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Electronic Design Automation (EDA) algorithms provide irreplaceable support for the 

definition, design, implementation, and verification of semiconductor integrated circuits because 

modern designs require novel analysis tools. The complexity of state-of-the-art devices makes the 

run times unaffordable unless accurate and efficient simulations are provided.  

This dissertation proposes a static-driven integration method which enhances the efficiency 

and accuracy of transient analysis and a time domain adjoint sensitivity method which in only a 

single simulation calculates the sensitivities of all the node voltages with respect to all the 

designated parameters. The applications of both methods include pseudo transient direct current 

biasing convergence and time domain noise analysis are explored. The error analysis of the time 

domain adjoint sensitivity is thoroughly studied to ensure the accuracy of the transient sensitivity 

responses.  
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The proposed method has been developed as an extension of XYCE, which is an open-

source derivative of Simulation Program with Integrated Circuit Emphasis (SPICE). Various 

circuit examples which are constructed with industry standard models are tested on the platform.  



 

viii 

 

TABLE OF CONTENTS 

 

LIST OF FIGURES .................................................................................................................. xx 

LIST OF TABLES .................................................................................................................... xii 

LIST OF ABBREVIATIONS ............................................................................................... xiviii 

CHAPTER 1 ............................................................................................................................... 1 

1.1 Research Motivation and Contribution ............................................................................. 1 

1.2 Dissertation Organization ................................................................................................. 3 

CHAPTER 2 ............................................................................................................................... 4 

2.1 Device Modelling.............................................................................................................. 5 

2.2 Nodal Analysis .................................................................................................................. 7 

2.3 System Matrix Forming .................................................................................................... 8 

2.4 Steady State Analysis ...................................................................................................... 10 

2.5 Forward/Backward Euler Transient Analysis ................................................................. 14 

2.6 Background Summary .................................................................................................... 17 

CHAPTER 3 ............................................................................................................................. 19 

3.1 Step Response ................................................................................................................. 19 

3.2 Static-driven Algorithm .................................................................................................. 25 

3.3 Integration Error Control ................................................................................................ 34 

3.4 Performance Evaluation .................................................................................................. 37 



 

ix 

 

3.5 Pseudo transient DC convergence applying static driven method .................................. 39 

CHAPTER 4 ............................................................................................................................. 48 

4.1 DC/AC Adjoint Sensitivity Analysis .............................................................................. 49 

4.2 Forward-In-Time Adjoint Analysis ................................................................................ 53 

4.3 Examples And Error Accumulation Analysis ................................................................. 57 

4.4 Time domain noise analysis applying adjoint sensitivity ............................................... 62 

CHAPTER 5 ............................................................................................................................. 72 

5.1 Summary ......................................................................................................................... 72 

5.2 Future work ..................................................................................................................... 73 

APPENDIX ............................................................................................................................... 74 

BIBLIOGRAPHY ..................................................................................................................... 75 

 



 

x 

 

LIST OF FIGURES 

 

Figure 2.1  Branch information for a generic two-terminal device ................................................ 5 

Figure 2.2  MOSFET and its abstracted branch information .......................................................... 6 

Figure 2.3  A simple circuit example .............................................................................................. 7 

Figure 2.4  The topology abstraction of Fig.2.3 ............................................................................. 7 

Figure 2.5  Element stamps: (a) for ∂f/∂v matrix; (b) for e vector .................................................. 9 

Figure 2.6  Circuit example for explaining steady state analysis ................................................. 10 

Figure 2.7  Simple nonlinear circuit (v1=0.7volt; r1=1ohm) ......................................................... 12 

Figure 2.8  Load line of simple nonlinear circuit shown in Fig. 2.7 ............................................. 13 

Figure 2.9  NR iteration process of simple nonlinear circuit shown in Fig. 2.7 ........................... 13 

Figure 2.10  Difference between Forward/Backward Euler integrations from t to t+Δt .............. 14 

Figure 2.11  RC circuit with step function as excitation (v1=1volt; r1=1ohm; c1=1F) ................. 15 

Figure 2.12  Transient analysis powered by Forward-Euler with different time steps Δt ............ 16 

Figure 2.13  Transient analysis powered by Backward-Euler with different time steps Δt ......... 16 

Figure 3.1  RC example for explanation of step response calculation.......................................... 20 

Figure 3.2  Step function response versus steep ramps with various rise times ........................... 23 

Figure 3.3  Step function excitation for general circuit schematic ............................................... 25 

Figure 3.4  Example stiff system .................................................................................................. 29 

Figure 3.5  The gross response of a stiff system in Fig. 3.4 ......................................................... 29 

Figure 3.6  Example underdamped system ................................................................................... 32 



 

xi 

 

Figure 3.7  The gross response of the underdamped system in Fig. 3.6 ....................................... 32 

Figure 3.8  The depiction of the Excursion-limit accuracy control mechanism ........................... 34 

Figure 3.9  The refined response of vb for the stiff system shown in Fig. 3.4 .............................. 34 

Figure 3.10  The refined response of iL for the underdamped system in Fig. 3.6 ......................... 35 

Figure 3.11  The refined response of iL for the underdamped system in Fig. 3.6 ......................... 36 

Figure 3.12  Operational amplifier circuit and its transient response ........................................... 37 

Figure 3.13  Bandgap circuit and its transient response ............................................................... 37 

Figure 3.14  An underdamped nonlinear circuit and its response ................................................. 37 

Figure 3.15  Schematic of an RC ladder circuit ............................................................................ 38 

Figure 3.16  Run-time ratio versus accuracy control parameter with 1000 node RC ladder ........ 39 

Figure 3.17  Circuit schematic for an LNA .................................................................................. 42 

Figure 3.18  Accurate, rough, and pseudo transient response of the LNA of Fig. 3.17 ............... 42 

Figure 3.19  RC example for explanation of step response calculation ........................................ 44 

Figure 3.20  Accurate, rough, and pseudo transient response of comparator ............................... 45 

Figure 3.21  Time step size history of the proposed pseudo transient method ............................. 45 

Figure 3.22  Schematic of the bandgap circuit ............................................................................. 46 

Figure 3.23  Accurate, rough, and pseudo transient response of the bandgap circuit .................. 47 

Figure 3.24  Time step size history of the bandgap circuit ........................................................... 47 

Figure 4.1  Transient response with parameters p and (p+δp) ..................................................... 49 

Figure 4.2  Illustration of original circuit and its corresponding adjoint version ......................... 50 

Figure 4.3  Illustration of the original RC circuit and its adjoint circuit in the frequency domain

....................................................................................................................................................... 52 

Figure 4.4  Illustration of the BE companion model for a capacitance ........................................ 54 



 

xii 

 

Figure 4.5  Illustration of the BE companion model for an inductance ........................................ 54 

Figure 4.6  Illustration of the linearized BE companion model for a nonlinear device ................ 54 

Figure 4.7  Illustration of an RC Diode circuit and its linearized version at t+Δt ........................ 56 

Figure 4.8  RC Diode circuit’s adjoint version at t+Δt ................................................................. 56 

Figure 4.9  Sensitivities obtained by two methods, the adjoint curve is calculated from (68) and 

the dashed curve is calculated from the incremental sensitivity ................................................... 57 

Figure 4.10  Hypothetical characteristic curve of a nonlinear element ........................................ 58 

Figure 4.11  sensitivity error curve for an RC circuit and RCD circuit with different time steps 60 

Figure 4.12  Schematic of an operational amplifier circuit .......................................................... 60 

Figure 4.13  Output voltage sensitivities w/o correction excited by a step function input ........... 61 

Figure 4.14  Schematic for an SRAM cell .................................................................................... 63 

Figure 4.15  Sensitivity response for an SRAM cell .................................................................... 63 

Figure 4.16  Schematic for a bandgap circuit ............................................................................... 63 

Figure 4.17  Sensitivity response for a bandgap circuit ................................................................ 64 

Figure 4.18  Schematic for an oscillator ....................................................................................... 64 

Figure 4.19  Sensitivity response for an oscillator ........................................................................ 65 

Figure 4.20  General form of power spectral density ................................................................... 66 

Figure 4.21  Equivalent noise model representation ..................................................................... 67 

Figure 4.22  Circuit schematic for a two stage OPAMP............................................................... 69 

Figure 4.23  Output noise response of a two stage OPAMP ........................................................ 70 

Figure 4.24  Circuit schematic for an inverter .............................................................................. 71 

Figure 4.25  Output noise response of an inverter ........................................................................ 71  



 

xiii 

 

LIST OF TABLES 

 

Table 2.1  Characteristic function of two-terminal devices. ........................................................... 5 

Table 3.1  Peak comparisons between ideal step & steep ramp functions. .................................. 22 

Table 3.2  Static-driven Pseudo Transient Method. ...................................................................... 43 

Table 3.3  Pseudo transient performance summary. ..................................................................... 46 

  

 

 

 

 



 

xiv 

 

LIST OF ABBREVIATIONS 

 

Electronic Design Automation. ................................................................................................. EDA 

Simulation Program with Integrated Circuit Emphasis. ........................................................ SPICE 

Direct Current. ............................................................................................................................. DC 

Ordinary Differential Equation. ................................................................................................ ODE 

metal-oxide-semiconductor field-effect transistor. ............................................................ MOSFET 

Kirchhoff’s Voltage Law. ......................................................................................................... KVL 

Kirchhoff’s Current Law........................................................................................................... KCL 

Forward Euler. .............................................................................................................................. FE 

Backward Euler. ........................................................................................................................... BE 

Voltage Source. ........................................................................................................................... vsrc 

Current Source. ............................................................................................................................ isrc 

Newton-Raphson.......................................................................................................................... NR 

Integrated Circuit. ......................................................................................................................... IC 

Very Large-scale Integration. .................................................................................................. VLSI 

Truncation Error........................................................................................................................... TE 

 

 

 



 

xv 

 

This is dedicated to my parents.  

