






3.1.2 Fast R-CNN. As in the R-CNN detector [2], the Fast R-CNN [4] detector also 

uses an algorithm like Edge Boxes to generate region proposals. Unlike the R-CNN 

detector, which crops and resizes region proposals, the Fast R-CNN detector 

processes the entire image. Whereas an R-CNN detector must classify each region, 

Fast R-CNN pools CNN features corresponding to each region proposal as shown in 

Figure 10. Fast R-CNN is more efficient than R-CNN, because, in the Fast R-CNN 

detector, the computations for overlapping regions are shared. 

 
Fig. 10. Fast R-CNN architecture5: Unlike the R-CNN detector, which crops and resizes region 

proposals, the Fast R-CNN detector processes the entire image. 

  Fast R-CNN is much faster in both training and testing time than the base R-CNN. 

However, the improvement is not dramatic because the region proposals are generated 

separately by another model and that is very expensive. 

 

3.1.3 Faster R-CNN. In the Faster R-CNN detector, instead of using an external 

algorithm like Edge Boxes, Faster R-CNN adds a region proposal network (RPN) to 

generate region proposals directly in the network (Figure 11). Generating region 

proposals in the network is faster and better tuned to the input data. 

 
Fig. 11 Faster R-CNN5: Instead of using an external algorithm like Edge Boxes, Faster R-CNN 

adds a region proposal network (RPN) to generate region proposals directly in the network. 

 

In this paper, pre-trained models using Faster R-CNN are used to leverage optimal 

and accurate regional proposal generation. This aids to improve regional proposal 

quality of the networks and overall object detection accuracy in an image 

                                                           
5 https://www.mathworks.com/help/vision/ug/faster-r-cnn-basics.html 
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3.2   Region-Based Fully Convolutional (R-FCN) 

Region-based Fully convolutional networks (R-FCN) introduced by Dai, et al. [5] 

provides an accurate and efficient object detection. R-FCN closely resembles the 

architecture of Faster R-CNN, but instead of cropping features from the same layer 

where region proposals (RoI) are predicted, crops are taken from the last layer of 

features prior to prediction. See Figure 12. Dai et al. argues, this approach of pushing 

the cropping to the last layer greatly minimizes the amount of per-region computation 

that must be performed. Dai et al. showed that the R-FCN model (using Resnet 101) 

could achieve comparable accuracy to Faster R-CNN often at faster running times [5]. 

 

Fig. 12. Overall architecture of R-FCN [9]. 

 

In R-FCN architecture above, a given input object is divided into feature maps each 

detecting the corresponding region of the object. The feature maps are also known as 

position-sensitive score maps. Taking the example of the 3 X 3 ROI in Figure 12 

above, we ask ourselves how likely each in the 3 X 3 matrix contains the 

corresponding part of the object and assign a score to it. This process of mapping 

score maps and ROIs to the vote array is called position-sensitive ROI-pool. The 

average of the resulting ROI pool gives the class score for a given object in the given 

ROI as shown in Figure 13 below. 

 

 

Fig. 13. Applying ROI onto the feature maps to output a 3 x 3 Vote array. 
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3.3   Single-Shot Detector (SSD) 

The term single shot means that the tasks of object localization and classification are 

handled in a single forward pass of the network. It is simple relative to methods that 

require object proposals because it eliminates proposal generation and subsequent 

pixel or feature resampling stages and encapsulates all computation in a single 

network. The SSD approach is based on a feed-forward convolutional network that 

produces a fixed-size collection of bounding boxes and scores for the presence of 

object class instances in those boxes, followed by a non-maximum suppression step to 

produce the final detections. The early network layers are based on a standard 

architecture used for high-quality image classification (with their last classification 

layer removed), which is called as the base network. In Figure 13, the base network is 

VGG-16, but this can be substituted with any feature extractor such as InceptionV2 or 

ResNet. 

  The SSD architecture builds on these base networks, by discarding the fully 

connected layers and replacing them with a set of auxiliary convolutional layers 

(conv6 onwards in Figure 14). These additional conv layers enable the algorithm to 

extract features at multiple scales and progressively decrease the size of the input to 

each subsequent layer. 

 

 

Fig. 14. SSD architecture [6] as shown above discards the fully connected layers for set of 

auxiliary convolutional layers enabling extraction of features at multiple scales and 

progressively decrease the size of the input to each subsequent layer. 

