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Abstract. Current techniques for calculating and generating models used for 

analyzing the Earth’s magnetic field are laborious and time-consuming.  We 

assert that machine learning can have a significant impact on building magnetic 

field models more quickly and on various levels of complexity, specifically as it 

pertains to data cleansing and sorting. Our approach to this problem uses a reverse 

iterative multi-phase process for data cleansing, in which, initially, the CHAOS-

6 model data is examined to determine if machine learning can be used to 

differentiate between useful data components for spherical harmonics, versus 

data noise. During this phase, six different machine learning techniques are used 

and compared: two classification techniques (Convolutional Neural Network 

(CNN) and Support Vector Classification (SVC)) and four regression techniques 

(Random Forest Regression (RFR), Support Vector Regression (SVR), Logistic 

Regression, and Linear Regression). During this initial phase, the focus is on 

understanding the accuracy of machine learning for model selection and uses 

relatively clean data.  Future phases should include machine learning relevance 

as it pertains to the massive volume of data received from satellites.  Exploring 

the machine learning capabilities for magnetic field datasets accomplishes 1) 

faster and more efficient computation when there are millions of rows of data in 

any given 30-day period, and 2) lowers the propagation of errors that cause some 

data to be useless in the spherical harmonics computations used in the model 

generation. 

                                                      
1 Sheri Loftin is completing her MS in Data Science at SMU. She is the Planetary Data 

Systems Database Training and Communications Coordinator at Goddard Space Flight 

Center, contracted through Adnet Systems. 
2 Sarah Fite is completing her MS in Data Science at SMU. She is a Business Analyst at 

iHeartMedia, Inc. 
3 Laura Bishop is completing her MS in Data Science at SMU.  She is a Technical Sales 

Manager in Cybersecurity at IBM. 
4 Dr. Stavros Kotsiaros is the advisor for this project. He is a research scientist at the 

University of Maryland and a visiting collaborator at NASA-Goddard Space Flight Center. 
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1   Introduction 

The European Space Agency’s (ESA) Living Planet Programme launched a trio of 

satellites on 22 November 2013 called Swarm, which is the fourth Earth Explorer 

mission [5].  

  Two years of magnetic data from the Swarm mission and monthly means from 160 

ground observatories were used in the paper by Finlay et al., Recent geomagnetic 

secular variation from Swarm and ground observatories as estimated in the CHAOS-6 

geomagnetic field model, (2016) [19].  

  The Earth’s magnetic field is effectively a ‘super shield’ that protects the planet from 

cosmic radiation and charged particles in the solar wind [6].  Earth’s magnetic field is 

created by sources both internal and external to our planet. The largest field is created 

by electric currents flowing in the Earth’s liquid outer core which is known as the “core 

field”. The core field together with a small contribution from the magnetized rocks in 

the Earth’s lithosphere producing what is known as the lithospheric or crustal field, 

encompass the so-called internal magnetic field. The external field is produced by 

electric currents flowing in the Earth’s ionosphere and magnetosphere. 

  Low Earth Orbiting (LEO) satellites measure the Earth's large scale lithospheric 

magnetic field. LEO satellites provide a statistical homogeneity of measurement on a 

world-wide scale.  In reality, the lithospheric magnetic signal is masked by the 

dominant core field signal as well as by the “time-varying external fields” that 

contaminate the lithospheric signal along the satellite’s orbit [5].  There are ways to 

minimize the contamination by suppressing the undesired signals with ‘along-satellite-

track’ analysis [7][8] or using magnetic field gradients [29]. Specifically, the 

configuration of the Swarm trio can be used to estimate the East-West (EW) magnetic 

field gradient from differences between measurements of the two lower satellites, and 

the North-South gradient from differences between successive vector measurements 

along the satellite tracks [5].  A major statistical and data challenge is extracting weak 

lithospheric signals from the total magnetic field observations [5]. Modeling the 

magnetic field due to both the internal and external sources is essential for a more 

complete and more accurate estimation of the Earth’s total magnetic field. The 

CHAOS-6 [19] model incorporates lithospheric, core and external field sources.  

  Even with the most accurate satellite measurements, developing a precise model for 

the Earth’s magnetic field is difficult from a few perspectives:  field of study, 

statistical, and data.  It requires expertise in a number of different scientific 

disciplines, including magnetometry, spacecraft measurements, planetary physics, 

geology, etc.  As in many complex scientific fields of study, the more professional 

experience gained, the better the results.  A benefit of studying the Earth's magnetic 

field is the plethora of data collected. For example, in this study, 31 days of satellite 

data generated over 2.6 million rows of cleaned collection data representing 2.6 million 

data points of magnetic field readings.  Current methods struggle to handle the amount 

of data produced. Another limitation of the current methods lies in a shortcoming within 

spherical harmonic computations. "Dirty data" entered into the spherical harmonic 

computation creates errors that do not only affect the region of the Earth where the 
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contamination originated but globally. Therefore, the errors propagate throughout the 

model and may affect the usefulness of the model in specific regions of interest. With 

spherical harmonics, the errors cannot be all filtered out, and some of the data rendered 

useless as the propagation of such errors may become significant and affect the weaker 

signals to be modelled. With more modern machine learning techniques, these errors 

can be detected and filtered out earlier, thereby allowing more of the data to be used 

and lowering the overall error leakage in the model. These techniques are how tools, 

technology, and processing of Data Science and Machine Learning can improve the 

generation of geomagnetic field models better for all scientists. 

 

2   Background 
 
The goal for studying the Earth’s magnetic field is two-fold: 1) to better understand the 

magnetic shield and 2) to study the interior of our planet. Pragmatic applications for 

this research include understanding of tectonic dynamics, drilling for natural resources, 

planetary science, and better navigation systems.  While the theoretical perspective 

paints a dire picture of a weakening magnetic shield, the more that is known and 

understood, the better our advances to understand the implications of such change. 

  The objective for applying Data Science approaches and Machine Learning 

techniques to creating geomagnetic models is to reduce the complexity of generating 

hi-resolution models to be used in the study of the Earth’s magnetic field and to utilize 

the enormous amount of collected data, thereby allowing for a more accurate view of 

the geomagnetic field. Today, hi-resolution models require extensive computations 

with several iterations making the model generation an expensive process. 

  The design of this project is to improve the management of the data volume by 

reducing the compilation time by at least 30%. Additionally, we aim to improve the 

error propagation and leakage in the analysis and estimation due to the entanglement of 

the various magnetic field sources. Finally, another goal is to use more of the data 

collected to provide a more thorough model. 

2.1   Definition of Terms 

The Swarm satellite configuration consists of two satellites which orbit 450-Kilometers 

above the Earth and a third satellite which orbits at 530-Kilometers above the Earth.  

At the core of each Swarm satellite is an instrument, the Vector Field Magnetometer 

(VFM), which is pertinent to this study: 

  Vector Field Magnetometer (VFM) – Located at the tip of the optical bench on the 

boom, the VFM measures magnetic field vector.  The VFM contains a 3-axis Compact 

Spherical Coil (CSC) sensor with a 3-axis Compact Detector Coil (CDC) sensor inside 

that acts as a closed loop system.  It achieves a null field at the detector coils in the 

sphere by adjusting the compensating CSC currents.  The raw data is the current level 

in the CSC coils. 

  The geomagnetic field is modelled in terms of Spherical Harmonics. A model of the 

Earth’s magnetic field is therefore a set of spherical harmonic coefficients which aim 

to represent as accurate a picture as possible of the current state of the geomagnetic 

field of Earth.  
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3   Dataset and Data Exploration 
 
The data we are using consists of 2,678,400 rows of cleaned, magnetic data produced 

by the CHAOS-6 model. This “dummy” data will allow the model to be trained for 

“best fit” in the Crustal data model. 

  There are 19 variables collected as shown in Table 1. 

 

Table 1 CHAOS-6 Model Data used for comparison 

 
Variable Name  Meaning  Minimum Maximum 

T [md2000]  Time in units of decimal 

DAYS from 1/1/2000 

midnight.  

5844 5875 

r [km]  Coordinate distance from the 

center of Earth measurements 

– radius in kilometers (km)  

6814 6835 

theta [degrees]  Position coordinate angle from 

x-axis – in 

degrees(Longitude)  

2.648 177.352 

phi [degrees]  Position coordinate angle from 

z- axis – in degrees(Latitude)  
-180.0000 179.9995 

B_r1 [nano Tesla]  Radial Internal Field (I)  -48793 52931  

B_theta1 [nanoTesla]  Co-latitudinal Internal Field 

(I)  
-32958 11531 

B_phi1 [nanoTesla]  Azimuthal Internal Field (I)  -12785.80 12282.23 
B_r2 [nano Tesla]   Radial core Field (C)  -48792 52934 

B_theta2 [nanoTesla]  Co-latitudinal core Field (C)  -32957 11528 
B_phi2 [nano Tesla]  Azimuthal core Field (C)  -12786.330 12281.600 

B_r3 [nano Tesla]  Radial crustal Field (L)  -15.34000 12.67000 

B_theta3 [nano Tesla]  Co-latitudinal crustal Field 

(L)  
-7.73000 11.38000 

B_phi3 [nano Tesla]  Azimuthal crustal Field (L)  -10.62000 7.83000 

B_r4 [nano Tesla]  Radial external Field (E)  -55.1600 54.960 

B_theta4 [nano Tesla]  Co-latitudinal external Field 

(E)  
-12.39 114.08 

B_phi4 [nano Tesla]  Azimuthal external Field (E)  -27.0000 24.6300 
B_r5 [nano Tesla]  Radial total Field (T)  -48824.1 52963.3 

B_theta5 [nano Tesla]   Co-latitudinal total Field (T)  -32952 11540 

B_phi5 [nano Tesla]  Azimuthal total Field (T)  -12793.780 12281.430 
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  Formula background- Magnitude of the magnetic field is computing using a 3D 

variation of the Pythagorean Theorem: 

𝐵 =  √𝑥 ∗ 𝑥 + 𝑦 ∗ 𝑦 + 𝑧 ∗ 𝑧 

 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 = 𝐶𝑜𝑟𝑒 𝐹𝑖𝑒𝑙𝑑 + 𝐶𝑟𝑢𝑠𝑡𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 = [𝐵_𝑟2, 𝐵_𝑡ℎ𝑒𝑡𝑎2, 𝐵_𝑝ℎ𝑖2]  +  [𝐵_𝑟3, 𝐵_𝑡ℎ𝑒𝑡𝑎3, 𝐵_𝑝ℎ𝑖3]  
 

 

𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 = 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 

𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑒𝑙𝑑 = 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑖𝑒𝑙𝑑  +  [𝐵_𝑟4, 𝐵_𝑡ℎ𝑒𝑡𝑎4, 𝐵_𝑝ℎ𝑖4] 
 

  The design is based on using the crustal field variables, 𝑟 𝑡ℎ𝑒𝑡𝑎 𝑝ℎ𝑖, to represent the 

position of the measurement and the strength of the magnetic field at that position.  A 

machine learning model is created to yield the same or statistically similar enough 

results for the crustal field variables in data columns 11-14.  