 

 

 



 

1 

 

CHAPTER 1 

 

1.1 Research Motivation and Contribution 

The techniques of the integrated circuit (IC) simulation were introduced in the 1960s to 

supplement the circuit design engineer’s hand calculations. Back then, the design of an integrated 

circuit with tens of transistors was too cumbersome to be affordable because of the complicated 

nonlinearity and each new generation of circuit has become ever more complex. Based on that, a 

computer-aided pre-manufacturing circuit simulator had been developed to keep up with the 

blooming demands. Such a simulator solves a set of nonlinear ordinary differential equations 

(ODE’s) that describe a circuit’s behavior. With the availability of parallel processors [1], 

hierarchical modeling [2], fast storage element [3] and the advent of nano scale transistors [4], 

circuit simulators run much faster than they did then. In the final analysis, circuit simulators 

become an indispensable aid to the design process, and they have even become the only thing to 

be trusted. 

However, circuit simulators still barely keep pace with the increasing number of transistors 

and the complexity of modern IC. As the semiconductor processes are upgraded, the modelling of 

a device’s physical properties has become more sophisticated than ever [5-7] which requires 

considerable run time in model evaluation. Take a single metal-oxide-semiconductor field-effect 

transistor (MOSFET) for example. The basic physical variables of its characteristic modelling are 

not enough to describe the short-channel effect [8] as it enters nano scale and supplemental 

parameters must be introduced to fit the experimental data [9]. Also, the parasitic elements [10] 
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brought by MOSFET can easily boost the computation and memory cost in post-layout simulation 

which may slow down or lead to failure of simulations.  

 As the circuits become more vulnerable to process variations, multiple verification tools 

have been developed to ensure the reliability of designs [11-13]. Circuit designers need to 

statistically simulate the probability that a circuit does not meet the performance metric. Circuit 

testers run simulations over all potential faulty/nominal responses to improve the fault detection 

coverage. Some of the testers proceed to diagnose the physical location of those potential faults. 

Circuit manufacturers allocate enormous computational resources to estimate/improve the yield. 

Circuit machine learning players [14-15] also abuse the simulator to build their databases. It is not 

rare to experience simulations that take a few days or even weeks to finish.  

In the meanwhile, more Electronic Design Automation (EDA) tools have been applied to 

help efficiently deliver a circuit design from idea to product, such as, auto-layout tool, design 

transfer tool, design rule check tool, etc. Unlike other general tools, they are facing challenges 

every time when a new process is released which means more ancillary patches are added.  

Yet, the numerical technique scheme has not evolved with the scaling of circuits and the 

same ODE solver has been used to resolve a matrix with size of one hundred by one hundred in 

the past and now one million by one million [16]. Necessary statistical simulation directly deploys 

a few thousands of independent threads and the whole statistical simulation fails if one of the 

threads does not achieve convergence. Thus, a competitive integrated circuit simulator should 

enable more practical functionalities and upgrade the existing algorithms. This dissertation shows 

a novel way of running DC analysis, transient analysis, time domain sensitivity analysis and related 

applications. The content includes the capability of applying step functions as input excitations 

instead of steep ramp functions. The remaining transient simulation is supported by the static-
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driven integration method [17] after the step response as initial state is obtained; a time domain 

adjoint sensitivity analysis is performed along with the transient progression and all the node 

voltages’ sensitivity with respect to all the parameters of interest are available in one simulation. 

Insight into the proposed algorithms, their efficiency improvement, numerical error analysis [18] 

and potential applications are provided. Simulations accommodate industry standard devices, and 

even customized devices in terms of the SPICE [19-21] format.  

 

1.2 Dissertation Organization 

This chapter provides an overview of IC simulation including the motivations, challenges, 

and a brief introduction to the proposed simulator. More details will be elaborated in the following 

chapters. In chapter II, the technical background of an industry standard simulator is introduced in 

the sequence of device modelling, netlist formation, system matrix construction and fundamental 

DC, AC, Transient algorithms for various analyses. An efficient transient methodology is proposed 

with a step function as input excitation in chapter III which uses the static driven method as the 

time integration approximation and the application of using the proposed static driven method to 

calculate the DC convergence point is discussed. In chapter IV, the proposed time domain adjoint 

sensitivity analysis shows the possibility of attaining all parameters’ time domain sensitivities to 

be available withing one simulation. Related discussions of its complexity and error are compared 

with the incremental sensitivity, and a novel time domain noise analysis based on adjoint 

sensitivity is explored. Chapter V concludes the dissertation.  
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CHAPTER 2 

  

Traditional integrated circuit simulation starts with the modeling of devices which is 

abstractly represented by the current as a function of voltage i=f(v) or the voltage as a function of 

current v=f(i). After all devices are declared in the circuit, an abstracted topology relationship of 

these devices called a netlist is formed. As the availability of each device’s branch function and 

each branch’s connectivity, the next step is combining all the independent branch functions to form 

the corresponding system matrix in terms of nodal analysis. Different analyses (time 

domain/frequency domain) employ different representations of the system matrix. During this 

process, nonlinear elements become linearized, and a great deal of matrix manipulations are 

applied to the linearized system until the result converges. Normally, most of the computational 

power entailed is spent on matrix manipulations.  

This chapter will focus on introducing how the conventional analysis being generated in 

industrial standard IC simulator. The process starts with the definition of devices, and the potential 

method of improvement will be touched upon during the introduction.  



 

5 

 

2.1 Device Modelling 

 

+

-

 

Figure 2.1 Branch information for a generic two-terminal device with associated reference 

directions.  

 

In general, there are two types of devices: memory devices (capacitor/inductor) and 

memoryless devices (resistor/transistor), we use q and f to represent their voltage-current functions 

correspondingly. The voltage-current relations for any two-terminal devices are shown in Fig. 2.1 

and the positive (+) reference for the branch voltage (vb)/branch current (ib) is with the tail of the 

reference arrow, the negative (-) reference is with the head of the reference arrow. As the direction 

being defined, branch current ib can be represented by the function of branch voltage vb as ib=f(vb) 

or ib=q(vb). The voltage-current relations of typical two-terminal devices are summarized as 

follows.  

Table 2.1 Characteristic function of two-terminal devices 

Types of devices Resistor Capacitor Inductor Diode 

Characteristic 

function 

b
b

v
i

R
=  

( )b
b

d v
i C

dt
=   

( )b
b

d i
v L

dt
=   [ 1]

b

T

v

v

b si I e


=  −  
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It should be noted that with the associated reference directions power.  pb=vb‧ib, is delivered 

to the element from the rest of the circuit if pb>0; if pb<0 power is being delivered to the rest of 

the circuit from the element. 

For multiple-terminal devices, such as the N-channel MOSFET shown in Fig.2.2(a), the 

abstracted voltage-current branch function is shown in Fig.2.2(b) with the source node being the 

reference node. The equation for the branch current from the gate node to the source node is zero 

and the branch current from the drain node to the source node 𝑖𝑑𝑠 is described as follows according 

to the Schichman and Hodges model [22].  

 

0dsi =                                                                                              cutoff region (vgs<vth) (1a) 

2

[( ) ] (1 )
2

ds
ds gs th ds ds

v
i v v v v =  −  −  +                             Triode region (0<vds<vgs-vth) (1b) 

2[ ] (1 )
2

ds gs th dsi v v v


=  −  +                                         saturation region (0<vgs-vth<vds) (1c) 

 

D

G

S
S 

(reference node)

D

Gdsi
dsi

gsi

dgi

gsi

 

(a)                                                                           (b) 

Figure 2.2 N-channel MOSFET and its abstracted branch information.  
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As a reference node of any multi-terminal devices is defined, a n-terminal device can be 

described in terms of (n-1) branches with the currents of such branches from every node to the 

defined reference node. For example, if the source node in Fig. 2.2(a) is selected to be the reference 

node, then the branch currents igs and ids are sufficient to describe this three-terminal device and 

the branch current idg becomes redundant.  

2.2 Nodal Analysis 

Now, any n-terminal devices can be described by (n-1) branch functions, and nodal analysis 

is used to represent the connectivity of those branches. Any device can be simplified in terms of 

multiple branches, in general, these branches have a positive (+) reference node called the ‘from 

node’ and a negative (-) reference node called the ‘to node’.  

 

Figure 2.3 A simple circuit example.  

 

0

1

2

3

r1

r2

r3

r4

i1

+

-

+

-

+

-
+

-

+

-

 

Figure 2.4 The topology abstraction of Fig.2.3.  
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Consider a simple circuit shown in Fig. 2.3, its connections of all the branches can be 

abstracted as in Fig. 2.4 after the global/local reference node is determined; the ground node is 

always the global reference node. Based on the pre-defined ‘from node’ and ‘to node’ of every 

branch, the equivalent netlist description is shown in Table 2.2. Now, all the connectivity of all of 

branches is available.  

Table 2.2 The netlist representation of circuit shown in Fig.2.3 

Branch type/name From node To node Value 

r1 1 0 1.0 

r2 2 1 1.0 

r3 2 0 1.0 

r4 3 2 1.0 

i1 3 0 1.0 

 

2.3 System Matrix Forming 

 Now that we have all necessary information to solve the circuit in Fig. 2.3, including the 

voltage-current function of each device and their connections. Before attaining the algebraic matrix 

and solving it, we first need each individual algebraic expression which are derived from 

Kirchhoff’s Voltage Law (KVL) and Kirchhoff’s Current Law (KCL). If a branch current leaves 

a node is positive and vice versa, then, based on KCL, each node’s expression of the circuit in Fig. 

2.3 can be represented in (2). But the global reference node’s expression in (2) is a linear 

combination of the rest, thus, after taking out the ground node, the rest (2b), (2c)&(2d) can be 
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expressed in matrix form in (3) where f is a vector which stores each nodal expression [f0, f1, f2, … 

, fn], v and e are the vectors of node voltages and input excitations.  

node0: 1 0 2 0
0 1 3 1 1

1 3

r r

v v v v
f i i i i

r r

− −
= − − − = − − −                                                              (2a) 

node1: 1 0 2 1
1 1 2

1 2

r r

v v v v
f i i

r r

− −
= − = −                                                                              (2b) 

node2: 2 0 3 22 1
2 2 3 4

2 3 4

r r r

v v v vv v
f i i i

r r r

− −−
= + − = + −                                                        (2c) 

node3: 3 2
3 4 1 1

4

r

v v
f i i i

r

−
= + = +                                                                                       (2d)  

 

1 2 2
1

2

2 2 3 4 4

3 1

4 4

1 1 1
0

0
1 1 1 1 1

0

1 1
0

r r r
v

v
r r r r r

v i

r r

 
+ − 

     
     

 = = − + + −  =           −    
− 

 

f
v e

v
                                (3) 

 

 
(a)                                                                                          (b) 

Figure 2.5 Element stamps: (a) for ∂f/∂v matrix; (b) for e vector.  
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 For a resistor of value rx from node i to node k as shown in Fig. 2.3, a positive conductance 

value 1/rx is added to matrix locations (i,i) and (k,k), respectively, -1/rx is added to matrix locations 

(i,k) and (k,i). For an independent current source with from node i and to node k, a negative current 

source value -ix is added to the ith element of the e vector and a positive value ix is added to the kth 

element.  

