are reported.  As the user shifts their 

hand position, the reported predictions shift, encouraging the user to find a hand sign 

position which achieves a high confidence for the correct prediction.  The web applica-

tion is sensitive to lighting and background noise.  Performing the signs in an environ-

ment with uniform general lighting or backlighting, and with a neutral background, 

produces the best results.   The accuracy of the application proved difficult to determine 

and was only qualitatively assessed.  

 

2 The Project Work 

2.1 Background  

2.1.1    Image Pre-Processing 

 

An automated image pre-processing method was used to programmatically adjust the 

contrast of the original images of our hand sign dataset.  Histogram equalization (HE) 

[11], normalizes the brightness within images.  With HE, areas in an image area with 

low local contrast gain a higher contrast, while areas of high contrast are diminished.  

HE works particularly well to enhance details in images that are over- or under-ex-

posed.  HE is not resource-intensive, and the original image can be recovered if the 

equalization function is known.  A disadvantage of HE is that this method does not 

distinguish between noise and the desired features.   For our study, we used a variant 

of HE, contrast limiting histogram equalization (CLAHE) [12].  This method has the 

advantage of improving local contrast without shifting the average brightness of the 

image. CLAHE also enhances the definition of edges without overamplifying noise in 

areas with low contrast, thereby preventing loss of key details. This is accomplished by 

performing equalizations on local, sub-areas of the original image, placing a higher 

priority on the local area histograms than on the full image histogram.   
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  The CLAHE algorithm transforms each pixel within an image using a transfor-

mation function that is influenced by its neighboring pixel region.   The transformation 

function is proportional to the cumulative distribution function (CDF) of the pixel val-

ues in the pixel neighborhood.  The resulting value of the pixel is proportional to the 

slope of the neighborhood CDF at that point.    Overamplification can occur in ordinary 

adaptive histogram equalization (AHE) [12] in pixel neighborhoods with little variation 

in contrast since the histogram in these regions would be narrow and tall.  As a result, 

AHE may cause noise to be overamplified in these areas. CLAHE prevents overampli-

fication by limiting the histogram to predefined value before computing the CDF, thus 

limiting the slope of the function.   The predefined slope-limiting-value depends on the 

size of the pixel neighborhood. 

 
Pixel Brightness Distributions Illustrations 
Before and After CLAHE Implementation 

 

 
                                       Before                            After 

Fig. 2. Pixel brightness distributions before and after the application of CLAHE demonstrating 

contrast normalization and clipping of contrast amplification. 
 

  To understand the impact of histogram equalizations. various algorithms were stud-

ied to determine the best method for image pre-processing of the dataset.   HE on grey 

scale images is discussed below for image visualization and ease of understanding, 

however HE on both grey scale and full-color images were used for this study. 
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Table 1. Comparisons of histogram equalization algorithms13 to demonstrate the advantage of 

CLAHE for normalizing the contrast across an image, without creating over-exposure in areas 

of high contrast. 

Image /  
Algorithm 
Name 

Histogram 
equalization 

algorithm 

Brightness histogram Observa-
tions/ Dis-

cussion 

 
Original  
Image 

None  

 

Bi-modal 
peaks are the 
hand (left) 
and the 
background 
(right). 

 
Histogram 
Equalization 
(HE) 

The brightness 
of the image is 
normalized us-
ing the full im-
age.  

 

Bi-modality 
of the origi-
nal image re-
mains.  
Range of val-
ues is ex-
panded to 
the full grey 
scale range.  
Gaps in grey 
scale values 
created. 

 
Adaptive 
Histogram 
Equalization 
(AHE) 

The brightness 
values are nor-
malized using 
8x8 blocks, 
across the im-
age.  In blocks 
where there 
are white 
value and dark 
values, the 
normalized 
white values 
are over ex-
posed. 

 

Bi-modality 
of the origi-
nal image 
has been re-
moved.  
Full range of 
grey scale 
values as in 
HE. 
 Overall dis-
tribution is 
smoother.  
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Contrast 
Limited 
Adaptive His-
togram 
Equalization 
(CLAHE) 

Similar to AHE, 
uses 8x8 
blocks for nor-
malization.  
Maximum fre-
quency of val-
ues is clipped, 
eliminating 
the over-expo-
sure concerns 
of AHE. 

 

Bi-modality 
of original 
image is re-
stored.  
Smoothed 
distribution.   
Full range of 
grey scale 
values as in 
HE. 

