
SMU Data Science Review SMU Data Science Review

Volume 2 Number 1 Article 7

2019

Machine Learning vs Conventional Analysis Techniques for the Machine Learning vs Conventional Analysis Techniques for the

Earth’s Magnetic Field Study Earth’s Magnetic Field Study

Sheri Loftin
Southern Methodist University, sloftin@mail.smu.edu

Sarah J. Fite
Southern Methodist University, fites@mail.smu.edu

Laura V. Bishop
Southern Methodist University, lvbishop@mail.smu.edu

Stavros Kotsiaros
University of Maryland, stavros.kotsiaros@nasa.gov

Follow this and additional works at: https://scholar.smu.edu/datasciencereview

 Part of the Categorical Data Analysis Commons, and the Other Earth Sciences Commons

Recommended Citation Recommended Citation
Loftin, Sheri; Fite, Sarah J.; Bishop, Laura V.; and Kotsiaros, Stavros (2019) "Machine Learning vs
Conventional Analysis Techniques for the Earth’s Magnetic Field Study," SMU Data Science Review: Vol. 2:
No. 1, Article 7.
Available at: https://scholar.smu.edu/datasciencereview/vol2/iss1/7

This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU
Data Science Review by an authorized administrator of SMU Scholar. For more information, please visit
http://digitalrepository.smu.edu.

https://scholar.smu.edu/datasciencereview
https://scholar.smu.edu/datasciencereview/vol2
https://scholar.smu.edu/datasciencereview/vol2/iss1
https://scholar.smu.edu/datasciencereview/vol2/iss1/7
https://scholar.smu.edu/datasciencereview?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol2%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/817?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol2%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/166?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol2%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/datasciencereview/vol2/iss1/7?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol2%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

Machine Learning vs Conventional Analysis Techniques

for the Earth’s Magnetic Field Study

Sheri Loftin1, Sarah Fite2, Laura Bishop3, Stavros Kotsiaros4
1 Master of Science in Data Science, Southern Methodist University,

Dallas, TX 75275 USA
2National Aeronautics and Space Administration, Goddard Space Flight Center,

8800 Greenbelt Drive, Greenbelt, MD 20771 USA

{sloftin, fites, lvbishop}@smu.edu

Stavros.Kotsiaros@nasa.gov

Abstract. Current techniques for calculating and generating models used for

analyzing the Earth’s magnetic field are laborious and time-consuming. We

assert that machine learning can have a significant impact on building magnetic

field models more quickly and on various levels of complexity, specifically as it

pertains to data cleansing and sorting. Our approach to this problem uses a reverse

iterative multi-phase process for data cleansing, in which, initially, the CHAOS-

6 model data is examined to determine if machine learning can be used to

differentiate between useful data components for spherical harmonics, versus

data noise. During this phase, six different machine learning techniques are used

and compared: two classification techniques (Convolutional Neural Network

(CNN) and Support Vector Classification (SVC)) and four regression techniques

(Random Forest Regression (RFR), Support Vector Regression (SVR), Logistic

Regression, and Linear Regression). During this initial phase, the focus is on

understanding the accuracy of machine learning for model selection and uses

relatively clean data. Future phases should include machine learning relevance

as it pertains to the massive volume of data received from satellites. Exploring

the machine learning capabilities for magnetic field datasets accomplishes 1)

faster and more efficient computation when there are millions of rows of data in

any given 30-day period, and 2) lowers the propagation of errors that cause some

data to be useless in the spherical harmonics computations used in the model

generation.

1 Sheri Loftin is completing her MS in Data Science at SMU. She is the Planetary Data

Systems Database Training and Communications Coordinator at Goddard Space Flight

Center, contracted through Adnet Systems.
2 Sarah Fite is completing her MS in Data Science at SMU. She is a Business Analyst at

iHeartMedia, Inc.
3 Laura Bishop is completing her MS in Data Science at SMU. She is a Technical Sales

Manager in Cybersecurity at IBM.
4 Dr. Stavros Kotsiaros is the advisor for this project. He is a research scientist at the

University of Maryland and a visiting collaborator at NASA-Goddard Space Flight Center.

1

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

1 Introduction

The European Space Agency’s (ESA) Living Planet Programme launched a trio of

satellites on 22 November 2013 called Swarm, which is the fourth Earth Explorer

mission [5].

 Two years of magnetic data from the Swarm mission and monthly means from 160

ground observatories were used in the paper by Finlay et al., Recent geomagnetic

secular variation from Swarm and ground observatories as estimated in the CHAOS-6

geomagnetic field model, (2016) [19].

 The Earth’s magnetic field is effectively a ‘super shield’ that protects the planet from

cosmic radiation and charged particles in the solar wind [6]. Earth’s magnetic field is

created by sources both internal and external to our planet. The largest field is created

by electric currents flowing in the Earth’s liquid outer core which is known as the “core

field”. The core field together with a small contribution from the magnetized rocks in

the Earth’s lithosphere producing what is known as the lithospheric or crustal field,

encompass the so-called internal magnetic field. The external field is produced by

electric currents flowing in the Earth’s ionosphere and magnetosphere.

 Low Earth Orbiting (LEO) satellites measure the Earth's large scale lithospheric

magnetic field. LEO satellites provide a statistical homogeneity of measurement on a

world-wide scale. In reality, the lithospheric magnetic signal is masked by the

dominant core field signal as well as by the “time-varying external fields” that

contaminate the lithospheric signal along the satellite’s orbit [5]. There are ways to

minimize the contamination by suppressing the undesired signals with ‘along-satellite-

track’ analysis [7][8] or using magnetic field gradients [29]. Specifically, the

configuration of the Swarm trio can be used to estimate the East-West (EW) magnetic

field gradient from differences between measurements of the two lower satellites, and

the North-South gradient from differences between successive vector measurements

along the satellite tracks [5]. A major statistical and data challenge is extracting weak

lithospheric signals from the total magnetic field observations [5]. Modeling the

magnetic field due to both the internal and external sources is essential for a more

complete and more accurate estimation of the Earth’s total magnetic field. The

CHAOS-6 [19] model incorporates lithospheric, core and external field sources.

 Even with the most accurate satellite measurements, developing a precise model for

the Earth’s magnetic field is difficult from a few perspectives: field of study,

statistical, and data. It requires expertise in a number of different scientific

disciplines, including magnetometry, spacecraft measurements, planetary physics,

geology, etc. As in many complex scientific fields of study, the more professional

experience gained, the better the results. A benefit of studying the Earth's magnetic

field is the plethora of data collected. For example, in this study, 31 days of satellite

data generated over 2.6 million rows of cleaned collection data representing 2.6 million

data points of magnetic field readings. Current methods struggle to handle the amount

of data produced. Another limitation of the current methods lies in a shortcoming within

spherical harmonic computations. "Dirty data" entered into the spherical harmonic

computation creates errors that do not only affect the region of the Earth where the

2

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

contamination originated but globally. Therefore, the errors propagate throughout the

model and may affect the usefulness of the model in specific regions of interest. With

spherical harmonics, the errors cannot be all filtered out, and some of the data rendered

useless as the propagation of such errors may become significant and affect the weaker

signals to be modelled. With more modern machine learning techniques, these errors

can be detected and filtered out earlier, thereby allowing more of the data to be used

and lowering the overall error leakage in the model. These techniques are how tools,

technology, and processing of Data Science and Machine Learning can improve the

generation of geomagnetic field models better for all scientists.

2 Background

The goal for studying the Earth’s magnetic field is two-fold: 1) to better understand the

magnetic shield and 2) to study the interior of our planet. Pragmatic applications for

this research include understanding of tectonic dynamics, drilling for natural resources,

planetary science, and better navigation systems. While the theoretical perspective

paints a dire picture of a weakening magnetic shield, the more that is known and

understood, the better our advances to understand the implications of such change.

 The objective for applying Data Science approaches and Machine Learning

techniques to creating geomagnetic models is to reduce the complexity of generating

hi-resolution models to be used in the study of the Earth’s magnetic field and to utilize

the enormous amount of collected data, thereby allowing for a more accurate view of

the geomagnetic field. Today, hi-resolution models require extensive computations

with several iterations making the model generation an expensive process.

 The design of this project is to improve the management of the data volume by

reducing the compilation time by at least 30%. Additionally, we aim to improve the

error propagation and leakage in the analysis and estimation due to the entanglement of

the various magnetic field sources. Finally, another goal is to use more of the data

collected to provide a more thorough model.

2.1 Definition of Terms

The Swarm satellite configuration consists of two satellites which orbit 450-Kilometers

above the Earth and a third satellite which orbits at 530-Kilometers above the Earth.

At the core of each Swarm satellite is an instrument, the Vector Field Magnetometer

(VFM), which is pertinent to this study:

 Vector Field Magnetometer (VFM) – Located at the tip of the optical bench on the

boom, the VFM measures magnetic field vector. The VFM contains a 3-axis Compact

Spherical Coil (CSC) sensor with a 3-axis Compact Detector Coil (CDC) sensor inside

that acts as a closed loop system. It achieves a null field at the detector coils in the

sphere by adjusting the compensating CSC currents. The raw data is the current level

in the CSC coils.

 The geomagnetic field is modelled in terms of Spherical Harmonics. A model of the

Earth’s magnetic field is therefore a set of spherical harmonic coefficients which aim

to represent as accurate a picture as possible of the current state of the geomagnetic

field of Earth.

3

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

3 Dataset and Data Exploration

The data we are using consists of 2,678,400 rows of cleaned, magnetic data produced

by the CHAOS-6 model. This “dummy” data will allow the model to be trained for

“best fit” in the Crustal data model.

 There are 19 variables collected as shown in Table 1.

Table 1 CHAOS-6 Model Data used for comparison

Variable Name Meaning Minimum Maximum

T [md2000] Time in units of decimal

DAYS from 1/1/2000

midnight.

