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Abstract. Nuclei identification is a pivotal first step in many areas of biomedical research. 

Pathologists often observe images containing microscopic nuclei as part of their day to day 

jobs. During research, pathologists must identify nuclei characteristics from microscopic 

images such as: volume of nuclei, size, density and individual position within image. The 

pathology field can benefit from image detection enhancements done through the use of 

computer image segmentation techniques. This research presents methods that can be used to 

identify all the cell nuclei contained in images. Multiple techniques were experimented with 

such as edge detection and Convolutional Neural Networks with U-Net architecture. The data 

for training these models was sourced from the 2018 Data Science Bowl sponsored by Kaggle 

and Booz, Allen, Hamilton. As a result, there were various methods identified to assist the 

pathology industry for automating nuclei detection by using computer image detection 

methods. These computer methods rapidly process images for research purposes, with a 

reasonably high accuracy which has the potential to greatly accelerate the pace of research.  

1   Introduction 

The goal of this paper is to add value to the biological research process through the use of image 

classification techniques - Edge Detection, CNN and U-Net. Edge Detection worked very well on 

images that had isolated nuclei. This technique detected the edges of the nuclei and highlighted the 

density within the nuclei. Images of Edge Detections highlighting nuclei are shown in the Methods 

section. The Morphological Chan Vese Segmentation, specifically, worked very well for identifying 

nuclei; however, this method fails when nuclei is extremely dense within the image. The neural 

network models performed more consistently across the entire dataset; however, the precision 

requires more fine tuning to improve the accuracy. There are opportunities for future work in order 

to improve nuclei classification/segmentation. However, this paper demonstrates there are multiple 

potential solutions to automate this detection. 

The fundamental unit of all known biological life is a cell. Cells consist of a liquid cytoplasm, 

surrounded by a membrane, contained within the cytoplasm are a myriad of organic molecules such 

as proteins and nucleic acids. There are two primary types of cells - prokaryotic and eukaryotic. 

Prokaryotes are typically single-cell organisms such as bacteria and archaea whereas eukaryotes are 

the more familiar forms of life such as plants, animals, and fungi. Since the focus of this paper is on 

biomedical research for human disease the focus will be exclusively on eukaryotic cells going 

forward. The flagship feature of eukaryotic cells is their compartmentalization, eukaryotic cells 

contain many smaller membrane-bound organelles such as mitochondria, Golgi apparatus, and most 

relevantly, a nucleus. 

The nucleus is an organelle found in most eukaryotic cells, its primary function is to contain and 

protect the organism's genetic material, DNA. DNA is a special biological molecule, and is the key 

to the complex and diverse forms of life that can be seen across the world. DNA is the instruction 

manual that tells a cell everything it needs to know about itself, from how it should be shaped as it 

grows to how the cell’s internal systems should be regulated. Given the crucial role the nucleus and 

the DNA contained within in cell play in cell function, it is commonly referred to as the control 

center for the cell. 
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Traditionally, identifying nuclei is a manual process in which a scientist looks at images and tags 

the location of nuclei. Nuclei detection is a good fit for compute image classification since it is a 

repetitive, manual and rules-based process. The goal of this research is to optimize the step of cell 

nuclei identification in the biological research pipeline - with the intention to increase the throughput 

of the medical research process. The data used in in this research is from the 2018 Data Science 

Bowl, sponsored by Booz, Allen, Hamilton and Kaggle. The data consists of images of cells, and 

image masks which indicates where on the image a cell nuclei is present. 

 

  

Fig. 1. Sample images from 2018 Data Science Bowl data, first image is input of unlabeled cells, 

second (four) images are sample masks that show location of cell nuclei [1] 

 

Machine or computer vision is a field within computer science in which the goal is to design 

systems that recover useful information about a scene from their two-dimensional projection [2]. 

Machine vision has grown rapidly in recent years, correlated with the rise of smartphones and social 

networks [8]. As an example, when a picture is posted on Facebook, and Facebook identifies 

individuals in the photo and suggests to tag them, this is computer vision at work. The output of a 

computer vision system is not necessarily a single label (cat, dog, happy, sad), it can be a binary 

label for each pixel meant to indicate the presence of an object. By stitching all those labels together, 

a “mask” that indicates the position of individual objects within an image can be created. This 

process of taking one image and automatically identifying all the constituent objects within that 

image is known as image segmentation. 

In recent years, deep convolutional networks have shown large efficiency gains in many visual 

recognition tasks [9, 19]. The historical limiting factor of using convolutional neural networks in 

biological research was the requirement for very large training data sets. It may be easy to get 

millions of images of cats, but it is not so easy to get millions of high quality images of rare 

cancerous cells. U-Net architecture, as proposed by Ronnenberger, Fischer, and Brox [7] has shown 

great success in implementing effective image segmentation algorithms that can train on relatively 

small data sets. 