 

 

2.1.2 Convolutional Neural Network Overview 

 

A neural network [14] is a statistical modeling algorithm that can be visualized as a 

structure of nodes and interconnections between the nodes. The nodes are typically or-

ganized into layers.  Each layer is assigned an activation function.  For neural network 

modeling, a pattern of inputs is presented to a layer, the operation of the activation is 

performed on the pattern, by the layer, and a new pattern is output. The output pattern 

of the layer is then passed to the next layer via the interconnections. The interconnec-

tions are defined by learning rules which modify the weights of the connections, and 

the process is repeated. The weights of the nodes are adjusted programmatically based 

on the learning rules and the patterns presented to them from the layers.  The adjustment 

of weights is the actual operation of the neural network. Through these structures (in-

terconnects and layers), and mechanisms (learning rules, adjustable weights, and acti-

vation functions), the neural network can iteratively, through multiple cycles (or 

epochs) tune itself and learn to recognize patterns. A neural network may require many 

epochs to obtain an optimized solution.  

  All neural networks contain an input layer, and output layer and at least operational 

layer or hidden layer.  A neural network with more than two or three hidden layers is 

considered a deep learning algorithm. Convolutional neural networks (CNN) have more 

than 2 hidden layers. The design of a CNN makes it typically well-suited for two-di-

mensional inputs, therefore image classification is a common application of a CNN as 

is natural language processing. The typical activation functions (for the hidden layers) 

in a CNN are pooling, convolutional and fully connected (or densely connected).  

  Pooling layers combine outputs of multiple nodes in the prior layer into a single 

node in the next layer.   There are two pooling options, max pooling and average pool-

ing.  Max pooling passes the maximum value of the set of input nodes and average 

pooling passes the average value from the set of nodes to the output.   

   Convolutional layers apply a mathematical operation (the activation function) to 

two functions to the input.  The mathematical operation is specified via the definition 

of filters assigned to the layer. The functions are created by the input matrix and the 

filter matrix, the operation is typically a dot product between the two matrices. In a 

convolutional layer, each node receives input from a subset of input nodes.  The subset 

nodes are defined by the shape of the input area.   

  Fully connected (dense) layers perform mapping between input nodes and output 

nodes.  In a dense mapping, each input node(n) is mapped to each output node(m) 

7

Nelson et al.: ASL Reverse Dictionary

Published by SMU Scholar, 2019



 

 

resulting in n * m connections to each node in a fully connected layer. Sometimes the 

activation functions of these layers are adjusted with a biasing term (a real number).  

The bias term is incrementally adjusted during the learning/training mode process.  

  Keras [15] is a Python library targeted for deep learning. The Keras API runs on 

top of TensorFlow [16], Theano [17], and CNTK [18].  Keras [19] facilitates the devel-

opment of deep learning models by providing powerful functions and statements which 

have a simple syntax.  It also runs on CPU or GPU which can speed up execution. 

TensorFlow [20] is an open-source library originally developed by Google which ena-

bles high performance, numerical computing. It is targeted for deep learning and ma-

chine learning.  Theano was invented by the University of Toronto and might be con-

sidered as the precursor to TensorFlow21.  For this project, we used Keras and Tensor-

Flow for deep learning modeling.   

A typical processing flow for CNN modeling in Keras is reviewed in Table 2. 

 

Table 2. A typical process flow for CNN development summarizing the development process 

steps, their purpose and key objectives. 

Process Step Notes 

Input data Data is typically images or .csv files for image processing 
and articles or .csv files for NLP. 

Create training, validation and 
test data sets 

The validation data set is a subset of the training data set. 
The validation set is used to demonstrate how well the 
trained model can generalize against new data the model 
has not seen yet. 

Apply pre-processing Adjustments in image sizes and image characteristics such 
as brightness can be applied. 

Image normalization Input image values span 0 (black) to 255 (white).  To pre-
vent the lighter images from having extreme influence on 
the analysis, the values are rescaled to fall between 0 and 
1. 

CNN model definition Definition of each layer in the model: the number of files, 
connections, weights, biases and activation functions.  
Can be an iterative process to ensure optimized data us-
age. 

Model compilation Initializes the model for training. This is where the opti-
mizer function and metrics would be declared. 