5844 5875

r [km] Coordinate distance from the

center of Earth measurements

– radius in kilometers (km)

6814 6835

theta [degrees] Position coordinate angle from

x-axis – in

degrees(Longitude)

2.648 177.352

phi [degrees] Position coordinate angle from

z- axis – in degrees(Latitude)
-180.0000 179.9995

B_r1 [nano Tesla] Radial Internal Field (I) -48793 52931

B_theta1 [nanoTesla] Co-latitudinal Internal Field

(I)
-32958 11531

B_phi1 [nanoTesla] Azimuthal Internal Field (I) -12785.80 12282.23
B_r2 [nano Tesla] Radial core Field (C) -48792 52934

B_theta2 [nanoTesla] Co-latitudinal core Field (C) -32957 11528
B_phi2 [nano Tesla] Azimuthal core Field (C) -12786.330 12281.600

B_r3 [nano Tesla] Radial crustal Field (L) -15.34000 12.67000

B_theta3 [nano Tesla] Co-latitudinal crustal Field

(L)
-7.73000 11.38000

B_phi3 [nano Tesla] Azimuthal crustal Field (L) -10.62000 7.83000

B_r4 [nano Tesla] Radial external Field (E) -55.1600 54.960

B_theta4 [nano Tesla] Co-latitudinal external Field

(E)
-12.39 114.08

B_phi4 [nano Tesla] Azimuthal external Field (E) -27.0000 24.6300
B_r5 [nano Tesla] Radial total Field (T) -48824.1 52963.3

B_theta5 [nano Tesla] Co-latitudinal total Field (T) -32952 11540

B_phi5 [nano Tesla] Azimuthal total Field (T) -12793.780 12281.430

4

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

 Formula background- Magnitude of the magnetic field is computing using a 3D

variation of the Pythagorean Theorem:

𝐵 = √𝑥 ∗ 𝑥 + 𝑦 ∗ 𝑦 + 𝑧 ∗ 𝑧

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 = 𝐶𝑜𝑟𝑒 𝐹𝑖𝑒𝑙𝑑 + 𝐶𝑟𝑢𝑠𝑡𝑎𝑙 𝐹𝑖𝑒𝑙𝑑

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 = [𝐵_𝑟2, 𝐵_𝑡ℎ𝑒𝑡𝑎2, 𝐵_𝑝ℎ𝑖2] + [𝐵_𝑟3, 𝐵_𝑡ℎ𝑒𝑡𝑎3, 𝐵_𝑝ℎ𝑖3]

𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 = 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑖𝑒𝑙𝑑

𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 = 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 + [𝐵_𝑟4, 𝐵_𝑡ℎ𝑒𝑡𝑎4, 𝐵_𝑝ℎ𝑖4]

 The design is based on using the crustal field variables, 𝑟 𝑡ℎ𝑒𝑡𝑎 𝑝ℎ𝑖, to represent the

position of the measurement and the strength of the magnetic field at that position. A

machine learning model is created to yield the same or statistically similar enough

results for the crustal field variables in data columns 11-14.

 As shown in figures 1 and 2 (below), each magnetic field source has its own

"signature" and varies significantly in strength, as compared to the other. In each figure

the x-axis represents longitude, and the y-axis represents latitude, while the color bar

represents the strength of the magnetic field at each location. The unit for the color bar

is nanoTesla. Also, in each figure, North is 0 on the y-axis and South is 180; thus the

Earth appears upside down.

 The total magnetic field has definite features, especially around the polar regions of

the Earth. This is dominated by the most robust magnetic field source of the Earth and

is created by the dynamo action of our solid core rotating at a slightly different speed

than the surrounding liquid mantle.

Fig. 1. 2D rendering of the core magnetic field with the ‘x' axis for longitude and ‘y' axis for

latitude.

5

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

 Within the data of the crustal field, the continental outlines are subtle but present.

The strength of the magnetic field at each point is significantly lower than the strength

of the core field. Because of this vast difference, the signal of the crustal field can easily

get lost within the data of the total magnetic field, which includes the core field, the

crustal field, and the external field.

Fig. 2. 2D rendering of the crustal magnetic field with the ‘x' axis for longitude and ‘y' axis for

latitude.

 Since the core field is so much stronger than the crustal field (the signature we are

looking to model with this project), we have chosen to use the combination of the

external field and the crustal field as our dataset. The goal is to be able to search through

this dataset and have the machine learning tool find the signature of the crustal magnetic

field.

 The external field is produced in the ionosphere and the magnetosphere of the Earth

and is only one factor stronger than the crustal field. On the contrary, in comparison,

the core field is three factors stronger. The external field also lacks the variety of

anomalies that exist within the crustal field.

6

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

Fig. 3. 2D rendering of the external magnetic field data with the ‘x' axis for longitude and ‘y' axis

for latitude.

4 Methodology

4.1 Model Comparison

Initially, the model is trained using the variables related to time, position and the

positional components of the total magnetic field. These variables correspond to

columns 1-4 and 17-19 and are labeled t, r, theta, phi, and B_r5, B_theta5, and B_phi5.

Columns 1-4 feeds the algorithm and resulting in Columns 17-19. This is the proof

of concept to justify using Swarm mission data to test the applicability of a machine

learning dataset for magnetic field modeling.

4.2 CHAOS-6 Analysis Techniques

The CHAOS-6 model uses a method called spherical harmonics. The model itself is a

series of coefficients that when entered into the spherical harmonic formula produce a

description of the magnetic field of the Earth.5

 The crustal field is represented by the coefficients corresponding to 21 – 110 degrees.

There are 11,880 coefficients in the CHAOS-6 model. Given the complexity of the

process and the vast number of coefficients, it becomes easy to see why this process

would take so long to compute values.

5 An introduction to spherical harmonics by Wojciech Jarosz, Assistant Professor at Dartmouth

University is found at

https://cs.dartmouth.edu/wjarosz/publications/dissertation/appendixB.pdf

7

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

4.3 Machine Learning Methods

As previously mentioned, this paper examines six (6) machine learning approaches to

determine which method best predicts the data most useful for the crustal data model.

The approach taken is an inverse data analysis. That is, instead of starting the process

with the dirtiest data imported directly from the source (satellite data), then struggling

with cleansing and clustering that data, then spending a great deal of time determining

if errors and challenges encountered during that process are the result of the premise or

a challenge in the data, we chose to start with a clean, known dataset (crustal model).

This dataset is then mixed with the external model data to create our initial phase of

'dirty data.' Our premise is that if the crustal model data is successfully predicted

amongst the “dirty data” of the external model data, success is achieved at this initial

phase (Phase 1). Following this, the next step is to use the dataset in a dirtier, earlier

revision from the satellite. The number of backward iterations of the data from clean to

dirtier is not known at this time but is estimated to be at least four (4) to confidently

know this approach is statistically successful and useable by NASA Goddard.

 We review both classification and regression methods. Phase 1 is looking at

predicting ‘in or out' of the crustal dataset, which is standard classification. Due to the

highly linear nature of the data, and unknown characteristics of the data in following

Phases (closer to the raw data from the satellite), the requirement exists to have a strong

machine learning foundation by which to evaluate the best method.

Classification Approaches. Classification approaches are essential in systematically

structuring the data.

Convolutional Neural Networks. Research into previous machine learning techniques

used to improve upon spherical harmonics shows that Convolutional Neural Networks

(CNN) have potential. While no previous research has been discovered discussing this

from a planetary magnetic field perspective, there have been attempts to replace

spherical harmonics in other realms. Two papers listed below have used CNN to replace

spherical harmonics in the realms of particle physics [21] and heart MRIs [22].

 By design, the CNN technique is the starting point because of its ability to handle

image data, before any data analysis had been conducted. SVC, RFR, SVR, Logistic

Regression, and Linear Regression act as comparison techniques to determine which

method yields the best statistical result of accuracy.

8

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

Fig 4: Outline of continents overlaid on the crustal field model data. Courtesy of Stavros

Kotsiaros.

 CNN's primary use is image analysis. In this case, CNN treats the magnetic field of

the Earth as an image with certain distinctive features. As seen in Figure 4 above, the

outlines of the continents are somewhat visible to a trained eye. This feature could be

used to distinguish the image of the crustal model from the image of the core or the

external model. A CNN should be able to separate this signature feature.

Support Vector Classification. Given the linear nature of the data, SVC is as a

secondary approach for comparison of CNN.

Regression Approaches. For each regression approach, the measure of a proper

machine learning technique is its error rate. The top three (3) error techniques according

to Botchkarev survey [27] are used in this paper to evaluate the distance between

estimates and predictions during cross-validation:

1) Mean Absolute Error (MAE) – Average of absolute distance between data and

prediction. The proportional weight of the error. Less sensitive to outliers.

2) Root Mean Square Error (RMSE) – Measures average magnitude of error. Gives

weight to larger errors and makes them more pronounced in the model; useful to

compare to MAE to understand the distribution of the larger errors. When MAE

= RMSE, the distribution of errors is consistent.

3) Mean Absolute Percentage Error (MAPE) – This measurement shows a small

relative error and shows the precision of the models. This works best with medium

and large datasets.

9

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

 The model analysis Python code used was built by Dr. Jacob Drew of Southern

Methodist University and his work for the State of North Carolina Education [23].

The model analysis code builds regression models that are evaluated using cross-

validation and a random seed. This is accomplished using parameters of Python's

sklearn.model_selection's cross-validate function, which performs the cross-validation

for regression estimators. The random seed ensures that all regression estimators are

tested on the same randomly selected data rows for each cross-validation fold. Dr. Drew

created custom scorers for MAE, RMSE, and MAPE using the three chosen mean error

scores. Thus, all three scores are calculated using a single call to cross-validate(). All

of this functionality lies in a custom function 'EvaluateRegressionEstimator(),' which

allows multiple regression models to be tested using the same test/train cv data and

consistently produces the evaluation scores for each model.

 The same regression model function was used to evaluate each approach outside of

CNN and SVC. A five (5) fold cross validation is used, along with passing the three (3)

mean error scores into the cross-validation in one (1) call.

 GridSearchCV "exhaustively" searches for the best parameters used in the regression

methods for the four (4) non-CNN regression approaches. GridSearchCV is passed as

a regression algorithm (one of the 4), a parameter grid based on the regression, and a

number of cross-validation folds. Using GridSearchCV improves the accuracy of

nested cross-validation, thereby improving the accuracy of the model prediction.

 Linear Regression models the behavior between dependent response (label of 'in

crustal model' - 1 or not - 0) and explanatory variables of 'theta', 'phi' and 'mag'

(magnitude).

 For these approaches, a sample size from the 2.6 million Swarm satellite model data

was used totaling 26,784 rows and five (5) folds. The training set is 21,427 rows, and

the test set is 5,357 rows. This smaller dataset was chosen to allow for decent

processing time on a 2016 MacBook Pro running macOS Mojave v 10.14.2 with a

3.3GHz Intel Core i7 processor and 16 GB 2133 MHz LPDR3 memory. With this

smaller dataset, RFR takes at least 24 hours to run.

Linear Regression. In this multi-linear regression, the value is capped between 0 and

100. Two options are analyzed: 1) normalize with ‘fit_intercept’ set to True; and 2) no

normalization when ‘fit_intercept’ set to False.