A key insight in U-Net architecture is the use of data augmentation to simulate a larger training 

dataset. Training the algorithm on many altered versions of the same image effectively generates a 

more generalized and robust network, capable of performing quite well on test data. To further push 

the concept of image augmentation as a performance booster, a series of visual filters can be applied 

to images and train with those augmented images. TensorFlow - an open-source deep learning 

framework originally developed by Google, was used to implement a U-Net CNN, specifically 

leveraging the Keras Tensorflow API. Keras is a high-level API for TensorFlow which allows rapid 

experimentation of different deep learning architectures. 
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2   Image Data Processing Background 

The methods used for this analysis require the use of convolution arithmetic, as this is the basis for 

decomposing and analyzing images. Images are composed of pixels. Pixels are small or tiny squares 

within an image that contain a specific color. The combination of these tiny squares (pixels) and 

colors would then compose a larger image which would be visible to the human eye. A good 

example to explain image processing and convolution are TV images. TVs that have a clear and 

vivid picture quality have a very high resolution. In this generation, a high resolution TV would be 

a 4K and 2K pixel TVs1. The more pixels a TV has, the higher the definition it will have, and 

therefore the clearer the image will be.  

The explanation above illustrates the basis of the approach to solve the problem at hand, which 

is identify the Nuclei from an image dataset. These images contain pixels, and each individual pixel 

contains a color. In order to identify Nuclei, the images in the dataset need to be decomposed at the 

pixel level in order to teach the computer the target element (Nuclei). In addition, the pixels need to 

be categorized accordingly as to which pixels contain the target image using 0s and 1s. This way 

the data frame to be used after the analysis, is one that contains data of nuclei pixels vs non-nuclei 

pixels. Once this pixel segmentation is performed, later in the process, an aggregation method with 

all the pixels would be required to identify the larger image and segmented features. This 

aggregation method of pixels is important as no single pixel can tell what the image is about unless 

there is a combination of pixels. 

 

 

 

Fig. 2. A visual representation of  a 3x3 matrix of pixels 

 

The image processing is done through raw data using a preferred computing tool. The image/pixel 

decomposition exercise previously mentioned is translated into sequences of numbers or arrays in 

the form of mathematical matrices2. Each individual pixel would represent a numeric indicator in 

the mathematical matrix. This is done in order to compute any mathematical calculation and be 

flexible into breaking the pixel composition of the image further, in case this is needed. Moreover, 

the process to decompose an image is done through a grid method identifying if each pixel contains 

a specific color. A color in computing is a combination of the three primary colors: red, green and 

blue. This data is also stored in raw data in the form of mathematical matrices. 

A technique commonly used in convolution, is to apply a ‘filter’ of a different color scheme to 

the image to be analyzed or trained. This is to isolate  the target features from the rest of the picture. 

These filters would have a numeric composition very similar in format to the one decomposed in 

pixels on the original image. In order to apply a filter to a specific image, these filter matrices are 

integrated with the original image by applying a matrices calculations, which is where the 

convolution process begins. The figure below indicates the progression of pixel calculations for this 

                                                           
1 Note this technology continues to evolve and more and more pixels are added to technologies to 

produce a more vivid image. 
2Carlo Tomasi, “Image Correlation, Convolution and Filtering”, 1-10 
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process and how pixels can be combined, reduced, aggregated and calculated in the convolution 

process.   

 

 

Fig. 3. A visual representation of a 9x9 Image with its  pixels 

 

 

Pixel Calculation 1 Pixel Calculation 2 

  

Pixel Calculation 3 Pixel Calculation 4 

  

 

Fig. 4. A visual representation of the process of applying an image filter across a set of pixels 

 

A final process after defragmenting an image in order to read its individual components, is to 

recreate the image with the features highlighted or identified. In the image above, the green picture 

represents a matrix of the possible output of a new image. This in essence would be an image that 

was modified from the original image highlighting the target features. 

3  Related Work      

This paper builds on the ideas of a wide range of research and topics. Humayun Irshad,  Antoine 

Veillard, Dr. Ludovic Roux and Daniel Racoceanu have done a detailed research and shared many 

important details related the nuclei detection and its importance in the field of digital pathology 
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using traditional techniques [2]. They have also highlighted the challenges currently faced in the 

medical diagnosis process especially in image processing for nuclei detection, segmentation and 

classification. The paper  shares the details of conventional image process methods such as 

thresholding, morphology, region growing, watershed, active contour models and level sets, K-

Means Clustering, probabilistic models and graph cuts. Through this research paper an attempt is 

made to address some of these challenges which exist today in the medical field and try to enhance 

the overall process in addition to the traditional methodologies. 

Christopher D Malon and Eric Cosatto in their research article have discussed how the automatic 

analysis could lead to reduction in the pathologist labor and thus improving the quality and 

efficiency of overall medical diagnosis procedures [3]. They used Support Vector Machine and deep 

learning technique of Convolutional Neural Networks in training the model to solve  the problem of 

image segmentation for nuclei detection. Their trained model achieved F1 scores up to 0.659 on 

color scanners and 0.589 on multispectral scanner. This article was created as part of mitotic figure 

recognition contest at the 2012 International Conference on Pattern Recognition (ICPR) challenges 

a system to identify all mitotic figures in a region of interest of hematoxylin and eosin stained tissue, 

using each of three scanners (Aperio, Hamamatsu, and multispectral). This paper builds on these 

methods and processes defined by various researches already done on this problem. Based on the 

observation on reviewing many researches already done related to medical diagnosis, nuclei 

identification and classification appears to be a tedious tasks for the pathologists and consumes 

significant amount of time in the overall process. 