  The term MultiBox refers to a bounding regression technique based on Szedgedy’s 

work. In SSD, every feature map cell is associated with a set of default bounding 

boxes of different dimensions and aspect ratios. To start with, SSD only needs an 

input image and ground truth boxes for each object during training. It does the 

following: 

 

a. Passes the image through a series of convolutional layers, yielding several 

sets of feature maps at different scales. 

b. For each location in each of these feature maps, it uses a 3x3 convolutional 

filter to evaluate a small set of default bounding boxes. These default 

bounding boxes are essentially equivalent to Faster R-CNN’s anchor boxes. 

c. For each box, it simultaneously predicts the bounding box offset and the 

class probability.  
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d. During training, it matches the ground truth box with these predicted boxes 

based on Intersection over Union (IoU). The best-predicted box will be 

labeled a positive, along with all the other boxes that have an IoU with the 

truth > 0.5.  

 

  Since SSD does not have a region proposal network, which would have ensured 

that everything we tried to classify had some minimum probability of being an 

“object”, instead we end up with a greater number of bounding boxes with many of 

them having negative examples. To fix this imbalance, SSD does two things. First, it 

uses non-maximum suppression (NMS) to group together highly-overlapping boxes 

into a single box. For instance, in Figure 15, if four boxes contain the same dog, NMS 

would keep the one with the highest confidence and discard the rest. Secondly, the 

model uses a technique called hard negative mining to balance classes during training. 

In this technique, only a subset of the negative examples with the highest training loss 

are used at each iteration of training. SSD keeps a 3:1 ratio of negatives to positives. 

  The varying-size feature maps which are generated due to the extra feature layers 

help SSD tackle the scale problem. In smaller feature maps (e.g., 4x4), each cell 

covers a larger region of the image, enabling them to detect larger objects. Region 

proposal and classification are performed simultaneously: given p object classes, each 

bounding box is associated with a (4+p)-dimensional vector that outputs 4 box offset 

coordinates and p class probabilities. In the last step, softmax is again used to classify 

the object. 

 

4   Experimental Setup 

The experimental setup consists of two phases. In phase one, the algorithms were 

compared based on mAP and inference time for four driving conditions and four 

image sizes. In phase two, the best performing model of phase one was taken, and 

Transfer Learning was applied, as depicted in Figure 16. 

 

 

Fig. 16. In phase 1 of the experiment, the models are tested, and the best performing model is 

chosen. In phase 2, transfer learning was applied to improve the model’s performance. 

 

The following sub-sections explain in detail each of the aforementioned steps. 
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4.1   Data Collection 

Most object detection models use Convolutional Neural Network (CNN) methods to 

train images and detect objects by identifying a region of interest within that image 

and determine the class of the object present within that region. Testing the pre-

trained object detection models requires test images that contain reasonable clarity 

and visibility of the classes being identified – which the probability of detection 

depends.  

 

4.1.1 Data sources. Various data sources were examined, including Google, and large 

University of California at Berkeley Deep Drive data sets [7]. We acquired sample 

data sets from Berkeley’s video database and extracted images from videos we 

recorded while at traffic stops and parking lots at our neighborhoods. Samples taken 

covered different driving conditions: daytime, rainy, snowy and night. 

 

4.1.2 Annotations using labelImg. To measure the performance of the object 

detection algorithms, a reference to the location of objects in the images is needed. 

COCO annotation format was followed to label target object classes using bounding 

boxes. These reference bounding boxes indicating the true location of objects in the 

images are referred to as GroundTruth. Comparing this GroundTruth bounding boxes 

to the predicted bounding boxes that are generated by the algorithms is what gives us 

the accuracy of the Object detection algorithm summarized by the mAP score.  

  A Windows Operating System open source software, LabelImg [11] was used to 

annotate the images. The tool allows the use of text file with predefined classes which 

made it easy to maintain the same class IDs as those in COCO dataset.  

  Approximately 100 images for the four target driving conditions were manually 

labeled. Figure 17 below shows the number of image instances for the different 

driving conditions. 

 

 

Fig. 17. Distribution of data. Above pic chart shows an approximately equal number of images 

used for the different driving conditions.  
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4.2   Model Selection 

 

TensorFlow’s object detection model zoo [8] provides several models that are pre-

trained on the COCO dataset and made available for out-of-the-box inference. Since 

all these models were trained on the COCO dataset, they can be used for detecting the 

objects that are available in the COCO dataset such as humans and cars. 