10

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

Random Forest Regression. An RFR is a comprehensive supervised machine learning

approach that randomly selects features and builds a collection of base models or

decision trees from different subsamples of the training data; then sums up the result

for the final mode or decision tree. We pulled subsamples from the 21,427-row training

data and built 500 decision trees. The minimum size for leaves is a set of [10, 25. 50],

which will help reduce noise in the training data. RFR is good for the following:

numerical features; smaller set of categorical features; and capturing non-linear

relationships in the data [24]. All three of these features apply to the dataset.

Support Vector Regression. SVR determines the distance of the data point from the

boundary or hyperplane. The error is the tolerance or margin of distance from the

hyperplane. Broader margins between the data points indicate better classifiers, as the

categories are more distinct. SVR is suitable for use on many features and low noise

datasets. While the crustal field and external field dataset being modeled does not have

many features, it is reasonably low in noise for our Phase 1. By keeping SVR in the

regression comparison, a baseline creates future Phases where the data is not as clean

and orderly as in Phase 1.

 The SVR parameters include the 'kernel' parameter, which looks at both linear and

non-linear hyperplanes. For the non-linear, 'rbf,' the gamma is set at a default of

'1/number of columns in the dataset, which is three (3)' and 0.1. The penalty parameter

'C' is the cost or error tolerance. Too high a 'C' value can lead to overfitting.

GridSearchCV is used to optimize these hyper-parameters for the SVR.

Logistic Regression. Logistic Regression is a binary classification approach based on

the ‘Label' variable for the model. In this case, GridSearchCV is used to generate the

best parameters using the three (3) scoring measures mentioned above.

5 Results

5.1 Support Vector Classification

The result of using an SVC approach yielded a 99% accuracy. In subsequent phases,

using dirtier data, closer to the raw data from the satellite, we believe the linearity of

the data will not be as strong.

Table 2. Results from SVC analysis, demonstrating 99% accuracy

 Prediction Accuracy 0.99914

Prediction label 0 1

0 13373 6

1 17 13388

5.2 Convolutional Neural Networks

Using a training and testing set of the data from the crustal field combined with the

external field, the CNN has picked out the crustal field with 54.3% accuracy.

11

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

Table 3. Prediction table output from CNN.

 Prediction Accuracy 54.3%

Prediction Label 0 1

0 521678 518725

1 147922 150875

 In hindsight, this result is not too surprising. CNN's primary use is with large feature

datasets for visual and text processing, neither of which we had. However, it does set

the foundation of comparison in later phases of the project.

The Error Comparisons for Regression Approaches [25][26]. To evaluate the

success of our model, we compare the following regression metrics for performance.

Table 4. Regression technique results for MAE, RMSE, and MAPE

 MAE RMSE MAPE

Difference

RMSE - MAE

Linear Regression 0.175272 0.21355 14.3907 0.038278

Support Vector

Regression 0.103333 0.137702 8.74311 0.034369

Logistic Regression

0.0009178

1 0.0025938 10.114 0.00167599

Random Forest Regressor 0.002995 0.0438683

0.18560

5 0.0408733

MAE. Using absolute numbers with no indication of the magnitude of the error, the

Logistic Regression has the smallest MAE at .0009. The RFR also has a small MAE

at .003. The largest MAE comes from Linear Regression at .175. The difference or

distance between high to low MAE is .172.

RMSE. Looking at the impact and frequency of error, Logistic Regression is the

smallest at .0025. RFR also has a small RMSE at .04.

 The most significant difference between RMSE and MAE is .04 for Linear

Regression and RFR, indicating larger distributions of error in these approaches. The

smallest difference between MAE and RMSE is Logistic Regression with a difference

of 0.001.

MAPE. Although considerable effort is made to create equality among the methods by

using GridSearchCV, etc., the percentage comparison between approaches varies by

14.2%. Leading to greater model accuracy, by a noticeable amount, in the RFR at

.186%. Logistic Regression and SVR are within 1.3% range of each other from 8.7-

10%. Linear Regression has the highest model percentage error at 14%.

12

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

6 Conclusions and Recommendation

Given the reverse, iterative approach to finding the best machine learning method, it is

not unexpected to receive the highly accurate results and the linearity of the dirty data

(Crustal + External model). For Classification, the SVC outperformed the CNN due

to the SVC’s and the data’s linear nature. From an approach perspective, and not a

NASA productivity or efficiency needs perspective; a future attempt would take the

Earth's magnetic image, as shown in Fig.4, and map that through a CNN. This approach

more closely aligns to successful CNN attempts with visual images. The test would

be for the ability of CNN to predict changes in the Earth’s magnetic crust based on the

image, which results from raw satellite data.

 For Phase 1 of our analysis, Linear Regression and SVR performed the least

favorably in MAE and RMSE. These results are somewhat surprising given the

linearity of the data. Logistic Regression and RFR have strengths in MAE and RMSE.

RFR performed well across the board based on MAE, MAPE, and RMSE. Following

phases of analyses will determine if RFR or Logistic Regression remain preferable

approaches with dirtier data.

 An adjacent approach is to ‘one-hot encode’ the data and maintain a history of

magnetic data based on the spherical harmonics’ triangulation of the spot on the Earth.

Then, with a sufficient dataset for each spot captured, use that data to predict the change

in magnetism.

 Phase 1’s foundation of regression and classification results create a solid foundation

to find the optimum point of data condition by which machine learning is applied.

7 Ethics

Ethics in data collection, usage and retention are always important. The ethical

considerations for this dataset and this paper are not significant. The Swarm data used

falls under the ESA Data Policy for ERS, Envisat and Earth Explorer missions. The

Policy's goal is to provide access in a nondiscriminatory way and allow the use of all

primary and processed data (up to level 2) for scientific procedures, commercial

practices, or for the public good [11]. Specifically, the ESA Data Policy is to

encourage the following:

• continued Earth science activities;

• encourage technology innovation and instruments to observe the Earth;

• support operational applications and new applications being developed;

• support the private sector to invest in derived products and services;

• support global Earth Observation industry in the ESA Member States.

 Since Swarm is part of the Earth mission, it is covered under the category of the

policy outlining ‘Free dataset,' which includes full, and open, online access at no cost,

abiding by the ESA terms and conditions. This dataset is also one-way, in which no

data is uploaded to the ESA site. There is no private information in the dataset in which

security needs must be taken into consideration. There are no ethical collection issues.

13

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

References

1. Sabaka, T.J. et al.: Extending comprehensive models of the Earths magnetic field with

Ørsted and CHAMP data. Geophysical Journal International. 159, 2, 521–547 (2004).

2. Sabaka, T.J. et al.: CM5, a pre-Swarm comprehensive geomagnetic field model derived

from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data. Geophysical Journal

International. 200, 3, 1596–1626 (2015).

3. Lesur, V. et al.: GRIMM: the GFZ Reference Internal Magnetic Model based on vector

satellite and observatory data. Geophysical Journal International. 173, 2, 382–394 (2008).

4. Lesur, V. et al.: Parent magnetic field models for the IGRF-12GFZ-candidates. Earth,

Planets and Space. 67, 1, (2015).

5. Olsen, N. et al.: LCS-1: a high-resolution global model of the lithospheric magnetic field

derived from CHAMP and Swarm satellite observations. Geophysical Journal International.

211, 3, 1461–1477 (2017).

6. Lithospheric magnetic field,

http://www.esa.int/spaceinvideos/Videos/2017/03/Lithospheric_magnetic_field.

7. Maus, S. et al.: Resolution of direction of oceanic magnetic lineations by the sixth-

generation lithospheric magnetic field model from CHAMP satellite magnetic

measurements. Geochemistry, Geophysics, Geosystems. 9, 7, (2008).

8. Thébault, E. et al.: The satellite along-track analysis in planetary magnetism. Geophysical

Journal International. 188, 3, 891–907 (2011).

9. Kotsiaros, S., Olsen, N.: The geomagnetic field gradient tensor. GEM - International

Journal on Geomathematics. 3, 2, 297–314 (2012).

10. Random Forest vs Logistic Regression: Binary Classification for Heterogeneous Datasets,

K. Kirasich, T. Smith, B. Sadler.

https://scholar.smu.edu/cgi/viewcontent.cgi?article=1041&context=datasciencereview

11. ESA Data Policy for ERS, Envisat and Earth Explorer missions, October 2012.

https://earth.esa.int/c/document_library/get_file?folderId=296006&name=DLFE-3602.pdf

12. United Nations Resolution A/RES/41/65 dated 3 December 1986 on Principles relating to

Remote Sensing of the Earth from Space.

13. Lithographic Magnetic Field. Richard Holm. https://www.liverpool.ac.uk/~holme/lith.html

15. Wikipedia - Lithosphere

https://en.wikipedia.org/wiki/Lithosphere.

15. Wikipedia – Subduction

https://en.wikipedia.org/wiki/Subduction.

16. ESA Earth Online – Magnetic lithosphere detailed.

14

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

https://earth.esa.int/web/guest/news/-/asset_publisher/G2mU/content/magnetic-lithosphere-

detailed;jsessionid=0F5F7E6A634EB99B3912C9EC80BD0534.jvm1?redirect=https%3A%2F

%2Fearth.esa.int%2Fweb%2Fguest%2Fnews%3Bjsessionid%3D0F5F7E6A634EB99B3912C9

EC80BD0534.jvm1%3Fp_p_id%3D101_INSTANCE_G2mU%26p_p_lifecycle%3D0%26p_p

_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-

1%26p_p_col_pos%3D1%26p_p_col_count%3D2%26_101_INSTANCE_G2mU_cur%3D2%

26_101_INSTANCE_G2mU_keywords%3D%26_101_INSTANCE_G2mU_advancedSearch

%3Dfalse%26_101_INSTANCE_G2mU_delta%3D10%26_101_INSTANCE_G2mU_andOper

ator%3Dtrue

17. Thébault, Purucker, Whaler, Langlais, Sabaka : The Magnetic Field of the Earth’s

Lithosphere, Dec 2009.

18. Swarm, https://earth.esa.int/web/sppa/mission-performance/esa-missions/swarm

19. Finlay, C.C., Olsen, N., Kotsiaros, S., Gillet, N. and Toeffner-Clausen, L., (2016) Recent

geomagnetic secular variation from Swarm and ground observatories as estimated in the

CHAOS-6 geomagnetic field model. Earth, Planets, Space, 68, 112, doi: 10.1186/s40623-016-

0486-1

20. Elagin, Andrey. (2018). Comparing Spherical Harmonics Analysis and Machine Learning

Techniques for Double-Beta Decay Identification in a Large Liquid Scintillator Detector.