Neeraj Kumar, Ruchika Verma, Sanuj Sharma, Surabhi Bhargava, Abhishek Vahadane, and 

Amit Sethi highlights  the challenges in the conventional image segmentation processes like Otsu 

and Watershed in their research IEEE paper [4]. They have used Convolutional Neural Networks to 

generate the model and have obtained an overall F1 score of 0.8267.  They have used Hematoxylin 

and eosin (H&E) stained images for their research in developing the model for nuclei segmentation. 

Their reason for using H&E stained images is that Hematoxylin renders nuclei dark blueish purple 

and epithelium light purple, while eosin renders stroma pink. Together, H&E enhance the contrast 

between nuclei, epithelium and stroma for examination under a microscope. The basic challenges 

in nuclear segmentation using traditional technologies are, as the original H&E stained tissue images 

show as crowded and chromatin-sparse nuclei, the Otsu thresholding method leads to merged nuclei 

(under-segmentation). Marker controlled watershed segmentation method leads to fragmented 

nuclei (over-segmentation). The technique used in their research paper is CNN which detects and 

segments almost all nuclei well. Each segmented nucleus is shown in a separate color in this model. 

There seems to be a vast amount of untapped information in H&E stained images that can be used 

for specific diagnoses such as cancer molecular subtypes determination. 

Vahadane, A., & Sethi, A. in their IEEE paper Towards generalized nuclear segmentation in 

histological images [5], shares the enhancement details applied on traditional image segmentation 

processes. The main reason for proposing the enhancements is due to the fact that watershed 

segmentation is prone to errors like over segmentation when applied to histological images. They 

propose specific enhancements to improve segmentation of cell nuclei in histological images. At a 

high level these are the proposed enhancements - Foreground seeds were generated by fast radial 

symmetry transform (FRST). Otsu thresholding was used on enhanced image to estimate tentative 

foreground map. Background markers were computed from the tentative foreground map. False 

detections in the segmented output were removed by logical AND with the tentative foreground 

map. They have confirmed that by using these enhancements the nuclear segmentation improved 

significantly for the historical images like H&E stained breast and intestinal tissue images. 

The research presented in this paper builds off of everything above, but will try to solve the 

problem of nuclei segmentation by combining all the best features and ideas presented above. In 

addition, the team focuses on Machine Learning & Deep Learning techniques that has a higher 

potential in significantly improving the efficiency in the image segmentation process over the 

current traditional methods used. The methods proposed in this research paper can be applied in 

other areas with minor customizations.  
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4  Data 

Datasets used in this research paper are publicly accessible datasets obtained primarily from Kaggle 

and other external sources, it contains a large number of segmented nuclei images. In an effort to 

diversify training data, the team used these four sources of data: (1) Kaggle Data Science Bowl 

2018, (2) IEEE paper on Transactions on Medical Imaging "A Dataset and a Technique for 

Generalized Nuclear Segmentation for Computational Pathology",  (3) Murphy Lab & (4) Zenodo. 

Datasets obtained from Kaggle3 are images that were acquired under a variety of conditions and 

vary in the cell type, magnification, and imaging modality (brightfield vs. fluorescence). The dataset 

used is designed to challenge an algorithm's ability to generalize across these variations. The dataset 

includes a diversity of nuclear appearances from several patients, disease states, and organs, 

techniques trained on it are likely to generalize well. This dataset has 670 images and associated 

masks for training the model and 65 images to test the model by predicting the masks  as they will 

be not exposed while training the models. As these are human annotated datasets, various forms of 

error exists in this dataset which needs to be accounted for before being used for training the the 

models. 

The dataset obtained from Multi-Organ Nuclei Segmentation Challenge 2018 (MoNuSeg) is 

publicly accessible and are annotated datasets of H&E stained tissue images with painstakingly 

annotated nuclear boundaries4. The quality of the annotations was validated by a medical doctor. As 

the dataset includes a diversity of nuclear appearances from several patients, disease states, and 

organs, techniques trained on it are likely to generalize well and is expected to work fine on other 

H&E stained images. This dataset was generated by carefully annotating tissue images of several 

patients with tumors of different organs and who were diagnosed at multiple hospitals. This dataset 

was created by downloading H&E stained tissue images5 captured at 40x magnification from 

archive. H&E staining is a routine protocol to enhance the contrast of a tissue section and is 

commonly used for tumor assessment (grading, staging, etc.). Given the diversity of nuclei 

appearances across multiple organs and patients, and the richness of staining protocols adopted at 

multiple hospitals, the training dataset will enable the development of robust and generalizable 

nuclei segmentation technique. This dataset was used for the research work in  IEEE paper “Dataset 

and a Technique for Generalized Nuclear Segmentation for Computational Pathology” [4]. 

The dataset6 obtained from Murphy Lab Carnegie Mellon University are Hand-Segmented 

Datasets. The lab is a multidisciplinary environment with people working on projects in 

computational cell biology. The dataset contains original images from two microscopes for two cell 

types stained with Hoechst 33342 as PNG files. It also contains images showing hand-segmentation 

of the Hoechst images into regions containing single nuclei. 