 Only this simple circuit example is provided from schematic netlist to the algebraic matrix 

form. Nonlinear device modelling and memoryless elements will be reviewed when DC analysis 

and transient analysis is introduced.  

2.4 Steady State Analysis 

 DC analysis is also known as steady state analysis. Steady state analysis calculates the 

stabilized state vector of a circuit when constant voltage sources and/or current source input 

excitations are applied to it. In most cases, the results of the DC analysis are intermediate values 

for further analysis, thus, its accuracy is essential to the next analysis. A simple DC analysis is 

shown in section 2.3, and after inverting the ∂f/∂v matrix in (3), the DC operating point vector v is 

available. But the example in section 2.3 only has resistors and a current sour.  

 

(a)                                                                               (b) 

Figure 2.6 Circuit example for explaining steady state analysis: (a) capacitor/inductor is added to 

circuit shown in Fig. 2.3 and its equivalent replacement (b).  
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Since DC operating point analysis does not consider any time dependence on any of the 

devices, the capacitor becomes an open circuit and inductor becomes a short circuit in steady state. 

If one capacitor and inductor is added to circuit of Fig. 2.3, the new schematic is shown in Fig. 2.6 

and corresponding KCL&KVL equations are  

 

1 2 2

1

2

2 2 3 4 4

3 1

1
4 4

1 1 1
0 1

0
1 1 1 1 1

1 0

1 1
0 0

1 1 0 0

vsrc

r r r
v

v
r r r r r

v i

i v
r r

 
+ − − 

     
     − + + −      =
     −
     −    
 
 − 

                           (4) 

where ivsrc represents the current goes through voltage source (vsrc).  

As one voltage source is added to the original circuit shown in Fig. 2.3, one more unknown 

enters the algebraic equations because the branch current of voltage source is balanced by the 

known value of the voltage source, and the number of current unknowns equals the number of 

voltage source branches. Thus, one more column and row are needed in matrix ∂f/∂v which is also 

known as modified nodal analysis. For a circuit with multiple independent voltage sources and the 

mth voltage source is the one with ‘from node’ i and ‘to node’ k, a positive unit is added to modified 

matrix locations (n+m,k)&(i,n+m) and a negative unit is added to (n+m,i)&(k,n+m).  

Devices in the aforementioned circuit are linear and the steady state can be obtained after 

inverting the ∂f/∂v matrix once. But it is not practical to attain nonlinear device’s steady state 

analytically and Newton-Raphson method (NR) is the most straight forward and well-known 

solution [23-24] for it.  
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Figure 2.7 Simple nonlinear circuit (v1=0.7volt; r1=1ohm).  

 

Consider the problem of determining the DC operating point for the simple nonlinear 

circuit shown in Fig. 2.7. The steady state of this single loop circuit can be easily formulated in 

terms of a loop equation as  

2 0

2

1

0.7
: [ 1] 0T

v v

v

s

v
f I e

r



−
−

−  − =                                                     (5) 

and the DC operating point can be easily found if a load line is drawn on the plot of the 

characteristic curve as shown in Fig. 2.8.  

But unfortunately, not all circuits can be formulated in a single loop equation and a 

universal load line is seldom available. Thus, KCL&KVL equations for each node are necessary 

and listed as  

1 2
1

1

vsrc

v v
f i

r

−
= +                                                                              (6a) 

2 0

1 2
2

1

[ 1]T

v v

v

s

v v
f I e

r



−
−

= − +  −                                                           (6b) 

1 0vsrc vsrcf v v v= − −                                                                           (6c) 
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Figure 2.8 Load line of simple nonlinear circuit shown in Fig. 2.7.  

 

 

Figure 2.9 NR iteration process of simple nonlinear circuit shown in Fig. 2.7.  

 

In steady state, those equations should have f=0. Now, if NR is applied to solve the DC 

operating point problem shown in Fig. 2.7, an initial state vector v1st as the starting point of the 

iteration is necessary to kick start the NR, and the initial state vector have f(v1st)≠0. At each 

iteration of NR, the partial derivative of function ∂f/∂v becomes a gradient and the next state v(n+1)th 

is updated by following the local minimum of this gradient as  



 

14 

 

-1

( 1) [ ] ( )n th nth nthv+


= −



f
v v f

v
                                                       (7) 

The full NR iteration process is shown in Fig. 2.9 and the initial state vector is assumed to 

be zero, which is the default setting of the NR method.  

 Based on the above, the initial guess is critical to the NR-derived algorithms because fewer 

iterations are needed if the initial guess is close enough to the steady state. NR does not guarantee 

convergence because it can be easily trapped in the local minimum of the function [24], thus, more 

backups are needed if NR fails steady state analysis [25-26].  

2.5 Forward/Backward Euler Transient Analysis 

 A transient analysis first needs a point of departure for simulating time-varying behavior 

and mostly the point of departure is selected to be the result of DC analysis. Once the initial state 

v(t=0) is attained, the time-dependent aspects of circuit are reevaluated, and the simulation solves 

for the state vector at the next time point. Forward/Backward Euler are the numerical integration 

approximation algorithms used to approximate the analytical response of the transient. More 

advanced transient algorithms are available, but we confine attention to these two to avoid 

uselessly cluttering the ensuing exposition.  

Forward Euler

Backward Euler

Analytical 

response

Ideal 

 

Figure 2.10 Difference between Forward/Backward Euler integrations from t to t+Δt.  
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 Suppose both Forward-Euler and Backward-Euler start at the same point of departure, the 

analytical time varying behavior of capacitor voltage can be represented as  

( )
( ) ( )

t t
c

c c
t

i
t t t d

c




+

+  = + v v                                              (7) 

Here we consider a numerical approximation of the integration from t to t+Δt in (7) as  

( )

( ) ( )
( )

{
c

c c

c

Forward Euler

Backward Euler

i t
t

c
t t t

i t t
t

c

−

−



+  = +
+ 



v v                                           (8) 

1 2

0  

Figure 2.11 RC circuit with step function as excitation (v1=1volt; r1=1ohm; c1=1F).  

 

Forward Euler integration method applies the time derivative at time t, Backward Euler 

integration method selects the time derivative at time (t+Δt) as shown in Fig. 2.10. Note that the 

slope of the BE integration approximation is that of the tangent to the nonlinear characteristic curve 

at time (t+Δt). More details about Forward/Backward-Euler integration methods are discussed in 

terms of an RC circuit shown in Fig. 2.11. In Fig. 2.11, if a step function is applied as the input 

excitation, the analytical transient response can be represented as 

1 1( ) 1

t

r c

c t e

−

= −v                                                                 (9) 
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If the transient analysis is in terms of Forward Euler (FE), then its excursion from time t to t+Δt is   

 
1 1 2

1

1

( ) ( )
c

v t v t
v c t

r

− −
 =                                                         (10) 

If the transient analysis is in terms of Backward Euler (BE), then its same excursion is  

1 1 2
1

1 1

( ) ( )
( )c

v t v tt
c t

r r

− −
 = +  v                                                       (11) 

The circuit in Fig. 2.11 is simulated in terms of both Forward-Euler and Backward-Euler 

with different time steps, and the simulation results are shown in Fig. 2.12 and Fig. 2.13.  

 
Figure 2.12 Transient analysis in terms of the Forward-Euler integration approximation with 

different time steps Δt. 

 

 
Figure 2.13 Transient analysis in terms of the Backward-Euler integration approximation with 

different time steps Δt. 
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Based on (10), (11) and the simulations result above, Forward-Euler is a fast explicit 

integration approximation and Backward-Euler is a stable implicit integration approximation. If a 

very small time step is applied, then both FE and BE provide essentially the same result. 

 

2.6 Background Summary 

 The above briefly explains how steady state analysis and Forward/Backward-Euler 

transient analysis works but with simple examples. This section will focus on revisiting DC and 

transient analysis again in a general circuit example and the form of vectors/matrices will be 

carried over to the entire dissertation.  

Suppose a general integrated circuit netlist contains 𝑏  branches and 𝑛  nodes, the 

KCL&KVL functions for all memoryless elements at each node form a vector as  

1

2

n

f

f

f

 
 
 =
 
 
 

f                                                              (12) 

where fn is the KCL function at node n. In steady state, circuit has f(v)=0 where v is the state vector 

of the circuit. If the NR method is applied to solve for the steady state, the state vector of the next 

iteration v(n+1)th is   

-1

( 1) [ ] ( )n th nth nthv+


= −



f
v v f

v
                                                        (13) 

Before the discussion of FE and BE in terms of matrices. It should be noted that there is a 

vector q being defined in the same manner as f shown in (12), but it only includes the memory 

elements, capacitors and inductors. Vector f contains the sums of the currents leaving each node 
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and vector q contains similar sums of charge/flux. The matrix ∂f/∂v is abbreviated as G and the 

matrix ∂q/∂v is abbreviated as C in the following chapters.  

In Forward-Euler transient analysis, the integration from time t to t+Δt is  

-1( ) ( ) [ ] ( ( ))t t t t t


+  = − 


q
v v f v

v
                                                   (14) 

In Backward-Euler transient analysis, the integration from time t to t+Δt is  

-1( ) ( ) [ + / t] ( ( ))t t t t t
 

+  = −  + 
 

f q
v v f v

v v
                                      (15) 

 As shown above, all circuit analysis entails the inversion of a Jacobian matrix which takes 

more than 90% of the simulation run time and the rest of 10% is mostly spent on device evaluation.  
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CHAPTER 3 

  

 The Backward Euler integration method and its variants are widely employed in SPICE 

[27] which is a well-known, general-purpose, open-source electronic circuit simulator. Those 

integration methods are able to provide utmost accuracy and stability, but they are a primary cause 

of slowing simulation time. To improve efficiency, various approaches have been developed either 

to incorporate multi-rate estimation [28] or to apply model simplification such as piecewise linear 

[29]. In any case a great deal of computational power is consumed to iterate and invert (LU-factor) 

a Jacobian matrix at each time step. This chapter shows the possibility of applying Forward-Euler 

integration approximation to underline transient analysis with an adaptively controlled time step, 

algorithmic stability, and user-defined accuracy control.  

