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With the pressing net-zero objectives, renewable energy sources (RESs) and energy stor-

age systems (ESSs), which serve as the main force in providing low-carbon energy and

flexibility, are being integrated into the power systems at an unprecedented rate. The ris-

ing penetration trend of RESs and ESSs brings both opportunities and challenges. In the

short term, the inherent intermittency of RESs and high capital costs of ESSs introduce

obstacles to revenue maximization for hybrid power plants and complicate the provision of

privacy-ensured, high-fidelity network modeling. Long-term planning faces the hurdle of ex-

panding ESS capacity in microgrids while maintaining power supply resilience with specific

frequency characteristics. The recent surge in machine learning and quantum computing

offers potential solutions to address these key challenges. Aiming to achieve secure and eco-

nomic operation through capacity scheduling of investor-owned photovoltaic-battery storage

systems (PV-BSS), this dissertation utilizes a Proximal Policy Optimization (PPO)-based

deep reinforcement learning (DRL) agent that can handle continuous action spaces and en-

sure safety constraints, addressing challenges in adapting to volatile market signals and PV

generation profiles. To enhance the accuracy of equivalent models for active distribution

networks (EMADNs) in the presence of high RES penetration and associated management

techniques, an adaptive EMADN with tunable scales and parameters is developed, featuring

a leaves-trimming topological reduction method and a distributed PPO-based agent. Then,

this dissertation seeks to strategize BSS expansion planning for microgrids by introducing a

v



two-stage multi-period framework that combines the quantile regression DRL algorithm with

linear programming, ensuring adaptive planning for long-term variations in RES, load, and

battery pricing. Finally, this dissertation aims to optimize energy arbitrage tasks in ESSs

by introducing a quantum policy learning algorithm that involves a strategically structured

variational quantum circuit, offering a novel approach to action exploration and maintain-

ing operational safety within energy markets. Case studies based on real electricity market

data and RES profiles validate the effectiveness and benefits of the proposed methodologies

compared to state-of-the-art techniques.
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Chapter 1

Introduction

1.1 Background

The net-zero goal induced by global warming is bringing revolutionary transformations

to the power industry. As a major means to fulfill decarbonization, renewable energy sources

(RESs) are experiencing exponential growth. U.S. Energy Information Administration (EIA)

points out in its Annual Energy Outlook 2022 that power generation from RESs in the United

States will jump from 21% (about 0.84TkWh) in 2021 to 44% (about 2.42TkWh) in 2050 [1].

Among RESs, solar energy and wind power have become the center of attention, accounting

for 51% and 31% of RES generation, respectively, in 2050.

Despite the promising low-carbon vision provided by RES, RES has its inherent limita-

tions, among which stochasticity and intermittency are the most significant. Energy storage

is an essential technical way to resolve RES issues. Due to the flexibility and agility of

charging and discharging, energy storage can readily solve the unexpected power shortage

or surplus of RES generation. Among numerous energy storage technologies, battery en-

ergy storage (BES) is currently the most economically viable utility-scale energy storage

solution [2]. Moreover, the economic feasibility brought by the development of BES has in-

creased its competitiveness. For instance, National Renewable Energy Laboratory projects

a 30% to 70% cost plummet for 4-hour lithium-ion systems relative to 2020 [3]. Therefore,

BES and its storage peers are indispensable components of modern power grids.

Grid connections of inverter-interfaced RES and energy storage components bring more

variability to the grid, creating the need for more powerful information and communications

architecture, in which measurement and monitoring instruments are primary parts [4,5]. At

the distribution and microgrid (MG) level, the deployment of micro phasor measurement

units (µPMUs) and smart meters (SMs) are proliferating. µPMUs is a high-speed and
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low-cost synchrophasor that captures and streams voltage and current measurements at

30 frames per second, or more [6]. The time stamps associated with Global Positioning

System are utilized to attain time synchronization. The initiative of advanced metering

infrastructure (AMI) stimulates the installation of SMs, enabling two-way communication

of instantaneous electricity usage and control signals between consumers and suppliers. EIA

reveals that more than 111 million smart meters were deployed in the US as of the end

of 2021 [7]. The installation of smart meters reached 665 million units globally in 2017.

According to a recent report, the global smart-meter market will be valued at USD 19.7

billion in 2021. By the end of 2028, it is projected to generate revenues of about 34.5 billion

USD. Meteorological instrumentation for renewable energy availability forecasting is also

increasingly used, resulting in the availability of real-time meteorological data such as solar

radiation, wind speed, temperature, and precipitation [8]. The availability of multi-mode

and multi-time-scale data in power grids accelerates the arrival of the big data era, bringing

both opportunities and challenges [9–12].

The recent advances in machine learning (ML) and deep learning (DL) techniques are

the cruces to potential opportunities and challenges in the big data era [13–16]. The deeper

architectures result in better representation learning and data-possessing capability. The

phenomenal performances of deep neural networks (DNNs) facilitate the development of

data-driven solutions to those physics-related problems in which the physical mechanism is

not fully understood or in which it is intractable to derive a high-resolution numerical so-

lution with limited computational resources [17–19]. The breakthroughs in DL gave rise to

deep reinforcement learning (DRL), which uses DNNs to approximate the value functions,

the policies, and even the environment itself. DRL is a trial-and-error approach in which

the decision-making agent takes actions based on observed states and updates its policies

based on rewards received from the environment with the evolvement of value functions. The

disruptive achievements of the DRL in playing game [20], protein structure prediction [21],

numerical algorithm development [22], etc., attract the gaze from all over the world. The ca-

pabilities of the DRL on autonomous learning without data labeling, fast execution efficiency,

and generalization to unseen scenarios are commendable. However, it is not straightaway to

transplant and apply DL and DRL to the power grids. The challenges can be summarized
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as follows. First, the training of the DNNs often requires a great quantity of high-quality

training data to guarantee performance. However, compared with images, texts, and game

simulators, training data may be very scarce or costly to obtain in power grid applications.

Second, the uses of the DNN are also plagued by the black-box nature of DNNs and the

lack of theoretical analysis of the lower bound of performance, resulting in doubts about

the reliability of the results, especially in safety-critical applications [23–26]. Third, the

plain DNNs are likely to produce physically infeasible results without a delicate design and

domain-specific knowledge from power systems [27,28].

Besides DL and ML, the recent breakthroughs in quantum computing (QC) by tech giants

like Google have also captured significant attention. Google achieved a milestone in QC by

demonstrating that a specific quantum processor could perform a task in mere minutes, which

would take a state-of-the-art classical supercomputer thousands of years. This experiment

showcased the potential of quantum systems to outperform classical counterparts in certain

computational tasks, thereby illustrating quantum supremacy [29]. On the other hand, the

development of quantum algorithms, such as Shor’s algorithm for factorization [30] and

Grover’s for database searching [31], has underscored the theoretical superiority of quantum

computing over classical paradigms. Quantum machine learning algorithms, centered around

variational quantum circuits, as a fusion of QC and ML, are emerging. Moreover, given

that QML is a nascent field, its applications in the energy system domain are still sparse.

Considering the current noisy intermediate-scale quantum (NISQ) era, the inherent noise in

quantum computers remains significant. As such, the practical implementation of QML in

power systems necessitates further exploration and a deeper evaluation.

1.2 Objective and Scope of Research

This thesis aims to develop grid-informed learning algorithms for integrating large-scale

renewable energy into power grids and unravel the power of DL, DRL, and QC in build-

ing a resilient, economical, and environmentally friendly power grid. The subsequent four

technical chapters investigate and discuss the operation, modeling, and planning problems

of modern power systems [32–34]. Table 1.1 summarizes the technical details of these three

chapters. The objects of study involve PV-battery, distribution network, and MG. The time
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Table 1.1: Summary of four technical chapters.

Chapter Problem Object Time-scale Time resolution Source of uncertainty Grid interaction

2 capacity scheduling PV-battery weekly hourly,
every 4s

market signal,
PV market participation

3 model reduction distribution network weekly every 15mins PV, wind, load load flow

4 storage planning microgrid 25 years five-year,
hourly

storage price, PV,
wind, load optimal power flow

5 energy arbitrage energy storage weekly hourly price signal energy market

span ranges from seconds to years. Uncertainties from different sources, including market,

weather, and technical developments, are fully considered. Depending on the applications,

the angles of the combination of the learning algorithms and the grid are various. By delin-

eating the underlying physical and market mechanisms, this thesis strives to provide reliable

QC/DRL-aided solutions to the grids.

The following subsections outline the objective and scope of research in Chapters 2, 3, 4,

and 5, in sequence.

1.2.1 Deep Reinforcement Learning-based Capacity Scheduling for PV-Battery Storage Sys-
tem

Investor-owned photovoltaic-battery storage systems (PV-BSS) can gain revenue by pro-

viding stacked services, including PV charging and frequency regulation, and by performing

energy arbitrage. Capacity scheduling (CS) is a crucial component of PV-BSS energy man-

agement, aiming to ensure the secure and economic operation of the PV-BSS. This work

proposes a Proximal Policy Optimization (PPO)-based deep reinforcement learning agent to

perform the CS of PV-BSS. Unlike previous work that uses value-based methods with the

discrete action space, PPO can readily handle continuous action space and determine the

specific amount of charging/discharging. To enforce the safety constraints of BSS’s energy

and power capacity, a safety control algorithm using a serial strategy is proposed to coop-

erate with the PPO agent. The PPO agent can exploit the capacity of BSS safely while

maximizing the accumulated net revenue. After training, the PPO agent can adapt to the

highly uncertain and volatile market signals and PV generation profiles. The efficacy of the

proposed CS scheme is substantiated by using real market data. The comparative results

demonstrate that the PPO agent outperforms the Deep Deterministic Policy Gradient agent,
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Advantage Actor-Critic agent, and Double Deep Q Network agent in terms of profitability

and sample efficiency.

1.2.2 Adaptive Static Equivalences for Active Distribution Networks with Massive Low-
Carbon Energy Integration: A Distributed Deep Reinforcement Learning Approach

Active distribution networks (ADNs) with 100% renewable energy sources penetration

are one of the promising segments in the net-zeros emission power sector. As an efficient

analysis tool, the equivalent model for ADNs (EMADNs) can be leveraged to expedite the

lengthy analysis and preserve data privacy. Nevertheless, volatile RESs, along with their

active management techniques, e.g., voltage regulation schemes (VRSs) of RESs, deteriorate

the fidelity of the developed EMADNs derived from historical data. This work proposes

an adaptive EMADN, featuring tunable network scales and adaptive parameters to address

the above challenges. A leaves-trimming network topological reduction algorithm with a

customized reduction degree is utilized to preserve the radial topology, the nodes of interest,

and VRSs. A distributed Proximal Policy Optimization (DPPO)-based deep reinforcement

learning agent is proposed to adjust the parameters periodically to maintain the fidelity of

EMADNs with massive RESs. The distributed training scheme of the DPPO exploits the

multi-processors to boost training efficiency. Case studies on the IEEE-33 bus and IEEE 123-

bus ADNs with massive photovoltaic and wind generation demonstrate the superior accuracy

and efficiency of the proposed agent-based EMADNs in various scenarios, especially when

the production of RESs exceeds the load amount.

1.2.3 Two-Stage Frequency-Constrained Adaptive Storage Expansion Strategy for Micro-
grids Using Deep Reinforcement Learning

Battery energy storage (BES) is a versatile resource for the secure and economic operation

of microgrids (MGs). Prevailing stochastic optimization-based approaches for BES expan-

sion planning for MGs are computationally complicated. This work proposes a data-driven

bi-level multi-period BES expansion planning framework to determine the siting, sizing, and

timing of BES installations. The proposed planning framework unifies deep reinforcement

learning (DRL) and linear programming, thereby decoupling the determinations for the in-

teger and continuous decision variables in two time scales, respectively. In the upper level,

a rainbow DRL agent with quantile regression is trained to provide dynamic planning poli-
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cies to accommodate stochastic renewable energy resources (RESs), load, and battery price

changes efficiently. The lower level computes the optimal operation of MGs with frequency

constraints to hedge the islanding contingency. The two levels communicate with one an-

other by exchanging storage configuration and operating expenses in order to accomplish the

shared goal of minimizing investment and operation costs. Comparative case studies on an

MG are carried out to demonstrate the superiority of the proposed DRL-based solution to

the mixed-integer linear programming counterpart on efficiency, scalability, and adaptability.

1.2.4 Quantum Policy Learning for Energy Storage Arbitrage

The advent of quantum computing paves a new pathway for providing a more efficient

and data-driven solution with enhanced learning capabilities for energy arbitrage (EA) tasks

in energy storage systems (ESSs). This work proposes a Quantum Policy Learning (QPL)

algorithm to streamline the online EA processes of ESSs within the energy markets. A

strategically constructed Markov Decision Process is utilized to encourage early-stage proac-

tive exploration of the action space while ensuring the operational safety of ESSs. In con-

trast to the traditional reinforcement learning paradigm, which employs neural networks

to approximate the policy, QPL leverages a Variational Quantum Circuit (VQC) as the

parameterized policy representation. Given the noisy quantum hardware prevalent in the

Noisy Intermediate-Scale Quantum era, the VQC in QPL adopts a design characterized by

low depth and width, composed of intricately designed alternating variational entanglement

sub-layers and variational embedding sub-layers. The loss function and gradient calculations

for training the parameters of the quantum policy are derived, incorporating considerations

for action re-parameterization techniques, squashing, and linear transformations. In case

studies, the proposed QPL method highlights a quantum advantage attributed to the supe-

rior expressiveness of the devised VQC, enabling more rapid convergence and optimization

performance comparable to classical algorithms yet requiring merely 1.6% of the parame-

ter quantity (i.e., only 20 parameters needed). Subsequent experiments conducted on the

IBM_Lagos quantum hardware quantified the impact of gate errors and qubit decoherence

on the online operation of QPL, corroborating the noise resistance of the QPL approach. A

series of comparative experiments are also employed to scrutinize the optimization perfor-

6



mance, training stability, and compilation efficiency of the QPL.

7



Chapter 2

Deep Reinforcement Learning-based Capacity Scheduling for PV-Battery Storage System

This section addresses the capacity scheduling for investor-owned photovoltaic-battery

storage systems to provide multiple services including energy arbitrage, requency regulation,

and PV charging. Leveraging a Proximal Policy Optimization-based deep reinforcement

learning approach, which surpasses traditional value-based methods, the proposed model

effectively manages charging/discharging in response to uncertain market signals and photo-

voltaic profiles, demonstrating superior profitability and efficiency compared to other state-

of-the-art agents in real-market scenarios.

2.1 Introduction

The appeal for the low-carbon future spurs the increasing integration of renewable elec-

tricity generation, including utility-scale photovoltaic (PV) systems, to the power grid. This

trend also brings significant challenges to the stability and reliability [35] of the operation

of the power grid due to the limited predictability and controllability of renewable sources.

Through providing great flexibility and smoothing power fluctuation, battery storage sys-

tems (BSSs) are proven to be an effective solution to the extensive integration of PV. The

decrease of the capital cost of BSSs facilitates the development of the emerging co-located

PV-BSS [36–38], which consists of one or multiple PV plants and BSSs. The trend of com-

bining PV energy with battery storage makes PV generation increasingly competitive.

Investor-owned PV-BSS can be regarded as an independent entity to the power grid,

with the goal of maximizing the revenue. Developing optimal scheduling strategies for the

PV-BSS has a huge influence on the revenue of the existing systems and on the economic

appraisal of the potential PV-BSS projects, spurring a substantial body of research. Due

to the prominent flexibility and fast-response feature, BSSs can provide multiple services

associated with multiple revenue streams, including peak shaving [39], reserve [40], energy
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arbitrage (EA) [41], frequency regulation (FR) [37], etc. It is reported in [39, 40] that by

providing the stacked services, the owners of the BSS can make full use of the battery and

earn extra profit.

The conventional approaches to address the capacity scheduling (CS) problem of BSSs,

which provides stacked services are stochastic programming (SP) approaches [40], robust op-

timization (RO) approaches [42], and model predictive control (MPC) [43]. Ref. [40] presents

an optimal joint bidding strategy of BSS in the day-ahead market using scenario reduction

techniques. There is a tradeoff between the model granularity and computation efficiency

in [40]. The BSS bidding problem in [42] is solved via iterating through a master problem and

an availability check max-min subproblem. Karush-Kuhn-Tucker (KKT) conditions are used

to transform the subproblem, which is solved by column & constraint generation eventually.

A stochastic MPC framework [43] is introduced to determine the commitments of BSS in

energy and FR markets on both the real-time and long-term time scales. However, the bid-

ding of frequency regulation capacity is not accounted for. Though the optimization-based

approaches have been making significant advances, applying the solution of such approaches

to the real-world is limited because this kind of approach is dependent on the assumption

on the prior distribution of the random variables. For example, the assumptions upon the

distribution or the range of the random variables and the convexity of the optimization

problem are indispensable in most cases [40,42–44]. It is reported in [45] that it is still chal-

lenging to solve the optimal battery control problem or give a guarantee on any theoretical

performance without a strong assumption of the random signals. In most cases, only the

historical data of the random variables rather than the predefined distributions are available,

and it is tricky to formulate the problem as a convex optimization problem. Besides, the

SP approach in [40] suffers from computational intractability when it encounters the highly

uncertain environment and relatively long scheduling cycle.

Recently, leveraging the advancement of deep learning and reinforcement learning (RL),

deep reinforcement learning (DRL) has aroused great interest in the academia and industry

[20]. In the field of smart grid, researchers have utilized DRL to address numerous knotty

problems, e.g., autonomous voltage control [46], autonomous multi-energy management [47],

electric vehicle charging scheduling [48].
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The fully data-driven DRL algorithms are the ideal approaches to tackle the CS prob-

lem with strong uncertainties and long scheduling cycles. First and foremost, considering

the random nature of the PV generation and market signals, and the time-coupled feature

of the state of charge (SOC), the CS of PV-BSS is essentially a discrete stochastic control

process, which can be modelled as Markov Decision Process (MDP). DRL agents are no-

table for addressing such a problem. In contrast to the SP-type methods dependent on the

probability density functions (PDFs) of random variables, DRL optimizes policy directly

on the basis of the historical/simulation data. DRL algorithms outperform traditional op-

timization techniques in terms of adaptivity. Different from the conventional optimization

techniques, which requires reformulation and recalculation for various environments, DRL

can output the policy that is applicable to volatile and various environments. What’s more,

once trained, DRL agents can provide decent scheduling results on test data, i.e. data that

is not accessible during the training phase, without the need to reformulate and retrain.

This phenomenal adaptivity is partially attributed to the powerful function approximation

function of the neural network.

Q-learning and Double Deep Q Networks (DDQN) have been used in [41,49,50] to control

the charging/discharging of batteries. However, since [41,49,50] focus on single service only,

namely EA, they all discretize the action space of the battery. For example, in [49, 50], the

statuses of batteries, which consists of charge, idle, and discharge, are determined by the DRL

agent, neglecting the specific decision on the amount. The action space of [41] is discretized

into five parts, which include the maximum and half maximum charge/discharge power

capacity, and zero. Though significant progress has been made in [41,49,50], the assumption

of the discrete action space does not hold in the context of conducting CS of batteries between

stacked services. The precise and specific amount of the charging/discharging power capacity

should be determined to fully exploit the profitability of stacked services, which necessitates

the adoption of continuous action spaces.

This work employs Proximal Policy Optimization (PPO)-based DRL to dispatch the

capacity of PV-BSS. PPO is a cutting-edge DRL algorithm developed in [51], which is

the variant of Trust Region Policy Optimization (TRPO) [52] and Advantage Actor-Critic

(A2C) [53]. Similar to TRPO, PPO can guarantee the safe exploration of the agent by
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scrutinizing the distance between the updated policy and the previous policy. PPO can

be implemented in a more efficient manner by avoiding tackling the complicated second-

order optimization problem in TRPO. More importantly, PPO can tackle the continuous

and multi-dimensional action space readily, which is able to exploit the potential of the BSS

providing stacked services.

The contributions of this work are summarized as follows:

1. A PPO-based DRL approach to learning the safe and optimized CS policy for the

PV-BSS in the context of performing the stacked services is proposed in Section II-A.

Two essential charters in the DRL algorithm, i.e. the environment and the DRL, are

specified as a safety control algorithm and a PPO agent, respectively.

2. A safety control algorithm (SCA) for PV-BSS is proposed in Section 2.2.3, which

can coordinate the scheduling of multiple services of the PV-BSS, including frequency

regulation, PV charging, and energy arbitrage. In the proposed algorithm, the time-

coupled characteristics of SOC, the safe operation constraints of SOC, and the up-

ward/downward constraints of power capacity are strictly satisfied. SCA features the

serial decision-making process, which eliminates the inclusion of the penalties of the

constraint violation on the reward function for the DRL agent and thus avoids the

heuristic design of the penalty coefficients.

3. A PPO agent, which serves as the energy management unit by perceiving the system

status and releasing the control signal, is developed in Section III-B. Unlike tradition

optimization techniques, the fully data-driven DRL agents are being trained upon the

volatile training data directly and can adapt well to the volatile and various environ-

ments characterized by the significant uncertainties from PV generation, price, and

market signals. The PPO agent features the adoption of a clipped surrogate objective

function, which is beneficial to the sample efficiency and the convergence rate. Besides,

in contrast to most value function-based DRL agents which are only applicable to the

discrete action space, the PPO agent is characterized by the continuous action space,

resulting in the better exploitation of the profitability of the stacked services.
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4. Case studies are carried out using real market data, which are shown in Section IV.

Through the comparisons with the Deep Deterministic Policy Gradient (DDPG), A2C,

and DDQN agents, the practicability and superiority of the PPO agent are corrobo-

rated.

The rest of the work is organized as follows. Section II proposes a safety control algorithm

for PV-BSS to perform stacked services. Section III describes the proposed PPO-based DRL

approach and the training scheme of the PPO agent. Case studies are conducted in Section

IV using the real data from the PJM energy and regulation market, which demonstrates the

practicality and superiority of the proposed scheduling scheme. Finally, concluding remarks

are given in Section V.

2.2 Safety Control Algorithm of PV-BSS to Perform Stacked Services

In this section, an overview of the PV-BSS is introduced first, in which the system

components and functions are presented. Then, the models of stacked services and their

individual revenue models are detailed, followed by analyzing the profitability and the impact

of these stacked services on the battery power and energy capacity. Based on the analysis,

a safety control algorithm of PV-BSS to perform stacked services is proposed to ensure the

safe operation of the PV-BSS while maximizing the system benefits.

2.2.1 System Overview: Components and Functions

Fig. 2.1 shows a schematic diagram of the investor-owned PV-BSS, which consists of three

core components, i.e., PV generation system, BSS, and energy management unit (EMU). The

PV generation system utilizes the solar panel to transform solar energy into electricity, which

can be stored into the battery or be sold to the power grid directly through the PV inverter.

As an intermediate, BSS interacts closely with the power grid and PV generation systems

via charging/discharging while EMU functions as the core of the PV-BSS. It collects the

predicted PV power, the state of BSS, and market signals such as energy and regulation

market prices [54]. With the collected information, EMU dispatches the available battery

capacity to maximize the long-term cumulative revenue while guaranteeing the battery’s

secure operation. There are two types of lines in the diagram; one is the dotted lines that

represent the flow of information in the system. The flow of information is made up of the
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prerequisite input data needed for the EMU to make decisions and the output data that

represents the results of the EMU’s decisions. The other is thick solid lines representing the

physical energy flow of the system.

In our work, with the superiority of addressing sequential decision-making problems, the

DRL agent is leveraged to perform the energy management task. The main characters in

the DRL algorithm are the DRL agent and the environment. The general goal of the DRL

agents is learning a policy to maximize the expected utility via the trial and error interaction

with the environment.

For the specific task in this work, the agent-environment interaction loop for the DRL

algorithm is plotted in Fig. 2.2. The environment is the world that the agent lives in and

interacts with. At every step of interaction, the agent sees a (possibly partial) observation

of the state of the world and then decides on an action to take. The environment changes

when the agent acts on it, but may also change on its own. The safety control algorithm,

which is elaborated in Section II.C, can be interpreted as the environment to the DRL agent.

As shown in Fig.2.2, the state is set as a synthesis of available PV power, battery status,

and market signals, which are the input information flow into EMU in Fig. 2.1 as well. The

action is set as control signals for the PV-BSS, which are the output control signals from

EMU in Fig. 2.1. α, β, and ξ are the ratio coefficients for the stacked services, which will be

elaborated in Section II-C. The agent also perceives a reward signal from the environment,

a number that tells it how good or bad the current state is. In this case, the net revenue

from providing stacked services is used as the reward signal. Further explanations and

mathematical formulation for the state, action, and reward are presented in Sec.2.3.1. The

detailed formulation and implementation of the DRL algorithm are presented in Sec.2.3.2.

2.2.2 Stacked Services

For the PV-BSS, three primary services are taken into account, namely, PV charging,

FR, and EA. Although providing multiple services can bring more economic benefits, it

also brings challenges to battery control. One of the significant challenges is that storage

capacity is shared between the stacked services dynamically. In other words, multiple services

share the same dispatchable capacity simultaneously. Furthermore, the charging/discharging
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behaviour is constrained by the physical capability of the battery, i.e., power and energy

capacity limits. EMU should coordinate these services and exploit the charging/discharging

capability of BSS to the full extent.

2.2.2.1 Fast Frequency Regulation Service

PJM has a relatively mature regulation market, so this work focuses on the market

mechanism of PJM, in which most BSSs are committed to FR by tracking the Regulation D

(RegD) signal. It is noted that the control algorithm proposed in this work can be generalized

to other markets. It is assumed that the role of PV-BSS in the FR market is a price-taker,

which means that it must accept the prevailing prices in the market.

In this work, the scheduling of BSSs is on an hourly basis. Although the RegD signal

is designed with the feature of approximate energy neutrality, a battery still has a hourly

fractional energy loss [55,56]:

qt =
J∑
j=1

(
δ+j,t
ηdis

+ δ−j,t · ηch

)
·∆t (2.1)

where hour t is divided into J time intervals; δ+/−j,t (|δ+/−j,t | ≤ 1) is the j-th RegD signal

at hour t. "+" and "-" denote the regulation-up (discharging) signal and regulation-down

(charging) signal, respectively. ηch and ηdis are the battery charge/discharge efficiencies,

respectively. ∆t represents the time interval of RegD signals, and it is set to be 4s in PJM.

It is noted that the subscript t is used as the index for hour t throughout the work. The

positive/negative qt indicates that the BSS will discharge/charge, respectively, through the

provision of FR.

BSS will be reimbursed dependent on the deployed regulation power capacity F f
t [40,55]:

Bf
t = P f

t · φt ·
(
λtF

PCP
t + FCCP

t

)
(2.2)

where Bf
t is the BSS’s revenue on providing FR; λt is the mileage ratio; φt is the performance

score; FPCP
t and FCCP

t are the performance/capacity clearing prices, respectively.
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2.2.2.2 PV Charging

The available PV generation can be either sold directly in the energy market or stored

by BSS to perform the EA and FR in the future.

Denote P pv

t as the available solar power, which can be divided into two parts, i.e., charging

power P pv,e
t and selling power P pv,s

t . The revenue of selling PV power can be calculated as:

Bpv
t = P pv,s

t ·∆h · F lmp
t (2.3)

where ∆h is the time duration and is set to be 1 hour in this work; F lmp
t is the locational

marginal price (LMP) of the energy market.

2.2.2.3 Energy Arbitrage

EA is a measure adopted by the operators of the BSS to take advantage of the price

differential between hours. Denote PEA
t as the power capacity deployed for EA. Positive

and negative PEA
t denote buying and selling electricity, respectively. The remuneration of

performing EA is calculated as:

BEA
t = −PEA

t ·∆h · F lmp
t (2.4)

2.2.2.4 Sequence of Stacked Services

To take into account the physical capacity characteristics of the battery and to avoid the

DRL agent making decisions that violate capacity constraints, scheduling can be made in

the form of a proportional factor based on BSS’s available power capacity. Unlike the solu-

tion from the mathematical optimization models that can be applied to the CS of battery

in parallel, CS by DRL is arranged in a serial strategy based on service type in this work.

