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Direct Ellipsoidal Fitting of Discrete  

Multi-Dimensional Data 
Rafey Anwar and Madeline Hamilton 

ranwar@smu.edu and madeline@smu.edu 

Dr. Pavel Nadolsky1 
ABSTRACT 
Multi-dimensional distributions of discrete data that resemble ellipsoids arise in numerous areas of science, statistics, and 
computational geometry. We describe a complete algebraic algorithm to determine the quadratic form specifying the equation of 
ellipsoid for the boundary of such multi-dimensional discrete distribution. In this approach, the equation of an ellipsoid is 
reconstructed using a set of matrix equations from low-dimensional projections of the input data. We provide a Mathematica 
program realizing the full implementation of the ellipsoid reconstruction algorithm in an arbitrary number of dimensions. To 
demonstrate its many potential uses, the direct reconstruction method is applied to quasi-Gaussian statistical distributions arising 
in elementary particle production at the Large Hadron Collider. 
 
1. INTRODUCTION 

In this article, we focus on a common problem, 
reconstruction of a d-dimensional ellipsoid from 
coordinates of a set of discrete data points populating the 
volume of the ellipsoid. Clusters of data points that are 
approximately ellipsoidal in shape are encountered in many 
applications ranging from multivariate statistical analysis 
and machine learning to cardiac strain imaging (1) and 
calibration of magnetic compasses (2). Given the images 
(projections) of the ellipsoid, the task is to find the equation 
of the ellipsoid’s surface in a suitable coordinate 
representation.  

Remarkably, the equation of such an ellipsoid can 
be found by analytically solving a system of matrix 
equations, as described below. 

For example, suppose N discrete predictions 
dependent on parameters {x1, x2, …, xd} are distributed in 
an approximately ellipsoidal region in the d-dimensional 
parameter space. In statistical analysis, these predictions 
can be generated by random sampling from a multi-
dimensional probability distribution that is approximately 
Gaussian. If the equation specifying the underlying 
probability distribution is unknown, one might wish to 
reconstruct it from the discrete distribution of the data. One 
way of doing this is to select points on the boundary of the 
d-dimensional region satisfying a given probability level 
and fit an ellipsoid to this boundary. From the quadratic 
form describing the ellipsoid, the quasi-Gaussian 
probability distribution can be immediately determined.  

A practical algorithm for the reconstruction of a 
d-dimensional ellipsoid by fitting discrete points was 
developed by Bertoni (3). It is based on the combination of 
methods developed by Fitzgibbon, Pilu, Fisher (4) and Karl 
(5). Bertoni’s algorithm is general, allowing one to 
reconstruct an ellipsoid from a complete set of the low-
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dimensional (not necessarily independent) ellipsoid’s 
projections. However, Karl’s and Bertoni’s papers do not 
demonstrate existence of a unique solution. In fact, such 
solution exists only when the set of projections is 
sufficiently complete to determine all coefficients of the 
quadratic form.  

In this article, we focus on a special case, when 
the ellipsoid is reconstructed from its two-dimensional 
orthogonal projections. We show how to derive a closed 
solution for the ellipsoid’s quadratic form using a set of 
complete and mutually consistent two-dimensional 
projections. The existence of such a unique solution, and 
the algebraic formula to find its coefficients, is a new result 
presented below. A Mathematica program implementing 
the full reconstruction algorithm is available upon request.  

The reconstruction algorithm has important 
applications in the field of elementary particle physics. For 
example, the structure of protons and nuclei in high-energy 
collisions is parameterized by parton distribution functions 
(PDFs) that are determined from a large-scale multivariate 
analysis of experimental measurements (6). To determine 
theoretical uncertainties for the rates of elementary particle 
production at the Large Hadron Collider, one may need to 
reconstruct an underlying quasi-Gaussian probability 
distribution from the multidimensional distribution of 
values obtained by stochastic sampling. Traditionally, the 
Gaussian distribution can be estimated using the method of 
the covariance matrix (7) or related Hessian matrix (8). Our 
ellipsoid reconstruction algorithm can be employed as a 
part of an alternative estimation method that does not 
assume that the probability distribution is perfectly 
Gaussian, as we explain in Section 4.  To demonstrate the 
usefulness of the developed reconstruction method and 
explore its differences against the covariance matrix 
method, we employ both methods to predict the uncertainty 
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due to PDF parameterizations in production of 𝑊±, 𝑍$, and 
𝐻$ bosons at the LHC. 