Also, SPICE was not initially designed to handle step function excitations directly. To 

avoid discontinuity, SPICE-derived transient simulators substitute inefficient steep ramps for step 

function excitations. As the rise time of a steep ramp is reduced to better approximate a step 

function, more iterations are required to maintain accuracy and stability, thereby consuming 

substantial computation time. To account for digitally dominated circuits with rapid turn on/off or 

the abstraction of the simulation environment to switch level [30], applying step functions as input 

excitations and generalizing any input functions to step functions are discussed in this chapter.  

3.1 Step Response 

 As mentioned earlier, DC analysis requires an initial state vector to kick start the NR and 

a step response is a suitable candidate to attain the initial state vector because it represents the 

natural starting point after the input excitations are switched on. Also, the step response, once it 

has settled, can provide the departure point for simulating time-varying behavior. Usually, the 
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point of departure is selected to be the result of DC operating point NR iteration if it converges.  

But NR convergence to the steady state is not guaranteed.  

 

Figure 3.1 RC example for explanation of step response calculation (v1=0.8V; r1=100ohm; 

r2=400ohm; c1=c2=10-3F).  

 

 The initial state v(t=0+) of a capacitor array excited by a step function is its charge-voltage 

equilibrium point.  

( 0 )c t +=  =c cq v                                                           (16) 

 To illustrate its computation, we consider a simple series connection of two resistors and 

capacitors in parallel shown in Fig. 3.1. The input excitation function to the circuit is a step function  

0

0

( 0 ) 0

( ) 0.8

( 0 ) 0.8

in

in

in

v t

v t dt

v t

+

−

−

+

= =


=


= =

                                                       (17) 
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 Initially at the exact time of the step function excitation, t=0, the voltage source provides 

an impulse of current and the capacitors in the circuit instantaneously equilibrate their charges and 

voltages. The remaining elements are indifferent to this impulse of current, so it can be ignored for 

such analysis. In practical cases, because of highly elaborated transistor models, capacitors are 

everywhere. Thus, we assume that capacitors probably connect to all nodes, and the general case 

will be discussed later. The capacitor responses to the impulses of current which determines the 

state at t=0+, and the calculation of the impulse response and the effective charge is equivalent to 

DC analysis with charge equilibrium replacing current equilibrium. To represent (16) in terms of 

matrices, we use vn(t=0+) as the node voltage vector representing the voltage source specifying the 

initial step response and C as the capacitance matrix. For the circuit of Fig. 3.1, the matrix equation 

is  

1 1 1

1 2 2

1 ( 0 ) 0

1 0 ( 0 ) 0

1 0 0 ( 0 ) (0 )vsrc in

c c v t

c c c v t

q t v +

− = +     
     
− +  = + =
     
     = +     

                            (18) 

where qvsrc is the electric charge flowing through the voltage source that initializes the capacitor 

voltages.  

 In simulators employing the BE integration method, if a circuit contains capacitor loops, 

then a great deal of computational resource must be devoted to climbing an approximating steep 

ramp to determine the peak current that charges the capacitors. Instead, the proposed simulator 

computes the peak directly by instantaneously charging all capacitors to their initial equilibria. 

This is a one-time DC-like computation that inverts (LU-factors) the C matrix, an operation that 

also needs be performed anyway to compute the remainder of the transient.  
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Table 3.1 Peak comparisons between ideal step & steep ramp functions 

• Part A:  Comparisons among 𝒗𝟐(𝒕𝒓𝒊𝒔𝒆) and 𝒗𝟐(0+)  

 

𝑡𝑟𝑖𝑠𝑒/ms 

𝒗𝟐(𝒕𝒓𝒊𝒔𝒆)/v or 𝒗𝟐(0+)/v 

Backward Euler Trapezoidal GEAR2 

200 0.6295 0.6319 0.6273 

100 0.5769 0.5880 0.5648 

50 0.5375 0.5493 0.5213 

10 0.5092 0.5149 0.5064 

5 0.5046 0.5088 0.5027 

Ideal step 0.5 

• Part B:  Comparisons among 𝑞𝑒𝑓𝑓 and 𝑞vsrc 

 

𝑡𝑟𝑖𝑠𝑒/ms 

𝑞𝑒𝑓𝑓/C or 𝑞𝑣𝑠𝑟𝑐/C 

Backward Euler Trapezoidal GEAR2 

200 0.77543*10−3 0.77989*10−3 0.73981*10−3 

100 0.64408*10−3 0.64591*10−3 0.64087*10−3 

50 0.57584*10−3 0.59013*10−3 0.55698*10−3 

10 0.51622*10−3 0.52319*10−3 0.51326*10−3 

5 0.50883*10−3 0.51011*10−3 0.50491*10−3 

Ideal step 0.5*10−3 

• Part C:  Error from climbing samples with 𝒕𝒓𝒊𝒔𝒆 = 𝟓𝒎𝒔 

Number of 

samples in 

climbing 

Absolute integration error 

Backward Euler Trapezoidal GEAR2 

100 1.101*10−7 5.802*10−9 3.353*10−9 

50 2.281*10−7 5.877*10−9 7.756*10−9 

20 5.956*10−7 6.179*10−9 7.77*10−8 

10 1.252*10−6 6.955*10−9 3.198*10−7 

5 2.731*10−6 9.735*10−9 1.227*10−6 

   

A comparison has been made between step function excitation and steep ramps with 

different rise times in the Model and Algorithm Prototyping Platform (MAPP) [31], a MATLAB™ 
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based open-source simulation framework which is able to execute SPICE-derived transient 

analysis. The comparison results based on the above circuit example are shown in Table. 3.1 & 

Fig. 3.2. The effective electric charge flowing through voltage source qeff from t=0 to t=trise with 

the input excited by a steep ramp is  

0
( )

riset

vsrcq i t dt= eff
                                                          (19) 

and its corresponding state vector at t=trise is defined as vn(t=trise).  

v2(V)

Time(s)

Step-Function

Rise time=100ms

Rise time=200ms

Rise time=50ms

Rise time=10ms

( )Time s

2
(

)
v

V

 

Figure 3.2 Step function response versus steep ramps with various rise time.  

 

 The end point of climbing vn(t=trise) is the initial state for the remainder of the transient. 

The overall accuracy compared with the step response is determined by both rise times and time 

samples. No matter what integration method is employed, as the steep ramp becomes more step-

like, vn(t=trise) and the effective charge qeff become closer to vn(t=0+) and qvsrc, respectively, and 

the response becomes more accurate. The same experiment is to be performed on the upcoming 

nonlinear circuits examples, and the same conclusion obtains. For the above, increasing 
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computational power is consumed to maintain accuracy when the input is excited by steeper and 

steeper ramps, but the step response solver does not climb such a hill to calculate vn(t=0+); hence, 

no extra effort is entailed.  

 The circuit in Fig. 3.1 shows how the step response is calculated for a simple example. The 

solution of the step response for a general circuit can be represented by  

( 0 ) ( ( 0))C t t = + = =n nv q v                                                  (20) 

It should be noted, (20) is the same as (15) after the time step of (15) is set to be 

infinitesimal. Practically, a circuit may have nodes which not tied directly to a capacitor or are 

excited with a step function current source. To address such issues a two-step process is required, 

and modification of matrix in (20) is necessary. Charge-voltage equilibrium (flux-current 

equilibrium for inductors if it applies) of memory elements (capacitors/inductors) is the solution 

with priority and should be achieved at t=0+, then, for those internal nodes which are not tied 

directly to memory elements, current equilibrium (KCL) must be obtained for them as a secondary 

solution. To clear the residue of charge and current for both memory elements and memoryless 

elements, modification of the matrix is established as  

( ( 0))0
( 0 )

( ( 0))0

tG
t

tC

=  
 = + =    =   

n

n

n

f v
v

q v
                                                 (21) 

In (21), G and f stands for the linearization of memoryless elements which are not tied 

directly to memory elements, and their unbalanced current. C and q stand respectively for the 

linearization of memory elements and their unbalanced charge or flux.  

In real integrated circuit, characteristics of memory elements could also be nonlinear, and 

the linearization of memory elements C which is the foundation of charge-voltage equilibrium also 
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depends on the state of the circuit. The solution for such a situation is by splitting one step function 

into multiple step functions and acquiring charge-voltage equilibrium at each end of the step 

function to smooth the effect of nonlinearity as is shown in Fig. 3.3.  
+

-

vout

vin

0

 

Figure 3.3 Step function excitation for general circuit schematic. 

 

3.2 Static-driven Algorithm 

 After the initial state is attained, the remainder of the transient is taken over by the proposed 

explicit static-driven method which is inspired by Adaptively Controlled Explicit Simulation 

(ACES) [32]. State variables approach their static equilibria with different time constants. By 

partitioning state variables into a quiescent group and a dynamic group, the simulator naturally 

and adaptively differentiates the fast/slow state variables in the circuit. This static-driven method 

is developed to drive the dynamic state variables to be quiescent in order, and those quiescent state 

variables to remain quiescent until all state variables become quiescent when the system is in 

steady state. A state variable is set to quiescence by equating its second order time derivative to 

zero [32].  
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With Backward-Euler integration approximation for large stiff systems, a Jacobian matrix 

must be inverted at each iteration and ill-conditioning can occur. Quiescence automatically 

differentiates the state variables into a fast group and a slow group which enables it to iterate 

adaptively with larger time steps and no ill-conditioning.  

 At first, all state variables are dynamic. The explicit first and second order time derivative 

of a general state space system [33] can be described in terms of  

A B=  + x x u                                                  (22a) 

A B=  + x x u                                                  (22b) 

where u represents the vector of input functions. For simplicity, if the circuit system is excited by 

step functions, then at any time point the time derivatives of input functions are zero, so  

A B=  + x x u                                                  (23a) 

A= x x                                                             (23b) 

 On the way of driving dynamic state variables into quiescence, for the kth state variable, an 

adaptive step size controller is defined to be  

( ) / ( )k k kt x t x t = −                                                  (24) 

 It provides an estimation of the real parts of time constants for those dynamic state 

variables. At each iteration, the smallest Δtk is chosen to be the step size in order to ensure stability. 