In a serial strategy, whenever a service is arranged, the available power/energy capacity is

updated. Fig.2.3 shows an example for differentiating serial and parallel strategies. Assume

the blank rectangle represents the BSS’s available power capacity. The parallel strategy dis-

patches the capacity for each service simultaneously. However, the serial strategy dispatches

the capacity for each service in sequence. Whenever a service is arranged, the available

power/energy capacity is updated. The motivation of the serial strategy is to boost the
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convergence of the DRL agent.

The sequence of services does not impact the optimality of the DRL agent, as DRL has the

ability to seek long-term cumulative gains in a changing environment. However, the sequence

of services will affect how quickly the algorithm converges, which is discussed further in the

case studies. In the following statement, to make our statement clearer, we assume that CS

is based on the following priorities: the proportion factor for FR is determined first, then

PV charging, and finally, EA.

FR

PV

FR FR

PV

EA

Parallel strategy Serial strategy

Power capacity Power capacity

FR

PV

EA

Figure 2.3: Parallel and serial strategy.

2.2.3 Safety Control Algorithm

The safety control algorithm can ensure that the operating constraints of the battery are

strictly satisfied, and it is detailed in Algorithm 1, where α, β, and ξ are the PV charging,

EA, and FR ratio coefficients, respectively. They represent the control policy of the EMU,

and they are generated by the DRL agent simultaneously. The bound for α and ξ is [0, 1],

whereas the bound for β is [−1, 1].
For hour t, based on SOCt, the upward and downward feasible region of SOC can be

derived, respectively:
SOCup

t = SOC − SOCt
SOCdn

t = SOCt − SOC
(2.5)
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Denote P up
max and P dn

max as maximum upward and downward power capacities of BSS,

respectively. It is noted that P up
max > 0 and P dn

max < 0 in the notation of this work.

Among three services, the PV-BSS first dispatches the capacity for FR. To ensure the

charging power will not cause the violation of the upper limit of SOC, the maximum possible

FR ratio coefficient is derived:

ξmax =


SOCup

t U

−P up
max · qt

, for qt ≤ 0 (2.6)

SOCdn
t U

−P dn
max · qt

, for qt > 0 (2.7)

where the product of P up
max/P

dn
max and qt is the maximum possible energy gain for a battery

from FR at hour t; U is the energy capacity.

After the ξmax is available, we can impose the clip function clip on ξt, which is the raw

control signal from the DRL agent, to prevent the over-charging. The clip function can

clamp all elements in input into the range [min, max]. Let min_value and max_value be

min and max, respectively, clip function returns:

yi = min(max(xi,min_value),max_value) (2.8)

In this case, the min_value and max_value are set to 0 and ξmax, respectively.

Then P f
t is determined by:

P f
t =

{
ξtP

up
max, for qt ≤ 0 (2.9)

−ξtP dn
max, for qt > 0 (2.10)

One exception is that if P f
t is less than the minimum bidding capacity specified in the

frequency regulation market, BSS will not be able to participate in the regulation market at

hour t.

Due to the charging/discharging by FR, the upward/downward space of SOC is updated
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as:

SOCup
t ← SOCup

t +
P f
t qt
U

, for qt ≤ 0 (2.11)

SOCdn
t ← SOCdn

t −
P f
t qt
U

, for qt > 0 (2.12)

Similarly, the remaining maximum upward/downward power capacity of BSS at time t

can be obtained:

P up
max ← P up,0

max − P f
t , for qt ≤ 0 (2.13)

P dn
max ← P dn,0

max + P f
t , for qt > 0 (2.14)

If the current PV generation is available P
pv

t > 0, derive the maximum possible PV

charging ratio coefficient to prevent the overcharging:

αmax =
SOCup

t U

P
pv

t ∆h · ηch
(2.15)

Then impose the clip function on αt to hamper the excessive charging of the BSS. Besides,

the power capacity dispatched for the PV charging should be limited as follows:

P pv,e
t = clip(P

pv

t · αt, 0, P up
max) (2.16)

Due to the PV charging, the upward space of SOC is updated as:

SOCup
t ← SOCup

t −
P pv,e
t ∆h · ηch

U
(2.17)

Similarly, P up
max is updated again as:

P up
max ← P up

max − P pv,e
t (2.18)

The direction of EA is indicated by the sign of βt. Positive and negative βt indicate BSS

purchasing and selling electricity, respectively. The maximum possible EA ratio coefficient
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is derived as:

βmax =


SOCup

t U

P up
max∆h · ηch

, for βt ≥ 0 (2.19)

SOCdn
t U

−P dn
max ·∆h/ηdis

, for βt < 0 (2.20)

After clipping βt with:

βt = clip(β, 0, βmax), (2.21)

PEA
t is calculated as:

PEA
t =

{
P up
max · βt, for βt ≥ 0 (2.22)

−P dn
max · βt, for βt < 0 (2.23)

After EA, we update the available power capacity:

P up
max = P up

max − PEA
t , forβt ≥ 0 (2.24)

P dn
max = P dn

max − PEA
t , forβt < 0 (2.25)

The frequent deployment of BSS will induce the degradation of the battery, which is

considered as the cost during the operation. The cost model of degradation in [39] is used,

which assigns a constant marginal cost for battery charging/discharging:

Ct = c · [(P dn,0
max − P dn

max) + (P up,0
max − P up

max)] (2.26)

where c is the depreciation cost coefficient ($/MW), which depends on the investment cost

of the BSS; Ct is the degradation cost at time step t. The depreciation cost here is originated

from cycle degradation, which is related with the battery operation regime. The introduction

of the depreciation cost/operating cost prevents the batteries from excessive deployment,

which is closer to the actual operating environment of the batteries.

The SOC of BSS is time-coupled. SOCt+1 is dependent on SOCt and discharge/charge
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behavior at hour t:

SOCt+1 = SOCt −
P f
t qt
U

+
P pv,e
t ∆h · ηch

U
+

[sgn(βt)]
+PEA

t ·∆h · ηch
U

+
[sgn(−βt)]+PEA

t ·∆h
ηdisU

(2.27)

where sgn is the sign function and [ ]+ is the rectified linear unit (ReLU) function. The

adoption of these two function serves as the logic expression: when βt > 0, the fifth term of

(2.27) becomes zero; when βt < 0, the fourth term of (2.27) becomes zero.

After T time intervals, the cumulative revenue over the whole scheduling cycle is obtained

by summing up the net profit of PV-BSS at each hour:

B =
T−1∑
t=0

BEA
t +Bpv

t +Bf
t − Ct (2.28)

B is a random variable considering the time-varying and random features of the PV

generation and market signals. Hence, the ultimate goal of the DRL agent is maximizing

the expected value of B.

2.3 Deep Reinforcement Learning

This section mainly describes how to generate the control signal of EMU to guide the

optimal and safe CS of the PV-BSS. In the following of this section, the MDP of CS for

PV-BSS is formulated, followed by the derivation of the battery control signals generated by

one of the cutting-edge DRL algorithms, the PPO [51].

2.3.1 Markov Decision Process

The CS problem of PV-BSS can be modelled as MDP, which can be solved by the DRL

algorithm. A finite horizon discounted MDP is characterized by a tuple (S, a,P, r, γ), where

S is the state vector, a is the action vector, P is the state transition function, r is the reward

function, and γ is the discount factor. P is dependent on the environment and partially

described in (2.27).

The essential elements in the finite horizon discounted MDP corresponding to the CS of

PV-BSS are defined as follows:
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Algorithm 1 Safety Control Algorithm for PV-BSS
Input:

System parameter: SOC0, SOC, SOC, P up,0
max , P dn,0

max ,P f,min,ηdis, ηch, U ; Predicted solar
power: P

pv; Market signal: F lmp, FCCP, FPCP,λ, q; Control signal: α, β, ξ
1: for each t ∈ [0, T − 1] do
2: Calculate SOCup

t and SOCdn
t using (2.5).

3: Perform frequency regulation:
4: Dispatch FR capacity via (2.6) or (2.7) depending on the sign of qt, impose the clip

function, obtain P f
t via (2.9) or (2.10) considering P f,min.

5: Update SOCup
t and P up

max via (2.11) and (2.13), respectively; or update SOCdn
t and

P dn
max via (2.12) and (2.14).

6: The revenue of FR is calculated by (2.2).
7: Allocate PV power:
8: if P pv

t > 0 then
9: Dispatch the PV power via (2.15), (2.16), (2.17), (2.18). The revenue of selling PV

power is calculated by (2.3).
10: end if
11: Perform energy arbitrage:
12: if βt ≥ 0 then
13: Conduct purchasing with (2.19), (2.21), (2.22), and (2.24).
14: else
15: Conduct selling with (2.20), (2.21), (2.23), and (2.25).
16: end if
17: The revenue of EA is calculated by (2.4), calculate the degradation cost with (2.26),

and update SOC of BSS using (2.27).
18: end for
19: Calculate the cumulative net revenue using (2.28).
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1. The state vector is represented as:

S = [SOCup
t , SOC

dn
t , F

lmp
t , qt, χt, P

pv

t ] (2.29)

where χt = φt ·
(
λtF

PCP
t + FCCP

t

)
. The agent can access the current state of the

BSS, the market signals from the regulation and energy market, and the available PV

generation. Statistical evaluation are applied to these data to ensure the represent the

representativeness [57]. It is noted that only the information available at the current

time step is included in the state vector. This is restricted by the Markov property of

MDP, in which the conditional probability distribution of future states of the process

depends only upon the present state, not on the sequence of events that preceded it.

2. The action vector is represented by a = [αt, βt, ξt], which corresponds to the capacity

dispatch decisions for the stacked services. The control problem in this work is char-

acterized by the continuous action space, which is more appropriate for controlling the

battery.

3. The reward function is defined as:

rt = BEA
t +Bpv

t +Bf
t − Ct (2.30)

where rt also represents the net profit of the PV-BSS at hour t. Compared with the

existing works which are dependent on designing a delicate reward function, the reward

function used in this work is more straightforward and easier to implement.

The operation of the battery must satisfy the safety constraints, including the maxi-

mum/minimum SOC and maximum power capacity. If we directly apply the DRL to

control the operation of the battery, one indispensable step is integrating penalties on

constraint violation into the objective function. Despite the prevalence of the penalty

function method, it is notorious for lacking a systematic method to determine the

proper penalty coefficients. The small penalty coefficients may cause the constraint

violation, while the large penalty coefficients will introduce significant errors and lead

to the deterioration of the performance of the agents. The choice of the penalty coeffi-

23



cients is so important, and it may dominate the performance of the optimality and the

convergence of the algorithm. In contrast, the reward function defined above is quite

straightforward and easy to implement. It avoids introducing the penalties for the

violation of constraints in the reward function. This is attributed to the serial strategy

of the safety control algorithm to some extent. One significant benefit brought by

adopting such a reward function is the excellent convergence performance of the PPO

agent, which is verified in the case studies section.

2.3.2 Proximal Policy Optimization

PPO is a cutting-edge DRL algorithm developed in [51]. PPO can guarantee the safe

exploration of the agent and make the full use of the available samples simultaneously.

Moreover, PPO can tackle the continuous and multi-dimensional action space readily. Hence,

along with the safety control algorithm proposed in section 2.2.3, PPO is an appropriate

solution to the CS problem of the PV-BSS.

2.3.2.1 Preliminaries and Notation

The advantage function, which measures how much an action is better than others on

average, is defined as:

Aπ,γ (st, at) = Qπ,γ (st, at)− V π,γ (st) (2.31)

V π,γ (st) = Est+1:∞

[
∞∑
l=0

γlrt+l

]
(2.32)

Qπ,γ (st, at) = Est+1:∞
at:∞

[
∞∑
l=0

γlrt+l

]
(2.33)

where V π,γ and Qπ,γ are the value function and action-value function, respectively; One of the

widely used estimation approaches for Aπ,γ is the temporal difference generalized advantage

estimation [53].

In the context of the actor-critic type DRL algorithm, πθ represents the agent’s policy

on choosing the action and is parameterized by θ. In other words, πθ is the actor network,

and it maps the observation received by the agent to the action. Vϕ represents the value

function network parameterized by ϕ. Vϕ is also denoted as the critic network. Both πθ
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and Vϕ are represented as multi-layer perceptrons (MLP) because of their powerful function

approximation capability.

2.3.2.2 PPO

Utilizing importance sampling techniques, PPO derives a novel policy gradient expres-

sion, which makes it possible to update the policy network multiple times after collecting the

trajectory set. This strategy improves the sample efficiency and training stability of PPO.

As an appreciable distinction, PPO employs a clipped surrogate objective function [51]:

ĴPPO = max
θ

E
s,a∼πθold

[L (s, a, θold, θ)] (2.34)

L (s, a, θold, θ) = min[ρtA
πθold (st, at), clip (ρt, 1− ϵ, 1 + ϵ)Aπθold (st, at)] (2.35)

where ϵ is the hyperparameter which controls the permissible policy deviation; ρt is a ratio

coefficient between the updated policy and the old policy and ρt =
πθ(at|st)
πθold (at|st)

. Specifically,

the further the value of ρt deviates from one, the farther the updated policy is from the

original policy.

The motivation of the adoption of (2.34) is that it can deter the drastic change of the

policy network, which may deteriorate the performance of the PPO agent. To be specific, a

clip function can be interpreted as a regularizer for the policy network. For example, assume

Aπθold (st, at) > 0, (2.35) can be reduced to:

L (s, a, θk, θ) = min (ρt, 1 + ϵ)Aπθold (st, at) (2.36)

in which the value of πθ(at|st) will be increased during the update process. However, if

πθ(at|st) > (1 + ϵ)πθold(at|st), the min operator will be in effect and forces the ρt to stay at

1+ϵ. Similarly, the clip function will enforce the minimum of ρt to be 1−ϵ if Aπθold (st, at) < 0.

According to (2.34), the parameters of the policy network (actor) θ are updated as follows

in the PPO:

θnew = argmax
θ

E
s,a∼πθold

[L (s, a, θold, θ)] (2.37)

In the implementation phase, there are three steps to update the parameters of the
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policy network (actor). Firstly, calculate E
s,a∼πθold

[L (s, a, θold, θ)] based on the experience

data collected in the agent-environment interaction. Herein the expectation operator E is

usually approximated by the mean operator in practice using the Monte Carlo approximation.

Afterwards, because the optimizer in the deep learning libraries is designed to minimize the

loss function, we can regard E
s,a∼πθold

[−L (s, a, θold, θ)] as the loss function. Lastly, the gradient

update process can be conducted using the chain rule, followed by updating parameters as

shown in (2.37).

Another vital network to be learned is the value function network, which is updated via

the regression:

ϕ = argmin
ϕ

[(
Vϕ − R̂t

)2
,
(
clip (Vϕ, Vϕold − ε, Vϕold + ε)− R̂t

)2]
(2.38)

where R̂t is the reward-to-go: R̂t =
∑T

t′=t rt (st′ , at′ , st′+1).

2.3.2.3 Stochastic Diagonal Gaussian Policies

To tackle the continuous action spaces, this work employs the stochastic diagonal Gaus-

sian policy. To be specific, the output of the actor network πθ is assumed to be the mean

vector of the actions, which follow a multivariate normal distribution with the diagonal co-

variance matrix. The diagonal elements of the covariance matrix are the variances of each

action.

When the PPO agent attempts to determine the action based on the observation, it

depends on the sampling of the actions from the multivariate normal distribution:

a = µθ(s) + σθ(s)⊙ x (2.39)

where x is the sample vector of a standard multivariate normal distribution; µ and σ are

the mean and standard deviation of the action vector; ⊙ is the element-wise product. The

exploration of the PPO agent is achieved by sampling the Gaussian distribution in (2.39).

Based on the stochastic diagonal Gaussian policies, πθ(at|st) can be derived as:

πθ(at|st) =
1

(2π)k/2
∏k

i σi
exp(−

k∑
i=1

(x− µi)2
2σ2

i

) (2.40)
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2.3.2.4 Early Stop Mechanism

Even with the clipped surrogate objective function described above, it is still possible

that the updated policy gets too far away from the old policy during the update process.

One practical technique to prevent this phenomenon is the early stop mechanism based on

monitoring the Kullback-Leibler (KL) divergence of the policy.

KL divergence calculates a score that measures the divergence of one probability distri-

bution from another. The KL divergence for distributions P and Q of a continuous random

variable can be defined as:

DKL(P∥Q) =
∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx (2.41)

where p(x) and q(x) are the probability density functions (pdf) of P and Q, respectively.

Since the outputs of the actor networks are the normal distributions, in our case, pre-

venting the updated policy from getting too far away from the old policy is equivalent to

preventing the approximate KL divergence of these normal distributions from violating the

upper limit DKL,max. The approximate KL divergence of outputs at time step t is defined as:

DKL(πθold,t∥πθ,t) = log(
πθold(at|st)
πθ(at|st)

) (2.42)

where πθ(at|st) here can be interpreted as the value of the PDF of action at under the state

st and current policy πθ.

During the process of updating the actor network within one epoch, once the average

DKL(πθold,t∥πθ,t) over all time steps and all episodes exceeds the threshold DKL,max, the early

stop mechanism will be activated to stop the further gradient updates.

2.3.2.5 Training Scheme

The goal of the PPO agent is maximizing the expected cumulative reward along the

trajectory. The training scheme is summarized in Algorithm 2 [51].

2.4 Numerical Result

To demonstrate the effectiveness of the proposed method, case studies are conducted

based on the real-world data from PJM [58]. The solar power data is obtained from the
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Algorithm 2 PPO Agent Training Scheme
1: Initialize policy network πθ and value function network Vϕ.
2: for i = 0; i < N ; i++ do
3: Policy agent πθold interacts with the environment using (2.39) and records the trajec-

tories samples {τi}. Calculate the reward-to-go R̂t.
4: Based on the value function Vϕold , perform the advantage estimation and obtain Aπθold .

5: Update πθ Nπ times with early stop mechanism using (2.34).
6: Update Vϕ NV times using (2.38).
7: Vϕold ← Vϕ; πθold ← πθ.
8: end for

National Renewable Energy Laboratory [59]. The parameters of PV-BSS to be used in the

case study are summarized in Table 2.1. Table 2.1 also shows the hyperparameters of the

PPO. Nπ and NV are the numbers of iterations of the actor network and critic network,

respectively. lrπ and lrV are the learning rates for the Adam optimizer of the policy network

and the value function network, respectively. As the benchmark, A2C shares the same

hyperparameters except for KLmax, ϵ and Nπ. Both PPO and A2C use the MLPs with

two hidden layers as the policy network and the value function network, respectively. The

number of neurons in each hidden layer is 64. The activation function of the hidden layer

is a hyperbolic tangent function. The output activation function of the policy network is a

hyperbolic tangent function as well. After obtaining the action vector a = [αt, βt, ξt] from

the policy network, αt and ξt are mapped to a [0,1] space to produce the expected control

signal.

In addition to the A2C agent, the DDQN agent adopted in [41] with the discrete action

space is applied to the CS task. The action spaces of the DDQN are designed as suggested

in [41]: αt ∈ [0, 1/2, 1], ξt ∈ [0, 1/2, 1], and βt ∈ [−1,−1/2, 0, 1/2, 1]. Hence, the action

dimension of the neural network, i.e., the size of the output layer, is set to be 3*5*3=45.

Apart from PPO and A2C, another well-known DRL agent in the continuous action space

is DDPG, which is characterized by learning the Q-function and policy simultaneously and

its deterministic policy. One of the essential ideas in DDPG is that it approximates the
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Table 2.1: Parameters of the PV-BSS and hyperparameters of the PPO

Parameters Value Parameters Value

S0 0.5 ϵ 0.2
ϕ 0.95 γ 0.91

ηdis/ ηch 0.9/0.9 λ 0.97
S / S 0.1/0.9 lrπ / lrV 5.7e-4/1.2e-7
U 30 MWh Nπ / NV 80/80
c 0.5$/MW KLmax 0.015

P dn
max/ P up

max -10MW/10MW
∆h / ∆t 1h / 4s log σθ -0.6

calculation of action which maximizes the Q function using the output of the policy network,

which eliminates the need for solving a highly non-trivial optimization problem. As an

opponent, the DDPG [60] agent is also implemented to conduct the CS task under the same

environment as PPO. Consistent with the DDQN, the DDPG also uses the replay buffers and

the target networks strategy to stabilize the training. The hyperparameters of the DDPG

agent and the DDQN agent are well-tuned by using hyperparameters tuning technique to

achieve the best performance [41].

The scheduling cycle is one week (168 h) in the case study. Thus, the predefined trajectory

length is 168. The market data in 2018 are split into training and testing sets: the first nine

months are for training, and the rest three months are the testing set. For each epoch, 12

trajectories are collected to update the PPO and A2C agents.

All tests are performed on a computer with Core i7 processor running at 3.2 GHz and 16

GB of RAM. The DRL code is implemented on the platform of Pytorch, and the hyperpa-

rameters tuning is performed using Optuna package on Python.

2.4.1 Performance of PPO

The average weekly revenue is regarded as an index to evaluate the learning performance

of the DRL agents. Figure 2.4 shows the average weekly revenue evolution curves of the

PPO, A2C, DDQN and DDPG agent during the training process. The PPO agent converges

after epoch 75, reaching around $47,700. To evaluate the training time of the PPO, five

different random seeds are used independently. it took a total of 300.75 +/- 2.85 s for the
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PPO to reach convergence, while the entire training process (200 epochs) consumes 795.30

+/- 3.55 s in total.

The initial points of the curves represent the performance of the random policy, which is

around $30,168. Compared with the random policy agent, the PPO agent improves the net

profit by about 58.1%. The random agents defined in our work are equivalent to the untrained

agents. A PPO agent is made up of the policy and value networks, which are represented by

two different MLPs. In our implementation, as suggested in [61], the orthogonal initialization

and layer scaling techniques are applied to give the PPO agent a better initial policy and value

network. One of the motivations for using such initialization is to speed up the convergence

of the agent.

The A2C agent converges to $36,355 after epoch 150. the PPO agent outperforms the

A2C agent by about 31.2% in terms of revenue. The reason is that PPO employs a clipped

surrogate objective function, which allows the approximately biggest possible improvement

on the policy network every iteration, thereby avoiding the aggressive update and the per-

formance collapse.

The DDQN agent converges to $34,700 after epoch 160. The PPO agent outperforms the

DDQN agent by about 37.5%, which justifies the necessity of the continuous action space

for the CS of battery. The DDPG agent converges to $39,880 after epoch 140. The plateaus

shown in the DDQN and DDPG agent are caused by the mechanism that agents will not be

trained until filling up the replay buffers. Even with the advantage of handling continuous

action spaces and off-policy design, DDPG is still inferior to PPO agents for the CS problem

in this work. The PPO agent outperforms the DDPG agent by about 19.6%. In addition,

the training stability of PPO is significantly better than that of DDPG. The training curve

of PPO is an approximately monotonically increasing curve; however, the curve of DDPG

undergoes a deterioration of performance during training. After the training is completed,

the performance of PPO is relatively stable in the interval of epoch [75,200] with a variance

of 256.59. In contrast, the variance of the performance of DDPG in the interval of epoch

[140,200] is 315.07, which is greater than that of PPO by 22.79%. This result can justify the

superiority of the PPO agent over the DDPG agent in the training stability.

It can be observed that PPO provides a better convergence and performance rate than
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DDPG. This is because DDPG is limited by: 1. Since Q values are very noisy, Q function

network tends to overestimate the action values, causing the algorithm to converge to a poor

solution; 2. there are four networks in the DDPG agent, namely, policy network, Q function

network, target policy network, and target Q function network. The interaction between the

current network and the target network makes convergence more difficult, compared to the

PPO agent with only two networks; 3. To make DDPG policies explore better, noise upon

the actions at the training phase is introduced. The convergence of the DDPG agent relies

highly on the noise setting, whereas there is not a systematic way to determine the scale

of the noise. What is more, the PPO agent directly optimizes for the agent performance,

as opposed to the DDPG agent that trains the Q function to satisfy the Bellman equation.

This feature also makes the PPO agent more stable and reliable [62,63].

Another perspective for evaluating the efficiency of the DRL algorithms is sample effi-

ciency. DRL is a class of trial and error learning methods. In the computation of the DRL

algorithm, in addition to training the neural network, a lot of time is spent on the interac-

tion between the agent and the environment, that is, on collecting experience. Therefore,

the best performing agent with the smallest number of samples is preferable. PPO uses only

about 36*12*168 = 72,576 samples to achieve the ultimate performance of A2C, where A2C

needs 150*12*168 = 302,400 samples. Since DDPG and DQN are off-policy DRL algorithms,

they use random sampling from inside the replay buffer for training, a mechanism that is

significantly different from on-policy PPO. Therefore, there is no direct comparison between

the sample efficiency of PPO and off-policy type algorithms. However, we can see from Fig.

2.4 that PPO still uses fewer epochs to achieve better performance.

In terms of testing data, Figure 2.5 presents the revenue of each week earned by the

DRL agents from October to December in 2018. The performance upon the testing set can

demonstrate the generalization of the DRL agent because the agents have never been exposed

to these data before. It can be seen from Figure 2.5 that the PPO agent is dominant over

the A2C agent, the random agent, the DDQN agent, and the DDPG agent all the time. To

be specific, depending on the PPO agent, the PV-BSS can obtain $511,703 net profit in total

from October to December, which is $20,606 more than the DDPG agent, $26,925 more than

the A2C agent, $36,400 more than the DDQN agent and $212,128 more than the random
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agent. Hence, the PPO agent can adapt to the uncertain environment. The results above

can demonstrate the superiority of the PPO agent over other DRL agents in addressing the

CS problem of PV-BSS.
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Figure 2.4: Training process of PPO and A2C.

2.4.2 Discussion of the Sequence of the Services

TABLE 2.2 summarizes the number of epochs needed for different service sequences to

converge to the optimal solution (around $47,700). The numbers 1, 2, and 3 in the table

represent the FR, PV charging, and EA, respectively. The data presented in the table is

obtained from the different PPO agents with the well-tuned hyperparameters to report each

agent’s best performance and conduct a fair comparison.

The sequence of services does not impact the optimality of the DRL agent, which demon-

strates the robustness of the DRL agent to seek long-term cumulative gains in a changing

environment. However, the sequence of services will affect how quickly the algorithm con-

verges. The sequence S123 is the most efficient among all the sequences, which takes only

75 epochs to converge. The rationale for this result is given as follows.

Assume that qt < 0 and PEA
t > 0 at hour t, the services which lead to the rising of the

SOC include FR, PV charging, and EA. Through performing the FR, the PV-BSS can raise
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Figure 2.5: Revenue on the testing data.

Table 2.2: Number of epochs needed for different service sequences to converge to the optimal
solution

Sequences S123 S132 S213 S231 S312 S321

Epochs 75 149 294 512 330 273

the SOC and get paid as well. In contrast, to raise the SOC, performing EA requires the

PV-BSS to purchase electricity from the energy market. As an intermediate, performing PV

charging can raise the SOC at no expense. Hence, the DRL agent should decide P f
t first.

Afterward, based on the updated upward space of power capacity, the DRL agent settles

P pv,e
t and P pv,s

t , followed by PEA
t .

Assume that qt > 0 and PEA
t < 0 at hour t, which means performing the FR and EA will

decrease the SOC of BSS. The energy-neutral characteristic of the RegD signal enable the

PV-BSS to obtain the remuneration without losing much battery energy [58]. Besides, it is

reported in [40, 55] that FR is the principal revenue source for BSS. Thus, herein the DRL

agent should allocate P f
t first, followed by PEA

t .
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2.4.3 Capacity Scheduling Scheme

The CS scheme for the first week of January is presented in Figure 2.6. The SOC curve

of the battery is within the safety range of [SOC, SOC] over the whole scheduling cycle.

Furthermore, the power capacity deployed to the stacked service is also within the safety

constraint. This result verifies the effectiveness of the proposed safety control algorithm of

PV-BSS to perform stacked services. The power capacity of BSS deployed for performing

FR is dominant over all other services most of the time. This is because of the pay-for-

performance mechanism of the PJM regulation market, which provides a significant economic

incentive for the BSS with the fast-response feature. The PPO agent prefers to selling the

PV power generated at the current hour instead of storing it because using the limited power

capacity for FR and EA is more profitable in our case.
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Figure 2.6: Capacity scheduling scheme for the first week of January.