  As shown in figures 1 and 2 (below), each magnetic field source has its own 

"signature" and varies significantly in strength, as compared to the other. In each figure 

the x-axis represents longitude, and the y-axis represents latitude, while the color bar 

represents the strength of the magnetic field at each location. The unit for the color bar 

is nanoTesla.  Also, in each figure, North is 0 on the y-axis and South is 180; thus the 

Earth appears upside down. 

  The total magnetic field has definite features, especially around the polar regions of 

the Earth. This is dominated by the most robust magnetic field source of the Earth and 

is created by the dynamo action of our solid core rotating at a slightly different speed 

than the surrounding liquid mantle. 

 

 
 

Fig. 1. 2D rendering of the core magnetic field with the ‘x' axis for longitude and ‘y' axis for 

latitude.  
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  Within the data of the crustal field, the continental outlines are subtle but present. 

The strength of the magnetic field at each point is significantly lower than the strength 

of the core field. Because of this vast difference, the signal of the crustal field can easily 

get lost within the data of the total magnetic field, which includes the core field, the 

crustal field, and the external field. 

 

 
 
Fig. 2. 2D rendering of the crustal magnetic field with the ‘x' axis for longitude and ‘y' axis for 

latitude.  

 

  Since the core field is so much stronger than the crustal field (the signature we are 

looking to model with this project), we have chosen to use the combination of the 

external field and the crustal field as our dataset. The goal is to be able to search through 

this dataset and have the machine learning tool find the signature of the crustal magnetic 

field. 

  The external field is produced in the ionosphere and the magnetosphere of the Earth 

and is only one factor stronger than the crustal field. On the contrary, in comparison, 

the core field is three factors stronger. The external field also lacks the variety of 

anomalies that exist within the crustal field. 
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Fig. 3. 2D rendering of the external magnetic field data with the ‘x' axis for longitude and ‘y' axis 

for latitude.  

 

4 Methodology    
 

4.1 Model Comparison  

 
Initially, the model is trained using the variables related to time, position and the 

positional components of the total magnetic field. These variables correspond to 

columns 1-4 and 17-19 and are labeled t, r, theta, phi, and B_r5, B_theta5, and B_phi5. 

Columns 1-4 feeds the algorithm and resulting in Columns 17-19.  This is the proof 

of concept to justify using Swarm mission data to test the applicability of a machine 

learning dataset for magnetic field modeling. 

 

4.2 CHAOS-6 Analysis Techniques  

 
The CHAOS-6 model uses a method called spherical harmonics. The model itself is a 

series of coefficients that when entered into the spherical harmonic formula produce a 

description of the magnetic field of the Earth.5   

  The crustal field is represented by the coefficients corresponding to 21 – 110 degrees. 

There are 11,880 coefficients in the CHAOS-6 model. Given the complexity of the 

process and the vast number of coefficients, it becomes easy to see why this process 

would take so long to compute values. 

                                                      
5 An introduction to spherical harmonics by Wojciech Jarosz, Assistant Professor at Dartmouth 

University is found at 

https://cs.dartmouth.edu/wjarosz/publications/dissertation/appendixB.pdf  
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4.3   Machine Learning Methods 

As previously mentioned, this paper examines six (6) machine learning approaches to 

determine which method best predicts the data most useful for the crustal data model.  

The approach taken is an inverse data analysis. That is, instead of starting the process 

with the dirtiest data imported directly from the source (satellite data), then struggling 

with cleansing and clustering that data, then spending a great deal of time determining 

if errors and challenges encountered during that process are the result of the premise or 

a challenge in the data, we chose to start with a clean, known dataset (crustal model).  

This dataset is then mixed with the external model data to create our initial phase of 

'dirty data.' Our premise is that if the crustal model data is successfully predicted 

amongst the “dirty data” of the external model data, success is achieved at this initial 

phase (Phase 1). Following this, the next step is to use the dataset in a dirtier, earlier 

revision from the satellite. The number of backward iterations of the data from clean to 

dirtier is not known at this time but is estimated to be at least four (4) to confidently 

know this approach is statistically successful and useable by NASA Goddard. 

  We review both classification and regression methods.  Phase 1 is looking at 

predicting ‘in or out' of the crustal dataset, which is standard classification. Due to the 

highly linear nature of the data, and unknown characteristics of the data in following 

Phases (closer to the raw data from the satellite), the requirement exists to have a strong 

machine learning foundation by which to evaluate the best method. 
 

Classification Approaches.  Classification approaches are essential in systematically 

structuring the data. 

 

Convolutional Neural Networks.  Research into previous machine learning techniques 

used to improve upon spherical harmonics shows that Convolutional Neural Networks 

(CNN) have potential. While no previous research has been discovered discussing this 

from a planetary magnetic field perspective, there have been attempts to replace 

spherical harmonics in other realms. Two papers listed below have used CNN to replace 

spherical harmonics in the realms of particle physics [21] and heart MRIs [22].  

  By design, the CNN technique is the starting point because of its ability to handle 

image data, before any data analysis had been conducted. SVC, RFR, SVR, Logistic 

Regression, and Linear Regression act as comparison techniques to determine which 

method yields the best statistical result of accuracy. 
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Fig 4: Outline of continents overlaid on the crustal field model data. Courtesy of Stavros 

Kotsiaros. 

 

 

  CNN's primary use is image analysis. In this case, CNN treats the magnetic field of 

the Earth as an image with certain distinctive features. As seen in Figure 4 above, the 

outlines of the continents are somewhat visible to a trained eye. This feature could be 

used to distinguish the image of the crustal model from the image of the core or the 

external model. A CNN should be able to separate this signature feature. 

 

Support Vector Classification.  Given the linear nature of the data, SVC is as a 

secondary approach for comparison of CNN. 

 

Regression Approaches. For each regression approach, the measure of a proper 

machine learning technique is its error rate. The top three (3) error techniques according 

to Botchkarev survey [27] are used in this paper to evaluate the distance between 

estimates and predictions during cross-validation:   

 

1) Mean Absolute Error (MAE) – Average of absolute distance between data and 

prediction. The proportional weight of the error.  Less sensitive to outliers. 

2) Root Mean Square Error (RMSE) – Measures average magnitude of error. Gives 

weight to larger errors and makes them more pronounced in the model; useful to 

compare to MAE to understand the distribution of the larger errors.  When MAE 

= RMSE, the distribution of errors is consistent. 

3) Mean Absolute Percentage Error (MAPE) – This measurement shows a small 

relative error and shows the precision of the models. This works best with medium 

and large datasets. 
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  The model analysis Python code used was built by Dr. Jacob Drew of Southern 

Methodist University and his work for the State of North Carolina Education [23].  

The model analysis code builds regression models that are evaluated using cross-

validation and a random seed. This is accomplished using parameters of Python's 

sklearn.model_selection's cross-validate function, which performs the cross-validation 

for regression estimators. The random seed ensures that all regression estimators are 

tested on the same randomly selected data rows for each cross-validation fold. Dr. Drew 

created custom scorers for MAE, RMSE, and MAPE using the three chosen mean error 

scores. Thus, all three scores are calculated using a single call to cross-validate(). All 

of this functionality lies in a custom function 'EvaluateRegressionEstimator(),' which 

allows multiple regression models to be tested using the same test/train cv data and 

consistently produces the evaluation scores for each model. 

  The same regression model function was used to evaluate each approach outside of 

CNN and SVC. A five (5) fold cross validation is used, along with passing the three (3) 

mean error scores into the cross-validation in one (1) call. 

  GridSearchCV "exhaustively" searches for the best parameters used in the regression 

methods for the four (4) non-CNN regression approaches. GridSearchCV is passed as 

a regression algorithm (one of the 4), a parameter grid based on the regression, and a 

number of cross-validation folds. Using GridSearchCV improves the accuracy of 

nested cross-validation, thereby improving the accuracy of the model prediction. 

  Linear Regression models the behavior between dependent response (label of 'in 

crustal model' - 1 or not - 0) and explanatory variables of 'theta', 'phi' and 'mag' 

(magnitude). 

  For these approaches, a sample size from the 2.6 million Swarm satellite model data 

was used totaling 26,784 rows and five (5) folds. The training set is 21,427 rows, and 

the test set is 5,357 rows.  This smaller dataset was chosen to allow for decent 

processing time on a 2016 MacBook Pro running macOS Mojave v 10.14.2 with a 

3.3GHz Intel Core i7 processor and 16 GB 2133 MHz LPDR3 memory.  With this 

smaller dataset, RFR takes at least 24 hours to run. 
 

Linear Regression. In this multi-linear regression, the value is capped between 0 and 

100. Two options are analyzed: 1) normalize with ‘fit_intercept’ set to True; and 2) no 

normalization when ‘fit_intercept’ set to False. 

 

10

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol2/iss1/7



Random Forest Regression.  An RFR is a comprehensive supervised machine learning 

approach that randomly selects features and builds a collection of base models or 

decision trees from different subsamples of the training data; then sums up the result 

for the final mode or decision tree. We pulled subsamples from the 21,427-row training 

data and built 500 decision trees. The minimum size for leaves is a set of [10, 25. 50], 

which will help reduce noise in the training data. RFR is good for the following: 

numerical features; smaller set of categorical features; and capturing non-linear 

relationships in the data [24]. All three of these features apply to the dataset. 

Support Vector Regression. SVR determines the distance of the data point from the 

boundary or hyperplane. The error is the tolerance or margin of distance from the 

hyperplane.  Broader margins between the data points indicate better classifiers, as the 

categories are more distinct. SVR is suitable for use on many features and low noise 

datasets. While the crustal field and external field dataset being modeled does not have 

many features, it is reasonably low in noise for our Phase 1. By keeping SVR in the 

regression comparison, a baseline creates future Phases where the data is not as clean 

and orderly as in Phase 1. 