At the end of the estimated time step, the kth dynamic state variable with the smallest Δtk then is 

set to be quiescent. For practicality, the Δtk of those state variables which are close to the smallest 

one should be set to quiescence concurrently, because they display close time constants especially 

for symmetrical nodes which exists in mirror topology and perform the same response.  
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 The second order time derivative of quiescent terms should be zero. Thus, for the 

quiescence terms in (23b), we have  

11 12 0A A= + =
q q nq

x x x                                                  (25) 

where the state vector x includes a q-dimensional quiescent state sub-vector xq and an (n-q)-

dimensional dynamic state sub-vector xnq, A11 and A12 are the sub-matrices of state space matrix 

A. xi represents the ith element of the quiescent state variables where i=1,2,…,q; xj represents the 

jth element of dynamic state variables where j=q+1,q+2,…n. Based on (25) the time derivative for 

the quiescent state variables can be derived to be  

1

11 12A A−= −q nqx x                                                        (26) 

 Essentially, the time derivatives of quiescent state variables are controlled by the time 

derivatives of dynamic state variables. From the application of such control, the second order time 

derivatives of those quiescent state variables with small time constants are forced to be zero. Thus, 

the potential instability problem associated with explicit integration is properly addressed. Such 

control is applied for all subsequent iterations, so those quiescent state variables remain quiescent.  

 Based on (26) the modified state space equation can be written as  

11 1
11 1211 12 21 11 12 22

21 22

( ) ( ) ( )
[ ]

( ) ( ) ( )

nq

nq

t t A A BA A A A A A

t t BA A

−− −  −   − −
= +     

      

q q

nq nq

x x u

x x u
             (27) 

 Fast state variables enter quiescence earlier than slow state variables and eventually all 

state variables enter quiescence. During the integration process, the fastest state variable leads the 

rest to update before it enters quiescence. After they become quiescent, those quiescent state 

variables essentially are followers of the next fastest state variable. When there is only one dynamic 
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state variable waiting to join the quiescent group at the last iteration, the second order time 

derivative of the last dynamic state variable can be evaluated according to (26), thus, according to 

(24) the final time step size is  

1

22 21 11 12

1
/t

A A A A−

−
 − =

−
nq nq= x x                                             (28) 

where the size of the submatrix 𝐴22 is one by one. After this final time step Δt, the former quiescent 

state variables and dynamic state variable at t+Δt can be described independently as  

1

11 12( ) ( ) ( )t t t A A t t−+ = − q q nqx x x                                        (29a) 

( ) ( ) ( )t t t t t+  = + 
nq nq nq

x x x                                                  (29b) 

 From (29), the time derivatives of the dynamic state variable at t+Δt can be calculated 

based on (23), and its value will be equal to zero  

21 22

1

21 21 11 12

22 22

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

0

nq

nq

t t A t t A t t B

A t A A A t t

A t A t t B

−

+  = +  + +  +

= −  +

+  +

=

nq q nq

q nq

nq nq

x x x u

x x

x x u
                                  (30) 

 The time derivative of quiescent state variables which are controlled by the dynamic state 

variable is equal to zero as well  

1

11 12( ) ( ) 0t t A A t t−+ = + =q nqx x                                   (31) 



 

29 

 

 

Figure 3.4 Example stiff system. 

 

 

Figure 3.5 The gross response of a stiff system in Fig. 3.4. 

 

 So far, all state variables become quiescent, and the system is in steady state at t+Δt. To 

better explain the proposed method above, an inevitable linear stiff system and an underdamped 

RLC system are employed as examples. A classic stiff system and its transient response simulated 

based on proposed simulator are shown in Figs. 3.4&3.5, respectively. For the stiff circuit in Fig. 

3.4, its state equation can be derived according to (22a) as follows  
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( 2 ) 1000

( 2 ) 1000

( )

b b c

c b c d

d c d

v u v v

v v v v

v v v

= −  + 


= −  + 
 = −

                                            (32) 

 At the initial state, none of these state variables is quiescent. Thus, for those dynamic state 

variables  

( ) ( )i iv t v t+ =                                                         (33) 

where left hand side of (33) represents the time derivative from (32) and the right hand side 

represents the time derivative from (27). The state equation and modified state equation deliver 

the same result as  

(0) 1000

(0) 0

(0) 0

b

c

d

v

v

v

+

+

+

 =


=
 =

                                                      (34) 

from (23b) we obtain  

(0) [ 2 (0) (0)] 1000

(0) [ (0) 2 (0) (0)] 1000

(0) [ (0) (0)]

b b c

c b c d

d c d

v v v

v v v v

v v v

+ + +

+ + + +

+ + +

 = −  + 


= −  + 
 = −

                                (35) 

 After the calculation of the time derivative and the second order time derivative, the safe 

time step is calculated according to (24) 

45bt t e− =  =                                                       (36) 

thus, the simulation proceeds with  

4(5 ) (0) (0) be t− += + v v v                                               (37) 
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 In the second iteration, vb is set to be quiescent and the time derivative and the second order 

time derivative can be calculated based on (23b)&(27) to be  

4

4

4

(5 ) 250

(5 ) 500

(5 ) 0

b

c

d

v e

v e

v e

+ −

+ −

+ −

 =


=
 =

                                                      (38a) 
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d

v e
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v e

+ −

+ −

+ −

 =


= −
 =

                                                 (38b) 

and the safe time step is  
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3
ct t e− =  =                                                      (39) 

 For the third iteration, vb and vc are quiescent and the time derivative and the second order 

time derivative can be calculated based on (23b)&(27) to be  

3

3

3

7 1
( )
6 9

7 2
( )
6 9

7 1
( )
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b
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d

v e

v e

v e

+ −
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
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

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


=


                                                      (40a) 
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
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

                                                     (40b) 

and the safe time step is  

3dt t =  =                                                      (41) 
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 After the third iteration, all state variables have become quiescent, and circuit has attained 

the steady state with all capacitor state variables equal to one volt. Notice that the time step size 

increased by one order of magnitude between the first and second iteration and by three orders of 

magnitude between the second and third. Classical FE approximation would have been stuck at a 

step size roughly equal to the firs throughout the transient simulation, so instead of three time steps 

there would have been thousands for such a stiff system. 

1 ohm

1 H

1 F

+-
vC

iL

 

Figure 3.6 Example underdamped system. 
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Figure 3.7 The gross response of the underdamped system in Fig. 3.6. 
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 A classic underdamped system and its transient response simulated based on the proposed 

simulator are shown in Fig. 3.6&3.7, respectively. The state equation of the underdamped system 

can be represented as  

c L

L c L

v i

i v i u

=


= − − +
                                                     (42) 

 At the initial state, none of these state variables is quiescent, thus the time derivatives and 

second order time derivatives can be calculated to be  

(0) 0

(0) 1

c

L

v

i

+

+

 =


 =

                                                      (43a) 

(0) 1

(0) 1

c

L

v

i

+

+

 =


 = −

                                                     (43b) 

and the safe time step based on (24) is Δt=1.  

 In the second iteration, state variable iL becomes quiescent. Thus, the time derivative and 

second order time derivative can be calculated based on (23b) & (27)  

(1) 1

(1) 1

c

L

v

i

+

+

 =


 = −

                                                      (44a) 

(1) 1

(1) 0

c

L

v

i

+

+

 = −


 =

                                                     (44b) 

 The safe time step for the second iteration is Δt=1 and after the second iteration, all state 

variables have become quiescent with the circuit in steady state. The steady state is correct, but the 
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ringing of this underdamped system is greatly suppressed. The property of ringing suppression is 

because the quiescent state variables are forced to have zero second order time derivative and is 

applicable for finding steady state which is discussed in following chapter.  

  The whole of this section has focused on illustrating how the proposed simulator works 

for linear circuits and drives them all the way to their steady states. The drawbacks are obvious 

since accuracy control has yet to be applied. But there are advantages over the BE, or any other 

implicit integration method as follow. Applying the proposed static-driven algorithm, we need not 

perform an n by n matrix inversion at each iteration as with the BE integration method. As the 

number of quiescent state variables increases, the size of submatrix A11 gradually expands to 

become the entire state space matrix A. (Of course, this is not an efficient mechanism to invert a 

matrix A if one does not want to approximate the trajectories of the state variables.) Thus after n 

iterations, the simulation ceases at the steady state. Furthermore, the time constant approximation 

in the proposed algorithm groups all the close time constants in the matrix which needs to be 

inverted, thus, no ill-conditioned matrix inversion is entailed.  

 

3.3 Integration Error Control 

∆t  

Vdd*α%

∆T

x1

x2
Bounding Box

 

Figure 3.8 The depiction of the Excursion-limit accuracy control mechanism.  
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Figure 3.9 The refined response of vb for the stiff system shown in Fig. 3.4. 
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Figure 3.10 The refined response of iL for the underdamped system in Fig. 3.6. 

 

 From the gross response of the stiff system and the underdamped system in Fig. 3.4&3.6, 

respectively, the proposed algorithm without error control drives the state variables to steady state, 

but very coarsely and therefore inaccurately. The time intervals calculated from (23) are not small 

enough to smooth the transient response. Thus, a refined step size is required. To address this issue, 

an excursion-limited accuracy control mechanism is applied. This mechanism employs a user 

defined accuracy control parameter α% introduced below to restrain the maximum excursion Δx 

at every iteration  



 

36 

 

%

max( )

Vdd
T


+


 =

x
                                                     (45) 

 When ΔT>min(Δtnq), a direct transition towards quiescence following min(Δtnq) is 

employed. When ΔT<=min(Δtnq), then ΔT should be considered to be the safe time step for the 

present iteration. With ΔT<=min(Δtnq) as illustrated in Fig. 3.8, the accuracy control technique in 

(45) creates a bounding box for the excursions of all state variables. All state variables which are 

programed to follow the solid line should be reevaluated at the edge of the bounding box depicted 

by the dashed arrows. At each iteration, this technique limits the maximum change for the leading 

state variable. The refined responses for the stiff system and the underdamped system with various 

accuracies α% are shown in Fig. 3.9&3.10, respectively.  