Zenodo. http://doi.org/10.5281/zenodo.1345691

21. Wojciech Jarosz. Efficient Monte Carlo Methods for Light Transport in Scattering Media.

Ph.D. dissertation, UC San Diego, September 2008.

https://cs.dartmouth.edu/wjarosz/publications/dissertation/appendixB.pdf

22. Leila Cristina C. Bergamasco, Carlos E. Rochitte, and Fátima L. S. Nunes. 2018. 3D

medical objects processing and retrieval using Spherical Harmonics: a case study with

Congestive Heart Failure MRI exams. In Proceedings of ACM SAC Conference, Pau,France,

April 9-13, 2018 (SAC’18), 8 pages. DOI: 10.1145/3167132.3167168

23. Drew J., The Belk Endowment Educational Attainment Data Repository for North Carolina

Public Schools, (2018), GitHub repository, https://github.com/jakemdrew/EducationDataNC

24. Turi Machine Learning Platform User Guide, https://turi.com/learn/userguide/supervised-

learning/random_forest_regression.html.

25. Jj, Jj: MAE and RMSE - Which Metric is Better? – Human in a Machine World – Medium,

https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-better-

e60ac3bde13d.

26. Using Mean Absolute Error to Forecast Accuracy, http://canworksmart.com/using-mean-

absolute-error-forecast-accuracy/.

27. Botchkarev, Alexei. Performance Metrics (Error Measures) in Machine Learning

Regression, Forecasting and Prognostics: Properties and Typology. Sep 2018.

https://arxiv.org/pdf/1809.03006.pdf

15

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

https://www.cs.dartmouth.edu/~wjarosz/
http://www.ucsd.edu/

28. Alvira Swalin.Choosing the Right Metric for Machine Learning Models.

https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-

a99d7d7414e4

29. Kotsiaros, S.: Toward more complete magnetic gradiometry with the Swarm mission. Earth,

Planets and Space. 68, 1, (2016).

Appendix A

1. R Code

R version 3.5.1 (2018-07-02) -- "Feather Spray"

Copyright (C) 2018 The R Foundation for Statistical

Computing

Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain

conditions.

Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help,

or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

> # The header contained extra information. This was

removed using WordPad. The file was originally save as a

.dat file and so was converted to a .txt

> # The file is then read in as tab delimited file into a

dataframe named data1

> setwd("C:/Users/Sheri/Documents/Data Science/Thesis/")

> data1 <- read.delim(file="C:/Users/sheri/Documents/Data

Science/Thesis/CHAOS_preds_SWC_20160101-

20160131_mod.txt",header=FALSE, sep = '')

> cran <- getOption("repos")

> cran["dmlc"] <- "https://apache-mxnet.s3-

accelerate.dualstack.amazonaws.com/R/CRAN/"

> options(repos = cran)

> install.packages("mxnet")

Installing package into ‘C:/Users/sheri/Documents/R/win-

library/3.5’

(as ‘lib’ is unspecified)

16

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

trying URL 'https://apache-mxnet.s3-

accelerate.dualstack.amazonaws.com/R/CRAN/bin/windows/con

trib/3.5/mxnet_1.3.0.zip'

Content type 'application/zip' length 30443134 bytes (29.0

MB)

downloaded 29.0 MB

package ‘mxnet’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in

 C:\Users\sheri\AppData\Local\Temp\Rtmp8mNdR9\downlo

aded_packages

> require("mxnet")

Loading required package: mxnet

> install.packages("mlbench")

Installing package into ‘C:/Users/sheri/Documents/R/win-

library/3.5’

(as ‘lib’ is unspecified)

trying URL

'https://cran.rstudio.com/bin/windows/contrib/3.5/mlbench

_2.1-1.zip'

Content type 'application/zip' length 1058987 bytes (1.0

MB)

downloaded 1.0 MB

package ‘mlbench’ successfully unpacked and MD5 sums

checked

The downloaded binary packages are in

 C:\Users\sheri\AppData\Local\Temp\Rtmp8mNdR9\downlo

aded_packages

> library("mlbench")

Warning message:

package ‘mlbench’ was built under R version 3.5.2

> install.packages("plot3D")

Installing package into ‘C:/Users/sheri/Documents/R/win-

library/3.5’

(as ‘lib’ is unspecified)

trying URL

'https://cran.rstudio.com/bin/windows/contrib/3.5/plot3D_

1.1.1.zip'

Content type 'application/zip' length 2944559 bytes (2.8

MB)

downloaded 2.8 MB

package ‘plot3D’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in

17

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

 C:\Users\sheri\AppData\Local\Temp\Rtmp8mNdR9\downlo

aded_packages

> library("plot3D")

Warning message:

package ‘plot3D’ was built under R version 3.5.2

> # Inspecting the data

> head(data1)

 V1 V2 V3 V4 V5 V6 V7

V8 V9 V10 V11 V12 V13 V14

1 5844 6833.886 162.8708 94.39791 45904.40 1960.22 -

10062.76 45900.66 1958.78 -10066.81 3.73 1.44 4.05 53.51

2 5844 6833.887 162.9339 94.42800 45900.36 1986.93 -

10060.42 45896.68 1985.38 -10064.46 3.68 1.55 4.05 53.52

3 5844 6833.888 162.9970 94.45834 45896.30 2013.66 -

10058.01 45892.67 2012.00 -10062.05 3.63 1.66 4.04 53.53

4 5844 6833.889 163.0602 94.48893 45892.20 2040.43 -

10055.54 45888.63 2038.65 -10059.58 3.56 1.77 4.04 53.54

5 5844 6833.891 163.1233 94.51977 45888.04 2067.22 -

10053.01 45884.55 2065.34 -10057.03 3.50 1.88 4.03 53.55

6 5844 6833.892 163.1864 94.55087 45883.88 2094.04 -

10050.41 45880.46 2092.06 -10054.43 3.42 1.98 4.01 53.56

 V15 V16 V17 V18 V19

1 15.39 -4.41 45957.91 1975.62 -10067.17

2 15.28 -4.42 45953.88 2002.20 -10064.84

3 15.16 -4.43 45949.83 2028.82 -10062.44

4 15.04 -4.44 45945.74 2055.47 -10059.98

5 14.93 -4.45 45941.59 2082.15 -10057.45

6 14.81 -4.46 45937.44 2108.85 -10054.87

> tail(data1)

 V1 V2 V3 V4 V5 V6

V7 V8 V9 V10 V11 V12

2678395 5875 6834.278 170.7456 60.46576 40567.10 -2509.88

-12739.08 40569.44 -2508.29 -12739.39 -2.34 -1.59

2678396 5875 6834.279 170.8068 60.57665 40593.18 -2466.66

-12738.00 40595.49 -2465.03 -12738.28 -2.31 -1.63

2678397 5875 6834.280 170.8679 60.68907 40619.22 -2423.05

-12736.82 40621.50 -2421.38 -12737.08 -2.28 -1.67

2678398 5875 6834.281 170.9291 60.80305 40645.23 -2379.06

-12735.54 40647.48 -2377.35 -12735.79 -2.25 -1.71

2678399 5875 6834.282 170.9902 60.91861 40671.21 -2334.67

-12734.18 40673.43 -2332.92 -12734.40 -2.22 -1.75

2678400 5875 6834.283 171.0512 61.03580 40697.15 -2289.88

-12732.71 40699.34 -2288.09 -12732.91 -2.19 -1.79

 V13 V14 V15 V16 V17 V18 V19

2678395 0.30 33.06 -1.87 -1.96 40600.16 -2511.76 -12741.05

2678396 0.28 33.06 -1.92 -1.98 40626.24 -2468.58 -12739.98

2678397 0.26 33.06 -1.97 -2.00 40652.28 -2425.02 -12738.82

2678398 0.24 33.06 -2.02 -2.02 40678.29 -2381.07 -12737.56

18

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

2678399 0.22 33.06 -2.06 -2.04 40704.27 -2336.73 -12736.22

2678400 0.20 33.06 -2.11 -2.06 40730.22 -2291.99 -12734.77

> summary(data1)

 V1 V2 V3 V4

V5 V6

 Min. :5844 Min. :6814 Min. : 2.648 Min. :-

180.0000 Min. :-48793 Min. :-32958

 1st Qu.:5852 1st Qu.:6820 1st Qu.: 45.169 1st Qu.: -

90.2879 1st Qu.:-36730 1st Qu.:-22016

 Median :5860 Median :6828 Median : 90.163 Median :

-0.1035 Median : 2937 Median :-14929

 Mean :5860 Mean :6826 Mean : 90.104 Mean :

0.2425 Mean : -981 Mean :-14734

 3rd Qu.:5867 3rd Qu.:6833 3rd Qu.:135.064 3rd Qu.:

89.8413 3rd Qu.: 29694 3rd Qu.: -8611

 Max. :5875 Max. :6835 Max. :177.352 Max. :

179.9995 Max. : 52931 Max. : 11531

 V7 V8 V9 V10

V11

 Min. :-12785.80 Min. :-48792 Min. :-32957 Min.

:-12786.330 Min. :-15.34000

 1st Qu.: -2939.43 1st Qu.:-36730 1st Qu.:-22016 1st

Qu.: -2939.580 1st Qu.: -1.01000

 Median : 90.12 Median : 2936 Median :-14929

Median : 89.770 Median : 0.01000

 Mean : 1.64 Mean : -981 Mean :-14734 Mean

: 1.638 Mean : 0.01122

 3rd Qu.: 3166.59 3rd Qu.: 29695 3rd Qu.: -8612 3rd

Qu.: 3166.815 3rd Qu.: 1.07000

 Max. : 12282.23 Max. : 52934 Max. : 11528 Max.