2.4.4 Analysis of Revenue

The detailed revenue of the stacked services is shown in Figure 2.7. According to the

statistics of the first week in January, the net profit is $13195, which is made up of selling PV

power($9,986), EA($1023), FR($2852), and depreciation cost(-$666). It is noted that the
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calculation of the revenue and depreciation cost are based on the model presented in Section

2.2.2 and Section 2.2.3, respectively. It is easy to see that the revenue from the daytime is

much more than that from the nighttime because of the availability of solar power. Besides,

FR provides as much as around three times the profits of EA, which is consistent with their

scheduled capacity.
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Figure 2.7: Detailed revenue and expenditure of the stacked services.

Figure 2.8 shows the power capacity deployed for EA and the LMPs in the first week in

January. The result corroborates the capability of the PPO agent to make profits with EA.

It can be observed that the PPO agent can capture the price trend of the energy markets

and make a judicious decision. Most of the time, the PPO agent purchases at a relatively

low price and sells at a relatively high price. It is noted that the price trend is not consistent

with the EA power perfectly because of the existence of other services.

It is worth mentioning that the trained PPO agent consumes only 78 ms to make the

scheduling decision, resulting from the computationally efficient feed-forward matrix compu-

tation of the neural network. The unrivalled execution speed reveals the potential of PPO

in the real-time market environment.
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Figure 2.8: Power capacity deployed for EA and LMP price in the first week of January.

2.4.5 Analysis of Hyperparameters

Two popular hyperparameter optimization frameworks used in machine learning are Ex-

haustive Grid Search (EGS) and Randomized Parameter Optimization (RPO), respectively.

The EGS exhaustively generates candidates from a grid of hyperparameters specified by the

users. Afterwards, independent experiments are run on these candidates exhaustively to find

the best hyperparameters. In contrast, RPO features searching randomly over hyperparam-

eters, where each setting is sampled from a distribution over possible hyperparameter values.

RPO is utilized here because of its flexibility which enables the search over a large range of

hyperparameters without loss of efficiency. Besides, a budget can be chosen independent of

the number of hyperparameters and possible values.

After numerous simulations, we find that three hyperparameters dominate the perfor-

mance of the PPO agent in the context of the CS of battery, namely lrπ, lrV , and γ. In

addition, all other hyper-parameters are listed in TABLE 2.1.

lrπ and lrV are the learning rates for the Adam optimizer of the policy network and

the value function network, respectively. γ is the discount factor for evaluating the value

function. Assume the lrπ and the lrV follow the log-uniform distribution over (1e-7, 1e-4)

and (1e-7, 1e-5), respectively. Assume the γ follows the uniform distribution over (0.9, 0.99).

Considering the limited computational resources, 30 independent optimization calculations
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Table 2.3: Hyperparameter tuning result

index Weekly Net Revenue / $ γ lrπ lrV
#4 30532 0.920 1.33E-07 1.99E-06
#5 31121 0.923 5.39E-07 8.32E-07
#8 31759 0.928 6.73E-07 4.21E-07
#2 34730 0.939 1.10E-06 2.69E-06
#6 34992 0.938 1.16E-06 5.17E-06
#9 36093 0.942 1.70E-06 1.40E-06
#15 39764 0.905 4.23E-06 3.69E-07
#17 39770 0.909 4.29E-06 1.26E-07
#19 41871 0.901 6.50E-06 6.20E-07
#26 45215 0.901 1.71E-05 1.36E-07
#20 45378 0.918 2.98E-05 2.27E-07
#23 45379 0.901 4.91E-05 1.07E-07
#16 45435 0.911 2.15E-05 1.91E-07
#18 45484 0.916 2.71E-05 1.86E-07
#14 45514 0.908 3.00E-05 3.93E-07
#22 46541 0.900 3.35E-05 1.44E-07
#21 47044 0.912 5.62E-04 1.21E-07

based on 30 different hyper-parameter setting samples are conducted.

TABLE 2.3 shows the performance of the best eight as well as the worst eight groups

and their corresponding hyperparameter settings. We can summarize the following general

pattern from the table: relatively small γ and lrV help to improve the performance of the

PPO agents in the given range above. Conversely, agents with relatively large lrπ perform

better.

2.5 Summary

This work proposes a pragmatic solution to the capacity scheduling of PV-BSS, which

performs the stacked services. A safety control algorithm of PV-BSS is proposed to ensure

the safe operation of the PV-BSS. A PPO-based DRL agent is developed to cooperate with

the control algorithm to improve the profitability of PV-BSS. Case studies based on the

real data of the PJM energy and regulation markets are conducted. In the training phase,

the PPO agent outperforms the DDPG agent, the A2C agent, the DDQN agent, and the

random policy agent by 19.6%, 31.2%, 37.5%, and 58.1% in terms of the weekly net profit,
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respectively. Moreover, the PPO agent is significantly more sample-efficient than the A2C

agent. The PPO agent also shows better adaptivity than other DRL agents throughout the

test set. The results on the testing data verify the PPO agent can adapt to volatile market

signals and PV generation scenarios. Case studies on the real-world data demonstrate that

the PPO agent is capable of generating safe scheduling schemes while maximizing the net

profit of PV-BSS.
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Chapter 3

Adaptive Static Equivalences for Active Distribution Networks with Massive Low-Carbon

Energy Integration: A Distributed Deep Reinforcement Learning Approach

This section delves into the challenges of maintaining data fidelity in equivalent models

for active distribution networks with 100% renewable energy sources penetration. By in-

troducing an adaptive equivalent model for active distribution networks with tunable scales

and parameters, and employing a leaves-trimming network topological reduction alongside

a distributed Proximal Policy Optimization-based deep reinforcement learning agent, the

work addresses the volatility of renewable energy sources and their management techniques.

The approach demonstrates enhanced accuracy and efficiency in scenarios with substantial

photovoltaic and wind generation, particularly when renewable energy production surpasses

load demand.

3.1 Introduction

A decarbonized power sector is an indispensable path to tackle the net-zero emissions

undertaking by 2050. The renewable energy transition, such as the massive integration of

wind and solar, can significantly mitigate greenhouse-gas emissions, thereby contributing to

electricity decarbonization [64]. This study attempts to develop an artificial intelligence-

empowered modeling approach for an emerging form of low-carbon distribution networks,

i.e., active distribution networks (ADNs) [65].

ADNs are characterized by large-scale renewable energy sources (RES) integration and

active management of distribution resources [66]. The increasing number of heterogeneous

components and the advanced control strategies further convolute the operating status of

ADNs. Generally speaking, the distribution networks connect to the transmission network

through the distribution substation. The proliferation of the RES integration will result in

reverse power flow, which will raise the concern of the transmission system operator (TSO)
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and drive the TSO to appraise the impact of ADN on reliability and security. Some ADNs,

organized in the form of microgrids, can be networked to share redundant reserve resources,

thereby improving the reliability of power supply and guaranteeing the power quality [67]. In

these two scenarios, the ADN and its interconnected objects are operated by different entities.

Due to the concern of preserving sensitive information and saving computation resources,

it is unlikely and unnecessary for the interconnected objects of ADN to grasp the detailed

model of ADN. In some distribution networks with poor observability, even the distribution

system operators (DSOs) can not maintain an accurate model of the network in real-time.

Equivalent modeling techniques are practical solutions to the issues above. Moreover, some

computationally intensive tasks (e.g., quasi-steady-state time simulations) on ADNs can be

significantly accelerated if a simpler but accurate surrogate model is available. All the above

factors jointly motivate this paper to develop a novel equivalent model of ADNs (EMADNs),

which can take the characteristics of ADNs into account.

Revolving around the distinctions of distribution networks, some specific equivalencing

models for distribution networks (DEMTs) have been surfacing [68–72] in recent years. [68]

has examined the DEMT based on holomorphic embedding, thereby maintaining the accu-

racy of equivalent models when scaling the loads and the active power generations. However,

the implicit expression of the equivalent models and the dependency upon the specific load

flow algorithm restricts the scope of application. [73] builds a reduced network synthesis

for ADNs by developing an improved Kalman filter to process the time series from phasor

measurement units (PMUs). A two-tier DEMT that establishes the equivalent model based

on the nodal voltage equations is established in [69]. The parameters of the equivalent gen-

erator and equivalent lines are calculated in the first stage, and the detailed parameters of

equivalent load are obtained by least square estimation in the second stage. [70] develops

the equivalent circuits through the inversion of the nodal admittance matrix of the load flow

equation. [71] extends [70] to consider the aggregation of voltage-controlled devices, which

improves the accuracy of EMADNs in terms of reactive power output. [72] uses grey box

theory to construct the EMADNs with large-scale rooftop photovoltaic (PV) systems em-

bedded, in which the aggregation of PV is treated as an independent entity rather than a

negative load.
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Albeit the DEMTs introduced in references [68–77] have been making significant ad-

vances, there are still some certain knowledge gaps to be filled. First and foremost, the

large-scale integration of RESs brings significant uncertainty to ADNs, spawning the volatile

operating points of the systems. Prior works on EMADNs [69, 72, 78] attempt to develop

equivalent models by formulating a constrained quadratic optimization problem based on

the historical measurements. This solution paradigm expects the derived parameters to

maintain effectiveness under various conditions. Such assumptions are prone to inaccuracy

considering the large-scale penetration of RESs. In contrast, using the available measure-

ment/forecast data to adjust the established EMADN paves a path to address this issue. In

addition, [66,69,72,78,79] neglect the topology of ADNs, which fails to represent the interior

patterns of ADNs, including nodal voltages and line flows. Another hurdle is the availability

of sufficient data to establish the EMADN. For instance, [70] and [71] are dependent on the

exhaustive ADN model, e.g., every RES generation/load profile, voltage measurements, and

up-to-date line parameters. However, this assumption does not hold in some distribution

networks due to the prohibitive cost of the large-scale deployment of advanced measurement

units. Lastly, the increased complexity of ADNs induced by the common voltage regulation

schemes (VRS) and inverse power flows is not fully addressed.

This study casts the construction of EMADNs to a Markov Decision Process (MDP) and

proposes a topological reduction algorithm. The motivation behind the MDP formulation

can be summarized as 1. this study attempts to develop an accurate EMADN over a period

of time (e.g., one day), during which the outputs of RES and load may fluctuate dramatically.

As a discrete-time stochastic control process, MDP can incorporate this type of randomness

readily; 2. Formulating the equivalent parameter identification as a sequential decision-

making problem is conducive to making the optimal long-term decisions by considering the

temporal correlation of system states. As an organic synthesis of deep learning (DL) and re-

inforcement learning (RL), deep reinforcement learning (DRL) is good at tackling sequential

decision-making problems under uncertainty [80,81]. [82] reviews the advancements of DRL

on power system parameter identification, where DRL has already served as a state-of-art

tool. [83] utilizes the double deep Q-learning for calibrating the load model parameters. The

generator parameters are maintained automatically using Soft Actor-Critic and PMU mea-
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surements in [84]. A damping controller for low-frequency oscillation is tuned by the DRL

agent in [85]. [86] and [66] attempt to construct the equivalent models for regional grids

by using conventional RL as a heuristic function optimizer, which is prone to the curse of

dimensionality of states and actions. More importantly, the adopted constrained quadratic

optimization paradigm suffers from inadaptability. In contrast, with moderate requirements

for measurements/forecasts, this study attempts to solve the intractable EMADN problem

by leveraging the function approximation of the neural network and the model-free RL al-

gorithm jointly, i.e., DRL, for the first time. Distributed learning scheme [87] is devised and

adapted to accelerate the learning and diversify the training samples.

The DSO can conduct the training of the EMADNs. Once trained, DSO can use the

model alone or share the trained models with the interconnected interested parties (TSOs or

other DSOs). Users of the proposed EMADNs can update model parameters online with the

measurements/forecasts of the net amount of aggregated RESs and loads. The requirement

for individual RES and load data is waived. Notably, it is demonstrated in the subsequent

case studies that the excellent fidelity of the proposed intelligent EMADNs can extend to

scenarios in which there is a surplus production of low-carbon energy. This feature makes the

proposed method a promising tool for appraising the feasibility of the massive low-carbon

energy installation.

Our proposed method offers the following unique features and contributions:

1. Unlike prior work based on the fictitious topology and black box, a leaves-trimming

network topological reduction algorithm is proposed in Section 3.3 to preserve the nodes

of interest and radial topology of ADNs. The reduction method is achieved through

the iterative eliminations of leaf nodes and can customize the reduction degree to meet

the different requirements of model granularity.

2. To address the uncertainty caused by RESs and loads and leverage their temporal

correlations, this study formulates the parameter identification of the EMADNs as an

MDP in Section 3.4. The reward function of the MDP features the imitation capability

of EMADNs on the boundary power exchanges to the external grids and on the nodal

voltage magnitude.
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3. A model-free DRL agent called Proximal Policy Optimization (PPO) is proposed in

Section 3.5.1 to address the formulated MDP and build the EMADNs. The superiority

of the DRL to the commonly used constrained quadratic optimization paradigm lies

in the adaptivity of the equivalent models in a volatile environment. The proposed

EMADNs feature the encapsulation and preservation of the radial typologies and the

droop-based VRSs, which significantly impact the accuracy of voltage and reactive

power.

4. A distributed training framework for the PPO agent (DPPO) is developed in Section

3.5.2 to alleviate the bottleneck of training efficiency of the DRL agent by performing

the agent-environment interactions and gradient computation in a parallel manner.

The data parallelism and the average gradient technique are integrated into the DPPO

seamlessly.

The rest of the study is organized as follows. Section 3.2 describes the essential compo-

nents and techniques of the ADNs. Section 3.3 proposes a leaves-trimming network topo-

logical reduction algorithm to provide a backbone topology for the EMADNs. The MDP

for the parameter identification of EMADNs is formulated in Section 3.4, followed by the

distributed training scheme of the DPPO algorithm in Section 3.5.1. Numerical studies

are conducted in Section 3.6 to demonstrate the practicality and accuracy of the proposed

agent-based EMADNs. Finally, concluding remarks are given in Section 3.7.

3.2 Models of ADNs

This section introduces an overview of the ADN and the proposed EMADN, followed by

the models of voltage-dependent loads and low-carbon energy production equipped with the

droop-based VRSs in ADNs.

3.2.1 Overview

The IEEE 33-bus ADN is used for the convenience of illustration in this section, which is

shown in Fig.3.1. Among all 33 nodes, nine nodes are equipped with RESs, including eight

PV generators and one wind turbine. All nodes are connected to loads except the root node

1, which connects to the external grid via the distribution substation.
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Fig. 3.1 shows an illustrative example of the proposed equivalent model for the 33-bus

system. The derivation of the proposed equivalent model will be elaborated in this section

and Section 3.3. Compared to the previous network, the proposed EMADN features fewer

branches, fewer nodes, simpler topology, and therefore fewer components. Nevertheless, the

radial topology, specific nodes, and RESs with VRSs are well preserved and encapsulated.

With the simplified structure and components, the proposed EMADN is an ideal tool for

some computation-intensive applications. One example is evaluating the hosting capacity

for the low-carbon energy installation in ADNs using scenario-based methods. The other is

the security assessment of the transmission network considering the inverse power flow from

ADNs using quasi-steady-state time simulations.

1 2 3 4 5 7 11 146 9 12 158 10 13 16 17 18

19 20 21 22

23 24 25 26 27 28 29 30 31 32 33

Boundary power flows

1 2 3 6 13

28

Figure 3.1: IEEE 33-bus active distribution network and an illustrative example of the
proposed equivalent model.
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3.2.2 Voltage-Dependent Loads

As a common model to characterize the voltage-dependent behavior of loads, ZIP loads

are widely adopted. This study employs ZIP loads because of the inherent voltage char-

acteristic of the composite load model for all classes of load types (industrial, commercial

and residential). And this characteristic is more significant in the ADNs due to the volatile

voltage operating points caused by RESs.

The ZIP load is represented as a nonlinear polynomial equation that is comprised of

constant impedance (Z), constant current (I), and constant power (P) loads, respectively:

Pload = Pload,0(a
p
ZV

2
m + ap

I Vm + ap
P) (3.1)

ap
Z + ap

I + ap
P = 1 (3.2)

where Pload and Pload,0 are the actual and rated active power demand of the load, respec-

tively. aZ, aI, and aP are the impedance, current, and power coefficients for the ZIP loads,

respectively, which are constrained by (3.2). Vm is the nodal voltage magnitude. The model

for reactive power loads (Qload/Qload,0) can be formulated in a similar manner.

3.2.3 RESs with Droop-based Voltage Regulation Schemes

According to IEEE standard 1547-2018 [88], voltage magnitude/reactive power (Volt-

Var) droop control is a mandatory strategy for the interface of the inverter-based RESs to

realize the distributed voltage regulation. Fig.3.2 shows the droop-based voltage regulation

scheme (DVRS), which is represented as a piece-wise linear curve. The inverter will adjust

the reactive power outputs of RESs according to the voltage at the feed-in point:

Qdroop =



−ξ(Vm,th,2 − Vm,th,1) Vm < Vm,th,1

−ξ (Vm,th,2 − Vm) Vm,th,1 ≤ Vm ≤ Vm,th,2

0 Vm,th,2 < Vm < Vm,th,3

ξ (Vm − Vm,th,3) Vm,th,3 ≤ Vm ≤ Vm,th,4

ξ(Vm,th,4 − Vm,th,3) Vm > Vm,th,4

(3.3)

where Vm,th are the voltage thresholds, ξ is the slope of the curves, and Qdroop is the feed-

in reactive power. The proposed EMADNs incorporate this DVRS to capture the Volt-

Var characteristic of the low-carbon energy. There are also other VRSs in the standard

[88]. For example, in the active power-reactive power scheme, the reactive power outputs
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of the RESs are determined by their active power outputs. The DVRS employed in the

proposed EMADNs can represent this scheme in an implicit way. This is because a direct

consequence of the increase/decrease of active power injections is the increase/decrease of

voltage magnitudes, followed by triggering the DVRS to control the reactive power outputs.

As for the constant reactive power scheme and constant power factor scheme, the RESs

operating under these schemes can be considered as conventional PQ loads in the proposed

EMADNs. It is worth mentioning that the EMADNs proposed in this study can also be

readily extended to other inverter control schemes depending on measurements.

Figure 3.2: Response curve of the droop-based voltage regulation schemes.

3.3 Leaves-trimming Network Topological Reduction Method

There are three main challenges in the construction of the EMADNs: topology construc-

tion, determination of component locations, and parameter identification of components. A

leaves-trimming network topological reduction method is proposed in Algorithm 3 in this

section to address the first two challenges. The last challenge is left to Section 3.4.

Algorithm 3 can 1). maintain the skeleton of the original system; 2). provide enough

flexibility. Users can specify their interested nodes to retain and customize the degree of
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network reduction; 3). retain some real nodes in ADNs instead of introducing fictitious

nodes. Algorithm 3 assumes the radial topology and the locations of the RESs of the

original system are available. Numerous studies have investigated the topology identification

of ADNs, and a recent example can be found in [89].

The radial distribution network can be abstracted as a tree G in graph theory with a node

set N and an edge set E. In a nutshell, the core idea of the algorithm is to iteratively cut off

the leaf nodes Nleaf in the tree, which is realized in Phase I. Then, in the second phase, all

branches between the remaining leaf nodes and bifurcation nodes Nbif are aggregated into

an equivalent branch to reduce the network scale further.

The presentation of Algorithm 3 is self-explanatory. An example of the IEEE 33-bus

system is adopted herein to gain a detailed understanding of it. In step 2, Nbif := {2, 3, 6},
Nleaf := {18, 22, 25, 33}, and Nint is assumed to be a null set. Nbif are essential nodes that

reflect the radial topology of ADNs, and they will be retained during the whole reduction

process. Moving on to step 3, when i = 0, the first reduction round is started. First, the

RESs with the DVRS at nodes 18 and 33 are relocated to nodes 17 and 32 during steps 4

to 8, followed by removing all nodes in Nleaf and lines associated with them (17-18, 21-22,

24-25, and 32-33). Then, the leaf nodes and the remaining node set are updated accordingly

in step 10. The rest of the loop w.r.t i can be completed similarly. The remaining nodes

and edges after Phase I are shown in 3.3, in which different nodes are colored in different

colors. During steps 12 to 14, for the leaf node 13, its nearest upstream bifurcation node is

6, so as the leaf node 28. Hence, two equivalent edges, i.e., 6-13 and 6-28, are created, along

with aggregating the RESs with the DVRS in two paths (6 to 13 and 6 to 28) to node 6.

During steps 15 to 21, for the bifurcation node 6, its upstream partner is node 3. Thus, an

equivalent edge 3-6 is created. An equivalent edge 2-3 is generated under a similar process.

On the other hand, since the bifurcation node 3 has no corresponding upstream bifurcation

node, it is directly connected to the root node through the equivalent line 1-3. Fig. 3.1

shows an illustrative example of the proposed equivalent model after Phase II. Note that if

more than one RES with the DVRS is placed in one node, they will be represented by an

ensemble RES with the DVRS. The wind turbine in node 23 is aggregated as a load in node

3 because wind turbines usually run at fixed power factor mode, and they can be modeled
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as negative loads.

1 2 3 4 5 6

7 8 9 10 11 12 13

26 27 28

Root node

Bifurcation node

Leaf node

Figure 3.3: Remaining topology of IEEE-33 bus system after phase I of Algorithm 3 with
β = 5.

3.4 Markov Decision Process for Parameter Identification

Once the topology and the locations of the components of EMADNs are determined, the

next step is parameter identification [90]. This section casts the parameter identification of

the EMADNs to a discrete stochastic control process, which can be modeled as an MDP. The

crucial components of the MDP, i.e., state, action, and reward, are introduced successively.

3.4.1 State

A schematic diagram for the MDP and the DRL agent-environment interaction is shown

in Fig.3.4. The environment is the world that the agent lives in and interacts with. Specif-

ically, the environment is formulated as the MDP here. At every interaction, the agent

observes the state of the world and then decides on an action to take. Not only does the

environment evolve when the agent’s actions take effect, but it may also evolve on its own.

The agent receives the reward signal from the environment as feedback and leverages it to

improve the decision-making capability.

The state is supposed to reflect the low-carbon energy adequacy of the ADNs while being

subjected to the availability of measurement devices and forecast tools. Herein the total

active/reactive power consumption of loads (P load
t /Qload

t ) and the active power generation

(PRES
t ) of total RESs are incorporated in the state vector. This assumption is moderate
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Algorithm 3 Leaves-trimming Network Topological Reduction
1: Input G(N ,E), the root node nroot, the nodes of interest Nint, the RES locations, and the customized

reduction degree parameter β.
Phase I: backbone nodes identification

2: Identify the bifurcation nodes Nbif := {n|n ∈N ,degree(n) ≥ 3} ∪Nint; The leaf nodes Nleaf := {n|n ∈
N ,degree(n) = 1, n ̸= nroot, n ̸∈Nint}; G∗ := G,N∗ := N

3: for i = 0; i < β; i++ do
4: for every node n in Nleaf do
5: if n is connected to the RES with the DVRS then
6: Move the RES to the father node of n
7: end if
8: end for
9: Remove Nleaf and edges connecting these nodes from G∗.

10: Update the leaf nodes as in Step 1. Update the remaining node set of G∗ to N∗

11: end for
Phase II: creation of the reduced graph Geq

12: for every node n in Nleaf do
13: Create equivalent edge l between n and its nearest upstream bifurcation node n

{n}
bif and add l to Geq;

Move the RES generation between n inclusive and n
{n}
bif exclusive to n

{n}
bif .

14: end for
15: for every node n in Nbif do
16: if n has a upstream bifurcation node then
17: Create equivalent edge l between n and its nearest upstream bifurcation node n

{n}
bif and add l to

Geq; Move the RES generation between n exclusive and n
{n}
bif exclusive to n

{n}
bif .

18: else
19: Create equivalent edge l between n and nroot and add l to Geq; Move the RES generation between

n exclusive and nroot exclusive to n.
20: end if
21: end for
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compared to the assumption that requires the forecast data for each RES/load adopted

in [70,71].

In addition, to reveal the voltage and reactive power conditions of the ADNs, both the

maximum and the minimum nodal voltage magnitudes are included in the state vector,

which are denoted as V max,t
m , V min,t

m , respectively. These two variables are also accessible,

which can either be acquired by the voltage measurement devices installed at the key nodes

of ADNs, or by using the existing mature state forecasting methodology [91]. To summarize,

the state vector of the MDP is defined as st := (P t
load, Qt

load, P t
RES, V max,t

m , V min,t
m ). Note that

the state vector could be extended to include more informative states when more advanced

measurement devices and forecast tools are available. However, this study attempts to use

as little information as possible to evaluate and emphasize the decision-making capability of

the agent.

Training phase

DRL agent

Actor network

Critic network

Distribution
Load flow engine

  
parameters of model

Historical 
database

  

  

  

Action

State RES, load, and voltage at system level

  

Reward

Gradient Update (10) 

Gradient 
Update (14)

each time interval is 15 mins, and EMADN are updated every 15 mins 
 

Deployment phase

DRL agent

Trained actor network
Computationally intensive tasks:

TSO/DSO coordinations;  
Evaluation of RES installations.

  
parameters of model

  

ActionState

RES, load, and voltage at system level from
forecasting or real-time measurement

Figure 3.4: Schematic diagram for the MDP and the DRL agent-environment interaction in
training and deployment phase.
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3.4.2 Action

The actions of the agent are defined as the parameters of the EMADN. Corresponding to

Fig.3.1, the action vector is parameterized by at := ( atPl, atQl, atZ, atI, atR, atX, atPg, atξ, atVth
).

atPl, atQl are the equivalent active/reactive load baselines, respectively. atZ and atI are the

ZIP load coefficients. atR and atX are the equivalent line resistance/reactance, respectively.

atPg is the active power of the RESs. atξ and atVth
are the DVRS parameters of the RESs.

3.4.3 Reward

The design of the reward function should reflect the user’s expectations of the agent,

which is equivalent to the fidelity of the EMADN in our case. The reward function is

formulated as the summation of multiple penalty terms:

rt(at, st) = −P1 ∗ I(at, st)−
Nre∑
i=1

P2|V t
m,ori,i − V t

m,eq,i|

− (ptb,ori − ptb,eq(at))
2 − (qtb,ori − qtb,eq(at))

2

(3.4)

where the relevant notations are explained as follows.

First and foremost, it is expected the proposed agent-based EMADNs are physically

feasible, which means that the generated EMADNs can converge in load flow calculation.

This anticipation is reflected in the first term in (3.4), which imposes the penalty on the agent

when producing infeasible EMADNs. I(at, st) is the infeasibility indicator function, which

will become one when the load flow of the EMADN is non-convergent. P1 is the positive

penalty coefficient used for the trade-off of the multiple objectives. Besides, regarding the

generated ZIP coefficients, i.e., atZ and atI), if they are not feasible (atZ+atI ≥ 1), I(at, st) will

also turn to one. I(at, st) will be zero instead except for the above two scenarios. Note that

function I(at, st) is non-linear, non-convex, and discontinuous because alternating current

(AC) power flow equations are behind it. The characteristics of the reward design endow

the formulation of EMADN problems with great flexibility.

One of the critical criteria for the fidelity of EMADNs is their capability to imitate

the response of the original ADNs to the external grid, which is specified as the boundary

power exchanges between the ADNs and the external grid. The third and fourth terms in

(3.4) represent the quadratic power exchange errors, where ptb,ori/ptb,eq and qtb,ori/qtb,eq are the

original/equivalent boundary active/reactive power exchange, respectively.
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Another criterion for the fidelity of EMADNs is the voltage accuracy. The voltage on the

retained nodes are supposed be as consistent as possible before and after network equiva-

lencing. The second term in (3.4) represents the voltage error, where | · | is the absolute value

operator and P2 is the positive penalty coefficient. V t
m,ori,i/V t

m,eq,i are the original/equivalent

voltage magnitude on the retained nodes, respectively. Note that ptb,ori, qtb,ori, and V t
m,ori,i are

assumed to be available only in the training phase.

