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Abstract 

Combining the contributions of Cox, Ingersoll and Ross (1979, 1981) 

in stochastic duration of bonds and in equilibrium pricing of futures 

contracts, this paper develops stochastic duration as a dynamic risk 

measure of financial futures. The stochastic duration in this paper 

takes the general form and thus it is applicable for not only futures 

but also underlying securities. Some properties of the stochastic 

duration of the futures are examined and simulation results are pro

vided for illustrative purpose. 



Stochastic Duration and Dynamic Measure Of 

Risk in Financial Futures 

1. Introduction 

Options, forward contracts, and futures contracts are the deriva

tive assets. and they are very useful hedge instruments in portfolio 

management. In his recent work, Garman (1985) has applied the concept 

of duration to analyze the interest sensitivity of a portfolio of 

options that encompasses forward contracts. The purpose of this paper 

is to combine the contributions of Cox. Ingersoll and Ross (1979, 1981) 

(hereafter CIR) in the stochastic duration of bonds and in the equili-

brium pricing of futures contracts to develop stochastic duration as a 

dynamic risk measure for financial futures and to examine some of its 

useful properties. 

The introduction of futures contracts on several financial instru-

ments into the exchanges in the recent years has generated a great deal 

of interest among financial economists as well as bond portfolio mana

gers. Most of the studies on financial futures have focused either on 

the empirical investigation of hedging effectiveness of financial 

futures or on deriving optimal hedge-ratios in immunization strategies 

with financial futures using Macaulay's duration as a risk measure. 1 

To the best of our knowledge, no study on financial futures to date has 

explicitly examined the validity of the traditional duration or pro

posed any alternative risk measure in the immunization strategies with 

financial futures. 2 
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As Leibowitz (1981) has demonstrated, there are two basic kinds of 

yield-curve movements--parallel market shifts and yield-curve reshapings--

and they lead to fundamentally different types of volatility behavior in 

the prices of financial futures. In particular, the prices of financial 

futures have been shown to be extremely sensitive to the yield-curve re-

shapings even when the cash security's yield remains unchanged. The risk 

embedded in a financial futures contract is- not the same as that of a 

cash security. Therefore, determining a proper risk measure in financial 

futures is of significant importance if we attempt to devise effective 

hedging strategies with financial futures in the management of bond port-

folios. 

The traditional measures of duration, developed by Macaulay (1938) 

and Hicks (1939), have been used as measures of basis risk of bonds and 

as means to devise immunization strategies for bond portfolio manage-

3 ment. The concept of the traditional measures of duration has also 

been extended to assess the risk of other financial assets such as 

4 
common stocks and financial futures. However, as Cooper (1977), CIR 

(1979) and Ingersoll, Skelton and Weil (1978) have pointed out, the 

traditional duration is a valid risk measure only for parallel shifts 

in the entire yield-curve (i.e., preserving yield-curve shapings). 

Therefore, applying the traditional measures of duration to financial 

5 
futures for immunization strategies might lead to improper results. 

It seems difficult to interpret the duration of futures contracts 

in a conventional way since they do not require initial investment. 

Thus, a "quasi-duration" is developed in this paper to measure the 

6 
riskiness of financial futures contracts. It is our hope that this 
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paper will increase the understanding of the risk measure of financial 

futures and thus provide some insights for a better use of financial 

futures in devising immunization strategies in the management of bond 

portfolio. Section 2 reviews the literature on duration of bonds. 

Section 3 develops the stochastic quasi-duration of financial futures 

and its useful properties, and shows some simulation results. Section 4 

contains a brief summary. 

2. Brief Review of Duration of Bonds 

Duration of a bond, originally developed by Macaulay and Hicks, 

is defined as follows: 

D = ! tC(t)P(t)/! C(t)P(t) (1) 

where C(t) is the stream of cash flows (coupons and principal repay-

ment) and P(t) is the present value of $1.00 to be received at time t. 

Duration in (1) can also be expressed in the form of an elasticity: 

-D = [(dB/B)/(dy/y)]/y • [dB/B]•[l/dy] (2) 

-yt 
where B = r C(t)e and y is the continuously compounded yield-to-

maturity on the bond. 