Model training and validation Defines the number of epochs, and model performance 
measures of interest. Can take a significant amount of 
time.  GPUs are often used to reduce the time require-
ment. 

Model testing Confirmation of the effectiveness of the model on obser-
vations that were not used for training.  The key model 
performance measure of usefulness. Can drive model ad-
justments. 

Model evaluation Check for over-fitting and under-fitting.  Can drive model 
adjustments. 
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 CNN modeling research can be quite time-consuming because of the number com-

putations per epoch, the number of epochs per model run, and the number of model 

iterations to obtain optimal model performance.   Using a GPU rather than a CPU to 

execute the analysis, can reduce the time spent waiting for computations to complete.  

There are two primary options for enabling GPU usage.  In the first, a high-powered, 

gaming computer, can be used with an on-board GPU.  If a high-powered GPU is not 

locally available, a cloud-based option such as Amazon’s AWS EC222, which offers a 

choice of multiple GPU configurations, or Google’s Colaboratory23 could be used. Py-

thon can be run via a locally-based Jupyter notebook configured to access the EC2 

cloud space.  Colaboratory is free and is accessed via a cloud-based Jupyter notebook 

and the GPU is configured via a menu dropdown within the notebook.  For this project, 

much of the CNN was run either locally using CPU or GPU or run on Colaboratory.  

Colaboratory was selected because of its pricing and ease-of-use.   

 

2.1.3   VGG16 CNN Model 

 

The VGG16 [24] model was the first and second place winner of the 2014 ImageNet 

Challenge for image classification.  This model has been proven to generalize well to 

other image datasets. This model incorporates several features that are keys to ensure 

high accuracy including: 1) utilizing a small receptive window size and a small stride 

(1 pixel) in the first convolution layer [22]. 2) increased depth [20], which is possible 

by using a 3x3 filter window in all of layers.   

  VGG16 is one of five pre-trained CNN models included with the Keras module. 

VGG16 consists of 6 blocks, each having a 3x3 receptive field, and ReLU as the acti-

vation function (see Figure 3).   Blocks 1 & 2 have a pair of Convolution2D layers 

followed by a MaxPooling2D layer.  Blocks 3, 4 & 5 have an additional Convolution2D 

layer.   The 6th block is a classifier with three fully connected dense layers followed by 

a softmax layer.   The weighted layers are the 13 Convolution2D layers, and the 3 Dense 

Layers, the sum of which are designed in the VGG16 name.      

  VGG16 was instrumental in demonstrating that CNN classification and localization 

accuracies could be improved by increasing the depth of the network.   Prior to VGG16, 

neural networks were typically designed with larger receptive fields and were much 

shallower than VGG16.   VGG selected 3x3 as the receptive field size, because it was 

the smallest size which enables directional information (up/down, left/right & center).   

By stacking 3 Convolutional layers in Blocks 3,4 & 5 developers were able to obtain 

the same effective receptive field as a 7x7 convolution layer.   The selection of the non-

linear ReLU as the activation function provides protection against vanishing gradients, 

a problem that can been seen when using a sigmoid function.   

After an initial training pass of using the pre-trained VGG16 model, a final model 

tuned specifically for the training data set can be obtained by freezing the early layers 

and re-training the model with adjustments in block 5 & 6.   This process, called fine-

tuning, results in a specific CNN model for specific situation.   
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Fig. 3. Block diagram of VGG16 CNN25 model composed of 6 blocks, 5 of which are com-

prised of 2 or 3 Convolution2D Layers with 3x3 receptive fields for feature identification, a 

Max Pooling 2D layer for parameter reduction, and ReLU as the activation function.  The num-

ber of filters for each block-layer are labeled and correspond to increased depth.  The 6th Block 

is the classification layer.  The blocks that were frozen or tuned to complete the model are also 

labeled. 
 

2.1.4     Prior ASL Modeling Work 

 

Multiple ways of collecting the data related to the action of signing have been reported 

by researchers.  Input devices which have been explored include video cameras [26], 

gloves [27], and Surface Electromyographic (sEMG) signal generators [28]. In 1993, 

Fels et al. [27] were the first to use a glove device (Cyber Glove) to generate signed 

words. They were the first group to work specifically on a sign language recognition 

system and were able to classify 203 gestures with an accuracy of > 99%.   In 1995, 

Liang et al. [29], extended sign language translation research by using the Cyber Glove 

to recognize alphabet signs via a rule-based voting algorithm.  In 2002, Mehdi et al. 