3.4.4 Trajectory

A trajectory, also called an episode, is a sequence of states and actions. Here, the

trajectory is defined as the sequence of state/action pairs in one day, where the sequence

comprises multiple time steps. For example, in the subsequent case studies, the length of

the sequence is set to 96 because a trajectory is set to one day, and each time interval is 15

minutes. In the training phase of the agent, the agent is supposed to experience and record

different trajectories. The agent’s goal is to maximize the mathematical expectation of the

cumulative reward over these trajectories, which is denoted as the return of the trajectory.

In terms of the state vector defined in Fig. 3.4, st is comprised of the historical data in

the training stage of the agent. However, in the deployment/testing stage, st is the data

from either the forecast tool or the measurement devices. The agent will tune the parameters

of EMADNs in an online manner and produce high-fidelity EMADNs that can be leveraged

for computationally intensive tasks between two consecutive time steps. The EMADNs are

adapted instantly once the next state is received.

3.5 Deep Reinforcement Learning

This section begins with the principles of the PPO. Two implementation details, i.e., the

stochastic diagonal Gaussian policies and the early stop mechanism, are presented, followed

by introducing the agent’s distributed training scheme.

3.5.1 Proximal Policy Optimization

PPO is a cutting-edge DRL algorithm developed in [51]. PPO features the safe explo-

ration of the action space and adequate exploitation of the available samples. Moreover,

PPO can readily tackle the continuous and multi-dimensional action space, which is a plus

52



for identifying the unknown parameter.

3.5.1.1 Preliminaries and Notations

PPO is an actor-critic type DRL algorithm, which comprises an actor agent π and a critic

agent V . This study presents both agents by multi-layer perceptrons (MLPs) parameterized

by θ and ϕ, respectively. The actor can be interpreted as the decision-making agent, in

which the input is the state and the output is the action. The input to the critic is also the

state, while the output is the value function, which will be defined later. Fig. 3.4 exhibits

the general functions and relations of these two agents.

The advantage function, which measures how much an action is better than the others

on average, is defined as:

Aπ,γ (st, at) = Qπ,γ (st, at)− V π,γ (st) (3.5)

Qπ,γ (st, at) = Est+1:∞
at:∞

[
∞∑
l=0

γlrt+l

]
(3.6)

V π,γ (st) = E
at∼πθ

Qπ,γ (st, at) (3.7)

where γ is the discount factor; V π,γ and Qπ,γ are the value function and action-value function,

respectively.

3.5.1.2 PPO

To address the sample efficiency issue and stabilize the training, the PPO leverages a

distinct clipped surrogate objective function based on the theory of importance sampling to

perform the gradient ascent:

Jπθ = E
s,a∼πθold

[L (s, a, θold, θ)] (3.8)

L (s, a, θold, θ) = min (ρtA
πθold (st, at), clip (ρt, 1− ϵ, 1 + ϵ)Aπθold (st, at)) (3.9)

where ϵ is the hyperparameter that controls the permissible policy deviation; ρt is a ratio

coefficient between the updated policy and the old policy and ρt = πθ(at|st)
πθold (at|st)

.

The readers are referred to [51] for further analysis on (3.8). An intuitive understanding
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toward (3.8) and (3.9) is that the combination of clip and min functions like a regularizer

on updating the πθ, which can guarantee the safe exploration of the agent. Besides, (3.8), as

the objective function of PPO, can be performed in multiple gradient steps. In contrast, the

advantage actor-critic (A2C) method, the synchronous version of a popular DRL algorithm

called A3C, can only perform one gradient step each epoch.

The objective function for the critic is straightforward:

JVϕ = E
s,a∼πθold

(
Vϕ(st)− R̂t(st, at)

)2
(3.10)

where the reward-to-go R̂t :=
∑T

t′=t rt (st′ , at′ , st′+1). Minimizing (3.10) is a regression prob-

lem, where the loss function is the mean square error. Herein the target of the output of

critic is approximated by the collected reward-to-go samples. The expectation operator E is

approximated by the mean operator in practice using the Monte Carlo (MC) approximation.

For instance, E(X) is replaced by averaging the specific variable X over all collected samples.

3.5.1.3 Exploration via Diagonal Gaussian Policy

A policy is a rule used by an agent to decide what actions to take, and the Gaussian

policy means the agent sample the actions from the Gaussian distribution. πθ is assumed

to be a multivariate Gaussian distribution, which is described by a mean vector and the

diagonal covariance matrix. The outputs of πθ are regarded as the mean of the actions

µθ(s). A diagonal matrix where each element is the logarithmic standard deviation log σ

of the action in the corresponding dimension contains hyper-parameters for balancing the

exploration and exploitation.

PPO trains a Gaussian policy in an on-policy way. This means that it explores by

sampling actions according to its up-to-date stochastic policy:

a = µθ(s) + σθ(s)⊙ x (3.11)

where x is the sample vector of the standard multivariate normal distribution and ⊙ is the

element-wise product.

Based on the adopted Gaussian policy assumption, πθ(at|st) in (3.9) can be formulated

as:

πθ(at|st) =
1

(2π)k/2
∏k

i σi
exp(−

k∑
i=1

(x− µi)2
2σ2

i

) (3.12)

54



3.5.1.4 Early Stop Mechanism

To stabilize the training further, an early stop mechanism is adopted through monitor-

ing the Kullback-Leibler (KL) divergence, which measures the distance between probability

distributions. The approximate KL divergence of outputs at time step t can be formulated

as:

DKL(πθold,t∥πθ,t) = log(
πθold(at|st)
πθ(at|st)

) (3.13)

During the process of updating the actor network within one epoch, once the average

DKL(πθold,t∥πθ,t) over all time steps and all episodes exceeds the threshold DKL,max, the early

stop mechanism will kick in to stop the following gradient ascent steps.

3.5.2 Distributed Training Scheme

This subsection focuses on implementing the training of the agent on the deep learning

libraries with an auto gradient computation feature in a distributed manner.

3.5.2.1 Gradient Ascent Step

The gradient ascent step (GAS) for updating the parameters of the actor is formulated

as:

θ = θold + lrπ∇θ E
s,a∼πθold

[L (s, a, θold, θ)] (3.14)

where ∇θ is the gradient operator w.r.t θ and lrπ is the learning rate of the actor. GAS

is dependent on the loss function formulated in (3.9), which is approximated by the MC

method based on the episodic data of the current epoch.

3.5.2.2 Distributed Training

The necessity for the usage of distributed training in the EMADN problem can be ex-

plained in two aspects. First, one of the significant bottlenecks in the training efficiency of

the DRL agent is that most of the time is spent on agent-environment interaction and data

collection. This bottleneck is even more pronounced in the EMADN problem because each

evaluation of the reward function (3.4) needs one load flow calculation with several iterations,

which is obviously computationally intensive. Second, both the mini-batch training paradigm

of the PPO agent and the stochastic gradient descent-type optimizer are compatible with
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distributed computing.

Fig.3.5. shows the proposed distributed training framework of the PPO agent. Each

processor has a complete copy of the entire neural network model θt, whereas each processor

collects episodic experiences (st, at) independently based on both samples indexes assigned

to it and the actor network. Then each processor produces an exclusive loss function and

gradient by performing backward error propagation locally. Finally, the processors com-

municate with each other to obtain an average of the gradients computed by the different

processors, and the average gradient is used by GAS to update the weights θt.
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Figure 3.5: Distributed training framework of the PPO agent

Algorithm 4 summarizes the distributed training scheme of the PPO agent. Some of the

relevant notations are given as follows: Nepoch is the number of training epochs; Nπ / NV are

the number of training steps for gradient ascent/descent; m is the number of the processors;

g̃j represents the local gradients vector in processor j.
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Algorithm 4 Distributed training scheme of the PPO agent
1: Initialize actor network πθ and value function network Vϕ.
2: for i = 0; i < N ; i++ do
3: Broadcast θold and ϕold to different processors.
4: for j = 0; j < m; j ++ do
5: Policy agent πθold interacts with the environment using (3.11) and records the trajectories samples

{(sj , aj)}. Calculate the reward-to-go R̂j
t .

6: Based on the value function Vϕold
, perform the advantage estimation and obtain Aπθold .

7: Build the loss functions of the actor and the critic based on (3.9) and (3.10). Then perform the
gradient calculations and record the gradient g̃j .

8: end for
9: Aggregating and averaging gradients from different processors.

10: Update πθ Nπ times via stochastic gradient ascent based on (3.14); Update Vϕ NV times via stochastic
gradient descent based on (3.10).

11: Vϕold
← Vϕ; πθold ← πθ.

12: end for

3.6 Numerical Result

This section covers the setups and results of the case studies on the IEEE 33-bus network.

Similar case studies are also conducted using the IEEE 123-bus network to demonstrate the

scalability of the proposed methods.

3.6.1 IEEE 33-bus network

3.6.1.1 System Setup

To demonstrate the effectiveness of the proposed methods, case studies are conducted

on the IEEE 33-bus ADN shown in Fig.3.1. An overview of this ADN is presented in

Section 3.2.1. The RESs and load data are imported from SimBench [92], which contains

the whole year time series with 15-mins resolution. For each RES or load profile, there are

4∗24∗366 = 35, 136 data samples in total in the dataset, which is split randomly into 33,600

training samples and 1,536 test samples. Fig. 3.6 exhibits the low-carbon energy adequacy

in the dataset, where the ratios of low-carbon energy production to load of training and

test samples are represented in the outer and inner doughnut charts, respectively. The ratio

distributions of training samples and test samples are quite close. The scenarios with more

than 50% low-carbon energy penetration account for about 29% of all data samples, which

is suitable to simulate the future net-zero scenario. It is assumed that there is no fossil fuels
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power unit inside the ADN, whereas it may import power from external grids when available

RES generation is relatively low (e.g., during nights and cloudy days).

Figure 3.6: Ratio of low-carbon energy production to load.

3.6.1.2 Agent Setup

Table 3.1 shows the hyperparameters of the PPO agent. There are two hidden layers

in the actor and critic MLPs, respectively. The number of neurons in each hidden layer

is 64. The activation function of the hidden and output layers is the hyperbolic tangent

function Tanh. The raw action signals are mapped into the range [amin,amax] to produce

the realistic action signals using the linear transformation, where amin and amax restrict the

parameters of the EMADNs within a reasonable range. The action dimension of the actor

network in the 33-bus network is 6 ∗ 4 + 5 ∗ 2 + 1 + 2 = 37. Note that it is assumed that

Vm,th,3 = Vm,th,2 in the equivalent PV plants for the simplicity of EMADNs while preserving

the droop characteristic. Also, Vm,th,4 and Vm,th,1 are not considered in the equivalent PV

plants that are formed through the aggregation of multiple PV plants for ensuring adequate

reactive power support. Hence, the parameters of each equivalent DVRS are reduced to ξt
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Table 3.1: Hyperparameters of the PPO agent

Parameters Value Parameters Value

N 1400 m 6
γ 0.9 ϵ 0.2
ϕ 0.95 λ 0.97

Nπ / NV 80/80 lrπ / lrV 3e-4/1e-3
log σθ -0.6 KLmax 0.015

and Vth
t.

The trajectory length is set to 24*4=96 steps (one day) in the case studies. Hence, there

are 366 trajectories in the dataset, which are subsequently split into train and test subsets

randomly. There are 350 trajectories and 16 trajectories in the train and test subsets,

respectively. In the training phase, for each epoch, a mini-batch with 20 trajectories is

selected randomly from the training subset to update the DRL agents. The rest protocol is

highlighted in Fig. 3.4 and Section 3.4.4.

All tests are performed on a server with one NVIDIA P100 GPU and two Intel Xeon E5-

2695 v4 CPUs running at 256 GB of RAM. The distributed DRL framework is implemented

via Pytorch and OpenMPI.

3.6.1.3 Training Performance

The return of the trajectory collected by the agent is regarded as an index to appraise the

performance of the DRL agents. Fig.3.7 shows the training curves of the DPPO and A2C

agent, which depict the evolution of the average (AverageEpRet) and the standard deviation

(StdEpRet) of the returns of the mini-batch trajectories. In Fig.3.7, we can observe: 1. in

the first 1000 epochs, both agents exhibit excellent optimization ability. Both AverageEpRet

and StdEpRet curves indicate an almost monotonic increase/decrease despite some outliers

on occasion, which justifies the rationality of the formulation of the MDP and the viability

of the DRL agents; 2. The DPPO agent always performs better than the A2C agent under

the same training epoch, especially between epochs 100 and 600. In the last 100 epochs,

the DPPO agent eventually converges to about -11.65, whereas the A2C agent converges to

about -27.21. These results empirically verify that the PPO agent produces superior policy
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and is less likely to be trapped in the local optimum compared to the A2C agent; 3. the

performance of A2C experienced two huge collapses between epoch 1000 to epoch 1100 and

between epoch 1200 to epoch 1300, whereas the performance of PPO is as stable as ever.

This result highlights the robustness of the PPO agent, which is one of the most prominent

advantages of the PPO algorithm. The robustness of the PPO agent is attributed to two

factors: 1. clipped surrogate objective function, which allows the approximately biggest safe

improvement on the policy network every iteration; 2. early stop mechanism, which avoids

the performance collapse resultant from the over-training. Note that the performance of the

centralized version of the PPO agent (denoted as vanilla PPO) is not presented in Fig.3.7

because the distributed training mechanism has no influence on the episodic return.
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Figure 3.7: Mean and standard deviation of the episodic return of the DPPO and A2C agent
over training epochs in IEEE 33-bus network.

3.6.1.4 Generalizability Performance

To verify the generalizability of the PPO agent, we use the PPO agent to build EMADNs

on the test set, which contains the RESs and load scenarios the agent has never seen. Besides,
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the method based on nonlinear programming in [72] is employed to generate the EMADNs

on the identical training and test set.

First and foremost, we find that the proposed agent-based EMADNs can converge in

load flow calculations on all test samples and time steps even though these samples are

inaccessible during the training. Moreover, as mentioned in Section 3.4.3, EMADNs are

supposed to have the analogous response to the external grid as the original models. Fig.3.8

depicts the boundary power exchanges between the ADN and the external grid of both the

equivalent and the original models. The first 96 time steps of the x-axis belong to the

same day, same as every interval of 96 time steps after them. The power exchanges exhibit

obvious diurnal characteristics caused by the large-scale integration of PVs. The proposed

agent-based EMADNs outperform the equivalent model from [72], no matter the active or

reactive power.

As for the equivalent model from [72], it can produce decent results on the active power,

whereas it fails to capture the reactive power pattern of the ADNs due to the model inflex-

ibility. In contrast to [72] which employs only a set of equivalent parameters once and for

all, our method takes advantage of the DRL agents to update the parameters every time

step. Another significant advantage of the proposed agent-based EMADNs is that they can

maintain high fidelity, no matter whether the ADN is in the role of consumer (i.e., needs

active power import) or producer (i.e., can export active power). This finding substantiates

the viability of the proposed intelligent modeling framework in net-zero scenarios.

As a quantitative index, root-mean-square error (RMSE) is used to measure the distances

between values from the EMADNs and the values from the original model:

RMSE =

√∑T
t=1(X

t,ori −X t,eq)2

T
(3.15)

The RMSE of the boundary power exchanges is exhibited in Table 3.2, which shows the error

of our method is 51.5% less than that of [72] in active power and 84.7% less than that of [72]

in reactive power.

The RMSE of the nodal voltage magnitude on the retained nodes is shown in Table 3.3,

where eq and eq* represent the EMADN equipped with/without the DVRS. The results

of [72] are not presented because the method in [72] cannot preserve any node. It can be
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Figure 3.8: Comparison of boundary power exchanges between the original network and the
equivalent networks on unseen scenarios in IEEE 33-bus network.

Table 3.2: RMSE of boundary power exchanges in IEEE 33-bus network.

RMSE
/ (MVA) P Q P Q P [72] Q [72]

Train 0.041 0.032 Test 0.113 0.110 0.233 0.720
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Table 3.3: RMSE of nodal voltage magnitude on the retained nodes in IEEE 33-bus network.

Node-Model 2-eq 2-eq* 3-eq 3-eq* 6-eq 6-eq*
RMSE 8.4e-4 1.1e-3 1.2e-3 1.6e-3 1.7e-3 4.1e-3

Node-Model 13-eq 13-eq* 28-eq 28-eq*
RMSE 3.3e-3 5.4e-3 2.2e-3 5.9e-3

observed that: 1. the voltage error of the EMADNs is minor; 2. the EMADNs equipped with

the DVRS have better accuracy compared to their opponent. This phenomenon is especially

significant on node 6, where the equivalent PV plant is. Employing the DVRS can reduce

58% error of node 6. This result justifies the necessity of preserving the droop-based VRS of

RES in EMADN; 3. The voltage error tends to increase with the distance from the root node.

This is because the root node is assumed to be connected to a large power grid (transmission

network) via the substation transformer, resulting in a strong voltage regulation function

of the root node. Fig.3.9. compares the nodal voltage magnitude over the first 168 time

steps, and similar conclusions can be drawn as mentioned above. The curves of the proposed

agent-based EMADN are pretty close to the ground truth curves. These results justify that

the proposed method can capture the voltage pattern of ADNs.

3.6.1.5 Discussion

In addition to voltage, users of EMADNs may expect the power flow of equivalent lines to

be as close as possible to the actual line power flow. This is feasible in our proposed method.

For example, if the power flows at the from-end of line 3-4 and the power flows at the to-end

of line 5-6 in the 33 bus network are available in the historical data, we can augment the

reward (3.4) with the difference between them and the power flows of the equivalent line 3-6.

In this way, we can endow the agent-based EMADNs with accurate power flow performance.

3.6.1.6 Computation Efficiency

Table 3.4 exhibits the computation efficiency of the vanilla PPO algorithm and the dis-

tributed PPO algorithm. tPPO and tDPPO are the CPU time consumed by the vanilla PPO

and DPPO agent running 200 epochs, respectively. We can observe that the DPPO agent is

5.3 times more efficient than the vanilla PPO. The efficiency hike is not exactly equal to the
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Figure 3.9: The comparison of nodal voltage magnitude on the selective retained nodes in
IEEE 33-bus network.

number of workers we choose (m = 6) because the communication between workers takes

up some time. The superiorities of the DPPO algorithm can be summarized as: 1. The

relationship between training time and the number of parallel processes is approximately

linear. The multi-core CPU is exploited to boost the training efficiency; 2. Since multiple

workers independently explore a copy of the environment, it breaks the coupling between

experiences. The benefit of this phenomenon is similar to the experience replay strategy

adopted frequently in value-based DRL algorithms such as Deep Q Network. However, the

DPPO avoids the excessive memory occupation of the replay buffer. In addition, it takes only

79ms for the trained agent to build an EMADN, which justifies the viability of deploying the

proposed agent-based EMADN in an online manner. In addition to the privacy-preserving

benefit, EMADNs show promising results in boosting the efficiency of grid analysis: it takes

205s for the EMADNs to complete the quasi-static load flow calculation of one year, whereas

the original network needs 375s.
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Table 3.4: Computation efficiency in IEEE 33-bus network

CPU time /(s) tPPO tDPPO texe

Training 14,044 2,649 Execution 0.079

3.6.2 IEEE 123-bus network

3.6.2.1 Setup

Fig. 3.10 shows the IEEE 123-bus network and the proposed EMADN. The node indexes

in Fig. 3.10 are rearranged to be consecutive using the ext2int function in Matpower [93]

for illustration purposes. When β is selected as 5, the leaves-trimming network topological
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Figure 3.10: IEEE 123-bus network and the proposed equivalent model.
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reduction method proposed in Section 3.3 successfully reduces the number of nodes and lines

to 23 and 22, respectively, which are about 80% less than those of the original network. It

is noted that only between the two remaining bifurcation points will there be an equivalent

line connecting them. The only exception is the equivalent line between node 114 and node

1 because node 1 is the root node. The number of PV plants is reduced from 8 to 4 due to

aggregation. Apart from the scale of the networks, the obvious distinction between the 33-

bus network and the 123-bus network is the agent’s action dimension. The action dimension

of the actor network in the 123-bus network is 23 ∗ 2 + 22 ∗ 2 + 4 + 4 ∗ 2 = 102. Note that

the ZIP load coefficients are neglected here for simplicity. Such a large action dimension

causes an increase in the number of trainable parameters. π has 30,404 parameters, and

V has 17,793 parameters. Furthermore, the increase in action dimension means the rise of

exploration difficulty in the DRL agent. Given the enlarged challenge, the case studies in

the following subsections still exhibit promising results, which demonstrates the scalability

of the proposed agent-based EMADN method. Note that the scale of the EMADNs can be

controlled via adjusting β in Algorithm 3.

Except for the difference in the test system, almost all setups in this subsection are the

same as Section 3.6.1 except: 1. the number of neurons in each hidden layer is 128 to

accommodate the larger parameter identification problem; 2. 123 different load data profiles

are imported from SimBench.

3.6.2.2 Training Performance

Fig.3.11 shows the training curves of the DPPO and A2C agents in the IEEE 123-bus

network. The AverageEpRet of the DPPO agent during the last 100 epochs is -34.73, whereas

that of the A2C agent is -79.13. The StdEpRet of the DPPO agent during the last 100 epochs

is 2.82, whereas that of the A2C agent is 5.97. These results further verify the stable and

superior optimization capability of the DPPO agent relative to the A2C agent. The results

can also verify that the DRL agents can handle the high dimensional and continuous action

space.
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Figure 3.11: Mean and standard deviation of the episodic return of the DPPO and A2C
agent over training epochs in IEEE 123-bus network.

3.6.2.3 Generalizability Performance

The generalizability of the PPO agent is evaluated on the test set in the 123-bus system.

It is identified that the trained PPO agent-based EMADNs achieve 100% convergent load flow

calculations. Fig.3.12 shows the boundary power exchanges results in the 123-bus system.

The RMSEs for the PPO agent-based EMADNs on active and reactive power exchanges on

the test set are 0.369 and 0.129, respectively, whereas those for the equivalent model from [72]

are 0.399 and 0.270, respectively. Fig.3.13 shows the voltage results on the selective nodes

in the 123-bus system. The overall voltage RMSEs for the EMADNs with/without the

DVRS are 0.007 and 0.010, respectively. These results are aligned with those in Section

3.6.1.4, which jointly consolidates the generalizability performance of the PPO agent-based

EMADNs on the larger system.

3.6.2.4 Computation Efficiency

tPPO and tDPPO are 4623s and 1002s for the vanilla PPO and the DPPO agent running

50 epochs, respectively. The DPPO agent is 4.6 times more efficient than the vanilla PPO

in this case. Conclusions similar to those in Section 3.6.1.6 can be drawn here.
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Figure 3.12: Comparison of boundary power exchanges between the original network and
the equivalent networks on test set in IEEE 123-bus network.
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Figure 3.13: Comparison of nodal voltage magnitude on the selective nodes at IEEE 123-bus
network.

3.7 Summary

This article aims at tackling the modeling challenge in the future decarbonized power

sector. The uncertainty caused by the large-scale integration of low-carbon energy in the

equivalent modeling of ADNs is addressed using the distributed PPO agent. A leaves-

trimming network topological reduction method is proposed to retain the radial topology,

the nodes of interest, and the DVRS of RESs, which is essential to the fidelity of the voltage

profiles. Case studies are conducted on the IEEE-33 bus and IEEE-123 bus networks. The

results exhibit the superiority of the PPO over the A2C in stability, optimization perfor-

mance, and sample efficiency. The comparative results verify that the proposed EMADN

can leverage the decision-making capability of the DRL and achieve the high fidelity of volt-

age magnitude and boundary power exchanges even in the cases of reverse power flow and

unknown RESs scenarios. The comparative results between the vanilla and distributed PPO

agents show the efficiency improvement brought by the parallel framework is approximately

linear to the number of parallel processes. The performances in the scenarios with more than
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100% renewable penetration unveil the potential of the proposed approach to facilitate the

analysis of decarbonized power systems.

The authors intend to extend the proposed method to the large-scale unbalanced dis-

tribution network area in future works. The apparent hurdles lie in how to determine the

phase-to-phase relationship of equivalent lines/nodes and the scalability of the DRL agent.

A potential solution is using voltage sensitivity information to partition the distribution net-

work. On the basis of multi-area partition, multi-agent DRL techniques can be developed

to mitigate the scalability issue [94–97].
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Chapter 4

Two-Stage Frequency-Constrained Adaptive Storage Expansion Strategy for Microgrids

Using Deep Reinforcement Learning

This section addresses the strategic battery energy storage expansion planning in micro-

grids, challenged by the unforeseen surge in power consumption and the growth of renewable

energy resources along with potential battery developments. Introducing a two-stage, multi-

period planning framework, the work integrates deep reinforcement learning with linear

programming, utilizing a modified rainbow algorithm with quantile regression for siting and

sizing decisions. When tested on a 33-bus microgrid, the proposed approach demonstrated

efficiency, scalability, and adaptability advantages over traditional mixed-integer linear pro-

gramming methods and Benders decomposition.

4.1 Introduction

Recent years have witnessed the spectacular development of microgrids (MGs) as an

emerging grid formation technique in the power industry. Nevertheless, the secure and

economic operation of MGs is challenged by the growth of power consumption and renewable

energy resources (RESs) integration, which may aggravate the peak-valley difference of net

load, RES curtailment, and line congestion. Moreover, the intermittency of RESs tends to

reinforce these trends, which cannot be handled with legacy MG devices and infrastructure.

Energy storage is a promising remedy to the above challenges. Energy storage can contribute

to the operation of MGs with great flexibility and agility. Among numerous energy storage

technologies, battery energy storage (BES) is currently the most economically viable utility-

scale solution [2]. Owing to the technical breakthroughs, the capital cost of BES is decreasing

while the efficiency is increasing, which makes BES more economically feasible [3]. The

aforementioned challenges and opportunities jointly motivate the expansion of BES in MGs

for forthcoming decades. A strategic BES expansion strategy can assist decision-makers in
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trading off the investment risk and potential revenue.

The studies of the BES expansion strategy for power grids have aroused close attention

from the industry and academia. The optimization model is a prevailing methodology for en-

ergy storage expansion. Deterministic optimization models are incapable of handling the sig-

nificant uncertainty resulting from the development of RES and load in the future [98,99]. In

contrast, stochastic optimization models are committed to uncertainty management, which

is addressed by methods including stochastic programming (SP), robust optimization (RO),

distributionally robust optimization (DRO) [100, 101], etc. Scenario-based SP methods for

the BES planning in distribution systems are investigated in [102–105]. The SP methods

capture the uncertain nature of extreme events and RES intermittency by scenario prob-

ability and optimize toward the minimal expected value of the objective. They are prone

to providing an overly optimistic solution and need to be more scalable to massive scenario

sizes. In [106], the incorporation of frequency constraints of MG islanding into MG invest-

ment planning is pioneered. The RO and a three-stage solution approach are used to manage

the uncertainties. However, it ignores investments in energy storage and is not geared toward

multi-year planning. Ref. [107] introduces a linearized BES sizing problem of MG, which

extends the deterministic formulation to RO to address the uncertainty from hourly forecast

errors. In [108], DRO is utilized to determine energy storage capacities for bulk systems,

which obtains an intermediate solution between RO and SP regarding robustness. Most

stochastic optimization methods end up with Mixed-Integer Linear Programming (MILP)

formulation. Among these papers, [102] and [103] deal with the installation timing under

the multi-year expansion context. Despite the significant advances made by stochastic opti-

mization methods, they have been mostly restricted to uncertainties in short-time scale, e.g.,

intra-hour, other than the uncertainties rooted in the annual growth of RES and load. The

applications of stochastic optimization methods in energy storage expansion are hindered

by the formulation and computation complexities resulting from reformulation tricks and

inherent stochasticity.