CIR (1979) has demonstrated that measuring the risk of a bond by the 

elasticity given in (2), which is common in the bond market, is faulty 

since the result in (2) cannot, in general, be used to make cross-

sectional comparisons of the riskiness of bonds (p. 52). In addition, 
' 

Ingersoll, Skelton and Weil (1978) has proved that the duration in (1) 

can be a valid risk measure only when the entire yield curve is described 
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by proportional shape-preservation under interest rate changes (see 

also CIR (1979) and Bierwag, Kaufman and Toevs (1983)). Thus it would 

be misleading if we apply the concept of the traditional duration 

directly to the financial futures contract since, as Leibowitz (1981) 

has shown, the futures price is more sensitive to yield curve reshap-

ings than to parallel shifts. 

As an alternative to the traditional duration, CIR (1979) has pro-

posed stochastic duration as a dynamic measure of risk of bonds. This 

concept of duration allows the yield curve changes in shape as well as 

location. To derive the stochastic duration, CIR assumes that the 

instantaneous compounding risk-free interest rate, r, follows the 

first-order auto-regressive process as 

dr = K(~ - r)dt + air dz (3) 

where ~ is steady-state mean, K is the parameter for the speed of 

adjustment toward ~' a is the standard deviation and dz is a basic 

Wiener process. 

Based upon a general process for interest rate in (3), CIR derives 

the stochastic duration as a proxy for basis risk of coupon bonds with 

units of time as follows: 

DB _ G-1 [-B /B] = G-1 [-r C(t)P (t)/r C(t)P(t)] r r (4) 

= G-l[r C(t)P(t)G(t)/r C(t)P(t)] 

where P(t) =the price of a unit discount bond with time to maturity t 

= A(t)exp[-rG(t)] 
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{ 2y exp((y + K + l)T/2] } 
A ( T ) = ( y + K + l )[ exp ( y T) - 1] + 2y 

G(T) • 2/(K +A + y Coth(yT/2)] 

Y = [(K + 1)2 + 2o2]1/2 

A • the market risk parameter 

G -l (X) = ! Cot h -l ( _1. - K + l J 
y yx y 

2 
2KJJ. /a 

CIR (1979) has compared the traditional duration in (1) with the sto-

chastic duration in (4), and concluded that the traditional duration is 

not realistic. 

3. 
7 Stochastic Duration of Financial Futures 

Taking into account the marking-to-market effect in futures con-

tracts, CIR (1981) has derived the equilibrium pricing formula for the 

futures contract on a unit discount bond in a continuous time framework. 

Let F(t,~) be the futures price as of time t for a contract with 

the maturity date s on a discount bond paying one dollar at time T 

(t < s < T), and let ~ = T - s and T • T - t to be consistent with the 

notation in section 2. Then the equilibrium price of this futures 

contract is as follows: 

F(t,~) 

2 
( ) 2KJJ./O n s-t 

= A(~)[G(~) + n(s-t)J 
n(s-t)G(~)e-(K+l)(s-t) 

• exp[ -r • ] 
G(~) + n (s-t) 

2(K + l) 
where n ( s -t) = --:-2----"~-"(-K-:-+-:'-l ~) '( s---t')-) 

a (1 - e , 

It is noteworthy to distinguish between the future price, F(t,~). 

and the market value of a futures contract. Because of the marking-to-

market requirement, the futures contract is rewritten at the end of 

(5) 
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each day at the new futures price so that the market value of a futures 

contract is zero. Define the instantaneous changes in the futures 

prices as: 

dF = (FS - o)dt + Fhdz (6) 

where B is the expected instantaneous percentage change in F, h is the 

instantaneous standard deviation of the percentage change in F, and 

o is the payout received. CIR (1981) and others have shown that in a 

continuous-time the futures price must satisfy the following relation-

ships: 

h = a{r F /F (7b) 
r 

where the subscripts on F denote partial derivatives. All other nota-

tions are as defined before. From eQuations (6) and (7b), one can see 

that the change in the futures price of a discount bond attribu.table 

to an unexpected shift in the spot interest rate is proportional to 

F /F and therefore, is an appropriate measure for the basis risk of a 
r 

futures contract. Since the market value of a futures contract is 

zero, the term "stochastic quasi-duration" is used to distinguish from 

the conventional duration. It should be noted that the concept of the 

quasi-duration is similar to the one of the conventionally defined 

duration except that the denominator is replaced by the futures price. 