[30], used the Cyber Glove and a neural network classifier to discriminate 24 ASL 

characters and 2 special characters.  (‘J’ and ‘Z’ were omitted because these letters 

require wrist movement which was out of scope for their analysis process), it should be 

noted that the performance of their system was poor, as there was no pre-processing of 

the data prior to feeding the data into their classifier.     

  Research on image processing has a long history. The seminal research for auto-

mated object identification was the 2001 work of Viola and Jones [31] who developed 

an algorithm which detected human faces in real-time. This work is cited by many pa-

pers and is considered the starting point of image processing.  Image processing for 

sign language recognition started in 1998, when Starner et al. [32]  mounted a camera 

to a cap in order to capture hand tracking.  They concluded that a cap-mounted camera 

was better than a desk mounted camera based on accuracy.  From 2009 – 2014, several 

researchers explored using the Kinect camera, used by Microsoft in their Xbox gaming 

system, for sign language recognition. The Kinect camera was selected because it pro-

vides depth data for 3-D imaging thereby reducing the noise and interference of lighting 
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differences and image backgrounds.  Otiniano-Rodriguez et al. [33]   focused on com-

paring Kinect RGB, Depth, and RGB-Depth performances. They found that combining 

RGB and Depth information gave better results than using either individually. Chuan 

et al. [34]  used a Leap Motion Sensor as their imaging device. This device was selected 

for its economy, ease of use, and scale.  In 2014, Raut et al. [35] used the dataset of 312 

ASL hand gestures images.  Their results were poor due to image quality associated 

with lighting issues. 

  Celal Savur [28] studied the use of  sEMG to capture ASL signs. sEMG uses dif-

ferential voltages associated with muscle movement.  It was initially used to control a 

robotic arm.  sEMG signals are collected by using sensors attached to the skin.  Theo-

retically  sEMG could perform better than a camera-based by eliminating imaging is-

sues such as noisy backgrounds and lighting, which can make the use of image sources 

difficult.    

   Several analysis techniques have been employed to translate sign language.  In 

1993, Fels [27] used a neural network classification method for ASL (99%+ accuracy). 

Extreme Learning Machine (ELC) algorithm was selected by Sole et al. [36] for Aus-

tralian Sign Language classification (95% accuracy). ELC was selected as it is a sim-

plified version of a neural network (NN).   Starner et al. [32] used Hidden Markov 

Models (HMM) to recognize sentence-level ASL.  Keskin et al. [37] also used a Ran-

dom Forest Decision Tree (RF) and achieved 99.9% using Kinect camera inputs. Chuan 

et al. [8] used k-nearest neighbors (KNN) and SVM to classify 26 letters of American 

Sign Language..  2014, Raut et al. used LBG Vector Quantization [38].  Fast Fourier 

Transforms (FFT).  PCA, wavelet transforms with PCA have been used for classifica-

tion of sEMG signals as well.    

  Because of the ubiquitous availability of video cameras today, we have elected to 

use webcams or cell phone cameras in our fully envisioned sign language translation 

system.  Based on the learnings of prior researchers, we will be using available data-

bases as input and must be very cautions of the image quality.  We will be using CNN 

models for image classification due to its demonstrated performance in image classifi-

cation work.   This problem was addressed by using several pre-processing techniques 

to enhance the original images. 

 

2.2 Ethical Challenges 

The images provided in the Kaggle dataset is strictly from one male, Caucasian subject.  

Models created using these images have performance bias toward Caucasians because 

the model may not be robust enough to deal with genetic variations. To alleviate this 

concern,  Keras image augmentation as well as training on pre-processed images using 

grey scale and contrast limiting adaptive histogram equalization (CLAHE) was used.  

The effectiveness of addressing left-/right- handed biases using image augmentation 

was assessed by inverting the test set images (on the x-axis) and then evaluating the 

prediction accuracy of the model with and without the image generator augmentation.  

  The effectiveness of addressing additional genetic biases, such as skin tone, hand 

shape, etc., through the use image augmentation was not able to be assessed due to the 

lack of availability of test images.   
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  While working on this project a concern was expressed by a Deaf person that we 

should not be trying to ‘fix’ Deaf people by developing a translation tool. This purpose 

of the fully-envisioned system is to provide an aid for learning ASL.  There is a sec-

ondary usage as a communication tool, facilitating communication between users of 

two different languages. There is no implication that there is a problem with sign lan-

guage or users of sign language.  To alleviate concern that there will be a perception 

that the application is meant as a “fix” for Deaf people, care must be taken in the word-

ing of marketing communication and any document associated with this application. 