: 12281.600 Max. : 12.67000

 V12 V13 V14

V15 V16

 Min. :-7.73000 Min. :-10.620000 Min. :-55.1600

Min. :-12.39 Min. :-27.0000

 1st Qu.:-0.69000 1st Qu.: -0.670000 1st Qu.:-18.3200

1st Qu.: 8.36 1st Qu.: -6.9925

 Median : 0.07000 Median : -0.020000 Median : 0.0900

Median : 14.54 Median : 0.2300

 Mean : 0.07041 Mean : 0.001557 Mean : -0.2081

Mean : 17.07 Mean : -0.1829

 3rd Qu.: 0.85000 3rd Qu.: 0.610000 3rd Qu.: 17.8400

3rd Qu.: 22.39 3rd Qu.: 6.2500

 Max. :11.38000 Max. : 7.830000 Max. : 54.9600

Max. :114.08 Max. : 24.6300

 V17 V18 V19

 Min. :-48824.1 Min. :-32952 Min. :-12793.780

 1st Qu.:-36749.6 1st Qu.:-21992 1st Qu.: -2938.403

19

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

 Median : 2937.3 Median :-14912 Median : 91.105

 Mean : -981.2 Mean :-14716 Mean : 1.457

 3rd Qu.: 29713.3 3rd Qu.: -8597 3rd Qu.: 3164.323

 Max. : 52963.3 Max. : 11540 Max. : 12281.430

> ncol(data1)

[1] 19

> nrow(data1)

[1] 2678400

> any(is.na(data1))

[1] FALSE

> # So the columns represent the measurements from the five

types of magnetometers

> # To do: Follow up with Stavros on which r, theta, phi

group identifies with which magnetometer so we can label

the columns appropriately

> data_header <-

c("t","r","theta","phi","B_r1","B_theta1","B_phi1","B_r2"

,"B_theta2","B_phi2","B_r3","B_theta3","B_phi3","B_r4","B

_theta4","B_phi4","B_r5","B_theta5","B_phi5")

> colnames(data1) <- data_header

> head(data1)

 t r theta phi B_r1 B_theta1 B_phi1

B_r2 B_theta2 B_phi2 B_r3 B_theta3 B_phi3

1 5844 6833.886 162.8708 94.39791 45904.40 1960.22 -

10062.76 45900.66 1958.78 -10066.81 3.73 1.44 4.05

2 5844 6833.887 162.9339 94.42800 45900.36 1986.93 -

10060.42 45896.68 1985.38 -10064.46 3.68 1.55 4.05

3 5844 6833.888 162.9970 94.45834 45896.30 2013.66 -

10058.01 45892.67 2012.00 -10062.05 3.63 1.66 4.04

4 5844 6833.889 163.0602 94.48893 45892.20 2040.43 -

10055.54 45888.63 2038.65 -10059.58 3.56 1.77 4.04

5 5844 6833.891 163.1233 94.51977 45888.04 2067.22 -

10053.01 45884.55 2065.34 -10057.03 3.50 1.88 4.03

6 5844 6833.892 163.1864 94.55087 45883.88 2094.04 -

10050.41 45880.46 2092.06 -10054.43 3.42 1.98 4.01

 B_r4 B_theta4 B_phi4 B_r5 B_theta5 B_phi5

1 53.51 15.39 -4.41 45957.91 1975.62 -10067.17

2 53.52 15.28 -4.42 45953.88 2002.20 -10064.84

3 53.53 15.16 -4.43 45949.83 2028.82 -10062.44

4 53.54 15.04 -4.44 45945.74 2055.47 -10059.98

5 53.55 14.93 -4.45 45941.59 2082.15 -10057.45

6 53.56 14.81 -4.46 45937.44 2108.85 -10054.87

> # Convolutional Neural Network

> # Create training and test datasets

> # source code:

https://stackoverflow.com/questions/17200114/how-to-

split-data-into-training-testing-sets-using-sample-

function

20

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

> ## 75% of the sample size

> smp_size <- floor(0.75 * nrow(data1))

> ## set the seed to make your partition reproducible

> set.seed(123)

> train_ind <- sample(seq_len(nrow(data1)), size =

smp_size)

> train <- data1[train_ind,]

> test <- data1[-train_ind,]

> summary(train)

 t r theta phi

B_r1 B_theta1

 Min. :5844 Min. :6814 Min. : 2.648 Min. :-

179.99999 Min. :-48793 Min. :-32958

 1st Qu.:5852 1st Qu.:6820 1st Qu.: 45.096 1st Qu.: -

90.24108 1st Qu.:-36775 1st Qu.:-22013

 Median :5860 Median :6828 Median : 90.098 Median :

-0.06814 Median : 2888 Median :-14928

 Mean :5860 Mean :6826 Mean : 90.053 Mean :

0.25613 Mean : -1011 Mean :-14733

 3rd Qu.:5867 3rd Qu.:6833 3rd Qu.:135.019 3rd Qu.:

89.81388 3rd Qu.: 29653 3rd Qu.: -8612

 Max. :5875 Max. :6835 Max. :177.352 Max. :

179.99950 Max. : 52931 Max. : 11531

 B_phi1 B_r2 B_theta2

B_phi2 B_r3

 Min. :-12785.80 Min. :-48792 Min. :-32957 Min.

:-12786.330 Min. :-15.34000

 1st Qu.: -2941.46 1st Qu.:-36775 1st Qu.:-22013 1st

Qu.: -2941.460 1st Qu.: -1.00000

 Median : 89.31 Median : 2888 Median :-14927

Median : 89.020 Median : 0.02000

 Mean : -0.29 Mean : -1011 Mean :-14733 Mean

: -0.291 Mean : 0.01223

 3rd Qu.: 3161.29 3rd Qu.: 29654 3rd Qu.: -8612 3rd

Qu.: 3161.110 3rd Qu.: 1.07000

 Max. : 12282.23 Max. : 52934 Max. : 11528 Max.

: 12281.600 Max. : 12.67000

 B_theta3 B_phi3 B_r4

B_theta4 B_phi4

 Min. :-7.72000 Min. :-10.620000 Min. :-55.1600

Min. :-12.39 Min. :-27.0000

 1st Qu.:-0.69000 1st Qu.: -0.670000 1st Qu.:-18.3500

1st Qu.: 8.36 1st Qu.: -6.9900

 Median : 0.07000 Median : -0.020000 Median : 0.0600

Median : 14.54 Median : 0.2400

 Mean : 0.07092 Mean : 0.001272 Mean : -0.2241

Mean : 17.07 Mean : -0.1766

21

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

 3rd Qu.: 0.85000 3rd Qu.: 0.610000 3rd Qu.: 17.8300

3rd Qu.: 22.38 3rd Qu.: 6.2500

 Max. :11.38000 Max. : 7.830000 Max. : 54.9600

Max. :114.08 Max. : 24.6300

 B_r5 B_theta5 B_phi5

 Min. :-48824 Min. :-32952 Min. :-12793.780

 1st Qu.:-36794 1st Qu.:-21989 1st Qu.: -2940.325

 Median : 2888 Median :-14911 Median : 90.330

 Mean : -1011 Mean :-14716 Mean : -0.466

 3rd Qu.: 29672 3rd Qu.: -8598 3rd Qu.: 3158.400

 Max. : 52963 Max. : 11540 Max. : 12281.430

> summary(test)

 t r theta phi

B_r1 B_theta1

 Min. :5844 Min. :6814 Min. : 2.648 Min. :-

179.9996 Min. :-48792.1 Min. :-32958

 1st Qu.:5852 1st Qu.:6820 1st Qu.: 45.383 1st Qu.: -

90.4274 1st Qu.:-36595.9 1st Qu.:-22025

 Median :5859 Median :6828 Median : 90.365 Median :

-0.1717 Median : 3091.0 Median :-14933

 Mean :5859 Mean :6826 Mean : 90.255 Mean :

0.2018 Mean : -891.5 Mean :-14736

 3rd Qu.:5867 3rd Qu.:6833 3rd Qu.:135.201 3rd Qu.:

89.9404 3rd Qu.: 29811.1 3rd Qu.: -8609

 Max. :5875 Max. :6835 Max. :177.352 Max. :

179.9989 Max. : 52931.3 Max. : 11531

 B_phi1 B_r2 B_theta2

B_phi2 B_r3

 Min. :-12785.780 Min. :-48791.3 Min. :-32957

Min. :-12786.300 Min. :-15.310000

 1st Qu.: -2934.210 1st Qu.:-36595.6 1st Qu.:-22026

1st Qu.: -2934.445 1st Qu.: -1.010000

 Median : 92.695 Median : 3090.9 Median :-14932

Median : 92.140 Median : 0.010000

 Mean : 7.429 Mean : -891.5 Mean :-14736

Mean : 7.427 Mean : 0.008176

 3rd Qu.: 3183.505 3rd Qu.: 29811.2 3rd Qu.: -8609

3rd Qu.: 3183.633 3rd Qu.: 1.070000

 Max. : 12281.690 Max. : 52933.8 Max. : 11528

Max. : 12281.060 Max. : 12.650000

 B_theta3 B_phi3 B_r4

B_theta4 B_phi4

 Min. :-7.7300 Min. :-10.610000 Min. :-55.1600

Min. :-12.39 Min. :-27.0000

 1st Qu.:-0.6900 1st Qu.: -0.670000 1st Qu.:-18.2425

1st Qu.: 8.37 1st Qu.: -7.0200

 Median : 0.0700 Median : -0.010000 Median : 0.1800

Median : 14.55 Median : 0.1900

22

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

 Mean : 0.0689 Mean : 0.002412 Mean : -0.1602

Mean : 17.08 Mean : -0.2018

 3rd Qu.: 0.8500 3rd Qu.: 0.610000 3rd Qu.: 17.8900

3rd Qu.: 22.41 3rd Qu.: 6.2500

 Max. :11.3600 Max. : 7.820000 Max. : 54.9600

Max. :114.08 Max. : 24.6300

 B_r5 B_theta5 B_phi5

 Min. :-48824.1 Min. :-32952 Min. :-12793.660

 1st Qu.:-36616.1 1st Qu.:-22002 1st Qu.: -2933.012

 Median : 3091.3 Median :-14916 Median : 93.355

 Mean : -891.7 Mean :-14719 Mean : 7.227

 3rd Qu.: 29831.0 3rd Qu.: -8595 3rd Qu.: 3180.102

 Max. : 52963.2 Max. : 11540 Max. : 12278.980

> # removing negative values from the coordinates

> # Add the absolute value of the lowest x and y to shift

the origin to the bottom left corner

> i <- min(train$phi)

> j <- min(train$theta)

> train$phi <- train$phi + abs(i)

> train$theta <- train$theta + abs(j)

> # Creating initial plots

> # Using the B_r value to provide more variation in the

plot and show more detail

> core_2D <- scatter2D(train$phi, train$theta, colvar =

train$B_r2, col = ramp.col(c("blue", "yellow", "red")))

> crust_2D <- scatter2D(train$phi, train$theta, colvar =

train$B_r3, col = ramp.col(c("blue", "yellow", "red")))

> ext_2D <- scatter2D(train$phi, train$theta, colvar =

train$B_r4,col = ramp.col(c("blue", "yellow", "red")))

> # Separating the crustal field

> crust_train <-

train[,c("t","r","theta","phi","B_r3","B_theta3","B_phi3"

)]

> crust_train$mag <- sqrt(crust_train$B_r3 *

crust_train$B_r3 + crust_train$B_theta3 *

crust_train$B_theta3 + crust_train$B_phi3 *

crust_train$B_phi3)

> crust_train$label <- 1

> c_train <- crust_train[,c("phi", "theta", "mag",

"label")]