From (4) and (5), the stochastic quasi-duration of the futures con

S 
tract on a discount bond (DF) can be derived as 
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DF - G -l [ -F /F] 

-1 n(s-t)•G(~)e-(K+A)(s-t) 
= G [ G(~) + n(s-t) ] (8) 

Some of the properties of the stochastic quasi-duration of the 

futures contract on a discount bond can be stated as follows: 

Lemma 1: The stochastic quasi-duration, DF' as defined in (8) has the 

following properties: 

(i) lim DF = T - s = ~ 
t+s 

(ii) 
3DF 

< 0 a(s-t) 

(iii) 
3DF 
~> o. 

Proof: (i) When s + t, the futures price of a discount bond approxi-

mates the price of the discount bond. That is, when s + t, F + B. As 

a result, DF + T - s = ~. 

(ii) Since Coth-1(y) is meaningful only if IYI > 1, G-1(x) is mean

ingful only if 1L - K+A I > 1. For convenience, define x = -F /F. It 
yx y r 

can be shown that 

(K+A)e-(K+A)(s-t) 
n'(S-t) =- • n(s-t) 

1 -(K+A )(s-t) 
- e 

Then we can prove that 
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(K+A) • ry(s-t) • G2 (~) • e-(K+A)(s-t) 

[G(~) + n(s-t) 12 • (1 - e -(K+A )(s-t) 

(K+A) • G(~) • n2(s-t) • e-(K+A)(s-t) 

(G(~) + n(s-t) 12 

( 0, if (K+A) ) 0 

Here we recognize the fact that if (K+A) > 0, then n(.-t) > 0 and 

G(~) > 0. From the chain rule, we can obtain 

(iii) Since 

2 2 
G'(-r) • 1 • Sech <x-r/2) > 0, 2 

(K + A + y coth(y-r/2)] 

it can be proved that 

a( -F /F) G'(~)n2(s-t)e-(K+A)(s-t) r > o. = 2 
a~ [G(~) + n(s-t)] 

As a result, 

aDF ac-1(-F /F) a(-F /F) 
r r 

-a~- = -a~<:--"'""F....;/~F~)- • a~ > 0• 
r 

Q.E.D. 

The property (i) in lemma 1 shows that DB is a special case of DF; (ii) 

indicates that the longer the time to expiration of a futures contract 

the less the stochastic quasi-duration, ceteris paribus; (iii) demon-

strates that the longer the time to maturity of the underlying discount 

bond, the greater the stochastic quasi-duration and the risk. 

We can also develop the pricing formula for a futures contract on a 

coupon bond since a coupon bond can be regarded as a portfolio of dis-

count bonds. Consider a coupon bond which pays n constant coupons (C) 
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with the equal time interval (6) for the period 6 = T - s and principal 

of one dollar at timeT, i.e., A/6 = n. This coupon bond can be 

thought of as a portfolio of n discount bonds (i = 1,2, ••• ,n). Let 

F(t,i6) be the futures price on the ith discount bond. The futures 

price on the coupon bond as of time t (f(t)) can be written as 

n 
f(t) = c t F(t,i6) + F(t,n6) (9) 

i=l 
2 

n 2Kp/a 
n(s-t) = c t A(i 6)[G(i6) + n(s-t)] 

i=l 

n(s-t)G(i6)e-(K+A)(s-t) 
exp[-r{ G(i 6) + n(s-t) }1 + F(t,n6) 

Following the same procedure, the stochastic quasi-duration of the 

futures contract on a coupon bond can be written as 

where 

-(K+A)(s-t) · . -(K+A)(s-t) 
-f = CtF(t,i6){n(s-t)G(i6)e } + F(t,n6){n(s-t)G(n6)e } 

r G(i6) + n(s-t) G(n6) + n(s-t) (10) 

f CEF(t,i6) + F(t,n6) 