 

Table 3. Experimental results assessing the right-/ left- hand bias and the ability of Keras aug-

mentation to address the bias concern.   Use of Keras’ image generator, horizontal flipping op-

tion, effectively eliminates concerns of right-handed bias in the model. 

 image Right-hand 
Model built 

without hori-
zontal flipping 
in image gen-

erator 
(test accu-

racy) 

Right 
hand Model 

built with 
horizontal 
flipping in 

image gen-
erator 

Right- & 
Left-hand 

Model built 
without 

flipping 

Right-
&Left-
hand 

Model 
build with 
horizontal 

flipping 

Right-
handed 
test images 

 

 
.991 

 
.994 

 
.966 

 
.985 

Left-
handed 
test images 

 

 
.473 

 
.987 

 
.960 

 
.992 

   

  As in any interpretation or translation work, accuracy of the translation is para-

mount in order to correctly express the intent of the signer.  For a community that has 

experienced disenfranchisement in the hearing community, incorrect translation of their 

intended communication is a serious concern and could be perceived as another injus-

tice. To alleviate this concern, the application must achieve high translation accuracy.  

 

3 Methods 

Important to the success of this work, was the addition of image pre-processing to im-

prove the image quality of the incoming images.  The Kaggle hands data set, for in-

stance, provides about 3,000 images for each hand sign.  The images vary in the lighting 

conditions as well as the hand placement within the image field.  The lighting of the 

image has a large impact on the ability of the computer to identify features within the 

image, which is crucial for classification accuracy.  Examples of the original images 

obtained from the hand sign dataset for the letter ‘A’, are shown in Figure 4. 
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Fig. 4. Examples of images of the letter ‘A’ within the Kaggle hand sign data set demonstrat-

ing a variety of lighting conditions. 

  In order to ‘clean’ the data and improve the image recognition and classification 

accuracy of the system, five additional version of each of the original images were 

evaluated using a different image pre-processing algorithm provided by OpenCV39 (an 

open source computer vision library).   The CNN model used a random sampling of 5 

versions of each image(4A-4E). Table 4 shows six of the pre-processed image varia-

tions explored. 

 

Table 4. Examples of the pre-processing methods evaluated to address image quality.  GS= 

Grey Scale, CLAHE = contrast limiting adaptive histogram equalization, NEG = negative.  The 

order of the processing naming is the order of the application, that is GS-CLAHE means a grey-

scale image of the original is generated and then CLAHE is applied to the grey-scale image.   

CLAHE is a key pre-processing step to enable high precision.  The order of the processing doesn’t 

matter (comparing 4E & 4F). 

Image 

      
 

Image # 4A 4B 4C 4D 4E 4F 

Pre- 
Processing  
Description 

Original GS-CLAHE FC-CLAHE GS-CLAHE-
NEG 

FC-CLAHE-
NEG 

FC-NEG-
CLAHE 

Test  
Accuracy  
Run 1-3 

98.96% 
98.9% 
96.6% 

99.43% 
98.86% 

100% 
99.43% 
100% 

99.6% 
98,29% 

100% 
99.43% 

    100.00% 
     99.43% 

 

  Table 4 Image # 4A is the original image provided by the Kaggle hand sign dataset. 

Image 4B is a contrast limiting adaptive histogram equalization (CLAHE) of a grey 

scale (GS) image of Image 4A.  Image 4C is the CLAHE version of the full-color (FC) 

original image 4A.  Image 4D is the negative (NEG) of Image 4B and Image 4E is the 

negative of Image 4C.  Image 4F, though created be reversing the order of the pro-

cessing steps used to create Image 4E, ends up identical to Image 4E. All images are 

200x200 pixels in size. In addition to this image manipulation pre-processing, image 

augmentation of the images was applied to the training and test datasets, via the Keras 

image_generator() function.  The combination of these methods resulted in a training 

dataset of 317,000 images from which a random sample was selected and used for train-

ing the model.  The test data was generated by random sampling 10% of the original 

images, prior to the pre-processing.  The test dataset received the same pre-processing 

and augmentations as the training dataset.  The validation data set was a random sample 
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of 10% of the training images.  The test accuracy for each of the pre-processing sets is 

listed below each image.  Over-fitting was prevented by using conservative callbacks 

on the validation loss rate.  Fig. 5 shows the training and validation test losses and 

accuracies demonstrating that overfitting has been minimized.  Note that the training 

stopped after 30 epochs when validation loss and validation accuracy curves reached 

their optimums.  