 Even with the availability of excursion-limited accuracy control mechanism, the property 

of ringing suppression for the RLC circuit is still there as shown in Fig. 3.10. To attain utmost 

accuracy, underdamping must be captured by the proposed algorithm, thus, extra tolerance control 

for these quiescent state variables is needed when the excursion-limited accuracy control 

mechanism is only required by these dynamic state variables. The tolerance control function can 

be expressed as  

( ( )) ( ( ))
( ) ( ( ))

t t t
t t

t

+ −
= + +



q q

q q

q x q x
err x f x                                  (46) 

where errq represents the error of quiescent state variables, if quiescent state variables with errors 

larger than the default tolerance value tol=1e-6, then quiescent state variables rejoin the dynamic 

group and the circuit gets reevaluated. If we set the accuracy control parameter α% to be the 

coefficient of the default tolerance value as (tol‧α%) and re-simulate the circuit in Fig. 3.6, we have 

the transient response as shown in Fig. 3.11.  
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Figure 3.11 The refined response of iL for the underdamped system in Fig. 3.6. 

3.4 Performance Evaluation 
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Figure 3.12 Operational amplifier circuit and its transient response. 
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Figure 3.13 Bandgap circuit and its transient response.  
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Figure 3.14 An underdamped nonlinear circuit and its response.  

An operational amplifier, a bandgap circuit and an underdamped nonlinear circuit, are 

shown, respectively, in Figs. 3.12 to 3.14. These classic circuit examples are chosen because they 

are, respectively, sensitive to the input signal, insensitive to the input signal and underdamped. 

They are all simulated with BE integration method and with the proposed algorithm.  

The transient response differences between the two integration methods, with α%=0.1% 

for the proposed algorithm, and multiple rise times to maximally mimic step-like functions are 

performed with the BE integration approximation method in MAPP. In MAPP, simulation starts 

when the input has already climbed to VDD. Thus, the latter suppresses stiff system information. 

The power flowing into that node VDD versus time is shown in Figs. 3.12 to 3.14, respectively. 

As the rise time of the steep ramp becomes faster, the power curve becomes closer to the 

response of a step function. When high accuracy α% is specified, the proposed algorithm generates 

simulation results that are essentially identical to those of BE integration methods.  

 In order to illustrate the computational effort of static driven method, a large-scale linear 

circuit is presented in Fig. 3.15 where R1=R2=‧‧‧=1 and C1=Cn/n; C2=2‧Cn/n; Cn=1. To render 
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this example a stiff system, n is selected to be 1000. The run time is defined as the CPU time spent 

on matrix manipulation for both algorithms and the run time ratio between the proposed method 

and BE with the same accuracy is shown in Fig. 3.16.   
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C1 C2 Cn

R1 R2 Rn

 

Figure 3.15 Schematic of an RC ladder circuit.  
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Figure 3.16 Run-time ratio versus accuracy control parameter with 1000 node RC ladder.  

 

3.5 Pseudo transient DC convergence applying static driven method 

 Pseudo transient continuation is the most reliable method for computing the DC 

convergence point when other presumably faster DC convergence methods fail. Unlike the NR 

method, which ignores the effects of capacitance and inductance memory elements, the pseudo 

transient method approaches the steady state by roughly following the transient trajectory. 
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Moreover, following the exact physical transient may not be necessary as the intermediate states 

are not of interest.  

 Underdamped/oscillating and stiff systems are the main cause of slowing the transient 

progress [34-35]. Overcoming the underdamped/oscillating and stiff system aspects of circuit 

behavior, while retaining the stability of the transient process, is the key to improving the 

efficiency of pseudo transient simulation. Based on above, applying the static-driven method not 

only shortens the run time, but also suppresses the oscillating as shown in Fig. 3.7 when the second 

order time derivatives are controlled. The proposed pseudo transient method and its performance 

are discussed as follows.  

 The general form of the first and second order time derivatives of the system can be 

represented as  

( , )=n nv g v u                                                       (47a) 

 
=  
 

n n

n

g g
v v + u

v u
                                                     (47b) 

where u stands for the input functions, and for simplicity  step function excitations are presumed. 

If the node voltage vector vn is decomposed into two groups vst and vdy, then (5b) can be rewritten 

as  

11 12

21 22

st st

dy dy

J J

J J

    
=     
    

v v

v v                                          (47c) 

and according to the indices of the two groups, the matrix is decomposed into submatrices. To 

force the quiescent group to have zero second order time derivatives, the first order time derivative 

needs to be modified accordingly as  
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11 12 0st st dyJ J+=  +  =v v v                                              (48a) 

1

11 12st dyJ J+ −= −  v v                                                      (48b) 

and the dynamic group retains the same time derivative.  

 As the node voltages step to the next time point at different rates, the node voltage with the 

smallest approximated time constant enters the quiescent group earlier than other node voltages. 

Sequentially, all node voltages join the quiescent group and approach the universal steady state. 

 The static-driven method provides accurate transient analysis with proper error control 

[36]. But in the pseudo transient method, intermediate accuracy is not of concern, thus, sending 

the node voltages with the same order of magnitude approximated time constants to the quiescent 

group at the same time is acceptable. Based on the above, the new goal here is to set the quiescent 

group to have zero time derivative at the next time point, thus, the time derivative of the next time 

point can be represented as  

( ) ( ( ) , ) 0

( ( ), )

( )

t t t t

t t

t t

+

+

+

+  = +  =


= +  




= +  



n n n

n n

n

n n

n

v g v v u

g
g v u v

v

g
v v

v

                                             (49a) 

and the modified time derivative of the quiescent group can be calculated as  

1

11 12

( )
[ ] [ ]st

st dy

t
J J

t

+ −= −  + 


v
v v                                              (49b) 

 Unlike (48a) which forces the second order time derivative to be zero to constrain the 

quiescent group at the next time point, (49b) minimizes the time derivatives of the quiescent group 

at the next time point. If the time derivatives of quiescent elements have already been successfully 

minimized, then (49b) becomes essentially the same as (48b) as 
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11 12

1

11 12

( ) 0
[ ] [ ]

[ ] [ ]

st

st dy
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t
J J

t

J J

+ −

−


= −  + 



= −  

v
v v

v
                                     (50) 

 Finally, all node voltages are occupied in the quiescent group and the time derivative 

calculated from (49a) remains zero.  

 

Figure 3.17 Circuit schematic for an LNA.  

 

 

Figure 3.18 Accurate, rough, and pseudo transient response of the LNA of Fig. 3.17.  
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TABLE 3.2 Static-driven Pseudo Transient Method 

Algorithm Flow:  

 Input: Circuit netlist S; Excitation function u; 

 Accuracy parameter α%; 

 Output

: 

 Time points vector tpts; 

 Converged node vector vn; 

 Find the first and second order time derivative of node vector based on chosen integration 

method; 

 Add the node with opposite sign of first and second order time derivative to the quiescent 

group and the rest to dynamic group; 

 vn = [vst ; vdy]; 

 While F(vn(t)) >=1e-6 

 Calculate st

+
v  and dyv  based on (49b) and (47a); 

Remove st

+
v  and dyv  that equal zero to avoid being divided by zero in the following 

calculations;  

 
Get 

stt as 
%

st

Vdd 
+



v
for every quiescent element;  

Get dyt as 
%

dy

Vdd 

v
 for every dynamic element;         

 min( , )st dyt t t =   ; 

 ( + ) ( ) +dy dy dyt t = t t v v v ( + ) ( ) +st st stt t = t t+ v v v ; 

 End  

 Return       tpts, vn; 



 

44 

 

 Incidentally, no matter whether (48a) or (49a) is applied, the control technique of the 

second order time derivative suppresses ringing [36] which is beneficial for dealing with the 

underdamped region of the pseudo transient response. An illustrative underdamped circuit 

example is shown in Fig. 3.17 and its pseudo transient response applying (49a) is shown in Fig. 

3.18.  

 For summary purposes, the general flow is presented as in Table 3.2 above. It is general 

and admits any pseudo transient integration approximation method.  

 Based on the algorithm flow, two more circuit examples including a comparator and a 

bandgap are tested in terms of both the proposed pseudo transient method and the conventional 

pseudo transient method. Fig. 3.19 shows the schematic of the comparator and Fig. 3.20 shows the 

response of the proposed pseudo transient response compared against the accurate and rough 

transient response. The time step size of the entire pseudo transient process is monitored and shown 

in Fig. 3.21. 

pd
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in−
in+

vss

out

xpd

 

Figure 3.19 Schematic of the comparator circuit.  
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Figure 3.20 Accurate, rough, and pseudo transient response of comparator.  

 

Figure 3.21 Time step size history of the comparator circuit.  

 

 The same experiment is deployed on the bandgap circuit as shown in Fig. 3.22. The pseudo 

transient response and its benchmark are shown in Fig. 3.23. The time step size is recorded as in 

Fig. 3.24. According to the time step size control technique, small time derivatives dictate a large 

time step which eventually becomes infinity in the universal steady state. When new node voltages 
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with the same order of magnitude approximate time constants join the quiescent group and thereby 

reorganize the submatrix J11, the time derivatives of the node voltages that remain in the dynamic 

group surge. They reduce eventually until the next group joins quiescence as is shown in Fig. 3.21 

and Fig. 3.24.  

 A performance summary table which includes the CPU time, number of iterations and DC 

convergence methods for the above three examples is shown in Table 3.3.  

 

Table 3.3 Pseudo transient performance summary 

Name of circuit # Of iterations 
CPU time 

(s)  

DC convergence method 

LNA 

18 0.0010 NR 

31 0.0018 Conventional Pseudo Tran 

16 0.0012 Proposed Pseudo Tran 

Comparator 

- - NR 

181 0.01 Conventional Pseudo Tran 

49 0.0023 Proposed Pseudo Tran 

Bandgap 

- - NR 

215 0.0083 Conventional Pseudo Tran 

61 0.0029 Proposed Pseudo Tran 

 

 

Figure 3.22 Schematic of the bandgap circuit.  
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Figure 3.23 Accurate, rough, and pseudo transient response of the bandgap circuit.  