The dataset obtained from in Zenodo Org7 was used in the IEEE research paper "Segmentation 

of Nuclei in Histopathology Images by deep regression of the distance map" in Transaction on 

Medical Imaging by Naylor, P., Lae, M., Reyal, F., & Walter, T. [6]. This dataset consists of 50 

annotated images, divided into 11 patients (DOI: 10.5281/zenodo.1174342.) by extracting three to 

eight 512 × 512 patches from different areas of the tissue. Its mentioned in this paper [6] that this 

dataset was generated at the Curie Institute consisting of annotated H&E stained histology images 

at 40× magnification. All slides were taken from a cohort of Triple Negative Breast Cancer (TNBC) 

patients and were scanned with Philips Ultra Fast Scanner 1.6RA. The annotation was performed 

by expert pathologists in the institute. This data set represents both intra- and inter-patient variability 

for the same cancer type. 

High-quality labeled training datasets are integral part of supervised and semi-supervised 

machine learning algorithms. The quality of dataset chosen will significantly impact the outcome of 

the research, as it can lead to inaccurate findings in the research if the data quality is not good. Hence 

identifying the right set of data to train the model for this research is the most important task. As 

                                                           
3 https://www.kaggle.com/c/data-science-bowl-2018/data 
4 https://nucleisegmentationbenchmark.weebly.com 
5 https://cancergenome.nih.gov 
6 http://murphylab.web.cmu.edu/data/2009_ISBI_Nuclei.html 
7 https://zenodo.org/record/1175282#.Ws2n_vkdhfA 
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mentioned above the main focus in this paper would be on the Kaggle dataset for training and testing 

the model initially, later other datasets will be used as a supplement. This helps us to improve the 

model accuracy and efficiency by using a combination of variety of datasets and enable the 

development of a powerful  model and also universalize the  nuclei segmentation technique which 

can then be applied to other areas with minimal modifications. 

5  Methods 

There are specific techniques and methods to process images in the data science space. Some of 

these methods are: 1) Edge Detection and Image Filters 2) Convolution Neural Networks (CNN) 3) 

U-Net and 4) Mask R-CNN 

 

5.1 Edge Detection and Image Filters 

 

Edge detection is a method to identify borders in an image by identifying changes in contrast, 

brightness and sharpness. Several ‘Edge Detectors’ were tested as one of the methods to identify  

nuclei within the image dataset. The edge detectors used to run these tests are as follow: NDImage 

(image filter) [17], Canny Detector [16], Shape Index [18], Image Filter, and Morphological Chan 

Vese Segmentation [14]. All edge detectors are from the scikit-image library [15].  

Some of the edge detectors were unsuccessful. These unsuccessful filters and edge detectors 

created more noise and nuclei was not identified properly. However, others edge detectors 

performed well. The images below give a very clear representation on how each one of the image 

filters, contour and edge detectors performed. Two high level requirements are needed for nuclei 

detection 1) Be able to clearly identify the nuclei in the image and 2) Convey this image into a 

numeric form in order to report how many nuclei was identified and where. Since all of the images 

below can be transformed into its numeric composition this second requirement is met when using 

Edge Detection and Image Filters.  

As part of the first requirement it can be observed that the NDImage and Shape Index produce 

noisy data for this specific nuclei use case. Even though the image displays the nuclei, it is harder 

to see the nuclei compared to the rest of the edge detectors and filters. When looking at the Canny 

Feature example and Magma Image Filter, there is a nicer visualization and identification of nuclei. 

The Magma Image Filter does a very good job at highlighting the contour and edges. At the same 

time, this filter highlights where there is more concentration of color or edges. Even though the 

Canny Feature identifies the edges, it fails to connect the individual nucleus as there are broken 

nucleus.  

The best edge detector seems to be the Morphological Chan Vese Segmentation. This edge 

detector provides not only the edges and its concentration, just like the Magma Image Filter, but 

also highlights the area of the nuclei. Highlighting the area of the nuclei is important as it can be 

used to calculate the Intersection over Union, metric later covered in detail.  
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Original Image NDImage Canny Feature 

   

Shape Index (𝞼=1) Magma Image Filter Morphological Chan Vese 

Segmentation 

   

Fig. 5.  Sample original images and its edge detected images. 

 

The Morphological Chan Vese Segmentation’ -  Active contours without edges implemented 

with morphological operators. It can be used to segment objects in images and volumes without well 

defined borders. It is required that the inside of the object looks different on average than the outside 

(i.e., the inner area of the object should be darker or lighter than the outer area on average).  

 

5.2 Convolution Neural Networks (CNN) 

 

For this Nuclei Analysis Identification, ‘Convolution Neural Networks‘ was used to process, read, 

analyze and generate the nuclei identification algorithm. This technique  breaks down the images 

into pixel arrays. The image is segmented in a data grid with all of the pixels mapped with 0s and 

1s. A 0 is tagged in those pixels where there is irrelevant data to be marked and a 1 is tagged in those 

pixels where relevant data needs to be marked. After this process is completed, the data is now 

formatted in a flat data format as a pixel array matrix with only 0s and 1s. This process makes it 

easier to make respective calculations against various other filters for convolution processing. This 

convolution between filters and flat data (previously formatted as an image) are passed into feature 

identification models. CNN can ultimately segment any trained feature and identify features within 

images as previously explained, in this case Nuclei. 