 

  

Training and Validation Loss Training and Validation Accuracy 

Fig. 5. Training and validation test losses and accuracies demonstrating that overfitting has 

been minimized.  Note that the training stopped after 30 epochs when validation loss and vali-

dation accuracy curves reached their optimums. 

  Model development began by using the Keras VGG16 with weights pre-trained on 

ImageNet model.  Added to the VGG16 model, were 3 custom final dense layers.  The 

initial training on the 5 input images provided 98.96% accuracy, with the best test ac-

curacy using CLAHE pre-processing.  The initial input layers of the model were frozen, 

layers 17-19 were tweaked and the model retrained.  This model provided 100% test 

accuracy. 

 

Table 5. Evaluation of the model pre- and post- fine tuning against original images and the 

original + pre-processed images. 

Data Set  Test Accuracy – VGG16 
without fine tuning 

Test Accuracy - VGG16 
model with fine tuning 

Original images 97% 98% 

Pre-processed images 92% 100% 

 

 

3.1  Experiments 

An experiment evaluating the performance of a blank models, to VGG16 and VGG19 

was performed.  VGG16 was found to outperform VGG19 by about 5%.  Both of the 

pre-trained models were a vast improvement over our own blank models.  
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Table 6. Comparison of VGG pre-trained models to blank models using original images.  The 

VGG16 pre-trained model was selected as the foundation for the CNN model. 

Model Test Accuracy 

Blank Models 47% - 63% 

VGG16 97% 

VGG19 92% 
 

  To understand the effects of the augmentation defined using the Keras image_gen-

erator function, an experiment was performed comparing the performance of the model 

with and without augmentation. Table 7 shows the results of this experiment. 

 

Table 7. The importance of using image augmentation to improve test set prediction accuracy. 

Augmentation Test Accuracy 

Yes 100% 

No 43% 

4 Results 

Using a combination of CLAHE pre-processing and a fine-tuned VGG16-based CNN 

model, we have achieved 100% accuracy on a hold-out, cross-validation test set, using 

randomly selected images of the original data set.  The model addresses the concerns 

of right-/left- handedness through image augmentation using the Keras augmentation.  

The output of the real-time image capturing, and reporting system web app provides 

lower accuracy due to the influence of back ground noise and image segmentation, 

however an assessment of the overall accuracy was not obtained.  

 

5 Conclusions 

In this work, we demonstrate a web-based ASL translation system based on Convolu-

tional Neural Networks (CNN), that provides a practical application for real-time trans-

lation of 29 ASL signs, including 26 alphabet signs three additional signs (‘space’, ‘de-

lete’, and ‘nothing’).   The keys to achieving this high precision in automated sign 

translation are 1) good input images (accomplished via CLAHE preprocessing) 2) start-

ing from a pre-trained model (VGG16) and 3) fine-tuning of the model to the image 

library (Kaggle alphabet, digits, and custom hand signs).    

  Interrogation of the model via experimentation demonstrated that the model right-

handed bias was prevented using the Keras’ image_generator’s horizontal flipping op-

tion.   
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6 Future Work 

This project focused on the first step of the fully-envisioned system.  To complete sys-

tem, the next step would develop NLP and NLU algorithms for ASL and English, or 

perhaps a dual-language corpus.  Improvements in the CNN model could be explored 

via hyper-parameter optimization, such as evaluating the performance of GeLU as an 

activation function compared to ReLU.   

  The fully-envisioned system would be able to translate signs that incorporate move-

ment.  To accomplish this, the image capturing system would need to be improved to 

enable the capturing of video images, and the model would need to be re-trained, likely 

using a recurrent neural network (RNN), to address the time sequencing and ordering 

of the image data.   Other system improvements, such as ensuring that genetic biases 

are fully addressed, and decreasing the system’s sensitivity to background noise and 

lighting conditions other areas for improvement. 

 

7 Program Code  

Python code and  Data sets can be found at: https://github.com/kjprice/smu-capstone 
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