> head(c_train)

 phi theta mag label

770248 101.7547 137.00533 0.7772387 1

2111396 104.8607 177.28091 2.9830354 1

1095403 172.9893 169.54833 2.6161231 1

2365072 272.8674 121.94003 5.0093313 1

2518944 165.6680 29.88937 5.2148058 1

122019 114.2449 68.62554 1.5667163 1

23

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

> nrow(c_train)

[1] 2008800

> crust_test <-

test[,c("t","r","theta","phi","B_r3","B_theta3","B_phi3")

]

> crust_test$mag <- sqrt(crust_test$B_r3 * crust_test$B_r3

+ crust_test$B_theta3 * crust_test$B_theta3 +

crust_test$B_phi3 * crust_test$B_phi3)

> crust_test$label <- 1

> c_test <- crust_test[,c("phi", "theta", "mag", "label")]

> head(c_test)

 phi theta mag label

10 94.67786 163.4388 5.538447 1

16 94.87651 163.8172 5.320357 1

18 94.94501 163.9433 5.227332 1

19 94.97970 164.0063 5.181477 1

29 95.34367 164.6362 4.650387 1

32 95.45927 164.8250 4.489822 1

> nrow(c_test)

[1] 669600

> # Separating the external field

> external_train <-

train[,c("t","r","theta","phi","B_r4","B_theta4","B_phi4"

)]

> external_train$mag <- sqrt(external_train$B_r4 *

external_train$B_r4 + external_train$B_theta4 *

external_train$B_theta4 + external_train$B_phi4 *

external_train$B_phi4)

> external_train$label <- 0

> e_train <- external_train[,c("phi", "theta", "mag",

"label")]

> head(e_train)

 phi theta mag label

770248 101.7547 137.00533 17.46832 0

2111396 104.8607 177.28091 26.42282 0

1095403 172.9893 169.54833 29.87461 0

2365072 272.8674 121.94003 24.36782 0

2518944 165.6680 29.88937 22.51942 0

122019 114.2449 68.62554 30.99013 0

> nrow(e_train)

[1] 2008800

> external_test <-

test[,c("t","r","theta","phi","B_r4","B_theta4","B_phi4")

]

> external_test$mag <- sqrt(external_test$B_r4 *

external_test$B_r4 + external_test$B_theta4 *

external_test$B_theta4 + external_test$B_phi4 *

external_test$B_phi4)

24

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

> external_test$label <- 0

> e_test <- external_test[,c("phi", "theta", "mag",

"label")]

> head(e_test)

 phi theta mag label

10 94.67786 163.4388 55.66985 0

16 94.87651 163.8172 55.54672 0

18 94.94501 163.9433 55.51164 0

19 94.97970 164.0063 55.48357 0

29 95.34367 164.6362 55.31372 0

32 95.45927 164.8250 55.26211 0

> nrow(e_test)

[1] 669600

> # Combining the external and crustal field to provide a

realistic dataset in which to search for the crustal field

> # Also normalizing the data for more clarity in the CNN

run

> combined_train <- rbind(c_train, e_train)

> com_train_scaled <- combined_train

> com_train_scaled$mag <- scale(combined_train$mag)

> head(com_train_scaled)

 phi theta mag label

770248 101.7547 137.00533 -0.9489097 1

2111396 104.8607 177.28091 -0.8035846 1

1095403 172.9893 169.54833 -0.8277580 1

2365072 272.8674 121.94003 -0.6700856 1

2518944 165.6680 29.88937 -0.6565482 1

122019 114.2449 68.62554 -0.8968963 1

> nrow(com_train_scaled)

[1] 4017600

> combined_test <- rbind(c_test, e_test)

> com_test_scaled <- combined_test

> com_test_scaled$mag <- scale(combined_test$mag)

> head(com_test_scaled)

 phi theta mag label

10 94.67786 163.4388 -0.6353813 1

16 94.87651 163.8172 -0.6497494 1

18 94.94501 163.9433 -0.6558781 1

19 94.97970 164.0063 -0.6588991 1

29 95.34367 164.6362 -0.6938882 1

32 95.45927 164.8250 -0.7044665 1

> nrow(com_test_scaled)

[1] 1339200

> dim(com_train_scaled)

[1] 4017600 4

> train.x <- data.matrix(com_train_scaled[,1:3])

> train.y <- com_train_scaled[,4]

> mx.set.seed(0)

25

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

> model <- mx.mlp(train.x, train.y, hidden_node=5,

out_node=2, out_activation="softmax",

+ num.round=5, array.batch.size=15,

learning.rate=0.07, momentum=0.9,

+ eval.metric=mx.metric.accuracy,

array.layout = "rowmajor")

Start training with 1 devices

[1] Train-accuracy=0.499977364318179

[2] Train-accuracy=0.499971639507076

[3] Train-accuracy=0.499971639507076

[4] Train-accuracy=0.499971639507076

[5] Train-accuracy=0.499971639507076

> test.x <- data.matrix(combined_test[,1:3])

> test.y <- combined_test[,4]

> preds = predict(model, test.x)

Warning message:

In mx.model.select.layout.predict(X, model) :

 Auto detect layout of input matrix, use rowmajor..

> sqrt(mean((preds-test.y)^2))

[1] 0.54394

> pred.label = max.col(t(preds))-1

> table(pred.label, test.y)

 test.y

pred.label 0 1

 0 521678 518725

 1 147922 150875

2. Python Code

coding: utf-8

Code from Dr Jake Drew, SMU

https://github.com/jakemdrew/EducationDataNC/blob/master/

2017/Models/2017GraduationRates4yr.ipynb

#and SMU Data Mining Class

Data Setup - r, theta, phi, magnitude

In[2]:

import pandas as pd

import numpy as np

df_trainSM = pd.read_csv('/Users/laurabishop/Documents/R

Repositories/Capstone Magnetic Field/combined_all_SM.csv')

26

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

df_trainSM.columns = ['Unnamed','theta','phi', 'mag',

'label']

df_trainSM = df_trainSM.drop('Unnamed', 1)

print("Training data for small data frame")

print ('Size of the dataset:', df_trainSM.shape)

print ('Information about dataset: ', df_trainSM.info())

print ('Head: ', df_trainSM.head())

Data Exploration - r, theta, phi, magnitude

In[2]:

import matplotlib.pyplot as plt

plt.plot(df_trainSM)

plt.show()

In[3]:

plt.plot(df_trainSM)

plt.savefig('rThetaPhiMagPLOT.pdf',

orientation='portrait', papertype='letter')

plt.close()

In[4]:

#From SMU Data Mining Class

import seaborn as sns

import matplotlib.pyplot as plt

#sns.pairplot(df_testSM, vars=['B_r3',

'B_theta3',

'B_phi3'], hue='B_r3')

sns.pairplot(df_trainSM)

#plt.title ('Pair Plot for External Training Split')

plt.show()

In[5]:

sns.pairplot(df_trainSM)

plt.savefig('rThetaPhiMagPAIRPLOT.pdf',

orientation='portrait', papertype='letter')

plt.close()

In[22]:

27

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

#From SMU Data Mining Class

#theta & phi

import matplotlib.pyplot as plt

N=50

#mag & phi

y = np.array (df_trainSM.mag)

x = np.array (df_trainSM.phi)

area = np.pi * (3 * np.random.rand(N))**2 # 0 to 3 point

radii

plt.scatter(x, y, color='g', s=5, linewidths=0, alpha=0.5)

plt.title('Scatter for mag compared to phi')

plt.show()

#mag and theta

y = np.array (df_trainSM.mag)

x = np.array (df_trainSM.theta)

area = np.pi * (3 * np.random.rand(N))**2 # 0 to 3 point

radii

plt.scatter(x, y, color='r', s=5, linewidths=0, alpha=0.5)

plt.title('Scatter for mag compared to theta')

plt.show()

In[5]:

#From SMU Data Mining Class

#theta & phi

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

N=50

x = []

y = []

for i in range(len(df_trainSM)) :

 if df_trainSM.label[i] == 0:

 x.append(i)

 else: y.append(i)

 for j in range (13379,13405):

 x.append(j) == np.nan

df = pd.DataFrame({'x':x, 'y':y})

df.columns = ['External', 'Crustal']

df.plot(kind='scatter',x='External',y='Crustal',

color='red')

28

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

plt.show()

plt.scatter(x, y, color='g', s=5, linewidths=0, alpha=0.5)

plt.title('Scatter Crustal Field Data v External Field

Data')

plt.xlabel("External Field Data (Noise) - Number of Rows")

plt.ylabel("Crustal Field Data - Number of Rows")

plt.savefig('PLOTExternalCrustal.pdf',

orientation='portrait', papertype='letter')

plt.close()

plt.show()

In[56]:

print (np.shape(x))

print (np.shape(y))

print (type(x))

#for i in range(len(x)) :

if x[i] == 0 or x[i] == 1:

print("hi")

else:

print (i)

 #x[i] == np.nan

print (np.shape(x))

Create Linear Regression Variables

In[6]:

create x explanatory and y response variables for

regression DATAFRAME

#Y_bt3 = df_trainSM['B_theta3']

#Y_BP3 = df_trainSM['B_phi3']

Ylabel = df_trainSM['label']

if 'label' in df_trainSM:

 yMagVal = df_trainSM['label'].values # get the values

we want

#del df_trainSM['label'] # get rid of the class label

 X = df_trainSM.values # use everything else to predict!

#already done in if statement above

X_Comb = df_trainSM.drop('label', axis=1)

Y = Ylabel

#inspect data

X_Comb.info()

In[]:

29

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

X_Comb

PREPROCESSING

In[7]:

###PREPROCESSING

from sklearn import preprocessing

from decimal import Decimal

X_CombScale = preprocessing.scale(X_Comb)

min_max_scaler = preprocessing.MinMaxScaler()

np_scaled = min_max_scaler.fit_transform(X_CombScale)

X_CombPre = pd.DataFrame(X_CombScale)

X_CombPre.columns = ['theta','phi', 'mag']

X_CombPre['phi'] = round (X_CombPre['phi'], 2)

X_CombPre['theta'] = round (X_CombPre['theta'], 2)

X_CombPre['mag'] = round (X_CombPre['mag'], 2)

X_CombPre

Split Training Data

In[8]:

#Divide data into test and training splits

from sklearn.model_selection import ShuffleSplit

cv = ShuffleSplit(n_splits=5, test_size=0.20,

random_state=0)

DataFrame to Store Regression Results

In[9]:

colList = ['MAE','MAPE','RMSE']

dfResult = pd.DataFrame(columns= colList)

dfResult

4.3 Machine Learning -- map to the Capstone paper

section.