  The SVR parameters include the 'kernel' parameter, which looks at both linear and 

non-linear hyperplanes. For the non-linear, 'rbf,' the gamma is set at a default of 

'1/number of columns in the dataset, which is three (3)' and 0.1. The penalty parameter 

'C' is the cost or error tolerance. Too high a 'C' value can lead to overfitting. 

GridSearchCV is used to optimize these hyper-parameters for the SVR. 

 
Logistic Regression. Logistic Regression is a binary classification approach based on 

the ‘Label' variable for the model. In this case, GridSearchCV is used to generate the 

best parameters using the three (3) scoring measures mentioned above. 

 

5   Results 
 
5.1 Support Vector Classification   

 

The result of using an SVC approach yielded a 99% accuracy. In subsequent phases, 

using dirtier data, closer to the raw data from the satellite, we believe the linearity of 

the data will not be as strong.  
 

 

Table 2. Results from SVC analysis, demonstrating 99% accuracy 

 

 Prediction Accuracy 0.99914               

Prediction label 0 1                    

0 13373 6 

1 17 13388 

 

 

5.2 Convolutional Neural Networks  

 

Using a training and testing set of the data from the crustal field combined with the 

external field, the CNN has picked out the crustal field with 54.3% accuracy.  
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Table 3.  Prediction table output from CNN. 

 
 Prediction Accuracy 54.3% 

Prediction Label 0 1 

0 521678 518725 

1 147922 150875 

 
  In hindsight, this result is not too surprising. CNN's primary use is with large feature 

datasets for visual and text processing, neither of which we had. However, it does set 

the foundation of comparison in later phases of the project.  
 

The Error Comparisons for Regression Approaches [25][26]. To evaluate the 

success of our model, we compare the following regression metrics for performance. 

 
Table 4.  Regression technique results for MAE, RMSE, and MAPE 

 

 MAE RMSE MAPE 

Difference 

RMSE - MAE 

Linear Regression 0.175272 0.21355 14.3907 0.038278 

Support Vector 

Regression 0.103333 0.137702 8.74311 0.034369 

Logistic Regression 

0.0009178

1 0.0025938 10.114 0.00167599 

Random Forest Regressor 0.002995 0.0438683 

0.18560

5 0.0408733 

 
MAE. Using absolute numbers with no indication of the magnitude of the error, the 

Logistic Regression has the smallest MAE at .0009.  The RFR also has a small MAE 

at .003. The largest MAE comes from Linear Regression at .175.  The difference or 

distance between high to low MAE is .172. 

 

RMSE. Looking at the impact and frequency of error, Logistic Regression is the 

smallest at .0025. RFR also has a small RMSE at .04. 

  The most significant difference between RMSE and MAE is .04 for Linear 

Regression and RFR, indicating larger distributions of error in these approaches. The 

smallest difference between MAE and RMSE is Logistic Regression with a difference 

of 0.001. 

 

MAPE. Although considerable effort is made to create equality among the methods by 

using GridSearchCV, etc., the percentage comparison between approaches varies by 

14.2%. Leading to greater model accuracy, by a noticeable amount, in the RFR at 

.186%.  Logistic Regression and SVR are within 1.3% range of each other from 8.7-

10%.  Linear Regression has the highest model percentage error at 14%. 
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6   Conclusions and Recommendation 
 
Given the reverse, iterative approach to finding the best machine learning method, it is 

not unexpected to receive the highly accurate results and the linearity of the dirty data 

(Crustal + External model).  For Classification, the SVC outperformed the CNN due 

to the SVC’s and the data’s linear nature.  From an approach perspective, and not a 

NASA productivity or efficiency needs perspective; a future attempt would take the 

Earth's magnetic image, as shown in Fig.4, and map that through a CNN. This approach 

more closely aligns to successful CNN attempts with visual images.  The test would 

be for the ability of CNN to predict changes in the Earth’s magnetic crust based on the 

image, which results from raw satellite data.   

  For Phase 1 of our analysis, Linear Regression and SVR performed the least 

favorably in MAE and RMSE.  These results are somewhat surprising given the 

linearity of the data.  Logistic Regression and RFR have strengths in MAE and RMSE.  

RFR performed well across the board based on MAE, MAPE, and RMSE.  Following 

phases of analyses will determine if RFR or Logistic Regression remain preferable 

approaches with dirtier data. 

  An adjacent approach is to ‘one-hot encode’ the data and maintain a history of 

magnetic data based on the spherical harmonics’ triangulation of the spot on the Earth.  

Then, with a sufficient dataset for each spot captured, use that data to predict the change 

in magnetism.  

  Phase 1’s foundation of regression and classification results create a solid foundation 

to find the optimum point of data condition by which machine learning is applied.  

 

7   Ethics 
 

Ethics in data collection, usage and retention are always important.  The ethical 

considerations for this dataset and this paper are not significant.  The Swarm data used 

falls under the ESA Data Policy for ERS, Envisat and Earth Explorer missions. The 

Policy's goal is to provide access in a nondiscriminatory way and allow the use of all 

primary and processed data (up to level 2) for scientific procedures, commercial 

practices, or for the public good [11].  Specifically, the ESA Data Policy is to 

encourage the following: 

 

• continued Earth science activities;  

• encourage technology innovation and instruments to observe the Earth; 

• support operational applications and new applications being developed; 

• support the private sector to invest in derived products and services; 

• support global Earth Observation industry in the ESA Member States. 

 

  Since Swarm is part of the Earth mission, it is covered under the category of the 

policy outlining ‘Free dataset,' which includes full, and open, online access at no cost, 

abiding by the ESA terms and conditions. This dataset is also one-way, in which no 

data is uploaded to the ESA site. There is no private information in the dataset in which 

security needs must be taken into consideration. There are no ethical collection issues. 
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Appendix A 
 

1. R Code 

 
R version 3.5.1 (2018-07-02) -- "Feather Spray" 

Copyright (C) 2018 The R Foundation for Statistical 

Computing 

Platform: x86_64-w64-mingw32/x64 (64-bit) 

 

R is free software and comes with ABSOLUTELY NO WARRANTY. 

You are welcome to redistribute it under certain 

conditions. 

Type 'license()' or 'licence()' for distribution details. 

 

R is a collaborative project with many contributors. 

Type 'contributors()' for more information and 

'citation()' on how to cite R or R packages in publications. 

 

Type 'demo()' for some demos, 'help()' for on-line help, 

or 

'help.start()' for an HTML browser interface to help. 

Type 'q()' to quit R. 

 

> # The header contained extra information. This was 

removed using WordPad. The file was originally save as a 

.dat file and so was converted to a .txt 

> # The file is then read in as tab delimited file into a 

dataframe named data1 

> setwd("C:/Users/Sheri/Documents/Data Science/Thesis/") 

> data1 <- read.delim(file="C:/Users/sheri/Documents/Data 

Science/Thesis/CHAOS_preds_SWC_20160101-

20160131_mod.txt",header=FALSE, sep = '') 

> cran <- getOption("repos") 

> cran["dmlc"] <- "https://apache-mxnet.s3-

accelerate.dualstack.amazonaws.com/R/CRAN/" 

> options(repos = cran) 

> install.packages("mxnet") 

Installing package into ‘C:/Users/sheri/Documents/R/win-

library/3.5’ 

(as ‘lib’ is unspecified) 
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trying URL 'https://apache-mxnet.s3-

accelerate.dualstack.amazonaws.com/R/CRAN/bin/windows/con

trib/3.5/mxnet_1.3.0.zip' 

Content type 'application/zip' length 30443134 bytes (29.0 

MB) 

downloaded 29.0 MB 

 

package ‘mxnet’ successfully unpacked and MD5 sums checked 

 

The downloaded binary packages are in 

 C:\Users\sheri\AppData\Local\Temp\Rtmp8mNdR9\downlo

aded_packages 

> require("mxnet") 

Loading required package: mxnet 

> install.packages("mlbench") 

Installing package into ‘C:/Users/sheri/Documents/R/win-

library/3.5’ 

(as ‘lib’ is unspecified) 

trying URL 

'https://cran.rstudio.com/bin/windows/contrib/3.5/mlbench

_2.1-1.zip' 

Content type 'application/zip' length 1058987 bytes (1.0 

MB) 

downloaded 1.0 MB 

 

package ‘mlbench’ successfully unpacked and MD5 sums 

checked 

 

The downloaded binary packages are in 

 C:\Users\sheri\AppData\Local\Temp\Rtmp8mNdR9\downlo

aded_packages 

> library("mlbench") 

Warning message: 

package ‘mlbench’ was built under R version 3.5.2  

> install.packages("plot3D") 

Installing package into ‘C:/Users/sheri/Documents/R/win-

library/3.5’ 

(as ‘lib’ is unspecified) 

trying URL 

'https://cran.rstudio.com/bin/windows/contrib/3.5/plot3D_

1.1.1.zip' 

Content type 'application/zip' length 2944559 bytes (2.8 

MB) 

downloaded 2.8 MB 

 

package ‘plot3D’ successfully unpacked and MD5 sums checked 

 

The downloaded binary packages are in 
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 C:\Users\sheri\AppData\Local\Temp\Rtmp8mNdR9\downlo

aded_packages 

> library("plot3D") 

Warning message: 

package ‘plot3D’ was built under R version 3.5.2  

> # Inspecting the data 

> head(data1) 

    V1       V2       V3       V4       V5      V6        V7       

V8      V9       V10  V11  V12  V13   V14 

1 5844 6833.886 162.8708 94.39791 45904.40 1960.22 -

10062.76 45900.66 1958.78 -10066.81 3.73 1.44 4.05 53.51 

2 5844 6833.887 162.9339 94.42800 45900.36 1986.93 -

10060.42 45896.68 1985.38 -10064.46 3.68 1.55 4.05 53.52 

3 5844 6833.888 162.9970 94.45834 45896.30 2013.66 -

10058.01 45892.67 2012.00 -10062.05 3.63 1.66 4.04 53.53 

4 5844 6833.889 163.0602 94.48893 45892.20 2040.43 -

10055.54 45888.63 2038.65 -10059.58 3.56 1.77 4.04 53.54 

5 5844 6833.891 163.1233 94.51977 45888.04 2067.22 -

10053.01 45884.55 2065.34 -10057.03 3.50 1.88 4.03 53.55 

6 5844 6833.892 163.1864 94.55087 45883.88 2094.04 -

10050.41 45880.46 2092.06 -10054.43 3.42 1.98 4.01 53.56 

    V15   V16      V17     V18       V19 

1 15.39 -4.41 45957.91 1975.62 -10067.17 

2 15.28 -4.42 45953.88 2002.20 -10064.84 

3 15.16 -4.43 45949.83 2028.82 -10062.44 

4 15.04 -4.44 45945.74 2055.47 -10059.98 

5 14.93 -4.45 45941.59 2082.15 -10057.45 

6 14.81 -4.46 45937.44 2108.85 -10054.87 

> tail(data1) 