Recently, reinforcement learning (RL) has exhibited impressive potential for tackling

numerous scenarios (e.g., online stochastic combinatorial optimization) that are entirely

intractable for SP [109–111]. There is a steady stream of new developments in applying dis-
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ruptive RL techniques in managing energy storage. While a majority of relevant research is

carried out on the short-term energy management of the BES, few studies have attempted to

investigate the application of RL in long-term planning. Ref. [112] devises an RL framework

for the long-term storage expansion of MGs, where a Q-learning algorithm is used to han-

dle the storage price variations. However, Q-learning is limited by the discrete state space

and cannot tackle the continuous RES fluctuation. Ref. [113] extends the work in [112] and

resorts to a deep RL (DRL) technique named double deep Q network (DDQN) to address

the curse of dimensionality by neural networks (NNs) [114]. Despite the enormous progress

in [112, 113], there remains a paucity of descriptions of detailed MG operation dynamics.

For instance, network constraints and associated security constraints are neglected. Further-

more, storage units are typically only expected to offer backup power during power outages,

and their versatility often goes untapped. The factors that restrict the direct applications

of RL on storage expansion for MGs include 1) the decision-making under sophisticated op-

eration dynamics of MGs will lead to the bottleneck due to the size of the action space and

exploration efficiency; 2) it is intractable to handle massive and complicated constraints, by

either simply imposing penalty terms on reward function or leveraging specific constrained

RL techniques.

The focus of this work is to develop strategic and dynamic BES expansion policies that

cater to both short-term operations and long-term planning of MGs, providing adaptable

and flexible planning solutions for the uncertain long-term development of loads and RESs,

as opposed to a fixed plan. The developed policies answer when, where, and how much BES

capacity will be installed within the framework of multi-period planning. A bi-level planning

framework is established, in which a sequential energy storage investment decision is made by

RL for each time period in the upper level, and the lower level is a linear programming (LP)

model involving the daily operation of the MG. The crafted framework effectively sidesteps

the drawbacks of utilizing RL directly, delegating the decision-making of operational sub-

problems with numerous continuous decision variables and complex constraints to lower-level

optimization algorithms. RL is only used for planning problems that involve a small number

of discrete variables, which significantly avoids the bottleneck of the RL action space.

The contributions of this paper are summarized as follows:
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1. In contrast to prevailing stochastic optimization-based planning approaches, this article

proposes a DRL-aided bi-level multi-period BES expansion planning framework to

alleviate the computational complexity and enhance planning efficiency. The proposed

planning framework is a generic framework in which the decision-making for discrete

and continuous decision variables on two-time scales is decoupled.

2. In the upper level, a state-of-the-art DRL agent, i.e., a rainbow algorithm with quantile

regression, is leveraged to determine the installation locations and capacity sequentially.

In the lower level, a tractable LP problem is formulated and solved to fulfill the optimal

operation of MGs, considering the frequency constraints and backup power from BES

for unexpected islanding events. As opposed to the common stochastic optimization

techniques that provide one planning scheme for all uncertainties, the proposed DRL-

aided approach provides dynamic planning policies, adjusting the planning solution

in a rolling way to adapt to volatile future battery prices and long-term RES/load

growth. The adaptivity is attributed to both the adopted Markov chain and the data

augmentation technique.

3. Using the MILP-based strategies as the baselines, case studies on an MG demonstrate

the agility and scalability of the DRL-aided BES expansion solution. The proposed

method can provide near-optimal solutions while fulfilling four orders of magnitude

efficiency improvement compared to the MILP counterparts in case studies.

The remainder of this paper is organized as follows. Section 4.3 presents an integrated

planning problem benchmark with the deterministic formulation. Then, a bi-level BES

planning framework is developed, where the upper-level is a combinatorial decision-making

problem of siting and sizing, and the lower-level is the daily operational problem of the MG.

The siting, sizing, and timing of BES installation are modeled as a Markov decision process

(MDP) in Section 4.4, where Markov chain and data augmentation techniques are used to

diversify the states. Afterward, a DRL with quantile regression is introduced to solve this

MDP. The numerical results are exhibited in Section 4.5, followed by the concluding remarks

in Section 4.6.
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4.2 List of Symbols

Index and set collections:

i/k Subscript for nodes/components

t/d/y Superscript for hours/days/years

Pi/Ci Parent node and children nodes of node i

ENODE-NR Index set for non-root nodes

ENODE-CAN Index set for candidate nodes for storage installation

Edg/X dg
i Index set for DG units in the whole MG/at the i-th node

EBES/XBES
i Index set for BES units in the whole MG/at the i-th node

ELD/X LD
i Index set for loads in the whole MG/at the i-th node

XRES
i /X ext

i Index set for RES and PCC at the i-th node

T /D Set for hour/ typical and extreme day indices

Y Set for year indices.

Parameters:

Ccap,y Capital cost of BES unit at y-th five-year

Dd Number of days represented by typical/extreme day d

rij/xij Resistance/reactance of line between node i and j

V max
i /V min

i Upper/lower nodal voltage magnitude limit

pres,t,d
i Power output forecast of RES

pD,t,d
i /qD,t,d

i Nodal active and reactive power demand

CPCC,t/Cdg,t
i Energy price at PCC/Generation cost of DG

Ce
i /Cr Operation cost of BES unit/Reserve cost of DG

V oLL Value of lost load

ηch / ηdis Charging/discharging efficiency of BES unit

pch
k /p

ch
k Charging/discharging power capacity of BES

pflow Maximum power transmission on line

ϕ Annual discount rate

H Total inertia constant (MW·s/Hz)

ηch / ηdis Charging/discharging efficiency of BES unit
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Variables:

pch,t,d
k /pdis,t,d

k Charging/Discharging active power of BES

SOCt,d
k /Ey

k SOC/energy capacity of battery

pdg,t,d
k /qdg,t,d

k Active and reactive power output of DG

vt,di Squared nodal voltage magnitude

pt,di /qt,di Nodal active/reactive power net injection

pext,t,d/qext,t,d Active/reactive exchange power at PCC

pls,t,d
i /pcur,t,d

i Nodal load shedding/nodal RES curtailment

RU,t,d
k Spinning-up reserve capacity of the DG unit

pflow
j /qflow

j Active/reactive power transmission on line with end node j

pl,t
k /ql,t

k Active/reactive power consumption

pres,t
k Actual power output of RES

4.3 Bi-level multi-period BES expansion planning framework

This section first presents a MILP formulation for the deterministic BES planning prob-

lem as a benchmark. Then, stochastic factors are introduced into this deterministic problem,

which is subsequently decoupled into a bi-level planning framework. Descriptions are pro-

vided for the upper and lower levels, respectively.

4.3.1 Benchmark: deterministic integrated formulation

Given specific long-term and short-term BES, RES, and load scenarios, the deterministic

formulation for the BES expansion problem is given as:

min Jin + Jop =
∑
y∈Y

∑
m∈ENODE-CAN

(1 + ϕ)1−y(CCAP,yE
y

m + Jyop(E
y

m)) (4.1)

s.t. E
y

m ∈ {0, E1, ..., E|Z|−1},∀y ∈ Y ,∀m ∈ ENODE-CAN (4.2)

E
y

i − ziE|Z| ≤ 0, zi ∈ {0, 1}, ∀i ∈ ENODE-CAN (4.3)∑
i∈ENODE-CAN

zi ≤ 1 (4.4)

Daily operation constraints, ∀y ∈ Y , ∀d ∈ D,∀t ∈ T (4.5)
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Upper Level: Dynamic planning policy for long-term uncertainties 

Decision variables (Continuous variables):
Nodal voltage, power flow,
storage charging/discharging, etc.

Actions/Decision variables
(Integer variables):
Capacity and location of batteries

Lower Level: Microgrid operation 

DRL AgentStates/Parameters:
Forecast information;
Latest battery characteristics;
Exsiting Configuration

Min Operation cost
s.t. 
Nodal power injection contraints;
Frequency constraints;
Storage constraints;
Branch flow constraints; 
...

Upper Level
(every five-year)

Lower Level
(daily)

Storage
Configuration

Solved
Operation

Cost

Reward/Objective:
Minimize discounted investment + operation cost 

Two time-scale coordination

extreme and typical days from clustering techniques 

from lower level

dependent on

upper level

Component of bi-level interaction bi-level interaction information flow

to lower level

to upper level

DRL 

LP LP

DRL DRL DRL 

Figure 4.1: DRL-aided bi-level multi-period BES expansion planning framework.
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The objective function (4.1) is made up of investment cost Jin and operation cost Jop, dis-

counted by the period discount rate ϕ. Jin is determined by the product of the capital cost

CCAP,y and newly installed capacity Ey

m. Jop reflects the overall operation costs associated

with (4.5) and E
y

m. Eq.(4.2) is the integer constraint for Ey

m, which restrict that Ey

m can

only select from a finite discrete integer set Z, e.g., {0, 500, 1000, 2000}, over all available

candidate nodes [115,116]. | ∗ | stands for the cardinality of a set. Following the convention

in [112], it is assumed that only one node is chosen for the installation in each planning

period, which is enforced by (4.3) and (4.4). Eq.(4.5) comprises a series of linear constraints

that will be detailed in Sec.4.3.3. The deterministic problem formulated in (4.1) to (4.5) is

a MILP problem, in which the planning and operation problems are integrated.

4.3.2 Upper level: siting and sizing

Given the uncertainty of future BES prices, RESs, and load developments, Fig.4.1 outlines

the proposed bi-level multi-period BES expansion planning framework. In the upper level, a

25-year planning horizon is subdivided into five periods of five years. The horizon and time

interval here are not fixed but can be customized to adapt to different computational tasks.

Adopting a 5-year interval is a common practice in multi-period or multi-stage energy storage

planning studies [98, 112]. The siting and sizing decisions encoded by integer variables Ey

m

are made sequentially. DRL is used to determine the siting and sizing in the upper level

due to the nature of the problem, which has three key properties. Firstly, the problem

is combinatorial optimization, which DRL can handle due to its capability to explore the

solution space efficiently. Secondly, the problem is multi-period decision-making, which can

be easily modeled as an MDP and subsequently solved by DRL algorithms. Lastly, the

problem is a stochastic combinatorial optimization problem, which DRL algorithms can

handle by maximizing the expected return. Supervised or semi-supervised deep learning

techniques require good-quality labeled solutions, which are either unavailable or expensive to

obtain in planning problems. More details on using DRL are elaborated in Sec.4.4. In Fig.4.1,

the components that involve interaction between bi-levels are highlighted in red dashed boxes.

The black dashed arrows explicitly show the parameters exchanged between the upper and

lower levels. The upper level outputs the BES size and location of the MG as parameters
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for the lower level LP optimization problem. The optimization objective in the lower level,

combined with BES investment cost, becomes the reward signal for the upper level DRL

problem. All the required physical models are placed in the lower level, while the upper level

is entirely data-driven. Our proposed framework has two stages: offline learning and online

inference. In the context of this article, whether it is a model-based optimization technique

or DRL-based approach, we define online decision-making as the process of providing a

planning scheme given a specific set of future storage prices, renewables, and load profiles.

To distinguish the offline RL learning stage from the subsequent online decision-making

stage, we refer to the online decision-making stage as inference, following the convention

in [117]. Optimal site selection and battery capacity decisions are only made during the

online inference stage. Physical models are only needed as reward signals in offline learning.

When switching to the inference stage, only the upper layer is needed, which enables a

complete data-driven operation. Since the inference stage is performed in a rolling, highly

efficient manner, it could be carried out online.

In contrast to the formulation in (4.1) to (4.5), the proposed bi-level framework decom-

poses the decision-making tasks with two different time scales: every five years and daily.

The framework features 1) the decoupling of discrete and continuous variables, which enables

the introduction and learning of DRL; 2) the decoupling and coordination of problems in

two time scales; and 3) adaptability to stochastic scenarios, which is attributed to the use

of the data-driven solution.

4.3.3 Lower level: islanding-safe operation problem

Receiving the proposed BES configuration from the upper level, the MG operation prob-

lem for one period is formulated and solved with this specific BES configuration. Specifically,

we resort to an LP to minimize the summation of daily operation costs while satisfying a

series of operational constraints. To alleviate the computational burden, some typical/ex-

treme days are selected to represent the RES/load daily profiles in one period. In addition to

common MG operational constraints, MG islanding-induced frequency constraints are taken

into account to enforce the reliability requirements under unexpected MG islanding events.

Eq.(4.6) presents the objective function for the operation problem, which is calculated by
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summing up relevant costs for all typical/extreme days within a five-year period. Eq.(4.6)

is weighted according to the portion of each typical/extreme day. The first term is the

cost/revenue related to importing/exporting electricity via the point of common coupling

(PCC) of the MG. The second term denotes the generation cost of the controllable distributed

generator (DG) units, e.g., mini-size combined cycle plants, whereas the third term is the

operation cost of charging/discharging storage. The fourth term represents the primary

frequency response (PFR) cost of DGs, followed by the final term that sums up the penalties

on the unserved load.

min Jyop(E
y

m) =
∑
d∈D

Dd{
∑
t∈T

[CPCC,tpext,t,d +
∑
k∈EDG

Cdg,t
k pdg,t,d

k

+
∑

k∈EBES

Ce(pdis,t,d
k + pch,t,d

k ) +
∑
k∈EDG

CrRU,t,d
k

+
∑
k∈ELD

V oLLpls,t,d
k ]}

(4.6)

It is noted that the equations below in the rest of this subsection are the daily operational

constraints, of which the superscript d is omitted for the sake of brevity.

4.3.3.1 Daily Operation Constraints

The MG with radial topology is subject to a linearized branch flow model, which can be

written as follows for all i in ENODE-NR and t in T [118]:

pti =
∑
j∈Ci

pflow,t
j − pflow,t

i , qti =
∑
j∈Ci

qflow,t
j − qflow,t

i , (4.7a)

vti = vtj − 2
(
ri,jp

flow,t
j + xi,jq

flow,t
j

)
, ∀j ∈ Pi (4.7b)

where (4.7a) enforces the nodal power balance, and (4.7b) shows the relation of squared

nodal voltage magnitude between neighboring nodes.
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For t ∈ T and i ∈ ENODE, the nodal power injection is determined by:

∑
k∈XEXT

i

pext,t
k +

∑
k∈Xdg

i

pdg,t
k +

∑
k∈XRES

i

pres,t
k

+
∑

k∈XBES
i

pdis,t
k −

∑
k∈XBES

i

pch,t
k −

∑
k∈XLD

i

pl,t
k = pti

(4.8)

∑
k∈XEXT

i

qext,t
k +

∑
k∈Xdg

i

qdg,t
k −

∑
k∈XLD

i

ql,t
k = qti (4.9)

The constraints imposed on line flows for i ∈ ENODE-NR and t ∈ T are:

−pflow
i ≤ pflow,t

i ≤ pflow
i (4.10a)

−qflow
i ≤ qflow,t

i ≤ qflow
i (4.10b)

The limits on the amount of load shedding for i ∈ ENODE and t ∈ T are:

0 ≤ pls,t
k ≤ pD,t

k , ∀k ∈ X LD
i (4.11a)

pl,t
k = pD,t

k − pls,t
k , ∀k ∈ X LD

i (4.11b)

The limits on the amount of RES curtailment for i ∈ ENODE and t ∈ T are:

0 ≤ pcur,t
k ≤ pres,t

k , ∀k ∈ XRES
i (4.12a)

pres,t
k = pres,t

k − pcur,t
k , ∀k ∈ XRES

i (4.12b)

The SOC evolution of BES is described by the following equations for k ∈ EBES:

SOC1
k = SOCT

k =
Ek
2

(4.13a)

SOCt
k = SOCt−1

k + pch,t
k ηch − pdis,t

k

ηdis , t = 2, 3, ..., T (4.13b)

Note that the explicit constraints for averting simultaneous charging and discharging of

the BES are waived because of the incorporation of cost for charging and discharging in the
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objective function (4.6) [119].

The limit on the amount of charging/discharging power of BES for t ∈ T and k ∈ EBES:

0 ≤ pdis,t
k ≤ pdis

k (4.14a)

0 ≤ pch,t
k ≤ pch

k (4.14b)

Also, for i ∈ ENODE, vi should be within [VMIN
i ,VMAX

i ].

4.3.3.2 Frequency-induced Constraints

The disruptions that occurred outside the MG may give rise to the sudden disconnection

of the MG from the external grid. The loss of the imported/exported power through the

PCC caused by the unexpected islanding will lead to the instant power imbalance pext,t. This

power mismatch will jeopardize the frequency stability of the operation of the MG [120]. This

study focuses on the scenario of losing imported power, resulting in the plunging of frequency

as shown in the first-order swing equation [121]:

2H
d∆f(t)

dt
=
∑

k∈EBES

∆pdis
k +

∑
k∈EDG

∆pdg
k −∆pext (4.15)

where the rate of change of frequency is dependent on the inertia constant H, the rapid

supportive response from battery ∆pdis
k , the droop-based automatic additional output of

controllable DG ∆pdg
k , and the power mismatch caused by the islanding event ∆pext.

To cope with the unexpected frequency deviation, BES units can respond and output

power to the full discharging capacity in milliseconds regardless of whether it is being charged

or discharged [122]:

∆ptk = pdis
k − pdis,t

k + pch,t
k ,∀k ∈ EBES (4.16)

With the support of BES units, the power mismatch is mitigated to:

∆pext,t = pext,t −
∑

k∈EBES

∆ptk (4.17)

The response of the BES units to back up the power mismatch can be divided into three
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phases [122]. First, the output of BES units is boosted to the maximum to perform the

inertial frequency control within an inertia response timeframe ∆tinertia (e.g., 5s). Then,

PFR from controllable DGs starts to take effect after DGs exceed the governor deadband,

during which the BES units retain the full discharging power. This PFR timeframe is denoted

as ∆tPFR. The frequency nadir will be reached during the PFR timeframe. A common value

for ∆tPFR is 25s. Finally, the secondary frequency response will be activated to bring the

frequency back to the normal range. This timeframe is denoted as ∆tSFR, and its typical

value is 300s. During tSFR, the discharging of BES units is decreased linearly to zero.

The potential SOC variance during the above three phases can be derived by:

∆SOCk = pdis
k (∆tinertia +∆tPFR + 0.5∆tSFR) (4.18)

The operation of the BES should ensure the available SOC can satisfy the potential SOC

decrease:

SOCt
k ≥ ∆SOCk,∀t ∈ T ,∀k ∈ EBES (4.19)

An essential metric for the frequency transient process during the MG islanding ride-

through is the rate of change of the frequency. The post-contingency initial rate of change

of the frequency RoCoF should be maintained under the maximal limit RoCoF to avoid

triggering relay [120]:

RoCoF =
d∆f(t)

dt
=

∆pext,t

2H
≤ RoCoF (4.20)

The frequency nadir is the other vital frequency metric. It corresponds to the lowest

point of the frequency dynamical process. Operators of the MG have an indicator for the

lowest acceptable frequency fmin. The violation of this indicator will destabilize the MG,

leading to under-frequency load-shedding and even large-scale frequency collapse.

The timely delivery of the PFR from the controllable DGs to address the power mismatch

enforces:

RU,t
i ∆pext,t ≤ 2λiH

(
f 0 − fmin − fdb

)
,∀i ∈ EDG (4.21)

where λi is the inherent ramping rate for the governor of i-th DG. f 0 and fdb are the nominal

frequency and the dead band frequency of generators, respectively.

83



An adequate primary reserve is needed to cover the power mismatch, and it is a necessary

condition for satisfying the frequency nadir requirement:

∑
k∈EDG

RU,t
k ≥ ∆pext,t (4.22)

Eqs.(4.21) and (4.22) make up a sufficient condition for maintaining frequency nadir

above the predefined fmin [121].

The limits on the primary reserve of the DGs are:

0 ≤ RU,t
k ≤ pdg

k − pdg,t
k , ∀k ∈ EDG,∀t ∈ T (4.23)

The only nonlinear constraint among Eqs. (4.7) to (4.23) is (4.21), which contains a

bilinear term. A McCormick envelope can replace this bilinear term to get a piecewise

linear relaxation. Interested readers are referred to the appendix of [122] for details of the

reformulation technique. Introducing auxiliary variables W dis,t
i,k = RU,t

i pdis,t
k and W ch,t

i,k =

RU,t
i pch,t

k , (4.21) is substituted by:

W ch,t
i,k − pdg

i p
ch,t
k − pch

k R
U,t
i + pdg

i p
ch
k ≥ 0 (4.24a)

W ch,t
i,k ≤ pch

k R
U,t
i , W ch,t

i,k ≤ pdg
i p

ch,t
k (4.24b)

W dis,t
i,k − pdg

i p
dis,t
k − pdis

k RU,t
i + pdg

i p
dis
k ≥ 0 (4.24c)

W dis,t
i,k ≤ pdis

k RU,t
i , W dis,t

i,k ≤ pdg
i p

dis,t
k (4.24d)

4.4 Markov decision processes and DRL

This section designs a specific MDP for the siting, sizing, and timing problem in the

upper-level planning problem. Markov chain and data augmentation (DA) techniques are

also introduced to capture future uncertainties and enrich the variance of state vectors. A

DRL algorithm based on quantile regression is then introduced to learn the optimal planning

policy for the designed MDP.
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4.4.1 Markov decision processes

MDP is specified by a 5-tuple (S,A,P(sy+1 = s′ | sy = s, ay = a), R(s, a), γ), where S
is the state space, A is the action space, P is the state transition probability, R(s, a) is

the reward function, and γ is the reward discount factor. The design rationale for each

component is clarified below.

4.4.1.1 State space

States are resources and information needed for decision-making. The state space is

supposed to reflect the current operating conditions and projections for the next upcoming

period. As such, the state vector is defined as:

sy :=
(
CCAP,y, ηch,y, ηdis,y, ψres,y

mean, ψ
res,y
max , ψ

res,y
min ,

ψl,y
mean, ψ

l,y
max, ψ

l,y
min,

y−1∑
n=1

∑
m∈ENODE-CAN

E
n

m,Π
y)

(4.25)

where ψres,y
mean, ψres,y

max , and ψres,y
min are the mean/maximum/minimum normalized RES capacity

projections for the y-th five-year period, respectively. Similarly, ψl,y
mean, ψl,y

max, and ψl,y
min are the

mean/maximum/minimum normalized load ratio projections for the y-th five-year period,

respectively.
∑y−1

n=1

∑
m∈ENODE-CAN E

n

m denotes the storage capacity that has been installed in

the MG by the y-th five-year period. Πy is an installed location indicating vector with each

element corresponding to one candidate location. The element in Πy is one if at least one

BES has been installed at the corresponding location, and zero otherwise.

4.4.1.2 Action space

The DRL agent decides the action (i.e., siting and sizing scheme for the current five-year

period) to take upon procuring the state vector in (4.25). The time scale for each action to

be taken is five-year. As the planning horizon is 25 years, there are five actions and time

steps in one episode.

Consistent with Eq.(4.2), the discrete action space is leveraged in this study, and its

dimension is set to Nact = |Z| × |ENODE-CAN|. The design of the action space with discrete

capacity levels aims to avoid the introduction of hybrid action spaces and to consider the

actual minimum capacity of the wholesale battery pack. The number of capacity levels,
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the capacity range, and the number of candidate nodes should be determined based on the

specific system and parameters to strike an equilibrium between efficient exploration of the

DRL agent and model granularity.

An arbitrary point n in this discrete action space can be mapped to the siting and sizing

decision by:
i = nmod (Z), j = n div (Z),

E
y

j = Ei, E
y

m = 0, ∀m ∈ ENODE-CAN,m ̸= j
(4.26)

where mod and div are the remainder and quotient operators, respectively. For example,

suppose there are six candidate locations ({2, 7, 21, 24, 26, 30}) and four candidate capacities

({0, 500, 1000, 2000}), then Nact = 24. If the action outputted by the DRL agent is 18, then

i = 2 and j = 4. According to the transformation in Eq. (4.26), we can obtain the decision

to install 1000kWh at node 26.

4.4.1.3 State transition probability and data augmentation

State transition probability captures all system dynamics that govern the environment,

namely the long-term planning problem. As the expansion project spans nearly 25 years in

this study, a stationary or constant growth rate assumption on the variations of the future

storage price, RES capacity, and load amount employed in [102] is no longer valid. In terms

of future storage price, it is more practical to describe the downtrend using a discrete-time

Markov chain (DTMC). DTMC is a discrete event sequence in which the occurrence of the

event at the next time step depends only on the current state. The transition of the events in

a DTMC is characterized by transition probability. Fig.4.2 exhibits a demonstrative DTMC

for future battery storage price based on the data from [3]. The three states in each layer

except in layer 0 represent the low, middle, and high projections for the capital costs of BES

units, respectively. The numeric values on the unidirectional edges between nodes are the

transition probabilities between storage prices. This DTMC characterizes the probability

transition of Ccap in the state vector. During an episode, the collection of Ccap is a sample

of this DTMC.

The calendar aging of the installed BES units is described by introducing an annual

1% decline in energy capacity. The transition of the charging and discharging efficiency is
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Figure 4.2: A demonstrative DTMC for battery storage price.

assumed to be deterministic and an uptrend to reflect future technological advancement. For

instance, the transition trajectories for ηch and ηdis are set to [0.9, 0.92, 0.94, 0.95, 0.96] and

[0.92, 0.94, 0.96, 0.97, 0.98], respectively, in the case studies.

The transition of states associated with installed capacity and installed locations is de-

pendent completely on the previous decisions made by the DRL agent.

Describing the evolution of the load and RES profiles in the coming decades by one or

multiple curves (or trajectories) are not adequate enough. This study leverages the DA

technique to generate abundant and diversified load and RES profiles, which are believed

to be capable of fully representing potential development scenarios. Another reason for the

adoption of DA is that it is essential to the generalization ability of the DRL agent. It is of

paramount importance to have a DRL agent that is adaptive to uncertainty and can produce

near-optimal planning decisions simultaneously.

The DA for future RES and load development is implemented via Algorithm 5, which can

output a stochastic monotonically increasing list to compose a complete RES/load increase

trajectory. The core of Algorithm 5 is that the conditional probability distribution of oi+1

given the value of oi is a uniform distribution U[O,oi], where oi is also a random variable that

follows a uniform distribution. An example of a RES evolution trajectory is demonstrated

as Lres = [1, 1.1, 1.2, 1.25, 1.42], where the installed capacity of RES in the third five-year

period is 20% higher than that in the first five-year period. Based on the generated tra-
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jectory L, a complete set of profiles for the next 25 years are produced by multiplying the

RES and load profiles from a benchmark year with each growth rate from L. To further

diversify the learning data and account for the intra-day uncertainty of RES and load, these

artificial profiles are perturbed by adding Gaussian noises derived from a standard Gaussian

distribution and re-scaled by the magnitude of the original value. The O, O, and the pro-

files of the benchmark year jointly determine the future profiles considered in the planning

horizon. Users can tune them to accommodate the needs of different systems and scenarios.

In the learning phase, the statistical quantities related to RES and load in the state vector

are obtained based on those artificial future profiles. In the inference phase, these statistical

quantities can be obtained through the latest forecasting data.

Algorithm 5 Increasing sequence generator
Input:
|Y|, O maximum increase ratio, O minimum increase ratio

Output:
Monotonically increasing list L with |Y| elements

1: Initialize an empty list L, U = O, B = O
2: for each i ∈ [0, |Y|] do
3: oi = U[B,U ].sample(), where U[B,U ] is a continuous uniform distribution with minimum

and maximum parameters B and U .
4: L.append(oi)
5: U = oi
6: end for
7: Reverse the ordering of L
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Figure 4.3: Factors affecting state transition.

4.4.1.4 Reward function and reward discount factor

The design of the reward function is straightforward. It comprises the investment cost

and the subsequent operation of the current period, weighted by ϕ:

ry = −(1 + ϕ)1−y

(
Jyop +

∑
m∈ENODE-CAN

CCAP,yE
y

m

)
(4.27)

The reward discount factor enables DRL agents to adjust their behavior, focusing on

either long-term or short-term goals. The reward discount factor is set as a scalar γ smaller

than one in this study.

4.4.2 Distributional DRL

Rainbow algorithm is a state-of-the-art DRL algorithm proposed by Deepmind for a

discrete action space [123]. It synergistically combines five technical extensions along with the

DDQN: prioritized experience replay (PER), dueling network, noisy network, distributional

DRL, and N-step learning. To accelerate and stabilize the learning of RL algorithms, the N-

step learning technique uses multiple rewards for learning. More details on these extensions

can be found in [123]. This work advances the vanilla rainbow algorithm by incorporating

the quantile regression DQN (QR-DQN) technique.