This paper examines five (5) machine learning approaches

to see which method best

predicts the data useful for the crustal data model. The

approach taken is inverse data analysis. Instead of

starting

at the beginning with dirtiest data straight from the

satellite, struggling with cleaning and clustering,

30

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

and wondering if

errors or challenges are due to the premise or a challenge

in the data; we start with clean known to work data (crustal

model) that is

mixed with other external model data to create first

phase 'dirty data set'. If the crustal model data can be

successfully predicted amongst the external model data,

success is achieved at Phase 1. The next step is to use

the data set in a dirtier, earlier revision from the

satellite. The

number of backward iterations is not known at this time,

but estimated to be at least four (4) will be required to

confidently know this approach is statistically

successful and useable by NASA Goddard.

Additionally, this paper does not delve into the fuzzy

barrier between machine learning and

statistical learning. Given all learning is done from

the data, the approaches are classified as machine

learning.

For each approach the measure of a good machine learning

technique is its

error rate. In order to evaluate the approaches, three

(3) error measures are used to evaluate the distance

between estimates and predictions:

1. Mean Absolute Error (MAE) - Smaller error is better.

Less sensitive to outliers and easy to use.

2. Root mean Squre Error (RMSE) - Shows absolute fit of

the model.

3. Mean Absolute Percentage Error (MAPE) - Small

relative error and shows precision of the models.

<footnote: approach and code from Code from Dr Jake Drew,

Southern Methodist University

https://github.com/jakemdrew/EducationDataNC/blob/master/

2017/Models/2017GraduationRates4yr.ipynb >

The model analysis code use was built by Dr. Jacob Drew

of Southern Methodist University and his work for the State

of North Carolina Education. <footnote: Ibid.>

The model analysis code builds regression models that are

evaluated using cross validation and a random seed. This

is accomplished using parameters of Python's

sklearn.model_selection's cross_validate function, which

performs the cross validation for

regression estimators. The random seed ensures that all

regression

estimators are tested on

31

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

the same randomly selected data rows for each cross

validation fold. Drew created custom scorers for MAE,

RMSE, and MAPE using the three

chosen mean error scores. Thus all three scores are

calcualted using a single call

to cross_validate(). All of this functionality lies in

a custom function 'EvaluateRegressionEstimator()', which

allows multiple regression models to be tested using the

same test / train cv data and produces the

evaluation scores in a consistent manner for each model.

<footnote: Ibid>

For these approaches, a sample size of the 2.6 million

SWARM satellite data was used totalling 26,784 rows and

five (5) folds. The training set is 21,427 rows and test

set is 5,357 rows.

Reference:

Drew J., The Belk Endowment Educational Attainment Data

Repository for North Carolina Public Schools, (2018),

GitHub repository,

https://github.com/jakemdrew/EducationDataNC

https://www.quora.com/Why-we-use-Root-mean-square-

error-RMSE-Mean-absolute-and-mean-absolute-percent-

errors-for-forecasting-time-series-models

MAPE.

https://en.wikipedia.org/wiki/Mean_absolute_percentage_er

ror

MAE. https://en.wikipedia.org/wiki/Mean_absolute_error

RMSE. https://www.theanalysisfactor.com/assessing-the-

fit-of-regression-models/

In[10]:

Dr Jake Drew code SMU

#Use mean absolute error (MAE) to score the regression

models created

#(the scale of MAE is identical to the response variable)

from sklearn.metrics import mean_absolute_error,

make_scorer, mean_squared_error

#Function for Root mean squared error

#https://stackoverflow.com/questions/17197492/root-mean-

square-error-in-python

32

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

def rmse(y_actual, y_predicted):

 return np.sqrt(mean_squared_error(y_actual,

y_predicted))

#Function for Mean Absolute Percentage Error (MAPE) -

Untested

#Adapted from -

https://stackoverflow.com/questions/42250958/how-to-

optimize-mape-code-in-python

def mape(y_actual, y_predicted):

 mask = y_actual != 0

 return (np.fabs(y_actual -

y_predicted)/y_actual)[mask].mean() * 100

#Create scorers for rmse and mape functions

mae_scorer = make_scorer(score_func=mean_absolute_error,

greater_is_better=False)

rmse_scorer = make_scorer(score_func=rmse,

greater_is_better=False)

mape_scorer = make_scorer(score_func=mape,

greater_is_better=False)

#Make scorer array to pass into cross_validate() function

for producing mutiple scores for each cv fold.

errorScoring = {'MAE': mae_scorer,

 'RMSE': rmse_scorer,

 'MAPE': mape_scorer

 }

In[11]:

from sklearn.model_selection import cross_validate

def EvaluateRegressionEstimator(regEstimator, X, y, cv):

 scores = cross_validate(regEstimator, X, y,

scoring=errorScoring, cv=cv, return_train_score=True)

 #cross val score sign-flips the outputs of MAE

 https://github.com/scikit-learn/scikit-

learn/issues/2439

 scores['test_MAE'] = scores['test_MAE'] * -1

 scores['test_MAPE'] = scores['test_MAPE'] * -1

 scores['test_RMSE'] = scores['test_RMSE'] * -1

 #print mean MAE for all folds

 maeAvg = scores['test_MAE'].mean()

 print_str = "The average MAE for all cv folds is: \t\t\t

{maeAvg:.5}"

 print(print_str.format(maeAvg=maeAvg))

 #print mean test_MAPE for all folds

33

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

 scores['test_MAPE'] = scores['test_MAPE']

 mape_avg = scores['test_MAPE'].mean()

 print_str = "The average MAE percentage (MAPE) for all

cv folds is: \t {mape_avg:.5}"

 print(print_str.format(mape_avg=mape_avg))

 #print mean MAE for all folds

 RMSEavg = scores['test_RMSE'].mean()

 print_str = "The average RMSE for all cv folds is:

\t\t\t {RMSEavg:.5}"

 print(print_str.format(RMSEavg=RMSEavg))

print('**

*******')

 print('Cross Validation Fold Mean Error Scores')

 scoresResults = pd.DataFrame()

 scoresResults['MAE'] = scores['test_MAE']

 scoresResults['MAPE'] = scores['test_MAPE']

 scoresResults['RMSE'] = scores['test_RMSE']

 return scoresResults

Creates the comparison dataframe for the different

methods.

In[12]:

#this is to gather RMSE MAPE MAE to put into a table that

shows the result based on approach.

#The goal is to make comparison easier

def ERE(regEstimator, X, y, cv):

 scores = cross_validate(regEstimator, X, y,

scoring=errorScoring, cv=cv, return_train_score=True)

 #cross val score sign-flips the outputs of MAE

 # https://github.com/scikit-learn/scikit-

learn/issues/2439

 scores['test_MAE'] = scores['test_MAE'] * -1

 scores['test_MAPE'] = scores['test_MAPE'] * -1

 scores['test_RMSE'] = scores['test_RMSE'] * -1

 #print mean MAE for all folds

 maeAvg = scores['test_MAE'].mean()

 #print_str = "The average MAE for all cv folds is:

\t\t\t {maeAvg:.5}"

 #print(print_str.format(maeAvg=maeAvg))

 #print mean test_MAPE for all folds

 scores['test_MAPE'] = scores['test_MAPE']

 mape_avg = scores['test_MAPE'].mean()

34

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

 #print_str = "The average MAE percentage (MAPE) for all

cv folds is: \t {mape_avg:.5}"

 #print(print_str.format(mape_avg=mape_avg))

 #print mean MAE for all folds

 RMSEavg = scores['test_RMSE'].mean()

 #print_str = "The average RMSE for all cv folds is:

\t\t\t {RMSEavg:.5}"

 #print(print_str.format(RMSEavg=RMSEavg))

 rezReturn = [maeAvg, mape_avg, RMSEavg]

 return rezReturn

Creates Predictor Class for prediction

In[13]:

#Make new estimator compatible for use with GridSearchCV()

and cross_validate()

- Cap predict function for LinearRegression between 0

and 100

- See: Roll your own estimator links above for details.

from sklearn.base import BaseEstimator, RegressorMixin

from sklearn.linear_model import LinearRegression

class CappedLinearRegression(LinearRegression):

 def predict(self, X):

 return np.clip(super(CappedLinearRegression,

self).predict(X), 0, 100)

Regression Model Evaluation

The same regression model function was used to evaluate

each approach outside of CNN. A five (5) fold cross

validations is used, along with passing the three (3) mean

error scores into the cross validation in one (1) call.

GridSearchCV is used to "exhaustively" search for the

best parameters used in the regression methods for the four

(4) non-CNN regression approaches. GridSearchCV is passed

a regression alogrithm (one of the 4), a parameter grid

based on the regression, and number of cross validation

folds. Using GridSearchCV improves the accuracy of nested

cross validation, thereby improving the accuracy of the

model prediction.

Reference:

35

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

Drew J., The Belk Endowment Educational Attainment Data

Repository for North Carolina Public Schools, (2018),

GitHub repository,

https://github.com/jakemdrew/EducationDataNC

https://scikit-

learn.org/stable/modules/grid_search.html

https://medium.com/all-things-ai/in-depth-parameter-

tuning-for-svc-758215394769

Baseline Linear Regression

Linear Regression models the behavior between dependent

response (label of 'in crustal model' - 1 or not - 0) and

explanatory variables of 'theta', 'phi' and 'mag'

(magnitude). In this multi-linear regression, the value is

capped between 0 and 100. Two options are run: 1) normalize

with fit_intercept set to True; and 2) no normalization

when fit_intercept set to False.

In[16]:

#Create a Linear Regression object and perform a grid

search to find the best parameters

linreg = CappedLinearRegression()

parameters = {'normalize':(True,False),

'fit_intercept':(True,False)}

#Create a grid search object using the

from sklearn.model_selection import GridSearchCV

regGridSearch = GridSearchCV(estimator=linreg

 , verbose=1 # low verbosity

 , param_grid=parameters

 , cv=cv

 scoring=mae_scorer)

#Perform hyperparameter search to find the best combination

of parameters for our data

regGridSearch.fit(X_CombPre, Y)

In[17]:

#Print the parameterization of the best estimator

36

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

regGridSearch.best_estimator_

In[18]:

#Create CappedLinearRegression predictions between 0 and

100% using the best parameters for our Linear Regression

object

regEstimator = regGridSearch.best_estimator_

#Evaluate the regression estimator above using our pre-

defined cross validation and scoring metrics.

EvaluateRegressionEstimator(regEstimator, X_CombPre, Y,

cv)

In[19]:

rezult = ERE (regEstimator, X_CombPre, Y, cv)

dfRez = pd.DataFrame(columns=colList)

dfRez.loc['Baseline Linear Resgression CV', ['MAE',

'MAPE', 'RMSE']] = rezult

dfResult = dfResult.append(dfRez)

dfResult

Support Vector Approach

Support Vector Regression

Support Vectors determine the distance of the data point

from the boundary or hyper plane. The error is the

tolerance or margin of distance from the hyper plane.