          V1       V2       V3       V4       V5       V6        

V7       V8       V9       V10   V11   V12 

2678395 5875 6834.278 170.7456 60.46576 40567.10 -2509.88 

-12739.08 40569.44 -2508.29 -12739.39 -2.34 -1.59 

2678396 5875 6834.279 170.8068 60.57665 40593.18 -2466.66 

-12738.00 40595.49 -2465.03 -12738.28 -2.31 -1.63 

2678397 5875 6834.280 170.8679 60.68907 40619.22 -2423.05 

-12736.82 40621.50 -2421.38 -12737.08 -2.28 -1.67 

2678398 5875 6834.281 170.9291 60.80305 40645.23 -2379.06 

-12735.54 40647.48 -2377.35 -12735.79 -2.25 -1.71 

2678399 5875 6834.282 170.9902 60.91861 40671.21 -2334.67 

-12734.18 40673.43 -2332.92 -12734.40 -2.22 -1.75 

2678400 5875 6834.283 171.0512 61.03580 40697.15 -2289.88 

-12732.71 40699.34 -2288.09 -12732.91 -2.19 -1.79 

         V13   V14   V15   V16      V17      V18       V19 

2678395 0.30 33.06 -1.87 -1.96 40600.16 -2511.76 -12741.05 

2678396 0.28 33.06 -1.92 -1.98 40626.24 -2468.58 -12739.98 

2678397 0.26 33.06 -1.97 -2.00 40652.28 -2425.02 -12738.82 

2678398 0.24 33.06 -2.02 -2.02 40678.29 -2381.07 -12737.56 
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2678399 0.22 33.06 -2.06 -2.04 40704.27 -2336.73 -12736.22 

2678400 0.20 33.06 -2.11 -2.06 40730.22 -2291.99 -12734.77 

> summary(data1) 

       V1             V2             V3                V4                  

V5               V6         

 Min.   :5844   Min.   :6814   Min.   :  2.648   Min.   :-

180.0000   Min.   :-48793   Min.   :-32958   

 1st Qu.:5852   1st Qu.:6820   1st Qu.: 45.169   1st Qu.: -

90.2879   1st Qu.:-36730   1st Qu.:-22016   

 Median :5860   Median :6828   Median : 90.163   Median :  

-0.1035   Median :  2937   Median :-14929   

 Mean   :5860   Mean   :6826   Mean   : 90.104   Mean   :   

0.2425   Mean   :  -981   Mean   :-14734   

 3rd Qu.:5867   3rd Qu.:6833   3rd Qu.:135.064   3rd Qu.:  

89.8413   3rd Qu.: 29694   3rd Qu.: -8611   

 Max.   :5875   Max.   :6835   Max.   :177.352   Max.   : 

179.9995   Max.   : 52931   Max.   : 11531   

       V7                  V8               V9              V10                  

V11            

 Min.   :-12785.80   Min.   :-48792   Min.   :-32957   Min.   

:-12786.330   Min.   :-15.34000   

 1st Qu.: -2939.43   1st Qu.:-36730   1st Qu.:-22016   1st 

Qu.: -2939.580   1st Qu.: -1.01000   

 Median :    90.12   Median :  2936   Median :-14929   

Median :    89.770   Median :  0.01000   

 Mean   :     1.64   Mean   :  -981   Mean   :-14734   Mean   

:     1.638   Mean   :  0.01122   

 3rd Qu.:  3166.59   3rd Qu.: 29695   3rd Qu.: -8612   3rd 

Qu.:  3166.815   3rd Qu.:  1.07000   

 Max.   : 12282.23   Max.   : 52934   Max.   : 11528   Max.   

: 12281.600   Max.   : 12.67000   

      V12                V13                  V14                

V15              V16           

 Min.   :-7.73000   Min.   :-10.620000   Min.   :-55.1600   

Min.   :-12.39   Min.   :-27.0000   

 1st Qu.:-0.69000   1st Qu.: -0.670000   1st Qu.:-18.3200   

1st Qu.:  8.36   1st Qu.: -6.9925   

 Median : 0.07000   Median : -0.020000   Median :  0.0900   

Median : 14.54   Median :  0.2300   

 Mean   : 0.07041   Mean   :  0.001557   Mean   : -0.2081   

Mean   : 17.07   Mean   : -0.1829   

 3rd Qu.: 0.85000   3rd Qu.:  0.610000   3rd Qu.: 17.8400   

3rd Qu.: 22.39   3rd Qu.:  6.2500   

 Max.   :11.38000   Max.   :  7.830000   Max.   : 54.9600   

Max.   :114.08   Max.   : 24.6300   

      V17                V18              V19             

 Min.   :-48824.1   Min.   :-32952   Min.   :-12793.780   

 1st Qu.:-36749.6   1st Qu.:-21992   1st Qu.: -2938.403   
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 Median :  2937.3   Median :-14912   Median :    91.105   

 Mean   :  -981.2   Mean   :-14716   Mean   :     1.457   

 3rd Qu.: 29713.3   3rd Qu.: -8597   3rd Qu.:  3164.323   

 Max.   : 52963.3   Max.   : 11540   Max.   : 12281.430   

> ncol(data1) 

[1] 19 

> nrow(data1) 

[1] 2678400 

> any(is.na(data1)) 

[1] FALSE 

> # So the columns represent the measurements from the five 

types of magnetometers 

> # To do: Follow up with Stavros on which r, theta, phi 

group identifies with which magnetometer so we can label 

the columns appropriately 

> data_header <- 

c("t","r","theta","phi","B_r1","B_theta1","B_phi1","B_r2"

,"B_theta2","B_phi2","B_r3","B_theta3","B_phi3","B_r4","B

_theta4","B_phi4","B_r5","B_theta5","B_phi5") 

> colnames(data1) <- data_header 

> head(data1) 

     t        r    theta      phi     B_r1 B_theta1    B_phi1     

B_r2 B_theta2    B_phi2 B_r3 B_theta3 B_phi3 

1 5844 6833.886 162.8708 94.39791 45904.40  1960.22 -

10062.76 45900.66  1958.78 -10066.81 3.73     1.44   4.05 

2 5844 6833.887 162.9339 94.42800 45900.36  1986.93 -

10060.42 45896.68  1985.38 -10064.46 3.68     1.55   4.05 

3 5844 6833.888 162.9970 94.45834 45896.30  2013.66 -

10058.01 45892.67  2012.00 -10062.05 3.63     1.66   4.04 

4 5844 6833.889 163.0602 94.48893 45892.20  2040.43 -

10055.54 45888.63  2038.65 -10059.58 3.56     1.77   4.04 

5 5844 6833.891 163.1233 94.51977 45888.04  2067.22 -

10053.01 45884.55  2065.34 -10057.03 3.50     1.88   4.03 

6 5844 6833.892 163.1864 94.55087 45883.88  2094.04 -

10050.41 45880.46  2092.06 -10054.43 3.42     1.98   4.01 

   B_r4 B_theta4 B_phi4     B_r5 B_theta5    B_phi5 

1 53.51    15.39  -4.41 45957.91  1975.62 -10067.17 

2 53.52    15.28  -4.42 45953.88  2002.20 -10064.84 

3 53.53    15.16  -4.43 45949.83  2028.82 -10062.44 

4 53.54    15.04  -4.44 45945.74  2055.47 -10059.98 

5 53.55    14.93  -4.45 45941.59  2082.15 -10057.45 

6 53.56    14.81  -4.46 45937.44  2108.85 -10054.87 

> # Convolutional Neural Network  

> # Create training and test datasets 

> # source code: 

https://stackoverflow.com/questions/17200114/how-to-

split-data-into-training-testing-sets-using-sample-

function 
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> ## 75% of the sample size 

> smp_size <- floor(0.75 * nrow(data1)) 

> ## set the seed to make your partition reproducible 

> set.seed(123) 

> train_ind <- sample(seq_len(nrow(data1)), size = 

smp_size) 

> train <- data1[train_ind, ] 

> test <- data1[-train_ind, ] 

> summary(train) 

       t              r            theta              phi                  

B_r1           B_theta1      

 Min.   :5844   Min.   :6814   Min.   :  2.648   Min.   :-

179.99999   Min.   :-48793   Min.   :-32958   

 1st Qu.:5852   1st Qu.:6820   1st Qu.: 45.096   1st Qu.: -

90.24108   1st Qu.:-36775   1st Qu.:-22013   

 Median :5860   Median :6828   Median : 90.098   Median :  

-0.06814   Median :  2888   Median :-14928   

 Mean   :5860   Mean   :6826   Mean   : 90.053   Mean   :   

0.25613   Mean   : -1011   Mean   :-14733   

 3rd Qu.:5867   3rd Qu.:6833   3rd Qu.:135.019   3rd Qu.:  

89.81388   3rd Qu.: 29653   3rd Qu.: -8612   

 Max.   :5875   Max.   :6835   Max.   :177.352   Max.   : 

179.99950   Max.   : 52931   Max.   : 11531   

     B_phi1               B_r2           B_theta2          

B_phi2                B_r3           

 Min.   :-12785.80   Min.   :-48792   Min.   :-32957   Min.   

:-12786.330   Min.   :-15.34000   

 1st Qu.: -2941.46   1st Qu.:-36775   1st Qu.:-22013   1st 

Qu.: -2941.460   1st Qu.: -1.00000   

 Median :    89.31   Median :  2888   Median :-14927   

Median :    89.020   Median :  0.02000   

 Mean   :    -0.29   Mean   : -1011   Mean   :-14733   Mean   

:    -0.291   Mean   :  0.01223   

 3rd Qu.:  3161.29   3rd Qu.: 29654   3rd Qu.: -8612   3rd 

Qu.:  3161.110   3rd Qu.:  1.07000   

 Max.   : 12282.23   Max.   : 52934   Max.   : 11528   Max.   