Equation (10) is the general form of stochastic duration for finan-

cial securities. For instance, if C is zero for discount bonds, then 

(10) reduces to (8) and we have Df = DF. In addition, when t is equal 

to s, the futures contract on a coupon bond becomes a cash coupon bond 

and thus (10) reduces to (4). Some useful properties of the stochastic 

quasi-duration of the futures contract on a coupon bond can be stated 

as follows: 
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Lemma 2: The stochastic quasi-duration of the futures contract on a 

coupon bond, Df' as defined in (10) has the following properties: 

(11) lim Df 
t+s 

= D 

(iii) 
aDf 

< 0 3(s-t) 

(iv) 
aDf 
ac-< 0 

aDf > 
(v) an< o. 

B 

Proof: (i) This result is obvious, since as C + 0, f + F. 

(ii) Since as t + s, f + B. As a result, as t + s, Df + DB. 

(iii) This can be directly derived from the result of (ii) in 

lemma 1. 

(iv) 

aDf 1 F(t ~) ( t) -(K+A)(s-t) 
-- = - • ,nu • n s- • e • ac f2 

' G(i6) G(n6) 
tF(t,i6)[G(i~) + n(s-t) - G( ~) + ( )] u nu n s-t 

Since G'(T) > 0, G(i6) > 0, n(s-t) > 0, and n 2 i, the quantity in the 
aDf 

bracket is negative. As a result, ac < 0. 
3DB ) 

(v) If we can show that a;- < 0, it is easily 
aDf > 

proved that a;- < 0. 

Assuming that the coupon payments are continuous, DB can be rewritten 

as 
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n 
cf A(t) exp[-rG(t)]G(t)dt + A(n)exp[-rG(n)]G(n) 

0 
z =--~------------------------------------------

H 
""'B 

n 
Cf A(t)exp[-rG(t]dt + A(n)exp[-rG(n)] 

0 

az 1 { an= 82 G'(n)A(n)exp[-rG(n)]B 

+ CA(n)exp[-rG(n)][BG(n)-H] 

- rG'(n)A(n)exp[-rG(n)](BG(n) -H)} 

+ A'(n)exp[-rG(n)][BG(n)-H] (11) 

Since A'(n) < 0, 9 G'(n) > O, and [BG(n)- H] l 0, the first two terms in 

the right hand side are positive, while the last two terms are negative. 

As a result, the sign of az/an 
an -1 

Notice that azB = aGaz (Z) > o. 

can be negative, positive, or zero. 
aoB aoB az 

The sign of -- = -- • an will depend an az 

on the sign of az/an. > The proof of aof/an < 0 can be directly obtained 

from the result of ao8 /an. 

az If C • O, then (BG(n) - H) = O, and an > 0. 

Q.E.D. 

ao8 
Therefore, a,n- > 0, 

if C = 0. However, if C * O, the stochastic duration of a cash coupon 

bond and the stochastic quasi-duration of a futures contract on the 

coupon bond need not be an increasing function of maturity n. The 

result in the former case has been pointed out by CIR (1979) without 

proof. The maximum for the quasi-duration is at the point n with az/an 

= 0. Two corollaries to lemma 2 have been derived in Appendix. 
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Since the properties of the stochastic duration of a futures 

contract appear to be complicated, simulation analysis is employed to 

demonstrate that their practical application is not as restrictive as 

it looks once the parameters of the interest rate process in (3) are 

estimated. For illustration, we have simulated the stochastic dura-

tions of financial futures contracts using the parameter values in (3) 

estimated by CIR (1979). Using a time series of the weekly auction 

rates on 91-day Treasury bills for 1967-1976, CIR has estimated K = 
2 

.692, ~ = 5.623%, and a = .00608. 

Table 1 presents the simulation results on stochastic durations of 

futures contracts on discount bonds and coupon bonds with varying coupon 

rates and time periods. We have assumed p = r and A (liquidity premium) 

• 0 to see only the effects of uncertainty. We have also used the re-

version parameter, K = .692, in order to highlight the effect of interest 

rate process with drift affecting the shape as well as the location of 

the yield curve, as opposed to the random walk with zero drift affecting 

10 the location only. 