Figure 1. A three-dimensional ellipsoid fitted to 1000 
quasi-ellipsoidal points and its two-dimensional elliptical 
projections. 
 

Figure 1 illustrates the reconstruction of a 3-
dimensional ellipsoid from its 2-dimensional elliptical 
projections. The input data consists of 1000 random three-
dimensional vectors (blue points) that populate the 
ellipsoid’s volume. The output consists of the 3x3 
symmetric matrix 𝐴' specifying the equation of the 
ellipsoid boundary (shown by a green mesh), found from 
the discrete input data with the help of our method. The 
first step is to project the input vectors onto independent 
orthogonal planes, where the boundaries of the input 
clusters are fitted by ellipses, as described in Section II. 
Then, in Section III, we reconstruct the output matrix 𝐴' 
from the matrices 𝐴(,* (𝑖 = 1,2,3) for the equations of the 
projected ellipses.  This Section presents a general formula 
for reconstructing the d-dimensional ellipsoid matrix 𝐴1  
from the 2-dimensional projection matrices 𝐴(,*, where 1 ≤
𝑖 ≤ 𝑑(𝑑 − 1)/2. It also provides a proof that such a matrix 
exists and a consistency check for the projection matrices. 
Section IV applies the Mathematica program to the analysis 
of production cross sections in elementary particle physics. 
Section V contains our conclusions. 

 
2. FITTING  2-DIMENSIONAL ELLIPSES 

As the first step in the reconstruction of the 
 d-dimensional ellipsoid, we need to determine the matrices 
for the boundaries of two-dimensional ellipses that are the 
projections of the ellipsoid onto the orthogonal two-
dimensional planes. In the example of Figure 1, the 
projected input data vectors populate the inside of an 
ellipse in each projection plane. The Convex Hull (CH) 
Method described in Subsection A reconstructs the 
quadratic form for the convex boundary of this ellipse with 
the help of the least-squares elliptical fitting algorithm 
described in (4).  
 

 
In statistical applications, the cluster of data 

vectors sampled from a quasi-Gaussian distribution does 
not have a sharp boundary. Rather, the “ellipse” may 
correspond to the boundary of the probability-𝛼 region 
determined from the covariance matrix (CM) according to 
the conventional method summarized in Subsection B. 

 
A: The Convex Hull Method 

Since a 2-dimensional projection of a d-
dimensional ellipsoid represents a filled ellipse and not its 
outline, one must first find the boundary, or convex hull, of 
the projection and then fit an ellipse to this boundary. The 
convex hull algorithm addresses the first necessity, while the 
least squares elliptical fitting algorithm addresses the second. 
 
1. Finding the Convex Hull  

The convex hull algorithm determines which  
points of the data set would be most appropriate for use in 
elliptical fitting, so that the resulting ellipse describes the 
boundary of the data subset, not the data subset as a whole. 
We will describe a convex hull algorithm that operates with 
cross products, although other algorithms for convex hull 
reconstruction are also available, such as the one described 
in (9). 
 

 
Figure 2: Illustration of the vectors arising in the 
determination of the convex hull 

 
A convex hull of a set of points in an xy plane is   

the smallest convex polygon in the plane that contains 
every point in the set. For visualization purposes, it can be 
described as the shape that a rubber band would take if it 
were stretched out around a set of points. The first step in 
finding the convex hull of a set of points is finding the 
convex hull’s vertices. These vertices are points from the 
data set such that if they were connected by straight lines, 
the polygon formed would be the convex hull of the data 
set. 
               To begin, a point V1 from the set known to be a 
vertex is needed. If such a point is not explicitly given, it 
can easily be found by taking the point with the lowest 𝑥 
value, as this point will certainly be a vertex due to its 
extreme position. V1 is now the active vertex. To find the 
next vertex, the active vertex is used as a basis of 
comparison for every other point in the set. Whichever 
point in the set creates the greatest angle relative to V1’s 

2

SMU Journal of Undergraduate Research, Vol. 5, Iss. 1 [2020], Art. 4

https://scholar.smu.edu/jour/vol5/iss1/4
DOI: https://doi.org/10.25172/jour5.1.4



 