Wider margins between the data points indicate better

classifiers. Support Vector is good for use on many

feature and low noise data sets. While the data being

modeled does not have many features, it is fairly low in

noise for Phase 1. By keeping Support Vector in the

regression comparison, a baseline is being created for

upcoming Phases where the data is not as clean and orderly

as in Phase 1.

The 'kernel' parameter looks at both linear and non-

linear hyper planes. For the non-linear, 'rbf', the gamma

is set at a default of '1/number of columns in the data

set, which is three(3)' and 0.1. The penalty parameter 'C'

37

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

is the cost or the error tolerance. Too high a 'C' value

can lead to overfitting. GridSearchCV is used to optimize

these hyper parameters for the SVR.

Reference:

https://medium.com/all-things-ai/in-depth-parameter-

tuning-for-svc-758215394769

https://medium.com/coinmonks/support-vector-regression-

or-svr-8eb3acf6d0ff

https://medium.com/analytics-vidhya/comprehensive-

support-vector-machines-guide-using-illusion-to-solve-

reality-ad3136d8f877

In[20]:

#Create a Linear regression object and perform a grid

search to find the best parameters

from sklearn.svm import SVR

reg = SVR()

#Set up SVR parameters to test

costs = [0.001, 0.1]

defGamma = 1 / X_CombPre.shape[1] #This is the default

value for the gamma parameter

gammas = [defGamma, 0.1]

kernels = ['rbf','linear']

parameters = {'C': costs, 'gamma' : gammas, 'kernel':

kernels}

#Create a grid search object using the parameters above

from sklearn.model_selection import GridSearchCV

regGridSearch = GridSearchCV(estimator=reg

 , n_jobs=-1 # jobs to run in parallel

 , verbose=10 # low verbosity

 , param_grid=parameters

 , cv=cv # 5

 , scoring=mae_scorer)

#Perform hyperparameter search to find the best combination

of parameters for our data

get_ipython().run_line_magic('timeit',

'regGridSearch.fit(X_CombPre, Y)')

In[21]:

38

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

#Display the best estimator parameters

regGridSearch.best_estimator_

In[22]:

from sklearn.svm import SVR

#Create a regression estimator with best parameters for

cross validation

regEstimator = SVR(C=0.001, cache_size=500, coef0=0.0,

degree=3, epsilon=0.1,

 kernel='rbf', max_iter=-1, shrinking=True,

tol=0.001, verbose=False)

#Evaluate the regression estimator above using our pre-

defined cross validation and scoring metrics.

EvaluateRegressionEstimator(regEstimator, X_CombPre, Y,

cv)

In[23]:

rezult = ERE (regEstimator, X_CombPre, Y, cv)

dfRez = pd.DataFrame(columns=colList)

dfRez.loc['Support Vector Regression', ['MAE', 'MAPE',

'RMSE']] = rezult

dfRez

dfResult = dfResult.append(dfRez)

dfResult

In[24]:

regEstimator = SVR(C=0.001, cache_size=500, coef0=0.0,

degree=3, epsilon=0.1,

 kernel='rbf', max_iter=-1, shrinking=True,

tol=0.001, verbose=False)

regEstimator.fit(X_CombPre, Y)

yhat = regEstimator.predict(X_CombPre)

print("Yhat Max: ", yhat.max())

Support Vector Machine

39

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

The Support Vector Machine's binary classification is

important for determining the accuracy of pulling out the

crustal model data from the external model data. While not

in the table, the Support Vector Classification (SVC) shown

below has an accuracy of 99%. The confusion matrix shows

49.9% predict accurately when a data row is not in crustal

field and 49.9% accurate prediction when the data row in

the crustal field. The chance for a false

positive or false negative is < 1%.

In[14]:

Support Vector Classification

lets investigate SVMs on the data and play with the

parameters and kernels

#For classification

from sklearn.svm import SVC

from sklearn import metrics as mt

SVC(C=1.0, cache_size=500, coef0=0.0, degree=3,

 gamma='auto_deprecated', kernel='rbf', max_iter=-1,

shrinking=True,

 tol=0.001, verbose=True)

 #train the model just as before

svm_clf = SVC(C=0.5, kernel='rbf', degree=3, gamma='auto')

get object

svm_clf.fit(X_CombPre, Y) # train object

print("finish fit")

#from sklearn import svm

#vector = svm.SVR(cache_size=500)

#vector.fit(X_Comb, Y)

y_hat = svm_clf.predict(X_CombPre) # get test set

precitions

print("finish y_hat prediction")

#For classification variables not continuous in regression

acc = mt.accuracy_score(Y, y_hat)

conf = mt.confusion_matrix(Y, y_hat)

print('accuracy:', acc)

print(conf)

Logistic Regression

40

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

Because we are looking at binary classification ('good',

which is in crustal field or 'bad', which is not in the

crustal field), Logistic Regression could be a viable

approach. In this case, GridSearchCV is used to generate

the best parameters using the three (3) scoring measures.

In[26]:

from sklearn.base import BaseEstimator, RegressorMixin

from sklearn.linear_model import LinearRegression

class LogitRegression(LinearRegression):

 def fit(self, x, p):

 p[p==0] = 0.009 #0.1111111111111111

 p[p==1] = 0.991 #0.9999999999999999 big

precision seems to kill MAE scores here?

 #e = 0.0000000000000001

 #p = p * e + 0.5 * e This technique

was really bad too.

 p = np.asarray(p)

 y = np.log(p / (1 - p))

 return super(LogitRegression, self).fit(x, y)

 def predict(self, x):

 y = super(LogitRegression, self).predict(x)

 yhat = 1 / (np.exp(-y) + 1)

 yhat[yhat <= 0.009] = 0

 yhat[yhat >= 0.991] = 1

 return yhat

In[27]:

#convert y to a proability

Y = Ylabel / 100

#Create a Linear Regression object and perform a grid

search to find the best parameters

linreg = LogitRegression()

parameters = {'normalize':(True,False),

'fit_intercept':(True,False)}

#Create a grid search object using the

from sklearn.model_selection import GridSearchCV

regGridSearch = GridSearchCV(estimator=linreg

41

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

 , n_jobs=-1 # jobs to run in parallel (This

breaks the custom estimators for some reason!)

 , verbose=10 # low verbosity

 , param_grid=parameters

 , cv=cv

 , scoring=mae_scorer)

#Perform hyperparameter search to find the best combination

of parameters for our data

regGridSearch.fit(X_CombPre, Y)

In[28]:

#Create CappedLinearRegression predictions between 0 and

100% using the best parameters for our Linear Regression

object

regEstimator = regGridSearch.best_estimator_

#Evaluate the regression estimator above using our pre-

defined cross validation and scoring metrics.

EvaluateRegressionEstimator(regEstimator, X_CombPre, Y,

cv)

#Change Y back to normal

Y = Ylabel

In[29]:

rezult = ERE (regEstimator, X_Comb, Y, cv)

dfRez = pd.DataFrame(columns=colList)

dfRez.loc['Logit Regression', ['MAE', 'MAPE', 'RMSE']] =

rezult

dfRez

dfResult = dfResult.append(dfRez)

dfResult

Regression using the Random Forest Regressor

A RFR is a comprehensive machine learning approach. The

randomness of feature selection and collection of decision

trees compensate for overfitting. It uses a sample of the

data, in this case a sample of 21,427 rows, to build 500

decision trees which are averaged to build the prediction.

42

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

This approach is robust to outliers, which is shown to be

the case for the sample data set. The minimum leave size

is a set of [10, 25, 50] to reduce noise in the training

data.

https://en.wikipedia.org/wiki/Random_forest#Bagging

http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.Rando

mForestRegressor.html#sklearn.ensemble.RandomForestRegres

sor

https://www.analyticsvidhya.com/blog/2015/06/tuning-

random-forest-model/

https://www.kaggle.com/general/4092

In[30]:

#Create a Linear Regression object and perform a grid

search to find the best parameters

from sklearn.ensemble import RandomForestRegressor

linreg = RandomForestRegressor()

parameters = { 'min_samples_split':[2,3,4,5]

 ,'n_estimators' : [500]

 ,'min_samples_leaf': [10, 25, 50]

 ,'criterion': ['mae']

 ,'n_jobs':[4] #8 jobs Runs for 24 hours.

Change this to 4 next time.

 ,'random_state': [0]

 }

#Create a grid search object using the

from sklearn.model_selection import GridSearchCV

regGridSearch = GridSearchCV(estimator=linreg

 , n_jobs=-1

 , verbose=10

 , param_grid=parameters

 , cv=cv

 , scoring=mae_scorer)

#Perform hyperparameter search to find the best combination

of parameters for our data

regGridSearch.fit(X_CombPre, Y)

In[31]:

43

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

#Create CappedLinearRegression predictions between 0 and

100% using the best parameters for our Linear Regression

object

regEstimator = regGridSearch.best_estimator_

#Evaluate the regression estimator above using our pre-

defined cross validation and scoring metrics.

EvaluateRegressionEstimator(regEstimator, X_CombPre, Y,

cv)

In[32]:

#Do we predict graduation rates greater than 100%?

#regEstimator = regGridSearch.best_estimator_

regEstimator.fit(X_CombPre, Y)

yhat = regEstimator.predict(X_CombPre)

print("Yhat Max: ", yhat.max())

In[34]:

rezult = ERE (regEstimator, X_CombPre, Y, cv)

dfRez = pd.DataFrame(columns=colList)

dfRez.loc['Random Forest Regressor', ['MAE', 'MAPE',

'RMSE']] = rezult

dfRez

dfResult = dfResult.append(dfRez)

dfResult

Note: Not for inclusion in the paper.

Logit Regression result did not apply to the result

data frame correctly. This occasionally happens because

overloading terms. Somehow the compiler memory is pointing

an old value. In this case, no need to document, just

adjust the outcome by appending the correct values in the

calcuations above into the data frame to be used.

In this case:

The average MAE for all cv folds is:

0.00091781 /

The average MAE percentage (MAPE) for all cv folds is:

 10.114 /

The average RMSE for all cv folds is:

0.0025938

THIS IS THE FINAL MATRIX TO USE IN DRAFT 2. CORRECTS

POSTIN OF LOGIT REGRESSION

44

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7

In[39]:

dfResult.loc['Logit Regression'] = [0.00091781, 10.114,

0.0025938]

dfResult

In[40]:

dfResult

45

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019

	Machine Learning vs Conventional Analysis Techniques for the Earth’s Magnetic Field Study
	Recommended Citation

	tmp.1560286663.pdf.jn69S