Insert Table 1 about here 

Table 1 demonstrates that the stochastic quasi-duration of futures 

contracts on bonds decreases as coupon rate increases, which is con-

sistent with the duration of cash bonds. It also shows that as s-t 

becomes longer for the given period of ~, the stochastic duration 

becomes smaller, which is consistent with lemma 1 and 2. This result 

is also intuitively plausible, since the futures contract as of time t 

with the maturity date s on a bond maturing at time T can be viewed 
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conceptually as a portfolio going long in the bond with the maturity 

date T and at the same time going short in the bond maturing at time 

11 s. In addition, the results in Table 1 are consistent with the 

notion of CIR (1979) and the results of lemma 2 that the stochastic 

duration of a cash coupon bond and the quasi-duration of a coupon bond 

futures need not be an increasing function of maturity. 

Insert Table 2 about here 

However, Table 1 is not directly comparable to CIR (1979) because of 

the different underlying securities. Table 2 presents an indirect com-

parison between the stochastic duration of cash bonds reported in CIR 

(1979) and the stochastic quasi-duration of futures contracts on the same 

bonds when the time period until the maturity of the futures contracts 

is extremely short. As expected, under this circumstance, they are 

quite similar. 

It is important to note that the stochastic quasi-duration of 

financial futures developed in this paper is sensitive to the reversion 

parameter. Table 3 demonstrates the sensitivity of the stochastic 

duration to the reversion parameter K· This clearly indicates that the 

effectiveness of the stochastic duration for practical applications 

critically depends on correct estimates of parameters in the interest 

rate process specified in (3). 

Insert Table 3 about here 

Once the aforementioned stochastic durations for cash bonds and the 

futures on the bonds are estimated, they can be utilized to calculate 

the hedge ratios in the immunization strategies with financial futures. 
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Since the stochastic quasi-duration for financial futures developed in 

this paper allows for parallel shifts as well as reshapings in the 

yield-curve, it must be a better risk measure and will provide a more 

effective means in immunization strategies for bond portfolio management. 

3. Conclusion 

The concept of duration has been commonly used as a measure of 

basis risk of bonds. However, the usefulness of the traditional dura

tion and its extentions is restrictive because they are valid only for 

parallel market shifts in the entire yield curve. Since the prices of 

financial futures contracts are very sensitive to yield-curve reshapings, 

the traditional duration does not provide enough usefulness in immuni

zation strategies with financial futures. We have developed stochastic 

quasi-duration of a financial futures contract as a proxy for its dynamic 

measure of risk, based on a more plausible interest rate process allowing 

changes in shape as well as location of the yield curve suggested by 

CIR (1979). The simulation results confirm the validity of the afore

mentioned stochastic duration as a risk measure for financial futures. 

As Bierwag, Kaufman and Toevs (1983) have pointed out that using 

futures contracts to change the duration of a portfolio is of great 

usefulness in high interest rate environments. An important and inter

esting area for further research would be how to combine stochastic 

durations of both cash portfolio and futures contracts to derive an 

optimal immunization strategies for financial institutions with various 

investment planning horizons. In addition, the empirical test of the 

properties of the stochastic quasi-duration of a futures contract 

deserves a further research. 
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Footnotes 

1see Bacon and Williams (1976), Chance (1982, 1983), Ederington 
(1979), Hill and Schneeweis (1980), and Kolb and Chiang (1981, 1982). 

2In a recent paper, Bierwag, Kaufman and Toevs (1983) pointed out 
the importance of using futures contracts to change the duration of a 
portfolio. However, they hav~ not addressed the issue of what consti
tutes a proper measure of duration for a futures contract. 

3 Under assumptions of some generally known shifts of the yield 
curve, several measures of duration have been developed recently. In 
the most recent paper, Gultekin and Rogalski (1984) have compared the 
usefulness of alternative duration specifications. However, their non
Macauley duration measures are not measured in units of time. 