4.4.2.1 Double deep Q network

Building on the Q-learning algorithm that relies on the optimal action-value function Q⋆

to select the optimal action, deep Q network (DQN) approximates the optimal action-value
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function using NN Q (s, a;w) parameterized by w. Temporal difference (TD) learning is

employed to train Q (s, a;w) in the DQN.

Per TD learning, TD error δt constitutes the loss function to the DQN: δy = Q (sy, ay;w)−
ζy, where ζy is denoted as the TD target. DDQN creates a target network Q (s, a;w−) to

evaluate the TD target ζy := ry + γ · Q (sy+1, a
⋆;w−), where a⋆ denotes the optimal action

for next state. The selection of a⋆ is according to DQN: a⋆ = argmax
a

Q (sy+1, a;w).

4.4.2.2 Distributional DRL with Quantile Regression

As opposed to regular DRL algorithms that learn the Monte Carlo approximation of

the mean of the optimal value function, distributional DRL algorithms learn the underlying

distribution. It is believed that capturing the landscape of the values can improve the

performance of the DRL agent [123]. This work replaces the categorical DQN adopted

in [123] with QR-DQN proposed in [124], which outperforms the categorical DQN because it

is not bounded to a specific range of values and thus can adapt to a broader range of states.

QR-DQN learns a parameterized distribution on fixed quantiles. If the number of quan-

tiles is specified as N , the probability for each quantile is 1
N

. The quantile vector is denoted

as τ̂ , in which each element is a quantile denoted by τ̂i and τ̂i ∈ [0, 1]. An example of τ̂ is

[0.25, 0.50, 0.75, 1] when N = 4. To set the outputs of the QR-DQN to the quantile values

corresponding to each action, the output layer of Q network is expanded to N × A, which

means every N neurons corresponds to one action:

Q(s, a) := E[θ(s, a)] =
1

N

N∑
i=1

θi(s, a) (4.28)

where θi is i-th support, i.e., the i-th quantile value for one action value.

A quantile Huber loss function ρκτ̂ for TD error δ is designed to update the NN:

ρκτ̂ (δ) =
∣∣τ̂ −Υ{δ<0}

∣∣Lκ(δ) (4.29)

Lκ(δ) =


1
2
δ2, if |δ| ≤ κ

κ
(
|δ| − 1

2
κ
)
, otherwise

(4.30)

90



Lκ(δ) represents a Huber loss. Υ{δ<0} denotes an indicator vector, where its elements are

1 when δ < 0 and 0 otherwise.
∣∣τ̂ −Υ{δ<0}

∣∣ imposes an asymmetric adjustment to Lκ(δ),
penalizing overestimated δ with weight 1 − τ and underestimated δ with weight τ . κ is a

hyperparameter and is set to 1 in this study.

To derive the TD error δ in QR-DQN, the target action value distribution is approximated

by using the Bellman optimality operator, which yields:

T θ(s, a) := r(sy, ay)

+ γθ
(
sy+1, argmax

a′
Q (sy+1, a

′;w) ;w−
) (4.31)

where T denotes TD target operator. Note that the DDQN is integrated here by using

different NNs for action selection and target distribution evaluation.

Combining (4.28) to (4.31) yields the final loss function:

Lτ̂QR(θ) :=
N∑
i=1

Ej
[
ρκτ̂i (T θj − θi)

]
=

N∑
i=1

1

N

N∑
j=1

ρκτ̂i (T θj − θi)
(4.32)

4.4.2.3 Implementation

Algorithm 6 outlines the implementation of the proposed bi-level BES expansion planning

framework using the Rainbow algorithm with quantile regression (Rainbow-QR). Specifically,

steps 7, 8, and 15 in Algorithm 6 explicitly explain the information exchanged between the

upper and lower levels.

4.5 Numerical Results

This section is dedicated to the case studies on a 33-bus radial MG to demonstrate the

effectiveness of the proposed bi-level BES planning framework. Test configuration, compar-

ative experiments, scheme analysis, and generalizability verification are presented, respec-

tively.
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Algorithm 6 Rainbow-QR algorithm for the bi-level BES expansion planning
1: Initialize original and target QR-DQNs w and w−; y := 0
2: for i ∈ [0, Nlearn] do
3: if y == 0 then
4: Sample a BES price trajectory from the DTMC in Fig.4.2.
5: Generate a RES/load increase trajectory by Algorithm 5.
6: end if
7: Upper level: Form sy as in (4.25) and select action according to ay =

argmaxa′ Q (sy, a
′;w). The BES capacity and site decoded from ay are sent to the

lower level.
8: Lower level: Using the existing storage configuration as input parameters, solve the

LP problem formulated in (4.6) to (4.20), and (4.22) to (4.24d) to obtain the optimal
operation cost, which is sent back to the upper level to compose the reward function
ry.

9: Form sy+1 with ay and trajectories from steps 4 and 5.
10: Store a transition (sy, ay, ry, sy+1) in the buffer.
11: y ← y + 1.
12: if y == |Y| then
13: y ← 0.
14: end if
15: Upper level: Evaluate the QR loss function in (4.32) with the reward from the lower

level. Update the planning policy w with an optimizer.
16: Update target QR-DQN w− ← w every Nupdate

17: end for
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Figure 4.4: IEEE 33-bus MG with candidate spots for storage, controllable DGs, and renew-
able generation.

4.5.1 Test configuration

Fig.4.4 shows the layout and components of the MG modified from the IEEE 33-bus

system, which integrates three dispatchable DGs, one PV cluster, and one wind cluster.

The baseline load is 3.7MW/2.3MVar, and the initial RES penetration ratio is set as 30%.

The network parameters, DRL hyperparameters, and optimization-related parameters are

provided in [125].

The BES projection data comes from [3], and is shown in Fig.4.2. We collect hourly

RES and load profiles over a year from PJM and National Renewable Energy Laboratory,

respectively. These data are integrated to serve as the benchmark data, and they are made

publicly available on [125]. The stochastic multi-period growth and short-term variation are

added to the benchmark data to create the learning data for the DRL agents. Fig.4.5 shows

a example of some learning data.

To reduce the computational complexity of the optimal operation problem, typical and

extreme days are selected and displayed in Table 4.2. First, the optimal operation problem

based on the baseline data is solved to calculate the daily cost for each day. Statistical

analysis of quartiles is performed on the calculated daily costs to select extreme days. After

excluding these extreme days, a k-medoids method is employed to pick typical days based
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Figure 4.5: Upper: period-level price, RES, and load trajectories; Lower: examples of hourly
wind, solar, and load profiles with variation intervals

Table 4.2: Typical and extreme days.
Typical days

(day index:counts)
(299:135, 186:108, 118:45,

95:40, 101:18, 143:4)
Extreme days

(day index:counts)
(106:1, 122:1, 127-129:1, 154-155:1,

161-164:1, 167-168:1, 188-189:1)

on the cost-based approach [126]. The computation of the optimal operation problem in the

original 365 days takes 6.3s, and the evaluation of the objective function obtains $66,003. In

contrast, it takes 0.4s for the computation on the set of typical and extreme days, reaching

the objective value $65,931. The computational efficiency is boosted by 16 times while the

relative error stays about 0.1%.
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4.5.2 Learning performance

Fig.4.6 reports the moving average curve over 500 episodes of the mean episode reward

of the rainbow DRL agents during learning, benchmarked by the DDQN agent and Proxi-

mal Policy Optimization (PPO) agent. PPO is a state-of-the-art on-policy DRL algorithm

with an actor-critic architecture. The shadowed areas denote the standard deviation of the

performance over three random seeds. The candidate nodes are {2, 7, 26, 30}. Note that the

negative value of the reward refers to the discounted total cost of the planning scheme scaled

by 106. With the rise of the number of learning episodes, all four curves rise dramatically in

the early phase and converge after about 8000 episodes, demonstrating the feasibility of the

coordinated DRL-optimization framework. Thanks to the remarkable exploration capability,

the rainbow curve transcends the DDQN and the PPO at about 1,500 and 500 episodes, de-

spite a slightly worse initial point. The mean episode reward of the rainbow agent converges

to 1.228, which is 9% and 6% better than those of the DDQN and PPO agents, respectively.

Also, the rainbow agent exhibits impressive convergence speed (1.56×10−4 per episode) com-

pared to its opponents (DDQN: 7.99 × 10−5, PPO: 8.99 × 10−5) during episode 0 to 5,000.

This is attributed to the adopted N-step learning and PER technique, etc. The rainbow

algorithm with quantile regression, marked as Rainbow-QR in Fig.4.6, achieves the best re-

sult among all algorithms. Compared with the original rainbow algorithm, the rainbow-QR

has a better mean episode reward (-1.217) and smaller variance during learning, owing to

removing the bound on the value distribution. For this planning problem, the Rainbow-QR

agent takes approximately 11,000 seconds per 2000 episodes. Moreover, it can be seen from

Fig.4.6 that after approximately 14,000 seconds (about the 2545th episode), the agent has

already learned the optimal planning policies.

4.5.3 Verification of near-optimality and solution generation efficiency

This subsection carries out comparative experiments to demonstrate the effectiveness of

the proposed DRL method in terms of both near-optimality and solution-generation effi-

ciency. DRL, optimization solver, and Benders decomposition (BD) are applied to solve

the MILP problem formulated in equations (4.1) to (4.5), assuming a static growth rate of

future load/RES and fixed future battery prices (i.e., [345, 242, 198, 186, 174] in this case
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Figure 4.6: Various DRL learning performance intervals on episode reward

study). It is worth mentioning that, although these assumptions are used in this subsection,

the DRL method is not limited to them, as the DRL method produces a stochastic planning

policy rather than a fixed planning solution.

The implementation of the BD algorithm is based on [102]. In the BD approach, the

master problem involves integer decision variables for battery capacity, location, and tim-

ing, and is an integer programming problem. The subproblem is an LP problem that only

involves continuous decision variables for the microgrid’s daily operation. Although the com-

putational framework of BD and our proposed bi-level framework are similar in decoupling

the decision-making of discrete and continuous variables, the proposed framework has the

advantage that after offline learning, the upper and lower levels are decoupled during online

inference, and only the upper layer that generates planning decisions is needed. On the other

hand, the master problem and subproblem of the BD approach are closely intertwined, and

these two problems cannot run independently.

The MILP solver approach based on the deterministic integrated formulation solves de-

cisions for multiple time periods simultaneously. This MILP planning problem has 663,121

constraints and 572,896 variables, where 572,816 of them are continuous variables, and 80

of them are integer variables. When switching to the DRL method, an episode consisted of

five steps. For the lower-level LP problem at a single step, there are approximately 74,760
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constraints and 76,251 continuous variables. The average solving time for this is 0.6 seconds.

Table 4.3 compares the expansion decisions, total costs, and computational efficiencies

of the DRL, MILP solver, and BD methods in three scenarios. The three scenarios are

defined based on the magnitude of the net load growth rate. The table shows the planning

decisions made for different years in a multi-period manner, starting from the 0th year

and up to the 20th year. For example, in Scenario 1, DRL, solver, and BD recommend

installing a 1000kWh BES at node 26 in the tenth year without the need to install BES

at other time periods to save costs. It is observed that the expansion plans provided by

these three methods are very similar, with completely consistent choices in terms of timing

and capacity. They all tend to install at nodes 26 and 30, which are on the same branch

of the test system. Additionally, the total costs consisting of investment and operational

costs resulting from the planning solutions of these three methods are exactly the same.

The higher net load in Scenario 3 also drives these three methods to install 500kWh of

battery storage in the 15th year to hedge against potential power shortages. The efficiency

of solution generation, ranked from highest to lowest, is DRL, MILP solver, and BD. Owing

to the decoupling of the upper and lower levels, combined with the rapid matrix computation

of neural networks, the DRL approach is over 40,000 times more efficient than the solver-

based approach across all three scenarios. On the other hand, the computation time of BD

is 3.7 to 5.6 times that of the MILP solver (i.e., Gurobi 9.5.1), and much higher than that of

the DRL method. Although in the BD framework, the decomposition of the master problem

and the subproblem reduces the computational complexity of each problem, the trade-off is

the need for iterative computations that are time-consuming. Overall, these results confirm

that the proposed DRL has a great potential for solving large-scale planning problems.

It can significantly improve the efficiency of generating planning solutions while achieving

optimization performance comparable to other model-based optimization techniques.

Discussion: A five-year interval in the case studies is chosen to highlight the impact

of the decreasing cost of battery energy storage on the planning scheme. Based on the

storage capital cost projection data obtained from [3], the reduction in cost every five years

is significant, which can have a huge impact on planning decision and help showcase the

effectiveness of the proposed approach. It is noted that the proposed planning framework can
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Table 4.3: Comparison of Expansion Decisions, Costs, and Computation Time for DRL and
MILP.

Scenario I
(low net load)

Scenario II
(intermediate net load)

Scenario III
(high net load)

RES annual growth rate 5% 2% 1%

Load annual growth rate 3% 2% 2.5%

Method DRL MILP
solver BD* DRL MILP

solver BD* DRL MILP
solver BD*

Multi-period expansion decisions
Format: capacity (kWh) @ node,

- indicates no installation

0th year - - - - - - - - -

5th year - - - - - - - - -

10th year 1000@26 1000@26 1000@26 1000@26 1000@26 1000@30 1000@26 1000@30 1000@30

15th year - - - - - - 500@26 500@26 500@30

20th year - - - - - - - - -

Total Cost (106$) 1.69 1.69 1.69 1.49 1.49 1.49 1.81 1.81 1.81

Time required for generating decisions (s)† 0.004 167.032
total: 776.772
master: 14.776
sub: 761.996

0.004 226.467
total: 834.719
master:14.913
sub: 819.806

0.004 293.337
total: 1635.480
master: 48.831
sub: 1586.648

* BD: benders decomposition; †Average over three independent runs.

fully accommodate other decision intervals, e.g., 1 or 3 years, with almost no modifications

needed.

4.5.4 Scalability

The next part of the experiment attempts to investigate the scalability and agility of

the proposed method and MILP method by gradually increasing the number of candidate

nodes, which amounts to increasing the dimension of feasible policy space. Fig.4.7 plots

the training curves for planning problems with four ({2, 7, 26, 30}), six ({2, 7, 21, 24, 26, 30}),
eight ({2, 7, 12, 15, 21, 24, 26, 30}), and ten({2, 4, 6, 7, 12, 15, 21, 24, 26, 30}) candidate nodes,

respectively. Comparing the results in Fig.4.7, it can be seen that these four curves performed

differently before 4000 episodes, but after that, they almost converged to the same planning

policy. The results before 4000 episodes reveal that the agent with a smaller feasible policy

space has a better initial solution and can converge to the optimal policy faster in general.

The comparisons are also conducted in the deployment phase of the trained DRL agent to

evaluate the scalability of the computation efficiency, which are shown in Table 4.4. The

mean and standard deviation of the results are derived from three independent runs. As the

number of candidate nodes increases from four to ten, the time consumption for the DRL

agent to formulate decisions escalates by 61%. In contrast, its MILP counterpart witnesses
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Table 4.4: Computation efficiency of the DRL and MILP approach.

Method Number of candidate nodes
4 6 8 10

DRL 4.16 ± 0.11 ms 4.37 ± 0.10 ms 5.03 ± 0.28 ms 6.68 ± 0.18 ms
MILP solver 118.7±5.0 s 229.7±1.5 s 438.3±2.5 s 673.3±11.0 s
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Figure 4.7: Training curves of different numbers of candidate nodes.

a surge of 466%. More candidate locations result in a larger action space of the DRL agent,

which then leads to an increase in the size of the matrix computation involved in the NNs.

Table 4.4 and Fig.4.7 jointly demonstrate the proposed DRL BES expansion framework is

agile and scalable.

4.5.5 Generalizability to uncertain future scenarios

The use of DRL provides a more flexible and robust solution to storage planning compared

to traditional optimization techniques. Most optimization techniques provide a deterministic

and fixed planning solution and assume that this planning solution can adapt to all future

scenarios. In contrast, DRL can continuously learn from experience and adapt to changing

circumstances by providing a dynamic and stochastic planning policy. This section demon-
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strates that the DRL agent can adapt to new and unforeseen scenarios without requiring

additional learning.

For illustration purposes, Table 4.5 enumerates five future trajectory sets alongside their

respective BES expansion strategies. Scenario #0 serves as a control group herein. The

decision-making process is carried out in a rolling manner. The rolling decision process adds

flexibility to the decision-making because the planning scheme is not determined all at once,

but dynamically adjusted over time as uncertain factors change. For example, consider

scenarios 0 and 1 in Table IV. In Scenario #0, the future energy storage prices are [345,

242, 198, 186, 174], while in Scenario #1, they decrease significantly to [345, 212, 143, 129,

115]. In Scenario #1, the energy storage prices decrease by 0%, 12%, 28%, 31%, and 34%,

respectively, compared to Scenario #0, for each decision interval. In Scenario #1, upon

encountering a price of 129 in the fourth time step, the DRL agent discerns the price drop’s

magnitude surpassing previous instances. As a result, it opts to introduce an added 500kWh

of energy storage immediately to capitalize on this price reduction. The DRL agent also

has a long-term perspective, knowing that even though the price drop is the largest in the

fifth time step, installing storage in the fourth time step can allow it to enjoy the benefits

of energy storage as early as possible, reducing the need to curtail RES and load shedding

during the fourth time slot. In contrast, the opposite suggestion is given for Scenario #2,

which is a pessimistic scenario. The installation in the fourth period is canceled due to the

high investment cost. Since the prices stay unchanged, the agent judiciously suggests the

installation in the third period rather than the fourth period to take advantage of the BES

units earlier.

The impacts of different generation adequacy levels are investigated in Scenario #3 and

Scenario #4, which represent the scenarios with and without adequate power supply, respec-

tively. In Scenario #3, no BES unit is proposed to be built. On the contrary, an additional

500kWh BES is proposed to install in the fourth period relative to the baseline. Moreover,

due to the massive development of RES, the MG chooses to export power to the external

grids at all times in Scenario #3, which earns $349,373. However, for Scenario #4, the MG

has to spend $634,402 on importing power.
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Table 4.5: Planning solutions provided by the DRL agent under various scenarios.

Scenario Lprice Lres Lload

#0: Baseline [345, 242, 198, 186, 174][1, 1.1, 1.2, 1.25, 1.42] [1, 1.2, 1.3, 1.4, 1.5]
#1: Storage price decrease [345, 212, 143, 129, 115][1, 1.1, 1.2, 1.25, 1.42] [1, 1.2, 1.3, 1.4, 1.5]
#2: Storage price increase [345, 345, 345, 345, 345][1, 1.1, 1.2, 1.25, 1.42] [1, 1.2, 1.3, 1.4, 1.5]

#3: RES increase, load decrease[345, 242, 198, 186, 174] [1, 1.2, 1.4, 1.6, 1.8] [1, 1.05, 1.1, 1.15, 1.2]
#4: RES decrease, load increase[345, 242, 198, 186, 174][1, 1.05, 1.1, 1.15, 1.2] [1, 1.2, 1.4, 1.6, 1.8]

Scenario Scheme {location: capacity (kWh)} Total Cost (106$)
0th year 5th year 10th year15th year20th year

#0: Baseline - 26@1000 26@500 30@500 - 1.75
#1: Storage price decrease - 26@1000 30@500 26@1000 - 1.71
#2: Storage price increase - 30@1000 26@500 - - 1.86

#3: RES increase, load decrease - - - - - 1.03
#4: RES decrease, load increase - 26@1000 26@500 26@1000 - 2.38

4.5.6 Planning scheme analysis

This subsection analyzes the planning schemes produced by the proposed approach.

Without loss of generality, future scenarios are set to Lres = [1, 1.1, 1.2, 1.25, 1.42], Lld =

[1, 1.2, 1.3, 1.4, 1.5], and Lprice = [345, 242, 198, 186, 174], for demonstration. The candidate

nodes are {2, 7, 21, 24, 26, 30}.
Firstly, TABLE 4.6 shows the solutions generated by the agent at the upper level after

different learning episodes. The trend suggests that as the agents undergo learning, the

installation locations transition from heterogeneous to homogeneous, with the total installed

capacity decreasing and the installation time becoming more dispersed. The three solutions

generated in TABLE 4.6 are used to evaluate the impact of the upper-level decisions on the

MG operation at the lower-level. The cost of the operation sub-problem, as shown in (4.6),

is designated as the operation indicators, which consist of costs such as purchased power,

primary reserve, storage operation, load shedding, and DG operation. Primary reserve cost

and load shedding cost are indicators closely related to the safety of MG operation. The

former refers to the cost of the backup capacity of DGs prepared for islanding events, while

the latter refers to the penalty cost incurred due to insufficient power supply adequacy.

Fig.4.8 exhibits the impact of upper-level decisions on the operational indicators of the
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Table 4.6: Solutions generated by the agent at the upper level after different learning
episodes.

DRL Agent

Multi-period expansion decisions
Format: capacity (kWh) @ node

- indicates no installation
0th year 5th year 10th year 15th year 20th year

Random 2000@7 1000@24 1000@24 2000@21 1000@26
Agent_1000 - 500@30 - 2000@21 -
Agent_4000 - 1000@26 500@26 500@30 -

Note: Random, Agent_1000, Agent_4000 refer to DRL agents that have not undergone learning, undergone
1000 episodes of learning, and undergone 4000 episodes of learning, respectively.

lower-level. Note that the costs presented in Fig.4.8 are discounted by the discount rate.

The random agent suggests installing 7000kWh BES in total. Such large battery capacity,

along with its flexibility, results in the lowest operating cost of $1,403,003. This scheme also

performs the best in terms of safety indicators, i.e., the sum of primary reserve cost and load

shedding cost, which is the lowest at $4,035. However, when considering the investment cost,

the high investment cost of the random agent ($1,307,970) makes it the most uneconomical

and impractical solution. The investment cost of the solution proposed by Agent_1000 is

the lowest, as it chooses to install 2000kWh of BES in the 15th year when the battery price

is low. However, due to its poor location selection, its operating cost and safety indicators

are the worst, requiring a significant amount of safety-related cost ($354,281). Agent_4000

represents a well-trained agent. Starting from the second period, this agent suggests that

1000kWh, 500kWh, and 500kWh BES units be installed on nodes 26, 26, and 30, respectively,

three periods in a row. It can strike a balance between investment cost and operating cost,

achieving a 29% reduction in safety-related cost and a 15% reduction in total cost with only

an 8% higher investment cost compared to Agent_1000.

Table 4.7 examines the detailed expenditure of the planning scheme by Agent_4000. It

is observed from Table 4.7 that almost all costs rise with the increase of load except for the

cost of load shedding. This expansion scheme substantially reduces the cost of load shedding

in the third and fourth periods, despite the fact that the amount of load is increasing.
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Figure 4.8: The impact of upper-level decisions on the operational indicators of the lower-
level.

Table 4.7: BES Expansion Scheme and Associated Expenditure.

Scheme Investment
Cost ($)

Operation Cost ($) Total
Cost ($)DG External Reserve Storage Load

Shedding
0th year: - - 345,216 -85,459 4,257 0 0 264,013

5th year: 1000@26 242,000 408,824 -16,290 5,789 256 1,582 400,162
10th year: 500@26 99,000 430,704 30,039 7,338 552 0 468,634
15th year: 500@30 93,000 447,834 82,893 9,819 1,526 226 542,298

20th year: - - 460,114 136,022 19,148 2,732 26,259 644,276
Note: negative value in External column denotes the revenue of selling power to external grids via the PCC.

The benefit and necessity of the expansion of BES in the MG are illustrated in Table 4.8,

which shows that the BES units reduce load shedding and facilitate the integration of RES

simultaneously. Also, the MG tends to purchase power from the external grids as the load

increases. This leads to a rise in the exchange power at the PCC, which in turn requires

the DG units to prepare more reserve capacity as enforced in (4.17) and (4.22). The timely

expansion of the BES mitigates the need for reserve capacity, resulting in the improvement

of cost-effectiveness.
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Table 4.8: Comparison of ratios of load shedding and RES curtailment between solutions
with and without storage installed.

Solution Type Ratio (%)
Year 0-4 Year 5-9 Year 10-14 Year 15-19 Year 20-24

With
storage

RES curtailment 0.000 0.000 0.000 0.182 0.377
Load shedding 0.000 0.003 0.000 0.001 0.058

Without
storage

RES curtailment 0 0.012 0.051 0.126 0.775
Load shedding 0.000 0.320 1.250 2.180 3.280

The DRL planning framework is employed to solve the expansion problems with and

without frequency dynamics constraints (4.16) to (4.23), respectively, thereby appraising

the impacts of these constraints. We refer to the former as the islanding-safe problem

and the latter as the islanding-unsafe problem. As for the islanding-unsafe problem, the

DRL approach suggests installing 500kWh on node 26 in the second, third, and fifth periods,

respectively, which is 500kWh less than that of the islanding-safe problem. The incorporation

of frequency-induced constraints drives the construction of more BES units so that the MG

can remain resilient during islanding events. In the meanwhile, the consideration of these

safety-related constraints leads to an increase in the cost. The DRL approach attains the

discounted total cost 1.75× 106 in the planning problem with frequency-induced constraints

and 1.64 × 106 without them. This finding is consistent with the expected value of the

discounted total cost over various RES/load/price trajectories while training the DRL, i.e.,

the episode mean reward. The expected value is 1.17 × 106 for islanding-unsafe problems

and 1.23× 106 for islanding-safe problems, indicating a 5% cost rise.

4.6 Summary

A DRL-aided multi-period BES expansion strategy for MG considering the islanding

contingency is proposed in this study, which features a bi-level framework. A series of

comparative experiments has been designed and conducted on a 33-bus MG to examine the

performance of the proposed planning strategy. Compared to the DDQN and PPO peers,

the adopted rainbow algorithm with quantile regression exhibits better convergence speed

and mean episode reward. The DRL-based planning approach can deliver near-optimal
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solutions with more than 40,000x speed improvement relative to the solver-based approach.

The increase in the number of candidate nodes has a minor impact on computational time

and little effect on the solution quality, which substantiates the scalability of the proposed

framework. The experiments also verify that the DRL approach can agilely generalize to

uncertain future scenarios without extra effort. For future work, one can leverage the idea

of transfer learning to reduce the demand for training data [127,128].
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Chapter 5

Quantum Policy Learning for Energy Storage Arbitrage

This section explores the potential of quantum computing to elevate energy arbitrage task

efficiency in energy storage systems. The research introduces a Quantum Policy Learning

algorithm that harnesses a variational quantum circuit alongside a devised Markov decision

process, aiming to optimize online energy arbitrage processes in the presence of quantum

hardware noise. Empirical analyses highlight the quantum advantage of the method in terms

of rapid convergence and optimization, demonstrating its comparative edge over conventional

methods including classical reinforcement learning and model predictive control.

5.1 Introduction

In the evolving landscape of electric networks, energy storage systems (ESSs) emerge

as essential components, playing a transformative role in enhancing power system flexibil-

ity [129]. ESSs demonstrate their significance through a wide spectrum of services, from

peak-shaving to frequency regulation and accommodating renewables. Among the various

services ESSs provide, energy arbitrage (EA) is often considered one of the more essential

and potentially profitable for ESS owners. EA leverages the daily fluctuations in energy

prices, purchasing energy during low-demand periods and capitalizing on its value during

peak times. The EA for ESSs bolsters the efficiency of grid operation and impacts the

electricity market dynamics, offering a symbiotic advantage for both ESS owners and grid

operations.

Within the EA for ESSs domain, two primary avenues of research have attracted atten-

tion: optimization-based techniques and the burgeoning application of reinforcement learning

(RL) techniques. Optimization-based techniques have long been the cornerstone of the EA

for ESSs research. When assuming complete certainty in electricity price information, as is

often the case in certain planning scenarios where ESS profitability is validated against his-
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torical data, EA is typically modeled as either a mixed-integer linear programming (MILP)

or mixed-integer nonlinear problem. These models are subsequently tackled using dedicated

solvers or heuristic algorithms [130,131], respectively. As the operation in a shorter time scale

contends with price volatility, the focus shifted towards stochastic models [132]. Leveraging

a dynamic programming approach, the month-long EA for ESSs problem is decomposed into

daily, hourly, and real-time segments, ensuring both reduced complexity and solution opti-

mality in [133]. Ref. [134] emphasizes the co-optimization of energy storage with objectives

aimed at EA and local power factor correction. It introduces a model predictive control

(MPC)-based scheduling policy, incorporating auto-regressive forecasts to handle uncertain-

ties adeptly. The fluctuation inherent in electricity prices led to the exploration of robust

optimization. When faced with increasing forecast errors, robust optimization strategies

demonstrated superior economic performance compared to deterministic methods [135].