  Three models: faster_rcnn_inception_v2_coco, ssd_inception_v2_coco, and 

rfcn_resnet101_coco, were chosen from the model zoo, that represent the three meta-

architectures that are being compared in this research. The model names identify the 

meta-architecture, the feature extractor, and the training data used. For instance, the 

faster_rcnn_inception_v2_coco model uses faster R-CNN as the meta-architecture, 

inceptionv2 as its feature extractor that has been trained on COCO dataset.  

  In addition to providing out-of-the-box inference, TensorFlow’s object detection 

API also makes it possible to apply transfer learning to these models using a 

customizable config file to either extend or fine-tune these models. 

4.3    Determine Metrics 

The algorithms were evaluated on how well they performed classification, predicted if 

an object exists in the image and localization, which is their precision of locating an 

object in the image. These two evaluation measures are evaluated by comparing the 

object detection algorithm’s predictions to the ground truth data. Ground truth data 

provides the true labels of objects in an image. The data includes the image, classes of 

the objects in it and true bounding boxes for each object in the image. Figure 18 

below shows a sample Ground-Truth file. 

 

 

 

Fig. 18. Sample ground-truth info for the location of a car in an image.  
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4.3.1 Localization and Intersection over Union (IOU). To evaluate the model on 

the task of object localization, we must first determine how well the model predicted 

the location of the object. Intersection over Union is an evaluation metric used to 

measure the accuracy of a localization task. IoU is a ratio of the area of overlap 

between the predicted bounding box and the ground-truth bounding box divided by 

the area of the union, or more simply, the area encompassed by both the predicted 

bounding box and the ground-truth bounding box. Refer to Figure 19 below for a 

visual representation of the IoU calculation, and a sample predict vs. ground truth 

bounding boxes. 

        

Fig. 19. Computing the intersection over union and sample image showing predicted vs 

ground-truth bounding boxes overlaid.       

  Due to varying parameters of image detection models (sliding window size, feature 

extractors, etc.), it is simply unrealistic to expect a total match between predicted and 

ground-truth bounding boxes. For this reason, an evaluation metrics that rewards 

predicted bounding boxes for heavily overlapping with the ground-truth is defined. 

Below are sample IOUs and their respective scores. For our evaluation with use IoU 

threshold >= 0.5 (50%). This "match" is considered a true positive if that ground-truth 

object has not been already used (to avoid multiple detections of the same object). 

 

 

Fig. 20. Poor, Good and excellent IoU samples. 

 

4.3.2 Mean Accuracy Precision (mAP). Mean Average Precision is the mean of 

average precisions (AP) for all classes detected in a dataset. To understand AP, we 

first must define precision and recall of a classifier. In the context of object detection 
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algorithms, precision measures the “false positive rate” or the ratio of true object 

detections to the total number of objects that the classifier predicted. If you have a 

high precision rate, there is a high likelihood that whatever the classifier predicts as a 

positive detection is, in fact, a correct prediction. On the other hand, recall measures 

the “false negative rate” or the ratio of true object detections to the total number of 

objects in the data set. A high recall score means the model will positively detect all 

objects that are in the dataset. It is worth noting that, these two metrics are inversely 

related, and they are dependent on the model’s performance and the threshold set for 

the model score. Figure 21 below shows formulas for calculating precision and recall. 

 

  

Fig. 21. Precision and Recall formulas 

   

  In the calculation of the AP, for a specific class for example car, the precision-

recall curve is computed from the model’s detection output, by varying the model 

score threshold that determines what is counted as a model-predicted positive 

detection of the class. Finally, AP is computed as the area under this curve (shown in 

light blue) by numerical integration (Figure 22). 

 

 

 

Fig. 22. Average Precision (AP) for class car is computed as the area under the curve. 
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Once AP for all classes is calculated, as shown above, mAP is calculated as the mean 

of all the AP's, resulting in a mAP value from 0 to 100%.  Figure 23 below shows 

steps in the calculation of mAP score of 58.51% calculated by averaging the AP 

scores for six classes detected by an object detection algorithm. 

 

 

Fig. 23. Steps in calculation of mAP score begins with IoU Calculation followed by calculation 

AP based on a precision recall curve. 