 
 

horizontal axis over [0, π] will be the next vertex, V2. V2 
will now act as the active vertex to find V3. This will 
continue until a point Vn whose next vertex is V1 , the 
original active vertex, is found. Once this point has been 
reached, all the vertices {V1, V2, … ,Vn} of the convex hull 
have been found. Connecting these vertices with straight 
lines creates the convex hull. 
 The algorithm can be explained in detail using 
Figure 2. In the figure, V1 is the active vertex, and P1 and 
P2 represent the two points currently being compared. θab 
and θac, the angles that are compared for each pair of 
points, can be calculated as follows:  
 

 
 
However, because trigonometric functions are  

computationally slow, simpler algebraic representations of 
the angles are used, and the following test is obtained: 
 

 
 
 This test returns a determinant δ. Xa and Ya 
represent the coordinates of the current active vertex, VA. 
Xb and Yb represent the coordinates of any point PB , and 
Xc and Yc represent the coordinates of any point PC. If  δ > 
0, then PB creates the larger angle with respect to VA. If δ < 
0, then PC creates the larger angle with respect to VA. If the 
determinant is zero, then all three points are collinear and 
the point which is farther from VA  should be selected.  
 It is also easy to realize that d represents the z 
component of the cross product 𝐴𝐵:::::⃗ × 𝐴𝐶:::::⃗ , so that  δ > 0 (δ 
<0)  represents the clockwise (counterclockwise) rotation 
of  𝐴𝐵:::::⃗   toward  𝐴𝐶:::::⃗ , which can also be used to determine 
the relative orientation of  𝐴𝐵:::::⃗  and  𝐴𝐶:::::⃗ .  The program 
repeats this process as needed until all the convex hull 
values have been found. 
 
2. Fitting an Ellipse to the Convex Hull 

Next, we need to find an ellipse that would 
provide a reasonable fit to the points on the convex hull.  
 If a point lies on an ellipse, the point’s 
coordinates satisfy 
 

 
 
where the coefficients are constrained by 𝑎2

2−4𝑎1𝑎3<0. For 
n points 𝑥1,𝑦1,…,{𝑥𝑛,𝑦𝑛} that are not exactly on the ellipse, 
the desired ellipse can be obtained through a least squares 
minimization of algebraic distances from the points to the 
ellipse. As explained in (4), the minimization problem for 
finding the ellipse can be expressed as a generalized 
eigenvalue problem based on a matrix equation 
 

(Eq.1) 
 

where λ  is the eigenvalue, A=(a1  a2  a3  a4  a5  a6 )T,  and S  
and C  are certain 6×6 matrices constructed in Ref. (4).  
 The generalized eigenvalue problem can be 
solved numerically using LAPACK (10), Mathematica, or 

another advanced linear algebra package. Alternatively, it 
is possible to reduce this equation to a standard eigenvalue 
problem using the method that will be now described. This 
method can be easily implemented with any linear algebra 
library.  
 Toward this goal, we identify two 3-component 
vectors 

 
 

containing the coefficients associated with rotations and 
translations inside the 6-component vector 𝑨= [�⃗�C �⃗�(]E. 

Block matrices are indicated by bold letters and square 
brackets. Express matrices 𝑺 and C in terms of 3×𝑘 and 
𝑘×3 blocks, where 𝑘=1 or 3: 
 

 
with 
 

 
and a 3×3 zero matrix 03. 
 If D = [𝑑C 𝑑(] with 
 

 
 
the 3×3 blocks Sij of S are given according to Ref. (4) by  
𝑆*I = 𝑑*E𝑑I. Eq. 1 can then be written as 
 

 (Eq. 2) 
 

We apply singular value decomposition to C to 
find 
 

 (Eq. 3) 
 
which depends on block matrices 
 

 
 

In this equation, I3   is the 3×3 identity matrix, 
 

 
 

The only singular matrix in Eq. 3 is 𝑳𝟎: 
det𝑳𝟎 = 0.  On the other hand, U  and V  are orthonormal, 
𝑼𝑼𝑻 = 𝑽𝑽𝑻 = 𝐼W. The inverse of 𝑳𝑰 also exists, 
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In this representation, the only complication is 
associated with the singular 𝑳𝟎  matrix inside the 
decomposition for C. We therefore multiply Eq. 1 by 
𝑼E𝑳YZC  from the left and identify 𝑺[ ≡ 𝑼E𝑳YZC𝑺	𝑽,			𝑨::⃗ [ ≡
𝑽𝑻𝑨::⃗ 		to obtain 
 