: 12281.600   Max.   : 12.67000   

    B_theta3            B_phi3                B_r4             

B_theta4          B_phi4         

 Min.   :-7.72000   Min.   :-10.620000   Min.   :-55.1600   

Min.   :-12.39   Min.   :-27.0000   

 1st Qu.:-0.69000   1st Qu.: -0.670000   1st Qu.:-18.3500   

1st Qu.:  8.36   1st Qu.: -6.9900   

 Median : 0.07000   Median : -0.020000   Median :  0.0600   

Median : 14.54   Median :  0.2400   

 Mean   : 0.07092   Mean   :  0.001272   Mean   : -0.2241   

Mean   : 17.07   Mean   : -0.1766   
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 3rd Qu.: 0.85000   3rd Qu.:  0.610000   3rd Qu.: 17.8300   

3rd Qu.: 22.38   3rd Qu.:  6.2500   

 Max.   :11.38000   Max.   :  7.830000   Max.   : 54.9600   

Max.   :114.08   Max.   : 24.6300   

      B_r5           B_theta5          B_phi5           

 Min.   :-48824   Min.   :-32952   Min.   :-12793.780   

 1st Qu.:-36794   1st Qu.:-21989   1st Qu.: -2940.325   

 Median :  2888   Median :-14911   Median :    90.330   

 Mean   : -1011   Mean   :-14716   Mean   :    -0.466   

 3rd Qu.: 29672   3rd Qu.: -8598   3rd Qu.:  3158.400   

 Max.   : 52963   Max.   : 11540   Max.   : 12281.430   

> summary(test) 

       t              r            theta              phi                 

B_r1             B_theta1      

 Min.   :5844   Min.   :6814   Min.   :  2.648   Min.   :-

179.9996   Min.   :-48792.1   Min.   :-32958   

 1st Qu.:5852   1st Qu.:6820   1st Qu.: 45.383   1st Qu.: -

90.4274   1st Qu.:-36595.9   1st Qu.:-22025   

 Median :5859   Median :6828   Median : 90.365   Median :  

-0.1717   Median :  3091.0   Median :-14933   

 Mean   :5859   Mean   :6826   Mean   : 90.255   Mean   :   

0.2018   Mean   :  -891.5   Mean   :-14736   

 3rd Qu.:5867   3rd Qu.:6833   3rd Qu.:135.201   3rd Qu.:  

89.9404   3rd Qu.: 29811.1   3rd Qu.: -8609   

 Max.   :5875   Max.   :6835   Max.   :177.352   Max.   : 

179.9989   Max.   : 52931.3   Max.   : 11531   

     B_phi1                B_r2             B_theta2          

B_phi2                B_r3            

 Min.   :-12785.780   Min.   :-48791.3   Min.   :-32957   

Min.   :-12786.300   Min.   :-15.310000   

 1st Qu.: -2934.210   1st Qu.:-36595.6   1st Qu.:-22026   

1st Qu.: -2934.445   1st Qu.: -1.010000   

 Median :    92.695   Median :  3090.9   Median :-14932   

Median :    92.140   Median :  0.010000   

 Mean   :     7.429   Mean   :  -891.5   Mean   :-14736   

Mean   :     7.427   Mean   :  0.008176   

 3rd Qu.:  3183.505   3rd Qu.: 29811.2   3rd Qu.: -8609   

3rd Qu.:  3183.633   3rd Qu.:  1.070000   

 Max.   : 12281.690   Max.   : 52933.8   Max.   : 11528   

Max.   : 12281.060   Max.   : 12.650000   

    B_theta3           B_phi3                B_r4             

B_theta4          B_phi4         

 Min.   :-7.7300   Min.   :-10.610000   Min.   :-55.1600   

Min.   :-12.39   Min.   :-27.0000   

 1st Qu.:-0.6900   1st Qu.: -0.670000   1st Qu.:-18.2425   

1st Qu.:  8.37   1st Qu.: -7.0200   

 Median : 0.0700   Median : -0.010000   Median :  0.1800   

Median : 14.55   Median :  0.1900   
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 Mean   : 0.0689   Mean   :  0.002412   Mean   : -0.1602   

Mean   : 17.08   Mean   : -0.2018   

 3rd Qu.: 0.8500   3rd Qu.:  0.610000   3rd Qu.: 17.8900   

3rd Qu.: 22.41   3rd Qu.:  6.2500   

 Max.   :11.3600   Max.   :  7.820000   Max.   : 54.9600   

Max.   :114.08   Max.   : 24.6300   

      B_r5             B_theta5          B_phi5           

 Min.   :-48824.1   Min.   :-32952   Min.   :-12793.660   

 1st Qu.:-36616.1   1st Qu.:-22002   1st Qu.: -2933.012   

 Median :  3091.3   Median :-14916   Median :    93.355   

 Mean   :  -891.7   Mean   :-14719   Mean   :     7.227   

 3rd Qu.: 29831.0   3rd Qu.: -8595   3rd Qu.:  3180.102   

 Max.   : 52963.2   Max.   : 11540   Max.   : 12278.980   

> # removing negative values from the coordinates 

> # Add the absolute value of the lowest x and y to shift 

the origin to the bottom left corner 

> i <- min(train$phi) 

> j <- min(train$theta) 

> train$phi <- train$phi + abs(i) 

> train$theta <- train$theta + abs(j) 

> # Creating initial plots 

> # Using the B_r value to provide more variation in the 

plot and show more detail 

> core_2D <- scatter2D(train$phi, train$theta, colvar = 

train$B_r2, col = ramp.col(c("blue", "yellow", "red"))) 

> crust_2D <- scatter2D(train$phi, train$theta, colvar = 

train$B_r3, col = ramp.col(c("blue", "yellow", "red"))) 

> ext_2D <- scatter2D(train$phi, train$theta, colvar = 

train$B_r4,col = ramp.col(c("blue", "yellow", "red"))) 

> # Separating the crustal field 

> crust_train <- 

train[,c("t","r","theta","phi","B_r3","B_theta3","B_phi3"

)] 

> crust_train$mag <- sqrt(crust_train$B_r3 * 

crust_train$B_r3 + crust_train$B_theta3 * 

crust_train$B_theta3 + crust_train$B_phi3 * 

crust_train$B_phi3) 

> crust_train$label <- 1 

> c_train <- crust_train[,c("phi", "theta", "mag", 

"label")] 

> head(c_train) 

             phi     theta       mag label 

770248  101.7547 137.00533 0.7772387     1 

2111396 104.8607 177.28091 2.9830354     1 

1095403 172.9893 169.54833 2.6161231     1 

2365072 272.8674 121.94003 5.0093313     1 

2518944 165.6680  29.88937 5.2148058     1 

122019  114.2449  68.62554 1.5667163     1 
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> nrow(c_train) 

[1] 2008800 

> crust_test <- 

test[,c("t","r","theta","phi","B_r3","B_theta3","B_phi3")

] 

> crust_test$mag <- sqrt(crust_test$B_r3 * crust_test$B_r3 

+ crust_test$B_theta3 * crust_test$B_theta3 + 

crust_test$B_phi3 * crust_test$B_phi3) 

> crust_test$label <- 1 

> c_test <- crust_test[,c("phi", "theta", "mag", "label")] 

> head(c_test) 

        phi    theta      mag label 

10 94.67786 163.4388 5.538447     1 

16 94.87651 163.8172 5.320357     1 

18 94.94501 163.9433 5.227332     1 

19 94.97970 164.0063 5.181477     1 

29 95.34367 164.6362 4.650387     1 

32 95.45927 164.8250 4.489822     1 

> nrow(c_test) 

[1] 669600 

> # Separating the external field 

> external_train <- 

train[,c("t","r","theta","phi","B_r4","B_theta4","B_phi4"

)] 

> external_train$mag <- sqrt(external_train$B_r4 * 

external_train$B_r4 + external_train$B_theta4 * 

external_train$B_theta4 + external_train$B_phi4 * 

external_train$B_phi4) 

> external_train$label <- 0 

> e_train <- external_train[,c("phi", "theta", "mag", 

"label")] 

> head(e_train) 

             phi     theta      mag label 

770248  101.7547 137.00533 17.46832     0 

2111396 104.8607 177.28091 26.42282     0 

1095403 172.9893 169.54833 29.87461     0 

2365072 272.8674 121.94003 24.36782     0 

2518944 165.6680  29.88937 22.51942     0 

122019  114.2449  68.62554 30.99013     0 

> nrow(e_train) 

[1] 2008800 

> external_test <- 

test[,c("t","r","theta","phi","B_r4","B_theta4","B_phi4")

] 

> external_test$mag <- sqrt(external_test$B_r4 * 

external_test$B_r4 + external_test$B_theta4 * 

external_test$B_theta4 + external_test$B_phi4 * 

external_test$B_phi4) 
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> external_test$label <- 0 

> e_test <- external_test[,c("phi", "theta", "mag", 

"label")] 

> head(e_test) 

        phi    theta      mag label 

10 94.67786 163.4388 55.66985     0 

16 94.87651 163.8172 55.54672     0 

18 94.94501 163.9433 55.51164     0 

19 94.97970 164.0063 55.48357     0 

29 95.34367 164.6362 55.31372     0 

32 95.45927 164.8250 55.26211     0 

> nrow(e_test) 

[1] 669600 

> # Combining the external and crustal field to provide a 

realistic dataset in which to search for the crustal field  

> # Also normalizing the data for more clarity in the CNN 

run 

> combined_train <- rbind(c_train, e_train) 

> com_train_scaled <- combined_train 

> com_train_scaled$mag <- scale(combined_train$mag) 

> head(com_train_scaled) 

             phi     theta        mag label 

770248  101.7547 137.00533 -0.9489097     1 

2111396 104.8607 177.28091 -0.8035846     1 

1095403 172.9893 169.54833 -0.8277580     1 

2365072 272.8674 121.94003 -0.6700856     1 

2518944 165.6680  29.88937 -0.6565482     1 

122019  114.2449  68.62554 -0.8968963     1 

> nrow(com_train_scaled) 

[1] 4017600 

> combined_test <- rbind(c_test, e_test) 

> com_test_scaled <- combined_test 

> com_test_scaled$mag <- scale(combined_test$mag) 

> head(com_test_scaled) 

        phi    theta        mag label 

10 94.67786 163.4388 -0.6353813     1 

16 94.87651 163.8172 -0.6497494     1 

18 94.94501 163.9433 -0.6558781     1 

19 94.97970 164.0063 -0.6588991     1 

29 95.34367 164.6362 -0.6938882     1 

32 95.45927 164.8250 -0.7044665     1 

> nrow(com_test_scaled) 

[1] 1339200 

> dim(com_train_scaled) 

[1] 4017600       4 

> train.x <- data.matrix(com_train_scaled[,1:3]) 

> train.y <- com_train_scaled[,4] 

> mx.set.seed(0) 
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> model <- mx.mlp(train.x, train.y, hidden_node=5, 

out_node=2, out_activation="softmax", 

+                 num.round=5, array.batch.size=15, 

learning.rate=0.07, momentum=0.9, 

+                 eval.metric=mx.metric.accuracy, 

array.layout = "rowmajor") 

Start training with 1 devices 

[1] Train-accuracy=0.499977364318179 

[2] Train-accuracy=0.499971639507076 

[3] Train-accuracy=0.499971639507076 

[4] Train-accuracy=0.499971639507076 

[5] Train-accuracy=0.499971639507076 

> test.x <- data.matrix(combined_test[,1:3]) 

> test.y <- combined_test[,4] 

> preds = predict(model, test.x) 

Warning message: 

In mx.model.select.layout.predict(X, model) : 

  Auto detect layout of input matrix, use rowmajor.. 