4.3.3 Inference time. This is the measure of how fast an object detection algorithm 

takes to infer objects detected in an image. We note the speed of detection if affected 

by several factors such as; Model architecture, feature extractor used, and more 

importantly hardware used for running the evaluations. 

4.4 Evaluate 

In this step of the experiment, the three models described earlier in section 4.2, were 

evaluated based on mAP and inference time. As the goal of phase one was to 

determine the best performing model, all the available images were utilized, that is, a 

total of 1600 images - 400 images from four driving conditions times four image 

widths: 150, 300, 450, 600. Comparing these algorithms on different image widths, in 

addition to different driving conditions, gives a comprehensive picture of how each of 

these algorithms performs in real-world scenarios. The result of this step is to pick the 

best algorithm that strikes a balance between speed and accuracy. 

4.5 Transfer Learning 

As the pre-trained models were trained on COCO dataset – which consists of objects 

that are commonly found on the road, like vehicles, stop signs, and traffic lights, and 

since the training data also contain similar objects, the category of Transfer Learning 

that is most suitable is End-of-ConvNet. Using TensorFlow’s Object Detection API, 

the best performing model of stage 1 was re-trained by replacing the output layer with 

the number of categories in the training data. Additionally, several hyperparameters 

like batch size and number of epochs were tuned using the pipeline config file – 

which is a text file with several tunable hyperparameters. The end result of this step is 

that a new model is created, that can be used to make inferences. 
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5   Environment 

5.1 Hardware environment 

When working with large amounts of data and complex network architectures, GPUs 

can significantly speed the processing time. These models were evaluated and trained 

on Ubuntu 16.04 with GPU: GeForce GTX 1060 with 16GB memory. TensorFlow 

with CUDA toolkit 9.2 and cuDNNv7.0 was used to train the models during Transfer 

Learning phase.  

5.2 Tools 

Google released pre-trained models with various algorithms trained on the COCO 

dataset for public use [8]. The API is built on top of TensorFlow and intended for 

constructing, training, and deploying object detection models. The APIs support both 

object detection and localization tasks. The availability of pre-trained models enables 

the fine-tuning of new data and hence making the training faster. 

6   Results 

In phase one of our experiment, the algorithms are evaluated to determine which 

works best under different driving conditions. In phase two, Transfer Learning is 

applied to the model selected from phase one. The results are discussed in two phases. 

 

6.1 Phase 1: Determine the best model 

 

6.1.1 Heat Map of mAP scores across algorithms and driving conditions: As 

discussed in the evaluation section 4.3.2 above, mean Average Precision (mAP) is the 

primary evaluation metric used, and it is the average of the maximum precisions at 

different recall values. mAP gives a one number summary measuring the accuracy of 

localization and classification for a given object detection algorithm.  In Figure 24 

below, the mAP heatmap for varying image width on different driving conditions for 

the three Meta-Architecture is shown. Considering that the pre-trained models were 

trained on COCO dataset image size, 600 X 600 as indicated on the TensorFlow 

Model Zoo directory [8], varying the image width is impacts the mAP score achieved 

by a given algorithm. mAP score increases as the image width increases from 150 to 

600. Region-based architecture i.e., R-FCN and Faster R-CNN outperformed the 

SSD. For the limited dataset used, all the algorithms have higher mAP scores for the 

snowy condition compared to the rest of the conditions. 
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Fig. 24. Heatmap of mAP scores shows that these algorithms performed well under snowy 

conditions with rfcn and faster-rcnn having higher mAP scores than ssd for all conditions. 

 

6.1.2 Inference time comparison of algorithms across different driving 

conditions: Looking at the speed of detection, SSD leads the pack, closely followed 

by faster R-CNN. Even though R-FCN did well from a mAP perspective, it lagged 

behind in terms of detection speed as shown in the heatmap in Figure 25 below. 

 

 

Fig. 25. Heatmap of inference times in seconds shows that ssd has better inference times over 

both the region-based algorithms. 

 

6.1.3 Density plot showing distribution of inference time across different driving 

conditions and image sizes: Looking at inference time distribution in Figure 26 

below, image size and driving condition do not impact speed of detection for both 

SSD and Faster R-CNN. On the other hand, there is a slight positive correlation 

between image size and inference time for R-FCN where the inference time increases 

with the increase in image size. 
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Fig. 26. Density plot of inference times reveals that ssd and r-cnn are pretty close and rfcn is 

the slower for all image sizes and conditions. 