4 See Boquist, Racette and Schlarbaum (1975), Bierwag (1977), 
Bierwag and Kaufman (1979), Chance (1982, 1983), Khang (1979), Kolb and 
Chiang (1981, 1983), and Williams and Pfeiger (1982). 

5see Kolb and Chiang (1982) and Chance (1982) for an application of 
the concept of Macaulay's duration to futures contracts. 

6the "performance bond" in futures trading is different from the 
margin in stock or bond trading, and the opportunity cost of futures 
trading is zero if Treasury bills are posted as margin. However, this 
convention does not change the fact that a futures contract is a capi
tal asset, which has equilibrium value and price, and the fact that 
any gains and losses in futures trading are subject to income taxes. 
Furthermore, the purpose of using financial futures in bond portfolio 
management is precisely because the futures can be used to change the 
duration of the hedged portfolio of bonds. 

With bonds or bills, the price term in the definition of duration 
is the dollars an investor must pay to acquire the bond or the bill. 
With futures, one essentially pays no dollars to acquire the price 
fluctuations inherent in owning a futures contract. However, one 
should not argue that the duration of a futures CQntract is infinite 
(zero into anything is infinity). One should recognize that the 
futures has a price quote which implies a delivery price, and thus 
define the duration of a futures contract as its expected price change 
(for a given yield change) relative to its delivery price. CIR (1981) 
and Ingersoll (1982) also point out that although not the price of an 
asset, a futures price satisfies the same equilibrium condition as 
asset prices. A futures contract can be interpreted as a portfolio 
yielding positive and negative cash flows (see Little (1984)): "A long 
position implies an outflow at the delivery date and subsequent inflows 
from the delivered instrument" (pp. 285). Also, a futures contract can 
be regarded as a "futures bond," a contract which when initiated today 
guarantees the prevailing futures price at a specified later point in 
time (see Ball and Torous (1984)). In any case, the duration of a 
futures contract can be defined as the duration of an asset. 
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7 All arguments about futures 'contracts (including derivation of 
stochastic duration) have been done also for forward contracts. The 
results on forward contracts are not reported here but will be avail
able upon request. 

8Note that the duration of a futures contract on the discount bond 
is not equivalent to the duration of the discount bond itself which is 
equal to the maturity. Also, the correctness of (8) can ~e easily 
checked by deriving the duration of cash discount bond with the 
maturity, T-s 

D G-1 C(T)P(T-s)G(T-s) 
s - C(T)P(T-s) 

= T-s 

. 2Kl1 
= (1!9!.) { 2yexp I (y+K+A h /2 } (-2 - l) 

2 (y+K+A)[exp(y•)-1]+2y a 
a 

y(y+K+A)exp[(y+K+A)T/2)[exp(yT)-l](K+A=y) 
• 2 

{(y+K+A)[exp(y•)-1]+2y} 

< 0, 

since all terms are positive except (K+A-y) which is negative. 

10see CIR (1979) for the effect of K. 

11see Little (1984) for the interpretation of futures contracts in 
much the same way. 



Appendix 

Corollaries to Lemma 2 

Corollary 2.1 (See Hopewell and Kaufman (1973) for a similar argument 

in the traditional measure of duration.) 

(i) The necessary (not sufficient) condition for the traditional dura-

tion of a coupon bond to be an increasing function of maturity is that 

the coupon rate is greater than or equal to the interest rate. That is 

C > r. 

(ii) The maximum traditional duration of a coupon bond is at the point 

where the maturity is equal to its duration plus 1/(r-c). 

(iii) The necessary (not sufficient) condition for the stochastic dura-

tion of a coupon bond to be an increasing function of maturity is 

[C-rG' (n) ]A(n) - A' (n) 2. 0. 

Proof: (i) From the definition of the traditional duration, it is 

obvious that A(n) = 1, A'(n) = 0, G(n) -= n," and G'(r) = 1 in equation 

(11). Substituting these values into equation (11) yields 

az an c Bexp(-rn) + (C-r)(nB-H)exp(-rn). (Al) 

The first term on the right hand side of equation (Al) is positive, and 

(nB-H) ) 0. Consequently, if (C-r) 2. 0, we have az/an ) 0, and oDB/an 

> o. 