 

Figure 3.24 Time step size history of the bandgap circuit.  
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CHAPTER 4 

 

Sensitivity analysis is crucial in both Integrated Circuit (IC) synthesis [37]-[38] and 

verification [39]-[43] tasks. The goal of sensitivity analysis is to calculate the partial derivatives 

of circuit performances (e.g., node voltages, branch currents, circuit specifications) with respect to 

circuit design parameters (e.g., transistor width/length) or process parameters (e.g., oxide thickness, 

threshold voltage). These obtained derivatives can be used in a variety of tasks including gradient 

based circuit design and optimization [37]-[38], noise analysis [39], fault detection [40]-[41], or 

yield estimation [42]-[43].  

In general, the nominal response of any circuit can be represented by vn(t/w,p) for both 

frequency and time domain, and the response with perturbed parameter is vn(t/w,p+δp). The time 

domain illustrative example is shown in Fig. 4.1. The difference between parameters (p+δp) and 

(p) is an infinitesimal perturbation, and a finite parameter change is defined as Δp which will be 

discussed later. Any parameter’s sensitivity can be expressed as  

( / , ) ( / , )t w p p t w p

p p





 + −
=



n n n
v v v

                                 (51) 

and such sensitivity is a first order partial derivative with respect to the specified parameter. If the 

sensitivity of any node voltage with respect to all parameters is available, then, any perturbed 

response can be estimated to be 

1 1 1 1

1

( / , , , ) ( / , , , )n n n n

n

d d
t w p p p p t w p p p p

dp dp
+  +  = +  + + n n

n n

v v
v v              (52) 
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For modern ICs millions of parameters are inevitable, and the proposed adjoint sensitivity 

analysis provides a solution to attain all sensitivities with respect to all possible parameters in one 

simulation.  

 

Figure 4.1 Transient response with parameter p and (p+δp).  

 

4.1 DC/AC Adjoint Sensitivity Analysis 

Here we briefly review the adjoint circuit analysis for a circuit containing only independent 

sources, resistances and conductances as follows.  

Given a circuit, we short-connect all independent voltage sources (if any), open all 

independent current sources (if any), and finally add a unit current source ϕad=1A between the 

node of interest and ground, yielding the adjoint circuit as shown in Fig. 4.2. In other words, the 

adjoint circuit has the same topological connection as original circuit but with an independent unit 

source connected to the node of interest.  



 

50 

 

 

Figure 4.2 Illustration of original circuit and its corresponding adjoint version.  

 

Tellegen’s theorem [44] tells us that:  

( ) ( ) 0B B

B

t i t  =                                                       (53a) 

( ) ( ) 0B B

B

t v t  =                                                      (53b) 

where the branch voltage and current are denoted by vB(t) and iB(t), respectively, while in the 

adjoint circuit, they are denoted by ψB(t) and ϕB(t). As we are now considering the steady state 

case, {vB, iB, ψB, ϕB} are all constant in time, hence, their dependences on time is omitted for 

brevity.  

 Consider a perturbation δ in the original circuit that causes a shift of branch currents by δiB 

and a shift of branch voltages by δvB. Re-applying Tellegen’s theorem gives us:  

( ) 0B B B

B

i i  + =                                                          (54a) 

( ) 0B B B

B

v v  + =                                                      (54b) 

Subtracting (54) from (53), we have:  
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0B B

B

i  =                                                          (55a) 

0B B

B

v  =                                                          (55b) 

( ) 0B B B B

B

i v    −  =                                         (55c) 

The above equation can be further simplified based on the categories of branches as:  

( ) ( )

( )                                

src src src src R R R R

src R

G G G G

G

v i i v

i v

       

   

− = −

+ −

 


                             (56) 

 In the adjoint circuit, all devices keep the same characteristic as in original circuit. For a 

resistive branch as example, we have the branch constituent relation as ψR=R‧ϕR. Based on that, a 

first-order perturbative expansion of the differential component of the corresponding branch 

constituent relation yields:  

R R Rv R i R i  =  +                                                      (57a) 

R R RR R   =  +                                                       (57b) 

Now the left hand side and right hand side of (56) can be simplified as  

( ) ( )

( ) ( )

2

0 0 1 0

in in in in ad ad ad ad

in in ad ad

ad

v i v i

i v

v v

       

   

 

− + −

=  −  +  − 

= =

                                     (58a) 

( ) ( )1 1 1 1 2 2 2 2

1 1 1 2 2 2

R R R R R R R Ri v i v

i R i R

       

   

− + −

= − −
                                     (58b) 

After solving both original and adjoint circuits, we substitute the values of {vB, iB, ψB, ϕB } back 

into (58), yielding:  
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( ) ( )
2 1

2 1 22 2

1 2 1 2

in inR v R v
v R R

R R R R
  

 
=  − 

+ +
                                     (59) 

In the general case the sensitivity of any node voltage can be summarized as  

ad R R G G

R G

v i R v G    = − +                                            (60) 

 

Figure 4.3 Illustration of the original RC circuit and its adjoint circuit in frequency domain.  

 

The sensitivity in frequency domain is a function with extension to (60) as  

ad R R C C

R C

V I Φ R s V Ψ C  = − +                                            (61) 

Solving the original and adjoint circuits gives:  

( )
1

R

C
I s

sRC
=

+
                                                           (62a) 

( )
1 1

1
CV s

s sRC
=

+
                                                         (62b) 

( )
1

1
RΦ s

sRC
=

+
                                                           (62c) 

( )
1

C

R
Ψ s

sRC
= −

+
                                                         (62d) 

Substituting (62) into (61) gives:  
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( ) ( )
2 2

1 1
ad

C R
V R C

sRC sRC
  = − −

+ +
                                          (63) 

Which coincides with direct differentiation of Vc(s) given in the RC circuit. It is straightforward to 

analyze sensitivities in the frequency domain, while the same analysis is complicated to do so in 

the time domain since the convolution of the calculated circuit responses [38] is required and that 

convolution in the time domain is equivalent to multiplication in the frequency domain.  

 

4.2 Forward-In-Time Adjoint Analysis 

Instead of calculating the time domain sensitivity in the convolutional way, the difficulty 

of time domain adjoint analysis is that the time-varying behavior of the circuit needs to be taken 

into account. Time varying in the sense that new linearizations of nonlinear elements result in new 

linear circuits at new time points. Thus, the correct modeling of memory elements and the time 

dependence equations from time t to t+Δt is necessary.  

 The discretized equations for capacitances and inductances in terms of the BE integration 

approximation can be represented as  

( )
( ) ( )C C

C

v t t v t
i t t C

t

+ −
+ = 


                                                      (64a) 

( )
( ) ( )L L

L

i t t i t
v t t L

t

+ −
+ = 


                                                     (64b) 

 Based on the above equations, an equivalent companion model for capacitor, inductor or 

any general two terminal nonlinear device can be obtained as shown in Fig. 4.4, Fig. 4.5, and Fig. 

4.6.  
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Figure 4.4 Illustration of the BE companion model for a capacitance.  

 

Figure 4.5 Illustration of the BE companion model for an inductance.  

 

Figure 4.6 Illustration of the linearized BE companion model for nonlinear device.  

 

If we restart deriving the Tellegen’s theorem in (55c), then for a capacitor we have:   
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For an inductor:  
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For a nonlinear device:  
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After all related functions have been prepared, RC-Diode circuit, a demonstrative example 

is shown in Fig. 4.7 along with its adjoint version shown in Fig. 4.8. And the sensitivity of the 

node of interest for this example can be derived as  
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                                     (68) 

Solving the linearized circuit shown in Fig. 4.7 yields:  

( ) ( ) ( )

( ) ( ) ( )

R in
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And solving the adjoint circuit shown in Fig. 4.5 yields:  

( )

( ) ( )
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                                                               (70) 

Based on (68), we have the time domain sensitivity with respect to all parameters of RC Diode 

circuit plotted in Fig. 4.7.  

 

 

Figure 4.7 Illustration of an RC Diode circuit and its linearized version at t+Δt.  

 

 

Figure 4.8 RC Diode circuit’s adjoint version at t+Δt.  
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Figure 4.9 Sensitivities obtained by two methods, the adjoint curve is calculated from (68) and 

the dashed curve is calculated from the incremental sensitivity. (R=C=1; I0=10-6; VT=0.25) 

 

4.3 Examples and Error Accumulation Analysis 

The above theoretical analysis assumes that both the time step and the variations of parameters 

are infinitesimal, but the use of an infinitesimal Δt is obviously not practical to implement and a 

numerical integration method is inevitable. As a nonlinear device traverses the i-v characteristic 

curve, the linearized terms Geq and ieq as shown in Fig. 4.6 will vary and the use of a finite Δt 

introduces a local truncation-derivative error over the integration interval. If one defines the 

truncation error (TE) of a device as the difference between the actual point and estimated point 

shown in Fig. 4.10, then such error becomes negligible as a proper numerical integration process 

is given to minimize such error. But for time domain sensitivity analysis, the derivative difference 
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between the actual point and the estimated point with respect to the device parameters is critical 

and should not be ignored which is defined as the truncation-derivative error ∂iTE/∂p.  

Estimated Point

Actual Point
TE 

 

Figure 4.10 Hypothetical characteristic curve of nonlinear elements.  

 

In the companion model of the nonlinear device the truncation error is treated as an 

additional branch current in the linearized element as shown in Fig. 4.6 as  

( ) ( ) ( )

( ( ), ) ( ( ), )

[ ( ) ( )]

TE actual estimatedi t t i t t i t t

i v t t p i v t p

di
v t t v t

dv

+  = +  − + 

= +  −

−  +  −

                                               (71) 

As with many transient simulation methods, the truncation error is reasonably minimized [45]. But 

the mechanism of minimization does not ensure the same minimization of the truncation-derivative 

error which is critical in the nonlinear element’s sensitivity. If the extra high order terms branch 

iTE as shown in Fig. 4.6 are taken into calculation, then the sensitivity expression is updated to  
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where iTE in (72) can be represented as  
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                                 (73) 

Based on (71) & (73), the high order term iTE will be zero if an analytical integration 

process is given. To view the significance of the sensitivity estimation with different time steps as 

shown in Fig. 4.11, both numerical solution without high order term and incremental sensitivity 

are applied to previously discussed examples, and for the RCD example as shown in Fig. 4.7, the 

error does not converge to zero even if a smaller time step is employed.  