 

5.3 U-Net 

 

Another technique known for image processing is U-Net. Like CNN, this technique decomposes the 

images using a sigmoid function (values between 0 and 1) to read respective features. U-Net’s 

architecture passes input images through a series of convolutions and matrices reduction processes, 

then as it reaches the final convolution composition and the smallest matrix reduction, the matrices 

start building back up with now a combination and a comparison with the real image. The final 

output is a new recreated image with segmented features. 
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Fig. 6. A U-Net architecture. Each blue box corresponds to a multi-channel feature map. The number of 

channels is denoted on top of the box. The x-y size is provided at the lower left edge of the box. White boxes 

represent copied feature maps. The arrows denote the different operations [7]. 

 

5.4 Mask R-CNN 

 

This method combines two methods for a more powerful method. Mask R-CNN generates bounding 

boxes and segmentation masks for each instance of an object in the image. This method is useful 

since the Nuclei dataset not only contains a single nuclei per image, it contains multiple nuclei per 

image. In object detection, many objects can be classified in an image by creating a shape around 

the target object. In Instance Segmentation, the objects can be colored around the object contour 

with a primary color for object detections. These two primary image detection algorithms are the 

base of Mask R-CNN as it both identifies multiple objects of the same kind while highlighting in 

primary colors the contour of that specific object 

6  Metrics To Analyze Accuracy and Precision for Nuclei Predictions 

The nuclei prediction requires to be measured for accuracy. Once the images are converted into 

series of pixels and matrices notation, then further steps can be performed to measure how accurate 

those predictions were against the original masks. In addition, due to the many number of masks 

within a specific image, it is necessary to choose a metric that not only takes into account the 

precision of just one individual mask but all the multiple masks within an image. Once the level of 

accuracy is calculated at the mask and image level, then a third computation can aggregate the 

accuracy of all masks and images at the dataset level. In the explanation below, 3 high level steps 

are explained conceptually for the overall computation of accuracy for the nuclei detection: 1) Step 

1 - Computing Mask Accuracy 2) Computing Image Accuracy and 3) Computing Nuclei dataset 

detection accuracy 

 

Step 1 - Computing Mask vs Predicted Mask Accuracy Using ‘Intersection over Union’ (IoU) 

 

‘Intersection over Union” is a metric that can assist with measuring the accuracy of nuclei 

‘Prediction’ versus the ‘Ground Truth’ [11]. Below is the ‘Intersection over Union’ formula, in 
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which the numerator explains the area overlap between the ‘Ground Truth’ and the ‘Prediction’, 

while the numerator explains the ‘Area of Union” between the ‘Ground Truth’ and the ‘Prediction. 

 

𝐼𝑜𝑈 (𝐴, 𝐵)  =  
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
  

Formula 1. Intersection over Union (IoU) 
 

In the display below, ‘Intersection over Union’ is represented conceptually for the Nuclei 

Prediction use case in the form of a progression to compute the predictions’ accuracy. There are 

four nuclei areas that need to be computed to derive IoU: 1) Ground Truth’s Area 2) Prediction’s 

Area 3) Overlap Area and 4) Area of Union. 

 

 

Display 1 - Identify “Ground Truth”  

(Grey Area) 

Display 2 - Ground Truth (grey) and 

Prediction (Blue Area)  

  

Display 3 - Overlap Area (Orange Area): 

𝑨 ∩ 𝑩 

Display 4 - Area of Union (Purple Area): 

𝑨 ∪ 𝑩 

  

Fig. 7. A visual representation of the IOU metrics 

 

In the ‘Display 1’ from the representation above, the “Ground Truth” becomes the masks 

derived from the actual image. The characteristics of the “Ground Truth” becomes the basis of 

comparison in further steps for computing ‘Intersection over Union’. When the prediction is 

generated by the algorithm or model of choice, then the predicted mask (Display 2- Blue Area) is 

compared to the “Ground Truth” (Grey Area). In this comparison, there will be two overlaps that 

are required to compute IoU: 1) The area of overlap (Display 3 - IoU’s numerator)  and 2) the 

Area of Union (Display 4- IoU’s denominator).  Once these areas are computed for that individual 

mask, then the ratio of these two would indicate how accurate was the ‘Ground Truth’ from the 

‘Prediction’. With this principle in mind, if the prediction is very accurate, the overlap and union 

areas of the predicted mask would be very similar to the Ground Truth’s area. If the prediction is 

inaccurate and far off from the Ground Truth, the areas would be dissonant and not have the 

overlapping required to be accurate. 
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Step 2 - Computing Precision for Individual Images 

 

Once the mask accuracy is computed with the IoU for each mask, ‘Precision’ can be calculated for 

each individual image. An image can have multiple masks; therefore, a calculated ‘Precision’ for an 

image could be impacted if there are predicted objects with no associated Ground Truths (True 