Optimization-based methods, while robust, have inherent limitations. For electricity price

prediction errors characterized by multiple scenarios or distribution information, optimization-

based methods often require multiple modeling or solving attempts, resulting in a specific

solution. This not only creates computational overhead but also demands a delicate balance

between the granularity of the model and its solvability. In contrast, RL techniques can

bypass these complexities, offering the ability to swiftly adapt to a multitude of unforeseen

scenarios after just one offline training session. The model-free feature is another reason

why RL techniques is increasingly valued. The study presented in [41] utilizes a model-free

deep reinforcement learning (DRL) method to optimize EA for ESSs, incorporating a precise

battery degradation model. The empirical testing on U.K. wholesale market data showcases

its superiority over model-based MILP approaches. Ref. [136] leverages the Rainbow Deep

Q-Networks to oversee battery operations within a microgrid, aiming to achieve efficient EA

and enhance the utilization of solar and wind power. Ref. [34] introduces a Proximal Policy

Optimization agent tailored for continuous action spaces to execute the capacity scheduling

of a hybrid ESS. Validated within the PJM market, this approach underscores that em-

ploying a continuous action space via DRL can refine the scheduling outcomes, leading to

enhanced profitability. Both optimization and RL methodologies have advanced in the EA

domain, yet there are still existing gaps. Traditional optimization techniques often strug-
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gle with model complexity and scalability issues, especially in complex and dynamic energy

markets. Classical RL paradigms face challenges in efficiently handling vast datasets [137].

Additionally, these paradigms face complexities in training tasks in complex and real vec-

tor spaces, which involves optimizing numerous trainable parameters inherent in the neural

network representation.

Quantum computing (QC), grounded in the principles of quantum mechanics, is a disrup-

tive computational paradigm. Contrary to classical bits, which can only be in either a 0 or 1

state, quantum bits (qubits) can simultaneously occupy both states due to superposition, giv-

ing QC a unique advantage. This advantage is further enhanced by quantum entanglement,

where multi-qubit systems show correlations that exceed those found in classical systems.

Representative algorithms in QC, such as Grover and Shor algorithms, demonstrate quan-

tum advantages that are unmatched by their classical counterparts. The integration of QC

with machine learning birthed quantum machine learning (QML). Pioneering algorithms in

QML, spanning from quantum discriminative [138] to generative networks [139], are charac-

terized by the application of differentiable quantum circuits, i.e., variational quantum circuits

(VQCs). In the study presented by [140], the capabilities of VQCs are meticulously explored

to tackle the transient stability assessment in electrical power systems. Experimentation

on quantum simulators and real-world quantum computing platforms substantiate its supe-

rior accuracy, resilience to noise, and scalability compared to traditional machine learning

methodologies.

As the potential of VQCs has been gradually validated both theoretically and empirically

[140,141], efforts have begun to integrate VQCs into the RL paradigm [142–144]. While DRL

has seen substantial advancements in diverse applications, quantum reinforcement learning

(QRL) remains relatively nascent, particularly in energy systems applications. Ref. [142]

is the first proof-of-principle demonstration of VQCs to approximate the Q-value function

for decision-making. The QRL introduced in Ref. [142] has predominantly revolved around

discrete control, which is subsequently tested in a toy text environment named frozen-lake.

Transitioning from discrete to continuous actions, the spectrum of QRL applications can

be expanded. Recent advancements include the variational quantum soft actor-critic (SAC)

[142], which proposes hybrid quantum-classical solutions for the cartpole problem, which is a
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continuous control task. A quantum policy gradient algorithm is presented in [144]. However,

the results are still limited to toy environments, including contextual bandits, cartpole, and

frozen-lake.

The potential of QRL in transforming the landscape of decision-making processes is

compelling. However, several significant challenges and gaps in its current research landscape

need to be addressed. Even though some efforts have been dedicated to exploring classical

control tasks, their applications to practical engineering problems, especially in the energy

sector, remain largely unexplored. Ref. [145] emerges as a pioneer, which utilizes the QRL in

the distributed frequency control of islanded microgrids. Secondly, the natural discreteness

inherent to quantum systems hinders the development of QRL for continuous action spaces

without careful crafting and design. More importantly, the current body of research lacks

comprehensive testing on actual quantum hardware, resulting in a limited understanding

of potential errors and a lack of insight into real-world robustness. For example, the study

in [145] relies solely on quantum simulators for testing and validation. Consequently, the

practicality of QRL applications in energy systems, along with their performance on noisy

hardware during the noisy intermediate-scale quantum era (NISQ), necessitates more in-

depth scrutiny [146].

Driven by the opportunities and challenges aforementioned, this work aims to harness the

power of QRL and VQC to address the EA for ESSs. A Quantum Policy Learning (QPL)

algorithm, which is entirely based on a quantum circuit, is devised to perform the decision-

making in the EA in a sequential and online way. State vectors, including real-world ESS

status and price signals, are embedded into the Hilbert space through angular embedding

and data-reuploading scheme. The output derived from the QPL agent provides the expected

value and variance of optimal ESS charging/discharging capacities. To safeguard the robust-

ness of the QPL against the potential noise intrinsic to quantum hardware, a VQC with low

depth and low width, yet possessing adequate expressive power, is designed. The proposed

VQC, trained using a hybrid quantum and classical manner, is subsequently deployed on

IBM’s quantum computing platform. Through this deployment, a comprehensive evaluation

is conducted, assessing not only the decision-making capabilities of the QRL agent but also

its quantum advantage in higher expressivity, resilience to noise, and practical applicability.
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The contributions of this paper are summarized as follows:

1. Inspired by and surpassing the capabilities of classical DRL methods prevalent in ESS

EA approaches, this article proposes a QPL approach to alleviate the complexity of

the decision-making policy and secure enhanced profits. The introduced QPL utilizes

a hybrid classical-quantum gradient update paradigm during the training phase. Once

trained, the quantum policy agent can be deployed on real quantum hardware to

efficiently undertake online EA tasks.

2. The proposed QPL collaborates with a strategically devised Markov Decision Process

(MDP) to facilitate the accumulation of experiences through the promotion of early-

stage proactive exploration of the action space. In navigating the challenges presented

by the noisy quantum hardware, our work devises the VQC within the QPL framework

with distinctive low depth and width characteristics. The distinctive VQC structure in-

corporates alternating variational entanglement sub-layers and variational embedding

sub-layers to span over the Hilbert space adequately. In the process of optimizing the

quantum policy parameters, this study derives a well-formulated loss function and gra-

dient computations, which can integrate advanced action post-processing techniques,

including re-parameterization, squashing, and linear transformations.

3. In comparison to classical DRL approaches, optimization techniques, and Model Pre-

dictive Control (MPC) methodologies, as well as other VQC architectures, the proposed

QPL achieves superior optimization performance and accelerated convergence rates, all

while maintaining a lower model complexity. The following tests on IBM_Lagos quan-

tum hardware validate the noise resilience of the proposed QPL method.

The remainder of this paper is organized as follows. Section 5.2 presents a Markov

decision process for energy storage arbitrage. A classic entropy-regularized DRL algorithm

named Soft Actor-Critic is introduced in Section 5.3. Section 5.4 discusses the fundamentals

of quantum computing and variational quantum circuits sequentially; followed by proposing

a quantum variational circuit with low depth and width as the policy network for QPL, and

derives the loss function for training this specific VQC. The numerical results are exhibited

in Section 4.5, followed by the concluding remarks in Section 5.6.
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5.2 Markov decision process for Energy Storage Arbitrage

This section formulates a specific MDP for the EA for ESSs. The inherent Marko-

vian properties of MDPs align well with the Markovian characteristics of energy storage

operations, especially when considering the stochastic nature of energy prices and storage

dynamics. The design principle focuses on optimizing financial returns while accounting for

the operational constraints of ESSs and uncertainties intrinsic to price signals.

The MDP can be characterized by a 5-tuple (S,A,P(st+1 = s′ | st = s, at = a), r(s, a), γ),

wherein S represents the state space, A denotes the action space, P signifies the transition

probability between states, r(s, a) is the associated reward function, and γ stands for the dis-

count factor applied to future rewards. The design for each component is further elucidated

in the subsequent subsections.

5.2.1 State Space

States represent the pertinent resources and information required for making decisions.

States are expected to have a strong correlation with decisions and rewards, enabling the

agent to infer the optimal strategy based on the state. In this task, the state vector is defined

as:

st := (SOCt, t, Plmp,t, Ct), (5.1)

where SOCt denotes the State of Charge of the ESS at time t. It provides information about

the available energy in the system, which is crucial for decision-making regarding energy

dispatch or charging. t represents the current time period. Including the time as a state

variable can be useful, especially in problems where policies or decisions might vary based

on the time of day. Plmp,t is the locational marginal price of electricity at time t. This price

signal is essential for determining optimal energy trading strategies, as it indicates the cost

or revenue associated with buying or selling energy at a particular time.

Ct represents the cost associated with the energy currently stored in the ESS at time t.

One distinctive feature of the MDP model presented in this paper is the explicit incorporation

of Ct. By incorporating this variable, historical procurement costs of energy are accounted

for, ensuring that the selling price consistently covers the initial purchase costs and any

associated overheads. This allows for a more realistic and economically viable arbitrage
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strategy, particularly in volatile energy markets where prices can fluctuate significantly. The

updating and maintenance of Ct will be elaborated upon in the subsequent section on state

transitions.

5.2.2 Action Space

For a single ESS, the agent operates within a continuous action space, facilitating more

refined dispatch decisions and augmenting profit-making potential compared to a discrete

action space. The dimension of this action space is one-dimensional, representing the charg-

ing or discharging power. While the standard configuration operates on an hourly basis,

the action interval is not confined to one hour and can be tailored according to the market

mechanism governing the ESS operations. The sign of the action indicates the operation

mode: positive for charging and negative for discharging, with the magnitude representing

the power level. Typically, the action of RL is mapped to a [-1,1] interval through the tanh

function. Multiplying this action by the maximum power capacity produces a ready-to-use

battery dispatch signal, as expressed in the following formula:

p′t = at × Pmax, (5.2)

where p′t signifies the preset battery dispatch power, at represents the action output from

the RL agent within the range [-1,1], and Pmax is the maximum power capacity of the ESS.

5.2.3 State Transition

The transitions between states in the MDP capture the dynamics and randomness of the

system. This subsection elaborates on the patterns of state transitions across time steps.

In Eq. (5.1), the transition of Plmp,t depends on the clearing mechanism of the electricity

market and the supply-demand relationship. Assuming the ESS plays the role of a price

taker in the market, Plmp,t is not influenced by the decisions of the ESS, and thus, the ESS

can directly obtain the data from the market. The transition of t is more straightforward:

it increases by one with each time step.

The transitions of SOCt and Ct are closely related to the action, that is, when and how

much capacity to charge or discharge.
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p′t < 0 signifies discharging of the ESS. Examining if the SOC decline due to the preset

discharge power will cause the SOC to fall below the threshold:

if SOCt +
p′t·δh
ηdis·U

≥ SOC :

SOCt+1 = SOCt +
pt·δh
ηdis·U

, pt = p′t, κt = 0

otherwise :

SOCt+1 = SOCt, pt = 0, κt = κ0,

(5.3)

where pt is the actual discharging/charging power at time t, δh represents the time interval,

indicating the duration over which the discharge action is applied (1 hour in case studies),

ηdis is the discharging efficiency of the ESS, U denotes the energy capacity of the ESS, and

SOC is the minimum allowable SOC for the ESS. κ is the penalty applied when certain safety

or operational constraints are violated in the system. The introduction of κ can ensure that

the RL agent adheres to the desired operational boundaries and avoids actions that may

harm the system. κ0 denotes a predefined penalty magnitude, serving as a guideline for the

severity of the constraint violation.

Through capturing the energy discharged during the current time step, the cumulative

cost associated with the energy stored in the ESS up to time t+ 1 is decreased by:

Ct+1 = Ct + Ct ·
pt · δh

ηdis · U · SOCt
. (5.4)

p′t > 0 signifies charging of the ESS. Inspecting whether the increase in SOC, due to the

predetermined charge power, will lead the SOC to climb above the set threshold:

if SOCt +
pt·δh·ηch

·U ≤ SOC :

SOCt+1 = SOCt +
pt·δh·ηch

·U , pt = p′t, κt = 0

otherwise:

SOCt+1 = SOCt, pt = 0, κt = κ0,

(5.5)

where SOC is the maximum allowable SOC for the ESS.
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The incremental cumulative cost due to charging behavior can be derived by:

Ct+1 = Ct + pt · δh · Plmp,t. (5.6)

5.2.4 Reward Function and Reward Discount Factor

Unlike most EA modeling in MDP, where the cost or revenue from electricity trading

in the current time step is directly considered as the reward, this study devises a reward

function that encourages the RL agent to thoroughly explore the charging and discharging

action space.

It is believed that profits/losses are settled only when the ESS discharges. The act

of charging is to create room for future arbitrage. Therefore, charging itself is merely a

transformation and not the actual cause of loss. With the discharge process, the ESS accrues

revenue, which is calculated as −pt · δh · Plmp,t. Considering the cumulative cost associated

with the discharging capacity, the net gain of the ESS when discharging at time step t is:

gt = −pt · δh · Plmp,t + Ct ·
pt · δh

ηdis · U · SOCt
, (5.7)

where the second term denotes the cost associated with the energy transacted during the

current time step.

Summing up all gain and penalty, the reward function can be described as

rt = gt − κt − degt, (5.8)

where degt represents degradation cost, which is proportional to the absolute value of dis-

patched power, as given by degt = |pt| · c; c is a constant degradation cost per unit of

power.

Quantifying the charging behavior as a negative reward may lead the agent to prematurely

converge to a local minimum where it neither charges nor discharges. This is because,

during the early exploration phase, the agent often outputs charging actions, resulting in a

majority of samples with negative rewards. Taking no action becomes an easily attainable

114



and tempting local optimal strategy. Eq. (5.8) mitigates this issue to some extent.

The reward discount factor enables DRL agents to adjust their behavior, focusing on

either long-term or short-term goals. The reward discount factor is set as a scalar γ smaller

than one in this study.

5.3 Soft Actor-Critic

DRL algorithm is a state-of-the-art method commonly used to solve well-designed MDPs.

As a DRL method, SAC originated from the work presented in Haarnoja et al.’s 2018 pub-

lication [147]. The core principle of SAC is entropy regularization. SAC trains the policy to

strike a balance between anticipated returns and entropy, which quantifies the unpredictabil-

ity of the policy. This section aims to briefly introduce the essence of SAC, leading to the

forthcoming introduction of the QPL algorithm, which is derived from a portion of SAC.

As a member of entropy-regularized RL, SAC is distinguished from other RL methodolo-

gies in that the SAC agent receives an additional reward based on the entropy of its policy

at every timestep. Hence, SAC attempts to train the following policy:

π∗ = argmax
π

E
τ∼π

[
∞∑
t=0

γt × (r (st, at, st+1) + ϑH (π (· | st)))
]

(5.9)

where π∗ represents the optimal policy that SAC aims to learn; τ is a trajectory sampled

under policy π; ϑ is the temperature parameter, which modulates the trade-off between

maximizing expected reward and increasing policy entropy; E denotes the expectation of the

distribution; H(·) is the entropy term and is defined by H(P ) = E
x∼P

[− logP (x)], where P is

the probability density function.

Under the SAC framework, the action value function Qπ(s, a) is redefined as follows:

Qπ(s, a) = E
τ∼π

[
∞∑
t=0

γtr (st, at, st+1) + α

∞∑
t=1

γtH (π (· | st)) | s0 = s, a0 = a

]
(5.10)

The Bellman equation captures a recursive relationship for the value of a state/action
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pair (s, a), based on the expected future value from its subsequent state/action pair (s′, a′):

Qπ(s, a) = E
s′∼P
a′∼π

[r (s, a, s′) + γ (Qπ (s′, a′)− α log π (a′ | s′))] (5.11)

where the right-hand side represents an expectation, with a subsequent state sourced from

the replay buffer and a subsequent action derived from the existing policy. The Monte Carlo

approximation of the above formula can be expressed as:

Qπ(s, a) ≈ r + γ (Qπ (s′, ã′)− α log π (ã′ | s′)) (5.12)

where ã′ ∼ π (· | s′).
In SAC, there are three networks to be trained: one is πθ which is parameterized by

θ and represents the policy network; the remaining two are the action value functions Qϕi

parameterized by ϕi, where i = 1, 2. Additionally, there are two target action value functions

Qϕtarg,j , where j = 1, 2. They are the delayed versions of Qϕi . The use of the double-Q

trick and target Q can mitigate the overestimation of the Q-function and provide training

stability in contexts where deep neural networks are used as function approximators and in

environments with noisy rewards by reducing correlations rooted in the Bellman equation.

Temporal difference (TD) learning is employed to train the Q-networks. A mean squared

TD error is used in the loss functions for Q-networks L:

L (ϕi,D) = E
(s,a,r,s′,d)∼D

[
(Qϕi(s, a)− y (r, s′, d))2

]
(5.13)

where d indicates whether s′ is a terminal state; D is a replay buffer; y(r, s′, d) is the TD

target value for the Q-networks.

The target is given by deriving actions from the policy for the next state rather than

using the actions from the samples:

y (r, s′, d) = r + γ(1− d)
(
min
j=1,2

Qϕtarg,j (s
′, ã′)− ϑ log πθ (ã′ | s′)

)
(5.14)

In every state, the policy is supposed to optimize both the anticipated future rewards
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and the expected future entropy. By incorporating the minimum of the two Q networks and

reparameterization trick, the policy loss can be written as:

max
θ

E
s∼D
ξ∼N

[
min
j=1,2

Qϕj (s, ãθ(s, ξ))− ϑ log πθ (ãθ(s, ξ) | s)
]
, (5.15)

where action ãθ is derived from a squashed Gaussian policy with an independent standard

Gaussian noise ξ:

ãθ(s, ξ) = tanh (µθ(s) + σθ(s)⊙ ξ) , ξ ∼ N (0, I). (5.16)

A soft update mechanism with a polyak averaging coefficient ρ is utilized to update the

parameters of the target Q networks:

ϕtarget,i = ρϕtarget,i + (1− ρ)ϕi for i = 1, 2 (5.17)

5.4 Quantum Policy Learning

This section first provides some computational foundations of quantum computing and

VQC. Subsequently, it introduces the implementation framework at an overview level, fol-

lowed by a detailed discussion on the circuit design and the design and gradient derivation

of the loss function in VQC, providing the details of the implementation.

5.4.1 Quantum Computing Basics

The Dirac bra-ket notation provides a way to express vectors in a Hilbert space, which

is the mathematical space of all possible quantum states. The column vector is denoted as

|ψ⟩, where ψ is the state of the quantum system. The corresponding row vector, which is

the complex conjugate transpose (or adjoint) of |ψ⟩, is denoted as ⟨ψ|. The inner product

between two states |ψ⟩ and |ϕ⟩ is expressed as ⟨ψ|ϕ⟩. An outer product yields an operator

and is written as |ψ⟩⟨ϕ|.
A quantum system, such as a quantum bit or qubit, can be in a superposition of both its

basis states simultaneously. Only upon measurement does the system collapse to one of the

basis states with a certain probability determined by the coefficients of the superposition.
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Mathematically, the state of a qubit in superposition can be represented as:

|ψ⟩ = α|0⟩+ β|1⟩ (5.18)

where |ψ⟩ is the quantum state of the qubit, |0⟩ and |1⟩ are the basis states, and α and

β are complex coefficients. The squared magnitudes |α|2 and |β|2 give the probabilities of

measuring the qubit in state |0⟩ and |1⟩ respectively, and they must satisfy the normalization

condition: |α|2 + |β|2 = 1.

Quantum entanglement describes a situation wherein the states of two or more qubits

become correlated in such a way that the state of one qubit cannot be described indepen-

dently of the state of the other qubit. An example of an entangled state is the Bell state.

For a pair of qubits, the Bell states can be represented as:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) (5.19)

|Φ−⟩ = 1√
2
(|00⟩ − |11⟩) (5.20)

5.4.2 Variational Quantum Circuits

VQCs are foundational components in contemporary quantum computing research. The

core principle of VQCs lies in the hybrid quantum-classical optimization of parameterized

quantum circuits to solve particular tasks. A VQC can be represented by a parameterized

unitary U(ω,φ) with adjustable parameters ω and static parameters φ. In the realm of

quantum-classical optimization, optimization is used to fine-tune the ω parameters, thereby

directing the quantum circuit towards a desired computational result.

Similar to classical neural networks, VQCs can be constructed in a layered fashion. Each

layer in a VQC consists of a series of quantum gates with their associated parameterized

unitaries. By stacking multiple such layers, the expressiveness and computational power of

VQCs can be enhanced, allowing it to capture more intricate quantum correlations. In a

more compact notation, the state after K layers can be expressed as

|ψK⟩ = UK(ωK ,φK) . . . U2(ω2,φ2)U1(ω1,φ1)|ψ0⟩.
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Figure 5.1: Framework of quantum policy learning.

5.4.3 Implementation Framework of Quantum Policy Learning

On the top of distinct features of quantum computing and VQCs, Fig.5.1 shows the

framework of the proposed QPL for the EA of ESSs. The entire framework utilizes a

quantum-classical hybrid structure, where the blue section represents the circuit deploy-

able on the QPU, also known as the QPL agent. The green section signifies the classical

component, primarily engaging in interactions with the environment and utilizes feedback

data to construct a loss function, subsequently updating the parameters of the QPL agent

through an optimizer. The state from the classical component is integrated into the QPL

agent through methods of angle embedding and re-uploading. The QPL agent with the latest

parameterized VQCs outputs discharge and charge decisions via quantum measurement.

In Fig.5.1, the green section is utilized during the QPL training phase but is not required

during the testing phase. It is worth highlighting that when there are few qubits in VQCs,

classical computers can simulate the qubit system, thereby allowing the leveraging of readily

available classical computer simulations to conduct training. In the testing phase, upon se-

curing a set of optimal VQC parameters, these are incorporated into the VQCs and deployed

online on quantum processing units (QPUs). This approach is employed in the case studies in

this paper, considering the high computational resource intensity of gathering environmental
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interactions.

5.4.4 Circuit Design for Quantum Policy

The paper devises a multi-layered stacked structure for the VQC utilized in the QPL

agent, as shown in Fig. 5.2. K and k are used to denote the number of layers adopted in the

VQC and the index of the layer. Each layer is segmented into two sub-layers: the alternating

variational entanglement (AVE) sub-layer and the variational embedding (VE) sub-layer.

The primary ingredients of the AVE sub-layer are the parameterized x-rotation gates Rx

and Controlled NOT (CNOT) gates.

Rx rotates a qubit around the X axis of the Bloch sphere by a specified angle. This

rotation is represented by the operator: Rx(α) = e−iασx/2, where α is the angle of rotation,

and σx is the Pauli-X matrix given by: σx =

 0 1

1 0


Utilizing the matrix exponential and the properties of the Pauli-X matrix, the above

expression is expanded as:

e−iασx/2 = I cos(α/2)− iσx sin(α/2)

=

 cos(α/2) −i sin(α/2)
−i sin(α/2) cos(α/2)

 (5.21)

In the AVE sub-layer involving a N qubits system, each qubit begins with a Rx gate.

This operation can be represented by the following unitary operator:

U (k)
eng

(
ω(:,k)

eng

)
=

N⊗
j=1

e−iω
(j,k)
eng σx/2 (5.22)
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where
⊗

represents the tensor product; j is the index for qubits; ω(:,k)
eng is a vector of learnable

rotation angles for the Rx gates in the k-th AVE sub-layer.

After a series of Rx, using a ring structure of CNOT gates between consecutive qubits with

alternating directions to achieve entanglement provides the potential for quantum algorithms

to outperform their classical counterparts.

If k is odd, each qubit j − 1 acts as the control for the following qubit j:

U
(k)
CNOT =

N∏
j=1

I⊗(j−2) ⊗ CNOTj−1,j ⊗ I⊗(N−j). (5.23)

If k is even, the direction of control is reversed, thereby implementing alternating manner

to facilitate the exploration in Hilbert space:

U
(k)
CNOT =

N∏
j=1

I⊗(j−2) ⊗ CNOTj,j−1 ⊗ I⊗(N−j). (5.24)

Here, the terms I⊗(j−2) and I⊗(N−j) denote tensor products of identity matrices. Their role

is to preserve the state of qubits not directly involved in the CNOT operation. The notation

CNOTj−1,j signifies the CNOT gate where the qubit j − 1 serves as the control and qubit j

as the target. Conversely, CNOTj,j−1 indicates a reversed CNOT gate with qubit j as the

control and qubit j − 1 as the target.

The matrix representations for these gates are given by: CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 and

CNOT =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 .

Following the AVE sub-layer is the VE layer. In this layer, the state vectors of EA tasks

influence quantum state variables in the Hilbert space through angle embedding.

Ref. [143] proposes embedding each element of the state vector through the Rx gate of
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each qubit, with the number of dimensions corresponding to the number of qubits. However,

considering the dimensions of the state vectors for real-world tasks are often large, this

approach is not yet practical in the NISQ era due to the availability of qubits and their noise

resistance capabilities. To overcome this challenge, a structure of alternating stacking Ry and

Rz gates within a single qubit to embed the high-dimensional state vector into the VE sub-

layer is devised instead. Alternating between Ry and Rz gates enhance the expressibility of

the VQCs, allowing for a richer set of quantum states and forming a foundation for universal

quantum computation.

As demonstrated in the example circuit in Fig. 5.2, the initial step involves determining

the requisite number of qubits, denoted as N . Subsequently, the initial N components of

the state vector are mapped into the Ry gate. This is followed by the embedding of the

subsequent N components into the Rz gate. This alternating embedding process continues

in a similar fashion until the last component in the state vector.

The rotation angle range for Ry and Rz gates is typically from 0 to 2π. To achieve a

smoother feature embedding, rather than directly using the normalized state as the angle,

we introduce a set of variational parameters ω(:,k)
emb and consider the product of this parameter

with the feature as the embedding angle.

Assuming the dimension of the state vector, |S|, is greater than N and is equal to 2N ,

the unitary operator for VE can be expressed as:

U
(k)
emb

(
ω
(:,k)
emb

)
=

N⊗
j=1

e−iω
(N+j,k)
emb ∗sN+jσz/2

N⊗
j=1

e−iω
(j,k)
emb ∗sjσy/2 (5.25)

where σy and σz are the Pauli-Y and Pauli-Z matrices given by σy =

0 −i
i 0

 and σz =1 0

0 −1

, respectively.

After K layers of AVE and VE sub-layers, one layer of AVE sub-layer is added before the

final output of the VQC result. Its corresponding unitary operator is

U
(K+1)
CNOTU

(K+1)
eng

(
ω(:,K+1)

eng

)
= U

(K+1)
CNOT

N⊗
j=1

e−iω
(j,K+1)
eng σx/2. (5.26)
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5.4.5 Measurement

Quantum circuits typically conclude with measurement gates, serving to convey infor-

mation to the external environment and reveal information about the associated quantum

state. The action dimension of the task in this paper is one, but there are two parameters

modeling this action distribution: the mean and the standard deviation. Therefore, two

qubits need to be chosen for measurement. Without loss of generality, this paper selects the

first and second qubits (i.e., qubit 0 and qubit 1) and uses the Pauli-Z gate as the required

Hermitian operator for measurement. A similar structure can be adapted to generalize to

the action dimension larger than one if needed.