 

6.2 Phase 2: Use Transfer Learning 

 

The results from phase 1 clearly indicate that region-based algorithms have higher 

mAP scores than SSD. Of these, R-FCN has the best mAP scores in three of the four 

conditions (Figure 24) but has the worst inference times as indicated in Figure 25. 

Upon close observation of phase 1 results, faster R-CNN is not very far behind from 

R-FCN in terms of mAP score and has almost equal inference times as SSD as 

indicated in the density plot Figure 26. These observations prompted the selection of 

faster R-CNN for phase 2 evaluation. The results of applying Transfer Learning are 

compared with baseline faster R-CNN, which are discussed next. 

 

6.2.1 Comparison of mAP score between baseline vs transfer learning model. 

After applying transfer learning to faster R-CNN baseline model, a new model a rcnn-

custom is created. A comparison of mAP scores of these two models is shown in 

Figure 27. From this figure, mAP scores are shown to have improved for night and 

rainy conditions. 

 

 

Fig. 27. mAP score of baseline vs transfer learning model shows that the custom model 

performed better in night and rainy conditions. 
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6.2.2 Comparison of inference time between baseline and transfer learning 

model: A side-by-side box plot of inference times of faster rcnn custom and baseline 

model (Figure 28) clearly indicates that the inference times have reduced after 

applying Transfer Learning.  

 

 

Fig. 28. Inference time of baseline vs Transfer Learning model shows that the custom models 

inference times are better for all conditions. 

 

6.2.3 Comparison of inference time between baseline and transfer learning 

model: To show the effectiveness of Transfer Learning, we show a comparison of our 

custom model with the rest of the models in Figure 29. It can be readily observed that 

our model outperformed all the pre-trained models. 

 

 

Fig. 29. Comparison of inference times shows that rcnn-custom model outperforms all the other 

models for all the driving conditions. 

7    Related Works 

An empirical evaluation of deep learning algorithms on highway driving conditions 

was conducted by Huval et.al. [9]. In this work, the research team used regular CNNs 

for vehicle and lane detection on highways. By using Camera, Lidar, Radar, and GPS 
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they built a highway dataset consisting of 17 thousand image frames with vehicle 

bounding boxes and over 616 thousand image frames with lane annotations. Using 

this dataset, they trained a CNN and showed that regular CNNs are capable of 

detecting vehicles and cars in a single forward pass. Their results show that CNN 

algorithms are capable of good performance in highway lane and vehicle detection, 

however their work omitted temporal information which is an important component in 

lane and vehicle detection systems.  

  Many object detection algorithms have been developed in the recent years which 

are based on Convolutional Neural Networks. While each algorithm has individually 

presented its speed and accuracy metrics, what is lacking is a comprehensive 

comparison of these algorithms. Dai et al, presented a region-based fully 

convolutional network (R-FCN) for object detection and reported that they achieved 

an accuracy close to Faster R-CNN but with better training time [10]. Liu et al. 

introduced SSD [6], a single-shot detector for multiple categories that is faster than 

the previous state-of-the-art for single shot detectors (YOLO), and significantly more 

accurate, in fact, as accurate as slower techniques that perform explicit region 

proposals and pooling (including Faster R-CNN). Finding a way to do an apples-to-

apples comparison of these algorithms is the biggest challenge. For instance, some 

algorithms use different base feature extractors like VGG or Residual Networks, 

while some others work well with certain image resolutions and yet some others have 

been specifically trained on certain hardware and software platforms. Huang, et al. 

attempted to address this problem by using a unified implementation of Faster R-

CNN, R-FCN and SSD systems, which they call as "meta-architectures" [12]. 

  The idea behind using a unified approach is that it is impractical to compare every 

recently proposed detection system. By grouping algorithms based on common set of 

architectures, it is possible to compare many algorithms that share similar 

characteristics. In particular, the group of researchers have created implementations of 

the Faster R-CNN, R-FCN and SSD meta-architectures, which at a high level consist 

of a single convolutional network, trained with a mixed regression and classification 

objective, and use sliding window style predictions. The results show that using fewer 

proposals for Faster R-CNN can speed it up significantly without a big loss in 

accuracy, making it competitive with its faster cousins, SSD and R-FCN. They also 

showed that SSDs performance is less sensitive to the quality of the feature extractor 

than Faster R-CNN and R-FCN. 