(ii) To maximize the duration, set az/an in equation (Al) to zero. 

Then we can obtain 



1 H 
n =--+r-C B' 

where H/B is the duration. 

A-2 

(iii) This result is obvious from equation (11). 

The necessary condition for the stochastic duration to be an 

increasing function of maturity is complicated. 

Q.E.D. 

However, if A'(n) approaches zero, then C > rG'(n) would be the 

condition. Additionally, if G'(n) + 1, C > r would be the necessary 

condition which is the same for the traditional duration. 

Corollary 2.2. If the maturity approaches infinity, then both the 

traditional and the stochastic durations of a coupon bond would be 

approaching a constant. Namely, 

lim DB = k. 
n+co 

Proof: To prove that lim DB = k is equivalent to prove that lim az/an 
n+co n+co 

= 0 in equation (11) or (Al). 

(i) The traditional duration case: 

From equation (Al), it is easy to prove that 

az lim an= lim B • exp(-rn) + (C-r)(nB-H)exp(-rn) 
n+co n+co 

= o. 

(ii) The stochastic duration case: 

From equation (11) 



lim G' (n) = 0, 
n+co 

lim A(n) = O, 
n+co 

limA'(n)=O. 
n+ ... 

A-3 

Thus, we can obtain that lim az/an = 0 in equation (11). 
n+CD 

Q.E.D. 



Table 1 

Stochastic Duration of Futures Contracts on 
Discount Bonds and Coupon Bonds* 

s-t T-s=t. Coupon Rates 
(Year) (Year) 0% 4% 6% 8% 

.2S .2S .2072 .2072 .2072 .2072 

.2S .so .4079 .40S8 .4047 .4037 

.2S • 7 s .6013 .S947 .S916 .S886 

.2S 1.00 .7866 .7733 .7671 .7611 

.2S 1.SO 1.1304 1.0966 1.081S 1.0673 

.2S 1.7S 1.2876 1.2404 1.2196 1.2004 

.2S 2.00 1.434S 1.3719 1.3449 1.3204 

.2S s.oo 2.4144 2.1488 2.0613 1.9916 

.2S 10.00 2.6186 2.2S91 2.17 33 2.1128 

.2S 15.00 2.62S2 2.2469 2.1793 2.13S4 

.2S 20.00 2.6254 2.234S 2.1819 2.1499 

.so .2S .1722 .1722 .1722 .1722 

.so .so .3348 .3331 .3323 .331S 

.so .7S .4872 .4821 .4797 .4773 

.so 1.00 .6289 .6189 .6142 .6097 

.so 1.25 .7S99 .7435 • 7360 .7288 

.so 1.SO .8799 .8559 .84S1 .83SO 

.so 1.7S .9890 .9566 .9422 .9289 

.so 2.00 1.087S 1.04S9 1.0278 1.0112 

.so s.oo 1.6S41 1.Sl67 1.4688 1.4296 

.so 10.00 1.7S12 1.57S2 1.S299 1.4971 

.so 1S.OO 1.7542 1.5689 1.S331 -- 1.S094 

.so 20.00 1. 7543 l.S623 l.S34S 1.S173 
• 7S .2S .1434 .1434 .1434 .1434 
• 7S .so .2761 .2747 .2740 .2734 
• 7S .7S .3978 .3938 .3918 .3900 
• 7S 1.00 .S086 .S008 .4972 .4937 
.7S 1.25 .6088 .S963 .S906 .S8S2 
• 7S 1.SO .6986 .6808 .6728 .66S2 
.7S 1.7S .7786 .7S50 .744S .7348 
.7S 2.00 .8495 .8197 .8067 .7947 
• 7S s.oo 1.2285 1.1412 1.1100 1.0843 
.7S 10.00 1.2884 1.1787 1.1497 1.128S 
• 7 s 1S.OO 1.2902 1.1747 1.1518 1.1365 
• 7 s 20.00 1.2903 1.1705 1.1S27 1.1416 