Negatives) for that particular image. Moreover, if there are Ground Truths with no associated 

prediction (False Negatives) can also impact the Precision ratio for that specific image. A good 

nuclei image ‘Precision’ should have the number of predictions matching the number of ground 

truths with a certain IoU threshold. IoU thresholds higher than 0.5 are considered a IoU hit. The 

precision formula is as follow: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡)  =  
𝑇𝑃(𝑡)

𝑇𝑃(𝑡)  +  𝐹𝑃(𝑡)
 

Formula 2. Precision 
 

 

Step 3 - Average Precision for the Entire Nuclei Dataset 

  

Once the precision is generated for each individual image, then an overall precision average can be 

computed for the entire dataset. This computation can be used to compare multiple models’ 

accuracy. As the models are being refined over and over, it is essential to have this level of 

aggregation to determine which model is performing better than another. The average precision 

takes individual image precisions and averages. At this point this aggregation is much simpler than 

earlier steps. 

 

𝐴𝑣𝑔. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
+  ∑𝑛

𝑡=1 precision (t) 

Formula 3. Average Precision for Entire Nuclei Dataset 
 

Below is a code excerpt from where the Keras metrics used for experimentation and training 

were defined. 

 

 

 

Fig. 8. IOU metrics python code 
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7  Current Code and Basic Architecture 

This section gives an overview of data preprocessing and the Neural Network architecture used in 

this image segmentation problem. The project folder structure contains two folders at the top level, 

training and testing data are in these two separate folders. The train directory is further subdivided 

into separate folders for each image, this image folder name will be the actual image id. This image 

folder contains two sub folders one for the actual image and the other for the pre-labeled masks. The 

mask folder has one image per nuclei, i.e. if the original image has five nuclei then there will be five 

corresponding images in the mask folder. As the folders are in a well-defined structure, that structure 

will be integrated with the code to load the data for preprocessing before it is passed to the model. 

The entire data processing and model training pipeline relies on a range of open source Python 

libraries. They include: numpy, pandas, skimage, tensorflow, and keras. 

Once the data is loaded, it is resized to 512 (image width) by 512 (image height) for further 

analysis. One of the major data processing tasks is to combine all the mask images to one image, in 

that way there will be one labeled output per input image in the training set. The input images are 

loaded and stored in python as numpy arrays. All the images are then converted to gray scale  for 

enhanced processing. Test images are also loaded in the same format as explained above. Figure 9 

shows a sample image after initial preprocessing.  

 

Original Image (Train) Combined Mask Image (Target) 

 
 

Fig. 9. This is a sample image printed after loading the image data into python and storing it in numpy arrays. 

 

Using keras and tensorflow as backend the Neural Network layers are built using Conv2D and 

Conv2dTranspose for convolution and deconvolution process in the architecture. In the current 

architecture there is an input layer and an output layer. The hidden layers details are as follows, 

there are eight convolution layers and four max pooling layers in the first half of the architecture. 

The second half of the architecture consists of four deconvolution layers or convolution transpose 

layers followed by two convolution layers after each convolution transpose layers. The filters used 

are 3 by 3 in the convolution layers and 2 by 2 for the max pooling layers. The activation function 

used is ReLu for the hidden layers and Sigmod for the output layer. The loss function used is 

‘binary_crossentropy’ and optimizer used is ‘adam’. For all the convolution layers the padding used 

is ‘same’, this ensures that there will be no information loss during the feature extraction process. 

The data is scaled by dividing by 255 before passing into the neural network model for training. 

Below is a small sample of the Keras code used to build up the network. Keras provides a relatively 

ergonomic API for stacking a wide range of Tensorflow layers [10]. 
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Fig. 10. U-Net CNN Code snippet. 
 

Fifty epoches with a batch size of 10 is used for model training. The validation split is 0.1 - 

meaning 90% training data and 10% validation data. To be more efficient an early stopper has been 

implemented by monitoring the validation loss with a patience value of 5. The ModelCheck function 

will save the best model built so far to the local system during the training process. With 50 epochs 

the time taken to complete the training of the model is 12 minutes 59 seconds on a retail home 

computer GPU. Once the training process is complete the best model saved is loaded and then the 

predictions are made on the unseen data. The metrics used in the training process is mean_iou 

(Intersection over Union). The best mean_iou value obtained on the validation set is 0.4236. Based 

on the results obtained so far it can be assumed that there could be still options to improve the model 

and the inference accuracy scores which needs to explored further.  

7  Ethics 

To understand why a rigorous and exhaustive analysis of the ethics of machine learning is important, 

consider that machine learning algorithms detects underlying correlation between some inputs 

variables and some outcome. This process on its own is completely agnostic to whether or not those 

correlations fit within any sort of human derived ethical framework. An algorithm may notice that 

a particular type of candidate is hired less likely for a given role, and thus recommend to not hire 

candidates in that category. But what if the reason that type of person is hired less often is to due to 

existing biases and prejudices held by the hiring manager. This creates a feedback loop that causes 

the existing injustices in a system to be amplified by an algorithm.  