  The speed and accuracy trade-off– the gains in accuracy are only possible by 

sacrificing speed and vice-versa, is a ubiquitous problem in self-driving cars. The 

decision to choose one architecture over other boils down to finding the sweet spot 

between accuracy/speed trade-off curve. An empirical evaluation of the performance 

of these architectures/algorithms for solving object detection problems in the context 

of self-driving cars under varying driving conditions has not been attempted. 

8   Ethics 

We have acquired our test data from Berkley object detection data repository [7] and 

videos recorded around our neighborhoods. We have used a python script to extract 

some of images used for research. 

  We believe we have acted responsibly and professionally while handling the test 

data in our hand, with the intension of evaluating and improving existing object 
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detection algorithms in the context of Self Driving cars, expected to support the 

public good. In that way, we completely adhere to “The ACM Code of Ethics and 

Professional Conduct [13] guidelines.  

  We adhere to General Ethical Principles as our work would definitely fit into one 

of a kind research specific to evaluating top quality object detection models 

potentially used in the race of finding best solutions for object detection technology in 

the inevitable Self Driving Car future. Our research is honest and trustworthy, did not 

pose harm to any stakeholder as this is not implemented or not in the process of 

capturing data, expected to contribute to society and to human well-being if this 

research can be used for further studies. The research required adaption from lot of 

great work already done in this area, and leveraged already existing tools, code, 

journals as cited in the paper to respect others work, innovations and creativity. The 

test data collected and used for testing is not expected to be published on social sites 

or used for any commercial purposes to respect the privacy and honor confidentiality 

of the subjects in the images.  

  We strongly acted upon our Professional Responsibilities to strive to achieve high 

quality in both the processes and products of professional work. We have leveraged 

existing object detection models available from COCO object model zoo [8], open 

source tools such as LabelImg [11] for creating ground truth labels and annotation. 

  We take pride having demonstrated our Professional Leadership Principles by 

developing an idea that can further create more opportunities for members of the Data 

Scientist community and professional working on similar projects in near future. A 

fail-proof all-weather solution is extremely needed for the success of Self Driving Car 

to operate safely and socially acceptance environment.  

  Finally, the project is completely technical in nature and applied various deep 

learning techniques. The progress should not have been possible without amazing and 

extensive work done by many researchers that we leveraged as explained in the earlier 

sections. By citing the references in our paper, we uphold, promote and respect the 

principles of Compliance with the Code. 

9   Conclusion 

Based on the study, we conclude that no single algorithm works best for all 

conditions. However, retraining and optimizing with domain-specific data using 

Transfer Learning is likely to improve performance in similar conditions.  

  In this research, we have evaluated the performance of 3 object detection 

architectures based on the 2 metrics - mAP score and inference time. Our results show 

that region-based algorithms such as Faster R-CNN and R-FCN tend to have a high 

accuracy and SSD based algorithms have faster inference times. As our dataset 

comprised of images taken under four different driving conditions, we were able to 

evaluate the performance of each of these algorithms under different driving 

conditions. Our results show that these algorithms tend to perform well under snowy 

conditions. We also proved that we can take a generic pre-trained model and apply 

transfer learning to improve the inference times by about three seconds per image. 

Transfer learning also proved to be effective in improving the mAP scores even with 

a small training dataset of 240 images (60 images per condition) for three of the four 

conditions. 
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10   Future Work 

The research enables much more opportunities to improve further. The number of test 

images can be increased substantially and tested with streaming videos to perform 

more practical real-world applications of self-driving cars and other autonomous 

vehicles or devices. The research can be performed with models from object detection 

model zoo and with newer approaches to test similar comparisons under varying 

weather conditions. The research can be extended to test the models in real-time self-

driving car implementation by integrating with sensor data. The performance of mAP 

scores and inference time can be improved by tuning other hyper-parameters and 

additional layers in the Transfer Learning step – using high-performance GPU 

systems. 
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Appendix: 

Project Code Location 

 

The Project code is stored in public GitHub repository, which contain code, data and 

documents supporting the research work available at https://github.com/kevin-

okiah/CAPSTONE for reference and further enhancements. 
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