The Pauli-Z matrix, when used as a measurement operator, has distinct eigenvalues

λ = ±1. These eigenvalues correspond to the possible outcomes of a quantum measurement

on a computational basis. The eigendecomposition of the Pauli-Z matrix is given by:

σz = |0⟩⟨0| − |1⟩⟨1| (5.27)

Specifically, the state |0⟩ is associated with the eigenvalue +1, while the state |1⟩ corresponds

to −1. Performing the Pauli-Z measurement of qubit 0 causes the quantum state to collapse

to the basis state characterized by the eigenvector of the Pauli-Z operator. When the state

collapses to |0⟩, the measurement output is +1; when it collapses to |1⟩, the measurement

output is −1.
For a two-qubit VQC as an example, suppose the arbitrary quantum state after multiple

AVE and VE layers is |ψ′⟩, then the expected output of the Pauli-Z measurement on qubit

0 is

⟨σ(0)
z,ω⟩ = ⟨ψ′|σz ⊗ I|ψ′⟩, (5.28)

where the superscript (0) denotes the index of the qubit, and the subscript ω indicates

the expected output is dependent on the parameter set ω of the VQC. Likewise, ⟨σ(1)
z,ω⟩ =

⟨ψ′|I ⊗ σz|ψ′⟩. Due to Born’s rule, the value of ⟨σz⟩ is a real number in the range [-1,1].

Examining Eqs. (5.22) to (5.28), the entire derivation process for ⟨σ(0)
z,ω⟩ is differentiable.

Leveraging this feature, one can update the parameter set ω of the VQC based on the

gradient information of ⟨σ(0)
z,ω⟩ with respect to ω, thereby accomplishing the computational
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task.

In a physically-implemented VQC, due to the indeterminacy of the quantum state be-

fore measurement, the parameter-shift rule can be employed to approximate the gradient

information. By using additional two circuit evaluations, one can obtain the gradient of an

observable (e.g., ⟨σ(0)
z,ω⟩) with respect to an arbitrary adjustable parameter ωi.

d⟨σ(0)
z,ω⟩

dωi
=

1

2

(
⟨ψ′(ωi + π/2)|σ(0)

z,ω ⊗ I|ψ′(ωi + π/2)⟩−

⟨ψ′(ωi − π/2)|σ(0)
z,ω ⊗ I|ψ′(ωi − π/2)⟩

) (5.29)

If a VQC is implemented using a classical simulator, one can access the intermediate

states of the VQC. Therefore, classical automatic differentiation techniques can be leveraged

to derive the analytical expression for the gradient. For example, to calculate the gradient

of σ(0)
z,ω w.r.t ω(1,K+1)

eng (i.e., the parameter on the qubit 0 of the last AVE layer, denoted as

w1 below for simplicity), we can differentiate σ(0)
z,ω:

dσ
(0)
z,ω

dw1

=
d

dw1

⟨ψ′|(Z ⊗ I)|ψ′⟩

=

〈
dψ′

dw1

|(Z ⊗ I)|ψ′
〉
+

〈
ψ′|(Z ⊗ I)| dψ

′

dw1

〉 (5.30)

Assuming the quantum state before passing through this AVE layer is ψK , | dψ′

dw1
⟩ can be

determined by

| dψ
′

dw1

⟩ = CNOT
(
Rx (w2)⊗

dRx (w1)

dw1

)
|ψK⟩, (5.31)

where dRx(w1)
dw1

=

 − sin(w1/2)
2

− i cos(w1/2)
2

− i cos(w1/2)
2

− sin(w1/2)
2

. ⟨ dψ′

dw1
| is the Hermitian transpose of | dψ′

dw1
⟩.

5.4.6 Quantum Policy

This subsection is dedicated to extending the policy loss function in Eq. (5.15) and its

corresponding gradient update strategy to VQC, thus enabling effective update of the param-

eters of the QPL agent. In Eq. (5.15), Qϕj remains in its classical form. The quantum ver-

sions of the reparameterized action term ã(s, ξ) and the log-likelihood term log π (ã(s, ξ) | s)
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related to the policy network need to be derived. The derivations and analyses in this sec-

tion are based on one-dimensional actions, but the relevant conclusions can also be easily

extended to multi-dimensional cases.

As shown in Eq. (5.16), classic SAC employs a squashed Gaussian policy, in which a

factored Gaussian action needs to go through a tanh function. The QPL agent also adopts

a similar squashing strategy.

The expected value of the measurement on qubit 0, denoted as ⟨σ(0)
z,ω⟩, is linearly trans-

formed to span the range [-3,3], allowing it to cover the primary effective region of the tanh

function. Then, the transformed value is treated as the expected value of the action distri-

bution: µω := 3⟨σ(0)
z,ω⟩, where the subscript ω indicates that µω is dependent on the VQC

parameters ω. Likewise, the expected value of the measurement on qubit 1 is linearly trans-

formed to span the range [0,5] to represent the standard deviation of the action distribution

σω := 5
2
(⟨σ(1)

z,ω⟩+ 1).

µω and σω jointly determine the distribution of the vanilla action u. Directly sampling

vanilla actions from the policy might prevent the gradient from propagating from the output

of the policy to its parameters. The reparametrization trick is needed to make the action a

deterministic function of the policy parameters ω and noise ξ. Hence, the vanilla action can

be written as:

uω(s, ξ) =

(
3⟨σ(0)

z,ω(s)⟩+
5

2
(⟨σ(1)

z,ω(s)⟩+ 1)⊙ ξ
)
, (5.32)

where ξ ∼ N (0, I).

The support of the distribution of u is (-inf, inf). Define the probability density function

(p.d.f) of this distribution as fω(u|s).
A squashed action ã can be obtained after the tanh transformation:

ãω(s, ξ) = tanh(uω(s, ξ)), (5.33)

with the support transitioned to [-1, 1].

The p.d.f of the squashed action is:

πω(ã | s) = fω(uω|s) · |1− tanh2(uω)|−1. (5.34)
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Further, the log-likelihood for the squashed action can be derived:

log πω(ã | s) = log fω(uω|s)− log
(
1− tanh2(uω)

)
(5.35)

Since uω follows a normal distribution, the first term of Eq. (5.35), i.e., the log-likelihood

of the normal distribution, is

log fω(uω|s) = − log(σω)− log(
√
2π)− 1

2

(
uω − µω
σω

)2

= − log

(
5
√
2π

2

)
− log(⟨σ(1)

z,ω⟩+ 1)− 2

(
uω − 3⟨σ(0)

z,ω⟩
5(⟨σ(1)

z,ω⟩+ 1)

)2 (5.36)

Based on

1− tanh2(uω) =
(euω + e−uω)

2 − (euω − e−uω)2

(euω + e−uω)2

=
4e−2uω

(1 + e−2uω)2
,

the closed-form expression for the second term of Eq. (5.35) is:

log
(
1− tanh2(uω)

)
= log(4) + log

(
e−2uω

)
− log

((
1 + e−2uω

)2)
= 2

(
log(2)− uω − log

(
1 + e−2uω

))
.

(5.37)

Combining Eqs (5.32) through (5.37), the loss function for training the QPL agent is

L (ω,D) = E
s∼D
ξ∼N

[
ϑ log πω (ãω(s, ξ) | s)− min

j=1,2
Qϕj (s, ãω(s, ξ))

]
. (5.38)

Using the pathwise gradient estimation introduced in [148], an unbiased gradient of (5.38)

can be approximated by

∇ωL(ω,D) = ϑ∇ω log (πω (ãt | st))+

∇ωãt (ϑ∇ãt log (πϕ (ãt | st))−∇ãtQ (st, ãt)) .
(5.39)

Here, ϑ is treated as a constant; ∇ω log (πω (ãt | st)) is jointly determined by (5.29), (5.32),
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(5.35) to (5.37); ∇ωãt is jointly determined by (5.29), (5.32), and (5.33); ∇ãt log (πϕ (ãt | st))
is jointly determined by (5.35) to (5.37), and ã = tanh−1(u); ∇ãtQ (st, ãt) is obtained via

the auto differentiation in a DL framework.

The procedure to implement the QPL is summarized in Algorithm 7.

Algorithm 7 Quantum Policy Learning
1: Input: VQC parameters ω initialized by a uniform distribution within a [0, 2π] interval,

Q-function parameters ϕ1 and ϕ2 initialized by He Normal, empty replay buffer D
2: Set target parameters equal to main parameters ϕtarget,1 = ϕ1, ϕtarget,2 = ϕ2

3: repeat
4: Observe state s, sample a vanilla action u with (5.32), obtain squashed action ã with

(5.33).
5: Execute ã in the environment
6: Observe next state s′, reward r, and terminal signal d
7: Store (s, ã, r, s′, d) in replay buffer D
8: if s′ is terminal, then
9: reset environment.

10: end if
11: if it’s time to update then
12: for j in range(preset update times) do
13: Randomly sample a batch of transitions {(s, ã, r, s′, d)} from D.
14: Compute targets for the Q functions with (5.14).
15: Update Q-functions by one step of gradient descent using (5.13).
16: Update quantum policy with quantum policy gradient in (5.39).
17: Update target networks with (5.17).
18: end for
19: end if
20: until convergence

5.5 Numerical Results

In this section, the viability and superiority of the proposed QPL algorithm are examined,

alongside a discussion on the factors influencing the performance of VQCs. The data span-

ning one year has been retrieved from a specific location within the PJM real-time energy
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market. This dataset comprises 365 data entries, each featuring 24 dimensions corresponding

to the individual hours within a day. 80% (292 days) of the dataset is used for training, and

the rest (73 days) is used for testing. Table 5.1 lists the parameters of the ESS. Relevant

hyperparameters of the QPL algorithm used in the following case studies are shown in Table

5.2.

The computational setup used in this study involves both classical and quantum com-

puters to implement a hybrid computational framework. The conventional neural network

aspects are developed using PyTorch. Pennylane and IBM’s Open Quantum Assembly Lan-

guage (QASM) are utilized for the construction and simulation of the VQC. Training of the

VQCs is carried out on processors equipped with AMD EPYC 7763 running at a frequency

of 2.45 GHz. The testing phase is conducted using a combination of the aforementioned pro-

cessors and cloud-based resources: the ibmq_qasm_simulator simulator and the ibm_lagos

QPU.

Parameter Value Parameter Value Parameter Value
U 30 MWh ηch 0.9 ηdis 0.9
δh 1 hour SOC 0.9 SOC 0.1
Pmax 5 MW c 10 $/MW

Table 5.1: Parameters of Energy Storage System.

Parameter Value Parameter Value
replay buffer size 1e4 exploration steps 2e3

batch size 32 Q function hidden layer size [64,64]
ρ 0.995 γ/ϑ 0.99/0.1

Optimizer Adam quantum policy/
Q function learning rate 1e-3/3e-3

Table 5.2: Hyperparameters of the QPL algorithm.
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5.5.1 Quantum Advantage: Expressivity

To validate the practicality and superiority of the proposed QPL, the training results of

the proposed QPL algorithm, characterized by a policy driven by pure quantum circuits, are

compared with those of the classical SAC. The moving average of episodic returns on the

training set, i.e., R =
∑23

t=0 γ
trt, with a rolling window of 200, is utilized as a performance

metric to gauge the training efficacy. Given the fluctuations in electricity prices, both intra-

day and inter-day, this metric can serve as the expected performance of the RL agent under

varying electricity prices within the training dataset.

Fig. 5.3 showcases the evolution of episodic returns throughout the training process for

three types of RL agents: QPL (20 paras), Classic SAC (20 paras), and Classic SAC (1280

paras), in which the shadowed areas represent the standard deviation of the performance

over three random seeds. In the case studies, unless otherwise specified, the QPL adopts a

three-layer structure with two qubits, requiring only 20 variational parameters to be trained.

In contrast, one of the comparative counterparts, the Classic SAC (1280 paras), encompasses

a policy network with two hidden layers, each with 32 neurons, representing a more common

and practical configuration in the realm of DRL. The Classic SAC (20 paras) mirrors the

parameter volume adopted in the QPL. The performance of QPL markedly surpasses that of

Classic SAC (20 paras): while utilizing the same number of trainable parameters, 20 in this

case, QPL manages to converge more swiftly and stably to an episodic return of 15.69 with a

standard deviation of 0.26, improving over 60% compared to the 9.73 achieved by the Classic

SAC (20 paras). QPL also outperforms Classic SAC (1280 paras). QPL showcases an almost

monotonically increasing trend from the beginning of training, converging to around 15.69

in merely about 40k steps, whereas the Classic SAC (1280 paras) requires approximately

60k steps. This suggests that the QPL agent exhibits a higher utilization rate of existing

experiences while not compromising its exploratory nature. This is evidenced by a relative

difference of less than 1% in the converged values compared to the 15.76 attained by the

Classic SAC (1280 paras).

Utilizing only about 1.6% of the parameter quantity, QPL is comparable with the preva-

lent classic policy networks. This quantum advantage is associated with the trainability and

expressibility conferred by the VQCs devised in this study [141, 149]. The empirical result
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Figure 5.3: The impact of varying layer quantities in the quantum circuit on the training
performance of the proposed QSAC agent.

demonstrates the proposed QPL can approximate the solution space between the state and

action in Hilbert space sufficiently and efficiently.

5.5.2 Implantation on Real Quantum Hardware

Utilizing the trained parameters to build the quantum circuit enables the quantum circuit

operating on the QPU to efficiently manage the ESS in an online manner. In this section,

we refer to this phase as the testing phase. To demonstrate the generalization ability of the

trained QPL agent and its resilience to actual decoherence noise, a 24-hour period is selected

from the test set for the RL agents to schedule, which is depicted by a black curve in Fig.

5.4.

Two approaches are adopted here as benchmarks. One assumes that the 24-hour elec-

tricity price information is known and noise-free, based on which an optimization model can

be constructed to derive a scheduling scheme. This method is denoted as Opti-Complete.

In reality, this method is impractical because assuming known future electricity prices in

the real-time market is unrealistic. The other method is Model Predictive Control (MPC),

a more practical approach designed for online operation. Employing a rolling scheduling

strategy, it utilizes the noisy electricity price predictions available over a limited future time

horizon. Only the scheduling decision for the next time step will be deployed. In this ex-
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Figure 5.4: Power scheduling results of a trained agent on a local exact simulator, a cloud
measurement-based simulator, and a real quantum hardware.

ample, the prediction error is modeled using a Gaussian distribution with a mean of zero.

The standard deviation of the prediction error starts at 0.02 and increases linearly as the

distance between the future time steps and the current time step expands. The comparison

criterion is the total amount of net profit gained by the ESS within this 24-hour period.

Opti-Complete can earn $293.33, which can be regarded as the upper bound of the profit.

With noisy price prediction, MPC can only achieve a profit of $178.72. The scheduling

results outputted by QPL are displayed in the bar charts in Fig. 5.4, which materializes a

profit of $260.72. For a specific electricity price scenario, optimization-based methods require

one or several instances of modeling and solving optimization problems. RL approaches mit-

igate this challenge, enabling instant adaptation to multiple unknown scenarios through a

single round of offline training. Moreover, the results here empirically demonstrate that the

QPL agent can outperform the MPC method in terms of profitability, which is close to the

theoretical optimal value.

The trained circuit was tested online on three different platforms: a local simulator, the

ibmq_qasm_simulator, and the ibm_lagos. Pennylane’s default qubit is a simulator that
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can generate theoretically exact expected outcomes from quantum measurements, serving as

an ideal benchmark for quantum computations. The ibmq_qasm_simulator, a cloud-based

entity, replicates the stochastic nature of quantum measurements with a count of 10,000,

offering a closer approximation to real quantum mechanics. The ibm_lagos is a supercon-

ducting quantum hardware with seven qubits, enabling the genuine testing and evaluation

of circuits in a real-world quantum computing environment, showcasing the practicability

and limitations primarily due to decoherence and imperfect quantum gates in the NISQ era.

Fig. 5.5 presents the specifications and configurations of the ibm_lagos QPU. In addition to

the topology of the qubits, the measurement (i.e., readout) errors, single-qubit gate errors,

and two-qubit gate errors are visualized using a heat map. The qubits in the ibm_lagos are

manipulated using microwave pulses to perform quantum computations.

The bar charts in Fig. 5.4 illustrate the scheduling outcomes generated by three different

platforms. The primary finding is that, despite the presence of measurement errors and

various hardware imperfections, such as gate errors and qubit decoherence, the scheduling

outcomes across the three platforms are close. Using the scheduling results on the local

simulator as a baseline, the L2 norm distances between the outcomes obtained with the

ibmq_qasm_simulatorr and the ibm_lagos, relative to the baseline, are found to be 0.6678

and 1.5682, respectively. The insignificant deviation can be primarily attributed to the fact

that the QPL employs a low-depth and low-width layer structure. This delicate design

makes it less prone to errors, consequently enhancing its resilience in a real-world quantum

computing environment. Furthermore, these results are quite promising, substantiating the

feasibility of executing EA tasks through the proposed QPL in an online setting.

5.5.3 VQC structure evaluation

This part is dedicated to evaluating the impact of VQC design.

5.5.3.1 Number of layers

Fig. 5.6 depicts the curves illustrating the relationship between the optimization per-

formance and the number of training iterations for the proposed VQCs with different layer

counts. Apart from the VQCs with only one layer, the performance of the remaining VQCs

is relatively similar. The VQCs with a single layer exhibit a substantial variance in returns,
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Figure 5.6: The impact of varying layer quantities in the proposed VQCs on the training
performance of the proposed quantum policy agent.
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and the policy performance it converges to is significantly inferior compared to the others.

The heightened variance in performance exhibited by the one-layer VQCs is primarily due to

their inability to implement state reuploading, resulting in a constrained learning capacity to

generalize complex patterns, heightened sensitivity to training data fluctuations, and limited

expressivity.

Table 5.3 takes a closer look at the values to which the curves in Fig. 5.6 eventually con-

verge. It can be observed that the mean value exhibits a gradual increase until three layers,

suggesting a potential improvement in model optimality. Beyond this point, a stabilization

in mean values is observed, hinting at a saturation point in performance enhancement. The

standard deviation values exhibit a downward trend, implying a potential improvement in

result consistency as the layer number increases. Furthermore, the parameter count, which

escalates linearly, signifies a consistent increment in the complexity of the quantum policy

VQCs with the addition of layers.

Moreover, the polynomial parameter count 6 ·K + 2 (where K represents the number of

layers) directly corresponds to the complexity and scale of the quantum policy within VQCs.

This growing parameter count not only mirrors the escalating complexity but also represents

an expansion in the scale of the VQCs, influencing the quantum computational resources

required. To strike a balance between achieving a robust performance and avoiding over-

complication, thereby fostering greater practicality in the NISQ era, a three-layer structure

emerges as a viable choice. This preference is substantiated by the enhancement in mean

values up until three layers, indicating a substantial gain in training performance. Moreover,

the relatively low standard deviation at this point suggests satisfactory stability. Thus,

opting for a three-layer structure could potentially encapsulate the desired optimality while

retaining computational feasibility, paving the way for more practical applications in the

evolving quantum landscape.

5.5.3.2 Circuit design

This subsection intends to compare the VQC layer structure presented in Fig. 5.2 with

other layer structures, quantify their comparative performances, and distill some guidelines

for VQC design oriented towards QPL.
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Layer number Mean Value Standard Deviation Parameter Count

1 13.81 1.12 8
2 14.76 0.45 14
3 15.69 0.26 20
4 15.23 0.59 26
5 15.53 0.25 32
6 15.48 0.28 38

Table 5.3: Post-training Performance of VQCs with Different Numbers of Layers

We refer to the VQC layer structure proposed in this paper as the QPL. The counterparts

for comparison include the QAOA-inspired layer introduced in [150], the quantum-enhanced

layer introduced in [151], the QPL without entanglement, and the conventional multi-layer

stacked VQC. Specifically, Fig. 5.7(a) showcases a quantum-enhanced layer characterized

by a sequential arrangement of Hadamard gates, Rz gates, and ZZ gates. The Hadamard

gates are utilized to prepare the qubit in a quantum superposition state, whereas the ZZ

gates, also known as Ising ZZ coupling gates, are employed to parameterize the circuit and

introduce entanglement. The quantum-enhanced layer operates with three qubits, with seven

trainable parameters in each layer. Fig. 5.7(b) depicts a QAOA-inspired layer characterized

by the ZZ gates segregating the state embeddings. Fig. 5.7(c) corresponds to the exclusion

of the CNOT gates in the proposed QPL, thereby eliminating the entanglement phenomena

between the two qubits. Fig. 5.7(d) integrates state variables into the quantum state,

utilizing stacked Rx gates and CNOT gates to formulate VQCs. Its paramount distinction

from all the aforementioned circuits is the non-adoption of a state reuploading strategy.

In the subsequent experiments, the five types of VQCs depicted in Fig. 5.2 and Fig. 5.7

are employed independently as quantum policies. The training performance of the quantum

policies in the EA environment, primarily assessed through average returns and stability,

is utilized to evaluate the efficacy of these five VQCs in accomplishing EA tasks. It is

noteworthy that, except for the multi-layer stacked circuit, which utilizes a four-layer setup,

all other VQCs adopt a three-layer structure, thereby maintaining the number of trainable

parameters at 20 or 21. This measure is taken to avoid any potential influence of the
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(b). QAOA-inspired layer(a). Quantum-enhanced layer

(c). Quantum Policy Layer without entanglement (d). Multi-layer stacked circuit

State embebed here only Layer 1

Figure 5.7: Four VQC layer structures serving as comparison counterparts.

parameter count on the experimental outcomes.

Fig. 5.8 depicts the effect of variations in circuit design on the training efficacy of the

quantum policy agent. Table 5.4 focuses on the convergence points of the curves in Fig. 5.8,

reporting the final performance of the VQCs across five different circuit structures. In Fig.

5.8, the proposed QPL structure evidently outperforms other circuit designs, both in terms of

optimization efficacy and training stability. Following closely is the QPL structure that does

not employ entanglement. The QAOA-inspired and quantum-enhanced circuits are slightly

inferior to the preceding two. The least effective is the VQC, which does not implement a

state reuploading scheme. It is observed that the QAOA-inspired and quantum-enhanced

circuits, along with the VQC without a state reuploading scheme, exhibit a larger variance

during the training process. In contrast, the circuits utilizing the proposed QPL structure

do not have this issue.

In comparison to the quantum-enhanced and QAOA-inspired structure, the proposed

QPL stands out with an impressive increment of roughly 16.9% and 14.7% in the mean

value, respectively, showcasing a significant stride in optimizing performance metrics. This

superiority can be attributed to the rational arrangement of AVE and VE sub-layers within

the QPL structure, coupled with the sequential utilization and arrangement of Rx, Ry,

and Rz gates. This design ensures that the quantum states can be amply dispersed across
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Figure 5.8: The impact of varying circuit design on the training perforofnce of the proposed
quantum policy agent.

the Hilbert space while effectively integrating the environmental information provided by

the state vector. When viewed against the QPL without entanglement, the QPL structure

exhibits a 10.4% escalation in mean value. This result substantiates that the incorporation of

inter-qubit entanglement interactions grants the QPL a significant edge by fostering complex

correlations and richer computational landscapes. The QPL overshadows the VQC without

a state reuploading scheme by a massive 49%, which necessitates the adoption of a state

reuploading scheme in the QPL algorithm. The state reuploading scheme augments the

expressive capability of the quantum circuit, thereby bolstering its training performance.

VQC name Mean Value Standard Deviation

QPL 15.69 0.26
QAOA-inspired [150] 13.68 0.15

quantum-enhanced [151,152] 13.42 0.82
QPL w/o entanglement 14.21 0.20

VQC w/o state reuploading 10.53 0.42

Table 5.4: Post-training Perforofnce of VQCs with Different Layer Designs
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QPL

QAOA-
inspired

Figure 5.9: quantum circuits implemented at ibm_lagos after compilation: QPL v.s. QAOA-
inspired.

A notable advantage of QPL is its low depth and narrow width, which become even more

pronounced when compiled into circuits compatible with real quantum hardware. Fig. 5.9

shows the quantum circuits with QPL and QAOA-inspired layers executed on the ibm_lagos

hardware following compilation. It is evident that the complexity of the QPL after compi-

lation is significantly less than that of the QAOA-inspired. IBM-Lagos supports rz(Rz),

sx(
√
X), and cx(CNOT) gates.

The quantum circuit specifications after compilation are detailed in Table 5.5. The depth

of the QAOA-inspired circuit is markedly greater, with a depth of 44 as opposed to the 19

observed in the QPL circuit, indicating a surge of approximately 132%. The QAOA-inspired

circuit also witnesses a substantial increment of about 71% compared to the QPL circuit in

terms of the total gate count. This escalation in complexity is partially attributed to the

inherent topology of the quantum hardware, where not all three qubits are mutually inter-

connected. Consequently, to compile the QAOA-inspired circuit into a hardware-compatible

configuration, SWAP operations are implemented, which facilitates the establishment of ef-

fective communication between non-adjacent qubits. However, this measure contributes to

the increased gate count, with the total gate count reaching 60, in contrast to the 35 gates re-

quired for the QPL circuit, marking a growth of approximately 71%. Especially the number
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Table 5.5: Quantum Circuit Specifications after compilation

Name Qubit
number Depth Gate Counts

rz sx cx measure total
QPL 2 19 18 12 3 2 35

QAOA-inspired 3 44 26 14 18 2 60

of CNOT gates has increased sixfold. Considering that the error associated with two-qubit

gates, namely CNOT gates, is significantly larger than that with single-qubit gates in quan-

tum hardware, the increased number of CNOT gates dramatically amplifies the error impact

on the circuit performance. This potentially renders the QAOA-inspired circuit impractical

for implementation on quantum hardware. In contrast, the QPL circuit proposed in this

study exhibits a high degree of consistency in performance between the quantum hardware

and the simulator, as substantiated by the experimental results presented in Sec.5.5.2.

5.6 Summary

This study proposes a QPL algorithm to guide the online arbitrage of ESSs in the energy

market. A carefully designed MDP encourages ESSs to actively explore the action space

in the early stages of training while also ensuring the safe operation of the ESSs. A multi-

layered VQC, characterized by low width and depth, is used as the policy, complemented

with the derivation of the loss function and gradients to train the parameters of the circuit,

namely, the rotation angles of the quantum rotation gates.

In comparison with the classic SAC algorithm, the proposed method demonstrates quan-

tum superiority, attributable to the high expressivity of the designed VQC. With only 1.6%

of the parameter quantity required by classical algorithms, QPL can achieve a faster conver-

gence speed and optimization performance that is very close to that of classic algorithms.

The trained VQCs are ported to run online on the IBM_Lagos quantum hardware, and the

results indicate that gate errors and qubit decoherence exert a relatively subtle influence on

the designed VQCs. Compared to a series of circuits proposed in other literature, this study

validates the superiority of the proposed low-width and low-depth Quantum Policy circuits

in terms of noise resistance, optimization performance, training stability, and compilation
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efficiency. The comparative results not only showcase the reliability of QPL but also signal

a promising avenue for leveraging quantum computing capabilities to further integrate ESSs

into the energy system.
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Chapter 6

Concluding Remarks

In this dissertation, the emerging challenges in the integration of renewable energy sources

and energy storage systems into power systems, driven by net-zero objectives, are addressed

through several advanced methodologies. The research first introduces a Proximal Policy

Optimization-based deep reinforcement learning agent tailored for the capacity scheduling

of investor-owned photovoltaic-battery storage systems, ensuring adaptability to volatile

market signals and photovoltaic generation profiles. Subsequently, an adaptive equivalent

model for active distribution networks is proposed, which employs a leaves-trimming topo-

logical reduction method and a distributed Proximal Policy Optimization agent, enhancing

the accuracy of models in scenarios with high renewable energy source penetration. Further,

a bi-level multi-period framework is presented for strategic battery energy storage expansion

planning in microgrids. This framework integrates quantile regression deep reinforcement

learning with linear programming, aiming to provide dynamic planning solutions in the face

of fluctuating renewable energy sources, load demands, and battery prices. Lastly, the dis-

sertation proposes a quantum policy learning algorithm based on a strategically constructed

variational quantum circuit, positioning it as a cutting-edge solution for energy arbitrage

tasks in energy storage systems. Rigorous case studies, leveraging real electricity market

data and renewable energy source profiles, validate the superiority of the proposed method-

ologies over contemporary techniques.
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