 

> sqrt(mean((preds-test.y)^2)) 

[1] 0.54394 

> pred.label = max.col(t(preds))-1 

> table(pred.label, test.y) 

          test.y 

pred.label      0      1 

         0 521678 518725 

         1 147922 150875 

 

2. Python Code 
 

# coding: utf-8 

# Code from Dr Jake Drew, SMU 

#  

https://github.com/jakemdrew/EducationDataNC/blob/master/

2017/Models/2017GraduationRates4yr.ipynb 

#and SMU Data Mining Class 

 

# ## Data Setup - r, theta, phi, magnitude 

 

# In[2]: 

 

import pandas as pd 

import numpy as np 

 

df_trainSM = pd.read_csv('/Users/laurabishop/Documents/R 

Repositories/Capstone Magnetic Field/combined_all_SM.csv') 
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df_trainSM.columns = ['Unnamed','theta','phi', 'mag', 

'label'] 

df_trainSM = df_trainSM.drop('Unnamed', 1) 

print("Training data for small data frame") 

print ('Size of the dataset:', df_trainSM.shape) 

print ('Information about dataset: ', df_trainSM.info()) 

print ('Head: ', df_trainSM.head()) 

 

 

# ## Data Exploration - r, theta, phi, magnitude 

 

# In[2]: 

 

 

import matplotlib.pyplot as plt 

plt.plot(df_trainSM) 

plt.show() 

 

 

# In[3]: 

plt.plot(df_trainSM) 

plt.savefig('rThetaPhiMagPLOT.pdf', 

orientation='portrait', papertype='letter') 

plt.close() 

 

 

# In[4]: 

 

#From SMU Data Mining Class   

import seaborn as sns 

import matplotlib.pyplot as plt 

#sns.pairplot(df_testSM, vars=['B_r3', 

# 'B_theta3', 

# 'B_phi3'], hue='B_r3') 

sns.pairplot(df_trainSM) 

#plt.title ('Pair Plot for External Training Split') 

plt.show() 

 

 

# In[5]: 

 

sns.pairplot(df_trainSM) 

plt.savefig('rThetaPhiMagPAIRPLOT.pdf', 

orientation='portrait', papertype='letter') 

plt.close() 

 

 

# In[22]: 
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#From SMU Data Mining Class 

#theta & phi 

import matplotlib.pyplot as plt 

N=50 

#mag & phi 

y = np.array (df_trainSM.mag) 

x = np.array (df_trainSM.phi) 

area = np.pi * (3 * np.random.rand(N))**2  # 0 to 3 point 

radii 

plt.scatter(x, y, color='g', s=5, linewidths=0, alpha=0.5) 

plt.title('Scatter for mag compared to phi') 

plt.show() 

 

#mag and theta 

y = np.array (df_trainSM.mag) 

x = np.array (df_trainSM.theta) 

area = np.pi * (3 * np.random.rand(N))**2  # 0 to 3 point 

radii 

 

plt.scatter(x, y, color='r', s=5, linewidths=0, alpha=0.5) 

plt.title('Scatter for mag compared to theta') 

plt.show() 

 

 

# In[5]: 

 

#From SMU Data Mining Class 

#theta & phi 

 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

N=50 

x = [] 

y = [] 

for i in range(len(df_trainSM)) :  

 if df_trainSM.label[i] == 0: 

    x.append(i) 

 else: y.append(i) 

 for j in range (13379,13405): 

    x.append(j) == np.nan 

     

     

df = pd.DataFrame({'x':x, 'y':y}) 

df.columns = ['External', 'Crustal'] 

df.plot(kind='scatter',x='External',y='Crustal', 

color='red') 
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plt.show() 

plt.scatter(x, y, color='g', s=5, linewidths=0, alpha=0.5) 

plt.title('Scatter Crustal Field Data v External Field 

Data') 

plt.xlabel("External Field Data (Noise) - Number of Rows") 

plt.ylabel("Crustal Field Data - Number of Rows") 

plt.savefig('PLOTExternalCrustal.pdf', 

orientation='portrait', papertype='letter') 

plt.close() 

plt.show() 

 

 

# In[56]: 

 

 

print (np.shape(x)) 

print (np.shape(y)) 

print (type(x)) 

#for i in range(len(x)) :  

#    if x[i] == 0 or x[i] == 1: 

#        print("hi") 

#    else: 

#       print (i)  

        #x[i] == np.nan 

         

print (np.shape(x)) 

# ## Create Linear Regression Variables 

 

# In[6]: 

# create x explanatory and y response variables for 

regression  DATAFRAME 

#Y_bt3 = df_trainSM['B_theta3'] 

#Y_BP3 = df_trainSM['B_phi3'] 

 

Ylabel = df_trainSM['label'] 

 

if 'label' in df_trainSM: 

    yMagVal = df_trainSM['label'].values # get the values 

we want 

#del df_trainSM['label'] # get rid of the class label 

 X = df_trainSM.values # use everything else to predict! 

#already done in if statement above 

X_Comb = df_trainSM.drop('label', axis=1) 

 

Y = Ylabel 

#inspect data  

X_Comb.info() 

# In[ ]: 
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X_Comb 

# ## PREPROCESSING 

 

# In[7]: 

###PREPROCESSING 

from sklearn import preprocessing 

from decimal import Decimal 

X_CombScale = preprocessing.scale(X_Comb)  

min_max_scaler = preprocessing.MinMaxScaler() 

np_scaled = min_max_scaler.fit_transform(X_CombScale) 

X_CombPre = pd.DataFrame(X_CombScale) 

X_CombPre.columns = ['theta','phi', 'mag'] 

X_CombPre['phi'] = round (X_CombPre['phi'], 2) 

X_CombPre['theta'] = round (X_CombPre['theta'], 2) 

X_CombPre['mag'] = round (X_CombPre['mag'], 2) 

X_CombPre 

 

 

# # Split Training Data  

#  

 

# In[8]: 

#Divide data into test and training splits 

from sklearn.model_selection import ShuffleSplit 

cv = ShuffleSplit(n_splits=5, test_size=0.20, 

random_state=0) 

 

# ## DataFrame to Store Regression Results 

 

# In[9]: 

colList = ['MAE','MAPE','RMSE'] 

dfResult = pd.DataFrame(columns= colList) 

dfResult 

 

 

 

 

# # 4.3 Machine Learning -- map to the Capstone paper 

section. 

 

# This paper examines five (5) machine learning approaches 

to see which method best  

# predicts the data useful for the crustal data model.  The 

approach taken is inverse data analysis.  Instead of 

starting  

# at the beginning with dirtiest data straight from the 

satellite, struggling with cleaning and clustering,  
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# and wondering if  

# errors or challenges are due to the premise or a challenge 

in the data; we start with clean known to work data (crustal 

model) that is 

# mixed with other external model data to create first 

phase 'dirty data set'.  If the crustal model data can be 

# successfully predicted amongst the external model data, 

success is achieved at Phase 1.  The next step is to use 

the data set in a dirtier, earlier revision from the 

satellite.  The 

# number of backward iterations is not known at this time, 

but estimated to be at least four (4) will be required to  

# confidently know this approach is statistically 

successful and useable by NASA Goddard.  

#  

# Additionally, this paper does not delve into the fuzzy 

barrier between machine learning and 

# statistical learning.  Given all learning is done from 

the data, the approaches are classified as machine 

learning. 

#  

# For each approach the measure of a good machine learning 

technique is its 

# error rate.  In order to evaluate the approaches, three 

(3) error measures are used to evaluate the distance 

between estimates and predictions: 

# 1. Mean Absolute Error (MAE) - Smaller error is better.  

Less sensitive to outliers and easy to use. 

# 2. Root mean Squre Error (RMSE) - Shows absolute fit of 

the model.  

# 3. Mean Absolute Percentage Error (MAPE)  - Small 

relative error and shows precision of the models. 

# <footnote: approach and code from Code from Dr Jake Drew, 

Southern Methodist University 

https://github.com/jakemdrew/EducationDataNC/blob/master/

2017/Models/2017GraduationRates4yr.ipynb  > 

# The model analysis code use was built by Dr. Jacob Drew 

of Southern Methodist University and his work for the State 

of North Carolina Education.  <footnote: Ibid.> 

#  

# The model analysis code builds regression models that are 

evaluated using cross validation and a random seed.  This 

is accomplished using parameters of Python's 

sklearn.model_selection's cross_validate function, which 

performs the cross validation for  

# regression estimators.  The random seed ensures that all 

regression  

# estimators are tested on  
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# the same randomly selected data rows for each cross 

validation fold.  Drew created custom scorers for MAE, 

RMSE, and MAPE using the three  

# chosen mean error scores.  Thus all three scores are 

calcualted using a single call  

# to cross_validate().  All of this functionality lies in 

a custom function 'EvaluateRegressionEstimator()', which 

allows multiple regression models to be tested using the 

same test / train cv data and produces the 

# evaluation scores in a consistent manner for each model.  

<footnote: Ibid> 

#  

# For these approaches, a sample size of the 2.6 million 

SWARM satellite data was used totalling 26,784 rows and 

five (5) folds.  The training set is 21,427 rows and test 

set is 5,357 rows. 