The application of data science to biological sciences in particular is one of the most ethically 

difficult spaces there are. The stated goal of the research in this paper is to accelerate the speed of 

biological research.  At first thought this sounds like a universal good - but upon further 

consideration one must recognize it is inextricably linked to the nature of the research that is being 

accelerated. Cancer research being accelerated is definitely good, whereas facilitating research into 

biological weapons that can target people based on their genetic profile clearly is bad. It’s impossible 

to know all of the possible outcomes of one’s research, but that doesn’t make one immune from 

considering and attempting to ameliorate the negative consequences. 

There are many levels to thinking about the ethics of this research. At the highest or most 

immediate level there is concern around the direct application of this (theoretical) technology - this 

concept is mentioned in the previous paragraph. The next level down would be to think about the 

secondary effects of a breakthrough in the throughput capabilities of research teams. How could it 

alter the economic systems that drive the research world? Would it change job prospects for lab 

technicians or physicians themselves? What could a possible sudden uptick in research volumes do 

to the business models of the labs, journals, equipment manufacturers, etc. that support and facilitate 

research in a general way. Given the nature of software and the internet, an algorithm, once 
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published, can spread around the world and be adopted very quickly. Extreme Gradient Boosting, 

colloquially called XGBoost, is a relatively new algorithm - it was created in 2015 or so. Almost 

immediately XGBoost was one of the most popular algorithms out there, it was used for 17 out of 

the 29 Kaggle competition winners in 2015 [20].  

Another angle when considering the ethics of this research is focusing on the data the models 

are trained on. Biology is a complex field, and there can be subtle but incredibly important 

differences between individuals and groups. During data collection and model training processes it 

is of the utmost importance that enough data is collected from all types of people - these models 

must be broadly generalizable or else the subsequent research will be limited to the those whose 

biology most closely resembles that of the training data. The underlying issue here is bias in data, 

and a simple Google search will reveal many cases where bias in data led to poor outcomes such as 

technology malfunctioning for certain types of people, or for groups to be disproportionately 

targeted by an algorithm. 

The answers to these questions and paths toward resolving these conflicts aren’t clear, but all 

consequences, both positive and negative, of technological research must be considered for the good 

of the species. This is a problem that data scientists alone cannot solve - it will require the 

interdisciplinary efforts of data scientists, social scientists, philosophers, regulators, and subject 

matter experts alike. There is no amount of professional accreditation or “best-practices” that can 

truly address the scale of the ethical concerns of leveraging machine learning in ways that can alter 

the life of so many people. Regulatory frameworks will need to be put in place to assess and monitor 

the risks associated with technological developments. Governments have long been the system that 

human societies use as a safeguard against societal level problems, and this shouldn’t stop when it 

comes to technology. 

Today’s concerns are commonly focused narrowly on the effects technology can have on 

particular individuals. As machine learning continues to proliferate into daily life, ethical 

conversations need to also consider effects on a broader, societal level. Fleets of self-driving cars 

will be making life or death decisions on our behalf constantly, cutting edge breakthroughs in 

biological technology could have dramatic effects on our health as a species. Institutions will need 

to be in place to help shape the development of these technologies to ensure that they remain an 

asset and boon to human prosperity. 

8  Conclusions and Future Work 

In this paper microscopic images with annotated nuclear boundaries from a diverse set of body parts, 

captured by the process of modern techniques in digital pathology were used. The metric proposed 

to be used is of Intersection over Union - which seems to be an ideal choice among various metrics 

available in this setting for training and testing the models to obtain more generalized nuclear 

segmentation model as well as its further optimization. The U-Net architecture  technique with 

Convolutional Neural Networks performed the best out of all the techniques used for nuclei 

segmentation during this research. Keras was used for building the Convolutional Neural Networks 

for model and implementing the U-Net architecture. Tensorflow was used as a backend. The 

Morphological Chan Vese Segmentation (edge detection technique), specifically, worked very well 

for identifying nuclei; however, this method fails when nuclei is extremely dense within the image.  

The U-Net model built in this research had reasonable performance and generalized fairly well 

to test data - but ultimately did not come within the upper echelon of Kaggle scores. The team 

acknowledges that the model has issues in segmenting correctly the overlapped nucleus and highly 

complex and stained images. There is more work to be done in a variety of areas to further the 

effectiveness of the model. There are many options to explore - one of which is to modify the 

network architecture itself: use a different number of hidden layers and its corresponding output 

shape or change the filter size and strides for instance. Additionally, there are many image 

processing techniques that could be applied upstream in the model pipeline and have profound 

effects on the model. Image filters have been found to have extensive use in computer vision 

applications, that would be another good area to experiment. Smoothing and noise reduction are 

even more image processing techniques that could provide value to the end goal of accelerating 
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biological research by rapidly identifying cell nuclei. The team intend to collect more data and 

revisit to the model development process over the next few years for further enhancements to the 

model in terms of accuracy and generalization.  

A fundamentally different approach to future work is to focus on hardware. The training of the 

models in this research were largely done on personal computers and laptops. Deep learning, neural 

networks in particular, are broadly known for requiring large volumes of data to be accurate. As this 

is an era of big data, and powerful computers are needed to effectively handle that data. Due to the 

nature of neural networks, building these models on the available hardware was time-intensive. 