1.00 .25 .1197 .1197 .1197 .1197 
1.00 .so .2285 .2274 .2268 .2263 
1.00 • 75 .3267 .3235 .3219 .320S 
1.00 1.00 .4147 .4086 .4057 .4029 
1.00 1.25 .4930 .4833 .4789 .4747 
1.00 l.SO .S622 .5486 .S424 .5366 
1.00 1. 75 .6229 .6051 .S971 .5897 



Table 1 (cont.) 

s-t T-s=fl Coupon Rates 
(Year) (Year) 0% 4% 6% 8% 

1.00 2.00 .6760 .6538 .6440 .6350 
1.00 5.00 .9484 .8875 .8654 .8471 
1.00 10.00 .9895 .9138 .8934 .8785 
1.00 15.00 .9907 .9110 .8949 .8841 
1.00 20.00 .9908 .9080 .8955 .8877 
1.25 .25 .1000 .1000 .1000 .1000 
1.25 .so .1897 .1887 .1883 .1879 
1.25 .75 .2695 .2669 .2657 .2645 
1.25 1.00 .3402 .3353 .3330 .3308 
1.25 1.25 .4024 .3948 .3912 .3879 
1.25 1.50 .4567 .4461 .4412 .4367 
1.25 1. 75 .5040 .4901 .4839 .4782 
1.25 2.00 .5449 .5278 .5203 .5133 
1.25 5.00 .7490 .7042 .6879 .6743 
1.25 10.00 .7790 • 7236 .7086 .6976 
1.25 15.00 .7799 .7216 .7097 .7017 
1.25 20.00 .7799 .7194 .7102 .7044 

*The value of parameters used in this table are r = p = 5.623%, 

a2 = .00608 and K = .692. 



s-t 
{Year) 

.01 

.01 

.01 

.01 

Table 2 

Stochastic Duration of Futures Contracts on Coupon Bonds 
When s-t is Short Relative to 6* 

Coupon Rates 
T-s=6 4% 6% 8% 
{Year) Futures CIR Futures CIR Futures 

5 3.67 3.81 3.41 3.52 3.23 
10 4.10 4.29 3.79 3.93 3.60 
15 4.05 4.24 3.81 3.95 3.66 
20 4.00 4.18 3.82 3.96 3. 71 

CIR 

3.34 
3. 73 
3.81 
3.86 

*Assumed that p = r = 5.623%, a 2 = .00608 and K = 0.692. The column, 
CIR presents the stochastic duration of cash coupon bonds with time to 
maturity, 6, which was calculated by CIR {1979). 



s-t 
(Year) 

.2S 

.2S 

.2S 

.2S 

.2S 

.so 

.so 

.so 

.so 

.so 

.7S 
• 7S 
• 75 
• 7S 
.7S 

1.00 
1.00 
1.00 
1.00 
1.00 
1.25 
1.2S 
1.2S 
1.2S 
1.2S 

Table 3 

Stochastic Duration of Futures Contracts on 
Discount Bonds for Different Values of K 

T-s=~ 

(Year) K = .001 K = .100 K = .692 

.2S .2499 .2437 .2072 

.so .4997 .4872 .4079 
1.00 .9990 .9733 .7866 
4.00 3. 986 7 3.8640 2.2281 

20.00 19.SS46 17.379S 2.6254 
.25 .2498 .2376 .1722 
.so .4994 .4747 .3348 

1.00 .9980 .9473 .6289 
4.00 3.9734 3. 7341 1.5S90 

20.00 19.13S2 1S.S427 1.7S43 
.2S .2497 .2316 .1434 
.so .4991 .462S .2761 

1.00 .9970 .9221 .S086 
4.00 3.9602 3.6099 1.1684 

20.00 18.7390 14.1363 1.2903 
.2S .2496 .22S8 .1197 
.. so .4987 .4S07 .228S 

1.00 .9960 .8977 .4147 
4.00 3.9471 3.4911 .9066 

20.00 18.3639 13.0022 .9908 
.25 .249S .2201 .1000 
.so .4984 .4391 .1897 

1.00 .99SO .8739 .3402 
4.00 3.9341 3.3772 .7184 

20.00 18.0078 12.0S60 .7799 
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