  

# Reference: 

# Drew J., The Belk Endowment Educational Attainment Data 

Repository for North Carolina Public Schools, (2018), 

GitHub repository, 

https://github.com/jakemdrew/EducationDataNC 

#     https://www.quora.com/Why-we-use-Root-mean-square-

error-RMSE-Mean-absolute-and-mean-absolute-percent-

errors-for-forecasting-time-series-models 

# MAPE.   

https://en.wikipedia.org/wiki/Mean_absolute_percentage_er

ror 

# MAE.  https://en.wikipedia.org/wiki/Mean_absolute_error 

# RMSE. https://www.theanalysisfactor.com/assessing-the-

fit-of-regression-models/ 

 

 

 

 

 

# In[10]: 

 

Dr Jake Drew code SMU 

#Use mean absolute error (MAE) to score the regression 

models created  

#(the scale of MAE is identical to the response variable) 

from sklearn.metrics import mean_absolute_error, 

make_scorer, mean_squared_error 

 

#Function for Root mean squared error 

#https://stackoverflow.com/questions/17197492/root-mean-

square-error-in-python 
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def rmse(y_actual, y_predicted): 

    return np.sqrt(mean_squared_error(y_actual, 

y_predicted)) 

 

#Function for Mean Absolute Percentage Error (MAPE) - 

Untested 

#Adapted from - 

https://stackoverflow.com/questions/42250958/how-to-

optimize-mape-code-in-python 

def mape(y_actual, y_predicted):  

    mask = y_actual != 0 

    return (np.fabs(y_actual - 

y_predicted)/y_actual)[mask].mean() * 100 

 

#Create scorers for rmse and mape functions 

mae_scorer = make_scorer(score_func=mean_absolute_error, 

greater_is_better=False) 

rmse_scorer = make_scorer(score_func=rmse, 

greater_is_better=False) 

mape_scorer = make_scorer(score_func=mape, 

greater_is_better=False) 

 

#Make scorer array to pass into cross_validate() function 

for producing mutiple scores for each cv fold. 

errorScoring = {'MAE':  mae_scorer,  

                'RMSE': rmse_scorer, 

                'MAPE': mape_scorer 

               } 

# In[11]: 

from sklearn.model_selection import cross_validate 

def EvaluateRegressionEstimator(regEstimator, X, y, cv): 

    scores = cross_validate(regEstimator, X, y, 

scoring=errorScoring, cv=cv, return_train_score=True) 

 

    #cross val score sign-flips the outputs of MAE 

  https://github.com/scikit-learn/scikit-

learn/issues/2439 

    scores['test_MAE'] = scores['test_MAE'] * -1 

    scores['test_MAPE'] = scores['test_MAPE'] * -1 

    scores['test_RMSE'] = scores['test_RMSE'] * -1 

 

    #print mean MAE for all folds  

    maeAvg = scores['test_MAE'].mean() 

    print_str = "The average MAE for all cv folds is: \t\t\t 

{maeAvg:.5}" 

    print(print_str.format(maeAvg=maeAvg)) 

 

    #print mean test_MAPE for all folds 

33

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019



    scores['test_MAPE'] = scores['test_MAPE'] 

    mape_avg = scores['test_MAPE'].mean() 

    print_str = "The average MAE percentage (MAPE) for all 

cv folds is: \t {mape_avg:.5}" 

    print(print_str.format(mape_avg=mape_avg)) 

 

    #print mean MAE for all folds  

    RMSEavg = scores['test_RMSE'].mean() 

    print_str = "The average RMSE for all cv folds is: 

\t\t\t {RMSEavg:.5}" 

    print(print_str.format(RMSEavg=RMSEavg)) 

    

print('**************************************************

*******') 

 

    print('Cross Validation Fold Mean Error Scores') 

    scoresResults = pd.DataFrame() 

    scoresResults['MAE'] = scores['test_MAE'] 

    scoresResults['MAPE'] = scores['test_MAPE'] 

    scoresResults['RMSE'] = scores['test_RMSE'] 

    return scoresResults 

# # Creates the comparison dataframe for the different 

methods. 

 

# In[12]: 

#this is to gather RMSE MAPE MAE to put into a table that 

shows the result based on approach.   

#The goal is to make comparison easier 

def ERE(regEstimator, X, y, cv): 

    scores = cross_validate(regEstimator, X, y, 

scoring=errorScoring, cv=cv, return_train_score=True) 

    #cross val score sign-flips the outputs of MAE 

    # https://github.com/scikit-learn/scikit-

learn/issues/2439 

    scores['test_MAE'] = scores['test_MAE'] * -1 

    scores['test_MAPE'] = scores['test_MAPE'] * -1 

    scores['test_RMSE'] = scores['test_RMSE'] * -1 

 

    #print mean MAE for all folds  

    maeAvg = scores['test_MAE'].mean() 

    #print_str = "The average MAE for all cv folds is: 

\t\t\t {maeAvg:.5}" 

    #print(print_str.format(maeAvg=maeAvg)) 

 

    #print mean test_MAPE for all folds 

    scores['test_MAPE'] = scores['test_MAPE'] 

    mape_avg = scores['test_MAPE'].mean() 
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    #print_str = "The average MAE percentage (MAPE) for all 

cv folds is: \t {mape_avg:.5}" 

    #print(print_str.format(mape_avg=mape_avg)) 

 

    #print mean MAE for all folds  

    RMSEavg = scores['test_RMSE'].mean() 

    #print_str = "The average RMSE for all cv folds is: 

\t\t\t {RMSEavg:.5}" 

    #print(print_str.format(RMSEavg=RMSEavg)) 

     

    rezReturn = [maeAvg, mape_avg, RMSEavg] 

    return rezReturn 

 

 

# ## Creates Predictor Class for prediction 

 

# In[13]: 

#Make new estimator compatible for use with GridSearchCV() 

and cross_validate() 

# -  Cap predict function for LinearRegression between 0 

and 100 

# -  See: Roll your own estimator links above for details.  

from sklearn.base import BaseEstimator, RegressorMixin 

from sklearn.linear_model import LinearRegression 

 

class CappedLinearRegression(LinearRegression): 

    def predict(self, X): 

        return np.clip(super(CappedLinearRegression, 

self).predict(X), 0, 100) 

 

# ## Regression Model Evaluation 

#  

# The same regression model function was used to evaluate 

each approach outside of CNN.  A five (5) fold cross 

validations is used, along with passing the three (3) mean 

error scores into the cross validation in one (1) call.  

#  

# GridSearchCV is used to "exhaustively" search for the 

best parameters used in the regression methods for the four 

(4) non-CNN regression approaches. GridSearchCV is passed 

a regression alogrithm (one of the 4), a parameter grid 

based on the regression, and number of cross validation 

folds.  Using GridSearchCV improves the accuracy of nested 

cross validation, thereby improving the accuracy of the 

model prediction. 

#  

# Reference: 
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# Drew J., The Belk Endowment Educational Attainment Data 

Repository for North Carolina Public Schools, (2018), 

GitHub repository, 

https://github.com/jakemdrew/EducationDataNC 

#  

# https://scikit-

learn.org/stable/modules/grid_search.html 

#  

# https://medium.com/all-things-ai/in-depth-parameter-

tuning-for-svc-758215394769 

#  

 

# ## Baseline Linear Regression 

#  

 

# Linear Regression models the behavior between dependent 

response (label of 'in crustal model' - 1 or not - 0) and 

explanatory variables of 'theta', 'phi' and 'mag' 

(magnitude). In this multi-linear regression, the value is 

capped between 0 and 100. Two options are run: 1) normalize 

with fit_intercept set to True; and 2) no normalization 

when fit_intercept set to False. 

 

# In[16]: 

 

#Create a Linear Regression object and perform a grid 

search to find the best parameters 

linreg = CappedLinearRegression() 

parameters = {'normalize':(True,False), 

'fit_intercept':(True,False)} 

 

#Create a grid search object using the   

from sklearn.model_selection import GridSearchCV 

regGridSearch = GridSearchCV(estimator=linreg 

                   , verbose=1 # low verbosity 

                   , param_grid=parameters 

                   , cv=cv  

     scoring=mae_scorer) 

 

#Perform hyperparameter search to find the best combination 

of parameters for our data 

regGridSearch.fit(X_CombPre, Y) 

 

 

# In[17]: 

 

 

#Print the parameterization of the best estimator 
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regGridSearch.best_estimator_ 

 

 

# In[18]: 

 

 

#Create CappedLinearRegression predictions between 0 and 

100% using the best parameters for our Linear Regression 

object 

regEstimator = regGridSearch.best_estimator_ 

 

#Evaluate the regression estimator above using our pre-

defined cross validation and scoring metrics.  

EvaluateRegressionEstimator(regEstimator, X_CombPre, Y, 

cv) 

 

 

# In[19]: 

 

 

rezult = ERE (regEstimator, X_CombPre, Y, cv) 

dfRez = pd.DataFrame(columns=colList) 

dfRez.loc['Baseline Linear Resgression CV', ['MAE', 

'MAPE', 'RMSE']] = rezult 

dfResult = dfResult.append(dfRez) 

dfResult 

 

 

# # Support Vector Approach 

 

# ## Support Vector Regression 

#  

# Support Vectors determine the distance of the data point 

from the boundary or hyper plane.  The error is the 

tolerance or margin of distance from the hyper plane.  

Wider margins between the data points indicate better 

classifiers.  Support Vector is good for use on many 

feature and low noise data sets.   While the data being 

modeled does not have many features, it is fairly low in 

noise for Phase 1. By keeping Support Vector in the 

regression comparison, a baseline is being created for 

upcoming Phases where the data is not as clean and orderly 

as in Phase 1. 

#  

# The 'kernel' parameter looks at both linear and non-

linear hyper planes.  For the non-linear, 'rbf', the gamma 

is set at a default of '1/number of columns in the data 

set, which is three(3)' and 0.1. The penalty parameter 'C' 

37

Loftin et al.: Machine Learning v Traditional Techniques for Magnetic Field Study

Published by SMU Scholar, 2019



is the cost or the error tolerance.  Too high a 'C' value 

can lead to overfitting.  GridSearchCV is used to optimize 

these hyper parameters for the SVR. 