Leveraging cutting-edge machine learning targeted hardware would allow for more rapid iteration 

and experimentation of the model training process. Practically infinitely scalable high-end GPU 

clusters are available through major cloud service providers. Google has even developed a novel 

type of processor architecture, called a “Tensor Processing Unit” (TPU) which were designed and 

engineered specifically with running Tensorflow models in mind. The images used for training the 

model have thousands of pixels which get translated into enormous Numpy arrays within Python 

during the model training process. To efficiently perform scientific computational operations on 

these large numpy arrays requires high computational power. By integrating the model development 

process with cloud hardware specifically targeted for machine learning, the throughput of the model 

refinement process could enormously increase. 

Keeping pathologists in mind who may be not very familiar with machine learning techniques 

and may not have a computer science background, the team propose to build a software that have a 

less complex functionalities and a easy to use graphical user interface where pathologists can easily 

mask the nuclei in the microscopic images by just loading the images to the software and generate 

the segmented images with reasonably high accuracy. This will greatly improve the diagnosis 

process in the medical field by improving the time currently used in segmenting the nucleus in the 

initial stages of the diagnosis process. The team welcomes and encourage ideas, suggestions or 

contributions from public towards this project.  

The team strongly believe that this is a good-will project aimed at the betterment of human life 

and will be highly satisfied if this work contributes in speeding up the diagnosis process even by a 

small percentage during critical stages of life. 

Acknowledgment 

The authors thank Dr. Robert Slater for supporting this study with his vast knowledge and 

experience in machine learning and deep learning and thank Dr. Klyne Smith for reviewing and 

suggesting new experiments and ideas to strengthen the paper. 

References 

1. Booz Allen and Kaggle. Data Science Bowl - Kaggle Problem 2018 

2. Humayun Irshad,  Antoine Veillard, Ludovic Roux, and Daniel Racoceanu. Methods for Nuclei 

Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status 

and Future Potential (2014). 

3. Malon CD, Cosatto E. Classification of mitotic figures with convolutional neural networks and 

seeded blob features. J Pathol Inform 2013;4:9. 

4. Neeraj Kumar, Ruchika Verma, Sanuj Sharma, Surabhi Bhargava, Abhishek Vahadane, and Amit 

Sethi.:A Dataset and a Technique for Generalized Nuclear Segmentation for Computational 

Pathology (Jan, 2017). 

5. Abhishek Vahadane and Amit Sethi.:Towards Generalized Nuclear Segmentation in Histological 

Images. 13th IEEE International Conference on BioInformatics and BioEngineering. (2013). 

6. Naylor, P., Lae, M., Reyal, F., & Walter, T.Segmentation of Nuclei in Histopathology Images by 

deep regression of the distance map. IEEE Transactions on Medical Imaging, 1–1.  (2018).  

7. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for 

biomedical image segmentation." International Conference on Medical image computing and 

computer-assisted intervention. Springer, Cham, 2015. 

15

Flores et al.: Automate Nuclei Detection Using Neural Networks

Published by SMU Scholar, 2019



8. Jain, Ramesh, Rangachar Kasturi, and Brian G. Schunck. Machine vision. Vol. 5. New York: 

McGraw-Hill, 1995. 

9. Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep convolutional nets, 

atrous convolution, and fully connected crfs." IEEE transactions on pattern analysis and machine 

intelligence 40.4 (2018): 834-848. 

10. Chollet, François. "Keras: The python deep learning library." Astrophysics Source Code Library 

(2018) 

11. Stephen Bailey “Step-By-Step Explanation of Scoring Metric”.  Data Science Bowl - Kaggle 

Problem 2018. 

12. Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner: Machine Bias. ProPublica (May,2016) 

13. Laura Douglas, AI is not just learning our biases, it is amplifying them. Medium (Dec, 2017) 

14. Walt, Stéfan  “Scikit Image - Morphological Chan Vese Segmentation Edge Detection”. Open-

Source Image Processing Library (Aug. 2009) 

15. Walt, Stéfan  “Scikit Image - Watershed Segmentation Edge Detection”. Open-Source Image 

Processing Library (Aug. 2009) 

16. Walt, Stéfan  “Scikit Image - Canny Feature Edge Detection”. Open-Source Image Processing 

Library (Aug. 2009) 

17. Walt, Stéfan  “Scikit Image - NDimage Edge Detection”. Open-Source Image Processing Library 

(Aug. 2009) 

18. Walt, Stéfan  “Scikit Image - Shape Index Edge Detection”. Open-Source Image Processing Library 

(Aug. 2009)  

19. Bianco, Remi Cadene, Luigi Celona, and Paolo Mapolentano - Benchmark Analysis of 

Representative Deep Neural Network Architectures. University of Milano-Bicocca, Department of 

Informatics, Systems and Communication, viale Sarca, 336, 20126 Milano, Italy. 

20. Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 

22nd acm sigkdd international conference on knowledge discovery and data mining. ACM, 2016. 

    

   

 

16

SMU Data Science Review, Vol. 2 [2019], No. 1, Art. 8

https://scholar.smu.edu/datasciencereview/vol2/iss1/8


	Automate Nuclei Detection Using Neural Networks
	Recommended Citation

	tmp.1556843622.pdf.uho_G