The result of Fig. 4.11 shows that a smaller time step does not improve the accuracy of 

adjoint sensitivity estimation if the high order term is not taken into consideration. To further 

illustrate the importance of corrections, the adjoint sensitivity calculation with and without taking 

the high order term into consideration are applied to the operational amplifier (opamp) circuit 

shown in Fig. 4.12. And Fig. 4.13 shows the capability of the truncation-derivative error 

minimization to allow accurate estimation of the parameter sensitivity.  
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(a) 

 
(b) 

Figure 4.11 sensitivity error curve for (a) an RC circuit, and (b) an RCD circuit with different 

time steps.  

 

 
Figure 4.12 Schematic of an operational amplifier circuit.  
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Figure 4.13 Output voltage sensitivities without and with correction excited by a step function 

input.  

 

 Fig. 4.11 and 4.13 straightforwardly shows the impact of the high order term, and the 

theoretical adjoint sensitivity error analysis is as follows. No matter what numerical integration 

method is applied, the general nominal excursion from t to t+Δt can be expressed as  

[ ( ) ( )]J J t t t =  +  − =n n n TEv v v i                                                  (74a) 

Where J stands for the Jacobian matrix of the chosen integration method and the corresponding 

perturbed excursion expressed as  

( ) ( )J J  +   +  = +n n TE TEv v i i                                                  (74b) 

After (74b)-(74a), we have  

( )J J J         =n n n TEv + v + v i                                                  (75) 
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Some people may ignore the boxed term δJ‧Δvn in (75) when calculating the desired 

sensitivity δΔvn, because δJ‧Δvn appears to be a high order term like the crossed out term in (75) 

when a hypothetical infinitesimal time step is applied. Suppose δvn_0 represents the initial state of 

the time domain sensitivity, the sensitivity estimation for any next time point with and without 

taking the boxed term into consideration can be represented as  
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                          (76) 

If n_iv  is used to denote the ith sensitivity within the boxed term and n_iv without  the 

boxed term, the generalized difference between  n_iv  and n_i
v  can be represented as  

1 1

1 1 2 2

1

( ) ( 1) ( )

( )i i

i J J i J J

J J
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− −
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n_i n_i 1 2

i

v v v v

v
                          (77) 

 Based on (77), the difference of the sensitivity with and without taking into account the 

high order term into can be unignorable if enormous and potentially ill-conditioned matrix; 

unreasonable excursion Δvi; and long simulation time are applied.  

 To verify the abovementioned correction, more nonlinear examples are tested against the 

incremental sensitivity result including a SRAM, a bandgap circuit, and an oscillator as shown in 

Fig. 4.14, Fig. 4.16 and Fig. 4.18. Their sensitivity responses against incremental sensitivities are 

shown in Fig. 4.15, Fig. 4.17 and Fig. 4.19 with the parameter of interest marked in the red dashed 

box.  
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Figure 4.14 Circuit schematic for a SRAM cell.  

 

 
Figure 4.15 Sensitivity response for a SRAM cell.  

 

 

Figure 4.16 Circuit schematic for a bandgap circuit.  
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Figure 4.17 Sensitivity response for a bandgap circuit.  

 

 

Figure 4.18 Circuit schematic for an oscillator.  
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Figure 4.19 Sensitivity response for an oscillator.  

 

4.4 Time domain noise analysis applying adjoint sensitivity 

 To acquire utmost accuracy, Monte-Carlo oriented time domain noise analysis [46-47] 

might be the only reliable solution for all general circuits. But as the name suggests, the 

computational power required is not affordable for the most advanced designs or processes. 

Moreover, with the above individual noise source contributions cannot be distinguished.  

Derived from adjoint circuit theory, time domain adjoint sensitivity provides an elegant 

and efficient approach to compute the effects on the performance of a circuit with respect to all 

possible incremental parameter variations in a single simulation run and the time domain noise 

analysis applying adjoint sensitivity information is described as follows.  

The general form of power spectral density can be represented as shown in Fig.1. The time 

domain noise series can be modelled as a linear combination of all of the frequency bands [48] as  
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1

cos( )
x M

x x x

x

i A w t 
=

=

=   +                                                            (78) 

where ϴx is randomly chosen to follow a uniform distribution over [0: 2pi]; Ax follows a Rayleigh 

distribution with variance 2S(wx)Δfx and S(w) is defined as the spectral density function. The 

number of frequency bands determines the accuracy of this noise series.  

w

 

Fig. 4.20 General form of power spectral density (Note that this is a representative figure and not 

all power spectral densities take this form).  

 

A noise free resistor has the characteristic function  

v
i

R
=                                                                       (79a) 

and after the noise series is added to (79a), it becomes  

v v
i i

R




+
+ =                                                                 (79b) 

Now suppose that a variation in R is applied to compensate for the noise series δi then  

v v
i

R R
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+
=

+
                                                                (79c) 
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It follows from (79b)-(79c), that the noise can be equivalently represented by a variation of the 

parameter R as  
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v v v v
i

R R R

v R v R

R R R

i
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 
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                                                                (79d) 

and the corresponding noise model in terms of the resistance branch can be represented as shown 

in Fig.2.  

iR R R+

 

Fig. 4.21 Equivalent noise model representation.  

 

 A similar derivation can be implemented for a general device with characteristic function 

i=f(v, p) as follows  

( , )i f v p=                                                                 (80a) 

( , )i i f v v p + = +                                                                 (80b) 

( , )i f v v p p = + +                                                                 (80c) 

from (80b)-(80a), we have  

f
i v

v
 


= 


                                                                (80d) 

and from (80c)-(80a), we have  
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                                                                (80e) 

Thus, the noise of any general device can be equivalently transferred to the variation of its 

own parameters  

f
i P

p
 


= − 


                                                                (80f) 

 Now Suppose Backward Euler is applied as the numerical integration method for transient 

analysis from t=0 to t=T. For every time point t, the noise spectral density function of the circuit 

is available as s(w, vn(t)). As the function suggests, the spectral density function is both frequency 

dependent and circuit state dependent.  

 For simplicity, the implementation is only focused on the time interval Δt from t to t+Δt 

and such implementation can be identically applied to all the time intervals from t=0 to t=T. At t, 

the spectral density function is re-evaluated for each noise source as s(w, vn(t1)). Based on (79), 

randomized noise time series are generated with M frequency bands to approximate the noise input 

signal from t to t+Δt as  

1 1

( ) cos( )
th

th

n node x M

x x x

node x

t A w t 
=

=

=   + n
i                                                                 (81) 

Extra interpolated time points can be added to the time interval to increase the accuracy of 

the time domain adjoint sensitivity. The output noise response from t to t+Δt is available as  

( )
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( ) [ ( ) / ]
i n

i

i i i

f
t t i t

p p
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=

=

 
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 n

n

v
v                                                                 (82) 

where n stands for the number of noise sources.  
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 To verify the proposed time domain noise analysis applying sensitivities, two examples are 

tested with both the Monte-Carlo method and the proposed method. Fig. 4.22 shows an operational 

amplifier with sinusoidal signals applied to its input differential pair. The spectral density function 

of thermal noise of a MOSFET is  

24 ( / )doKT g A Hz                                                                  (83) 

where ϒ is 2/3 for long channel devices in saturation and 2 for sub-micron devices, gdo is the zero 

bias drain conductance. The spectral density function of flicker noise of a MOSFET is defined as  

2

2( / )
f m

ox

K g
A Hz

f C W L


 
                                                                (84) 

where Kf is a constant, W&L are the effective width and length of the device. The spectral density 

function of the thermal noise of a resistor is  

24
( / )

KT
A Hz

R
                                                                (85) 

where K is Boltzman constant, and T is absolute Kelvin temperature [49].  

 

Fig. 4.22 Circuit schematic for a two stage OPAMP. 
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Fig. 4.23 Output noise response of a two stage OPAMP. 

 

Both the tediously sampled Monte-Carlo noise analysis and the proposed time domain 

noise analysis are applied to this operational amplifier, and the results are compared in Fig. 4.23. 

The match at low frequencies is particularly better than other time domain transient noise analyses 

[50] that previously have been proposed which require a long transient simulation time to attain 

accuracy in the flicker noise region.  

 Fig. 4.24 shows an inverter. Unlike with the operational amplifier which works around a 

fixed bias operating point, the 0/1 transition of digital circuits poses challenges to time domain 

noise analysis [51]. The time domain sensitivity response of digital circuits with respect to any 

parameters will be an impulse-like curve and that impulse happens over the 0/1 transition time. 

Except for that impulse, the rest of the curve remains at zero. That is to say, the overall noise 

response only needs to be concerned with the transition time and more time samples are required 

in that region to secure the accuracy of the noise response. The comparison of this result with 

Monte-Carlo is shown in Fig. 4.25.  
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Fig. 4.24 Circuit schematic for an inverter. 

 

 

Fig. 4.25 Output noise response of an inverter. 
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CHAPTER 5 

 

5.1 Summary 

In this dissertation, multiple electronic design automation algorithms are proposed and 

developed in the XYCE platform for a fast and accurate simulation result. The step response solver 

does not need to climb an unstable steep ramp to approximate the real step response. The following 

static driven method with adaptively controlled step size naturally differentiates the state variables 

of the system into fast/slow group (quiescent/dynamic group). By managing the second order time 

derivative of the quiescent group, the dynamic group is leading the excursion of the quiescent 

group. A static driven based pseudo transient DC convergence is applied to difficult convergence 

examples and shows substantial speed up against the conventional pseudo transient method.  

 Time domain adjoint sensitivity is visited with a circuit theoretic approach. By applying 

the proposed time domain adjoint sensitivity estimation, all the sensitivities of node voltages with 

respect to all the potential parameters are available in one simulation run. When a numerical 

integration method is applied, the accuracy of the sensitivity is discussed with and without taking 

the high order term into account. The correction technique ensures the utmost accuracy. For 

verification purposes, the abovementioned time domain sensitivity is applied to simulate the time 

domain noise response after the noise model is equivalently transferred to be the variation of circuit 

parameters. The performance of the proposed method against Monte-Carlo based time domain 

noise response shows an excellent match.  
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