#  

#  

# Reference: 

# https://medium.com/all-things-ai/in-depth-parameter-

tuning-for-svc-758215394769 

# https://medium.com/coinmonks/support-vector-regression-

or-svr-8eb3acf6d0ff 

# https://medium.com/analytics-vidhya/comprehensive-

support-vector-machines-guide-using-illusion-to-solve-

reality-ad3136d8f877 

 

# In[20]: 

 

 

#Create a Linear regression object and perform a grid 

search to find the best parameters 

from sklearn.svm import SVR 

reg = SVR() 

 

#Set up SVR parameters to test 

costs = [0.001, 0.1] 

defGamma = 1 / X_CombPre.shape[1]  #This is the default 

value for the gamma parameter 

gammas = [defGamma, 0.1] 

kernels = ['rbf','linear'] 

parameters = {'C': costs, 'gamma' : gammas, 'kernel': 

kernels} 

 

#Create a grid search object using the parameters above 

from sklearn.model_selection import GridSearchCV 

regGridSearch = GridSearchCV(estimator=reg 

                   , n_jobs=-1 # jobs to run in parallel 

                   , verbose=10 # low verbosity 

                   , param_grid=parameters 

                   , cv=cv # 5 

                   , scoring=mae_scorer) 

 

#Perform hyperparameter search to find the best combination 

of parameters for our data 

get_ipython().run_line_magic('timeit', 

'regGridSearch.fit(X_CombPre, Y)') 

 

 

# In[21]: 
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#Display the best estimator parameters 

regGridSearch.best_estimator_ 

 

 

# In[22]: 

 

 

from sklearn.svm import SVR 

 

#Create a regression estimator with best parameters for 

cross validation 

regEstimator = SVR(C=0.001, cache_size=500, coef0=0.0, 

degree=3, epsilon=0.1, 

                   kernel='rbf', max_iter=-1, shrinking=True, 

tol=0.001, verbose=False) 

 

#Evaluate the regression estimator above using our pre-

defined cross validation and scoring metrics. 

EvaluateRegressionEstimator(regEstimator, X_CombPre, Y, 

cv) 

 

 

# In[23]: 

 

 

rezult = ERE (regEstimator, X_CombPre, Y, cv) 

dfRez = pd.DataFrame(columns=colList) 

dfRez.loc['Support Vector Regression', ['MAE', 'MAPE', 

'RMSE']] = rezult 

dfRez 

dfResult = dfResult.append(dfRez) 

dfResult 

 

 

# In[24]: 

 

regEstimator = SVR(C=0.001, cache_size=500, coef0=0.0, 

degree=3, epsilon=0.1, 

                   kernel='rbf', max_iter=-1, shrinking=True, 

tol=0.001, verbose=False) 

regEstimator.fit(X_CombPre, Y) 

yhat = regEstimator.predict(X_CombPre) 

print("Yhat Max: ", yhat.max()) 

 

 

 

# ## Support Vector Machine 
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# The Support Vector Machine's binary classification is 

important for determining the accuracy of pulling out the 

crustal model data from the external model data.  While not 

in the table, the Support Vector Classification (SVC) shown 

below has an accuracy of 99%.  The confusion matrix shows 

49.9% predict accurately when a data row is not in crustal 

field and 49.9% accurate prediction when the data row in 

the crustal field.  The chance for a false  

# positive or false negative is < 1%. 

 

# In[14]: 

 

 

# Support Vector Classification 

 

# lets investigate SVMs on the data and play with the 

parameters and kernels 

#For classification 

from sklearn.svm import SVC 

from sklearn import metrics as mt 

 

SVC(C=1.0, cache_size=500, coef0=0.0, degree=3, 

    gamma='auto_deprecated', kernel='rbf', max_iter=-1, 

shrinking=True, 

    tol=0.001, verbose=True) 

 #train the model just as before 

svm_clf = SVC(C=0.5, kernel='rbf', degree=3, gamma='auto') 

# get object 

svm_clf.fit(X_CombPre, Y)  # train object 

 

print("finish fit") 

#from sklearn import svm 

 

#vector = svm.SVR(cache_size=500) 

#vector.fit(X_Comb, Y)  

y_hat = svm_clf.predict(X_CombPre) # get test set 

precitions 

 

print("finish y_hat prediction") 

 

#For classification variables not continuous in regression 

acc = mt.accuracy_score(Y, y_hat) 

conf = mt.confusion_matrix(Y, y_hat) 

print('accuracy:', acc ) 

print(conf) 

 

 

# ## Logistic Regression 
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# Because we are looking at binary classification ('good', 

which is in crustal field or 'bad', which is not in the  

# crustal field), Logistic Regression could be a viable 

approach. In this case, GridSearchCV is used to generate 

the best parameters using the three (3) scoring measures. 

 

# In[26]: 

 

 

from sklearn.base import BaseEstimator, RegressorMixin 

from sklearn.linear_model import LinearRegression 

 

class LogitRegression(LinearRegression): 

 

    def fit(self, x, p): 

        p[p==0] = 0.009    #0.1111111111111111  

        p[p==1] = 0.991    #0.9999999999999999  big 

precision seems to kill MAE scores here? 

        #e = 0.0000000000000001 

        #p = p * e + 0.5 * e                    This technique 

was really bad too.  

        p = np.asarray(p) 

        y = np.log(p / (1 - p)) 

        return super(LogitRegression, self).fit(x, y) 

 

    def predict(self, x): 

        y = super(LogitRegression, self).predict(x) 

        yhat = 1 / (np.exp(-y) + 1) 

        yhat[yhat <= 0.009] = 0 

        yhat[yhat >= 0.991] = 1 

        return yhat 

 

 

# In[27]: 

 

 

#convert y to a proability  

Y = Ylabel / 100 

 

#Create a Linear Regression object and perform a grid 

search to find the best parameters 

linreg = LogitRegression() 

parameters = {'normalize':(True,False), 

'fit_intercept':(True,False)} 

 

#Create a grid search object using the   

from sklearn.model_selection import GridSearchCV 

regGridSearch = GridSearchCV(estimator=linreg 
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                   , n_jobs=-1 # jobs to run in parallel (This 

breaks the custom estimators for some reason!) 

                   , verbose=10 # low verbosity 

                   , param_grid=parameters 

                   , cv=cv  

                   , scoring=mae_scorer) 

 

#Perform hyperparameter search to find the best combination 

of parameters for our data 

regGridSearch.fit(X_CombPre, Y) 

 

 

# In[28]: 

 

 

#Create CappedLinearRegression predictions between 0 and 

100% using the best parameters for our Linear Regression 

object 

regEstimator = regGridSearch.best_estimator_ 

 

#Evaluate the regression estimator above using our pre-

defined cross validation and scoring metrics.  

EvaluateRegressionEstimator(regEstimator, X_CombPre, Y, 

cv) 

 

#Change Y back to normal 

Y = Ylabel 

 

 

# In[29]: 

 

 

rezult = ERE (regEstimator, X_Comb, Y, cv) 

dfRez = pd.DataFrame(columns=colList) 

dfRez.loc['Logit Regression', ['MAE', 'MAPE', 'RMSE']] = 

rezult 

dfRez 

dfResult = dfResult.append(dfRez) 

dfResult 

 

 

# # Regression using the Random Forest Regressor 

#  

# A RFR is a comprehensive machine learning approach. The 

randomness of feature selection and collection of decision 

trees compensate for overfitting.  It uses a sample of the 

data, in this case a sample of 21,427 rows, to build 500 

decision trees which are averaged to build the prediction.  
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This approach is robust to outliers, which is shown to be 

the case for the sample data set.  The minimum leave size 

is a set of [10, 25, 50] to reduce noise in the training 

data. 

#  

#   

# https://en.wikipedia.org/wiki/Random_forest#Bagging 

# http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.Rando

mForestRegressor.html#sklearn.ensemble.RandomForestRegres

sor 

# https://www.analyticsvidhya.com/blog/2015/06/tuning-

random-forest-model/ 

# https://www.kaggle.com/general/4092 

 

# In[30]: 

 

 

#Create a Linear Regression object and perform a grid 

search to find the best parameters 

from sklearn.ensemble import RandomForestRegressor 

 

linreg = RandomForestRegressor() 

parameters = { 'min_samples_split':[2,3,4,5] 

              ,'n_estimators' : [500] 

              ,'min_samples_leaf': [10, 25, 50] 

              ,'criterion': ['mae'] 

              ,'n_jobs':[4] #8 jobs Runs for 24 hours.  

Change this to 4 next time. 

              ,'random_state': [0] 

             } 

 

#Create a grid search object using the   

from sklearn.model_selection import GridSearchCV 

regGridSearch = GridSearchCV(estimator=linreg 

                   , n_jobs=-1  

                   , verbose=10  

                   , param_grid=parameters 

                   , cv=cv  

                   , scoring=mae_scorer) 

 

#Perform hyperparameter search to find the best combination 

of parameters for our data 

regGridSearch.fit(X_CombPre, Y) 

 

 

# In[31]: 
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#Create CappedLinearRegression predictions between 0 and 

100% using the best parameters for our Linear Regression 

object 

regEstimator = regGridSearch.best_estimator_ 

 

#Evaluate the regression estimator above using our pre-

defined cross validation and scoring metrics.  

EvaluateRegressionEstimator(regEstimator, X_CombPre, Y, 

cv) 

# In[32]: 

#Do we predict graduation rates greater than 100%? 

#regEstimator = regGridSearch.best_estimator_ 

regEstimator.fit(X_CombPre, Y) 

yhat = regEstimator.predict(X_CombPre) 

print("Yhat Max: ", yhat.max()) 

# In[34]: 

rezult = ERE (regEstimator, X_CombPre, Y, cv) 

dfRez = pd.DataFrame(columns=colList) 

dfRez.loc['Random Forest Regressor', ['MAE', 'MAPE', 

'RMSE']] = rezult 

dfRez 

dfResult = dfResult.append(dfRez) 

dfResult 

 

# Note: Not for inclusion in the paper. 

#     Logit Regression result did not apply to the result 

data frame correctly.  This occasionally happens because 

overloading terms. Somehow the compiler memory is pointing 

an old value.  In this case, no need to document, just 

adjust the outcome by appending the correct values in the 

calcuations above into the data frame to be used. 

#  

# In this case: 

#  

#  

# The average MAE for all cv folds is:     

0.00091781 / 

# The average MAE percentage (MAPE) for all cv folds is: 

  10.114 / 

# The average RMSE for all cv folds is:     

0.0025938 

#  

#  

 

# # THIS IS THE FINAL MATRIX TO USE IN DRAFT 2. CORRECTS 

POSTIN OF LOGIT REGRESSION 
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# In[39]: 

 

dfResult.loc['Logit Regression'] = [0.00091781, 10.114, 

0.0025938] 

 

dfResult 

 

# In[40]: 

 

dfResult 
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