 
 

In the block form, this equation is 
 

 
 

and 
 

 
 

To proceed, we need to single out a special case 
when all points lie on a single line, corresponding to a 
degenerate solution for the elliptical coefficients. It can be 
easily demonstrated that the points lie on a line if and only 
if det𝑆(( = 0. Indeed, since 𝑆(( = 𝑑(E𝑑(, the condition 
det𝑆(( = 0  is equivalent to det𝑑( = 0. Then, there is a 
vector 𝑤 = (𝑤_ 𝑤` 1)E such that 
 

 
 
or, all points lie on the line 𝑤_𝑥 + 𝑤`𝑦+ 1 = 0.  
If the solution is not degenerate (det𝑆(( ≠ 0), the system 
of equations becomes
  

 
 

 
The first equation is a regular eigenvalue problem  

for �⃗�[C, solved by standard methods. The second equation 
derives �⃗�[(( from �⃗�[C 
For a degenerate solution (det𝑆(( = 0), it suffices to fit all 
points using linear regression (assuming that �⃗�[C is a null 
vector). 
                Based on this exposition, the equation of the 
ellipse is found as follows. Given the coordinates {𝑥d, 𝑦d} 
of the fitted points, we compute the matrices 𝑑*, 𝑆*I , and 
𝑆[*I  for 𝑖, 𝑗 = 1	or 2. The determinant det𝑆((	is calculated 
to decide if the points lie on one line within the accuracy of 
the calculation. If the solution is not degenerate, we find 
                                                
2 If there is not enough noise in the data (all points lie 
exactly on the ellipse), the positive eigenvalue may be 

�⃗�[C and �⃗�[(	 from Eqs. 5 and 6; otherwise, we set  𝑎[* = 0 
for 𝑖 = 1,2,3  and find 𝑎[g and 𝑎[h by linear regression
      
               Among three possible eigenvalues in Eq. 5, one 
eigenvalue is positive and two are negative (4). The 
eigenvector �⃗�[C that solves our conic problem corresponds 
to the only positive eigenvalue (4).2  

 
Finally, the coefficient vectors are determined as 

 
 

 
where 𝑁	is an arbitrary normalization factor that can 
multiply all coefficients 𝑎*	without violating the original 
equation 𝐹(𝑨,𝑋) = 0. 𝑁	must be found from a 
supplementary condition. For example, it can be that the 
quadratic form for the ellipse has a standard normalization 
so that at the center of the ellipse, 𝑋$ = {𝑥$, 𝑦$}, the 
quadratic form takes the value 𝐹lmno1np1(𝑨,𝑋$) = −1. The 
coordinates of the center can be found from 𝑎*	 as 
 

 
 

independently of 𝑁. Then, once {𝑥$, 𝑦$} is determined 
using 𝑁 = 1 for 𝑎*, the final normalization that satisfies 
𝐹q𝑨, 𝑋$,𝑁r*onst = −1 is obtained by 
 

 
 
                If the ellipse is centered at the origin, 𝑥$ = 𝑦$ =
0,		the final equation of the ellipse in the convex hull (CH) 
method is 
 

 (Eq.7) 
 
B. The Covariance Matrix Method 
             If a sufficiently large sample of the two-
dimensional data {(𝑥C* = 𝑥*, 𝑥(* = 𝑦*)}  is drawn from a 
Gaussian distribution, another method, which we will refer 
to as the “Covariance Matrix” (CM) method, can be used to 
determine the ellipse that delineates the boundary of the 
region containing the fraction 𝛼 of the data sample (0 ≤
𝛼 ≤ 1). In the absence of any correlation, and under a 
simplifying assumption that the data have zero mean 
values, 〈𝑥C,(〉 = 0, the points on the axis-aligned boundary 
ellipse would adhere to 
 

 

indistinguishable from zero within accuracy. In this case, 
the solution corresponds to the largest eigenvalue. 
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where σC,( ≡ x〈𝑥C,(( 〉 are the standard deviations of the 

𝑥C	and 𝑥( data, respectively, and 𝑠 is the chi-squared 
critical value associated with the desired probability level 
α. On the other hand, if there is a correlation between 
𝑥C	and 𝑥(, the resulting ellipse will no longer be aligned 
with the 𝑥C	and 𝑥( axes and will satisfy 
 

 
 
with 

 
 
This equation can be re-written using the same sign 
convention as in the previous subsection as 
 

 
 
in terms of the matrix 
 

 (Eq. 8) 
 
 In contrast to the convex hull method, the matrix 
𝐴({|  in the CM method is shared by the entire input data, 
and the probability regions are distinguished only by the 
critical parameter 𝑠. This reflects the assumption behind the 
CM method that the probability distribution is exactly 
Gaussian. We also notice that the CM method implies that 
the correlation ellipsoid can be found directly by 
diagonalizing the covariance matrix in d dimensions 
(without taking projections), i.e., by the 𝑑 −dimensional 
principal component analysis [PCA].  
 On the other hand, if we do not wish to use the 
CM method or suspect that the ellipsoid matrices may non-
trivially depend on the probability level because of some 
deviations from the Gaussianity, the elliptical projection 
corresponding to the probability level 𝛼 can be determined 
using the convex hull (CH) method, by first identifying a 
two-dimensional region containing a fraction 𝛼 of the input 
data points, and then fitting an ellipse to the convex hull 
boundary of the enclosed data subset in this region. If the 
probability distribution deviates from the Gaussian one, the 
elliptical projections obtained with the CH method for 
different probability levels are not related by a simple 
rescaling of the parameter 𝑠. The comparison of the 
ellipsoids determined with the CH and CM methods thus 
provides a normality test for the underlying probability 
distribution.  
 
3. RECONSTRUCTING THE ELLIPSOID 

FROM ITS PROJECTIONS 
 Next, we turn to the reconstruction of the 
ellipsoid from its two-dimensional projections. Notice that 

𝑑(𝑑 − 1)/2 independent projections are necessary to find 
all coefficients of the ellipsoid’s quadratic form. The 
easiest way to proceed, then, is to determine, block-by-
block, the inverse matrix of the quadratic form by 
repeatedly invoking Eq. 10 below for each projection. Here 
we lean on the crucial observation in Ref. (11) that it is the 
inverse matrices of the quadratic forms, rather than the 
quadratic forms themselves, that are straightforwardly 
related. Below we include a short proof of this important 
relation. [Ref. (8) presented a relation between the inverse 
matrices up to an overall normalization of their coefficients 
and without including a proof]. We bypass the difficulty of 
dealing with non-invertible operators that would affect, 
e.g., the direct implementation of the ellipsoid 
reconstruction method proposed by Karl (5). Karl’s 
proposal requires stacking multiple projection operators in 
a way as to allow reconstruction of all ellipsoid’s elements 
without omissions or double-counting. This is not 
necessary for the complete set of orthogonal projections, 
when the straightforward implementation using Eq. 10 is 
sufficient.   
 Any 𝑑-dimensional vector �⃑� = {𝑥C,𝑥(,… , 𝑥1} 
drawn from the center of the ellipsoid to its surface satisfies 
 

 
 

where 𝐴1 is the matrix of the d-dimensional quadratic form 
whose elements we intend to find. A projection of �⃑� from 𝑑 
to 2 dimensions, denoted by 
 

 (Eq. 9) 
 
obeys an analogous equation 
 

 
 
𝐴( is the 2 × 2 matrix of the quadratic form for the 
projection found using the CH or CM method. 𝑃(←1 is a 
2 × 𝑑 projection matrix, such as 
 

 
 

for the projection on the 𝑥C𝑥( plane, with 𝕀(×( and 𝕆(×1Z( 
being the 2 × 2 identity matrix and 2 × (𝑑 − 2) zero 
matrix, respectively.  
 To put together 𝐴1, we notice that the inverse 
matrices are related by 
 

(Eq. 10) 
 

To prove it, recast the positive-definite 
symmetric matrix 𝐴1 in terms of its eigenvalues 𝜆*( > 0 
and the rotation matrix 𝑂,	 
 

 
where  𝑂E𝑂 = 𝕀1×1, Λ ≡ diag(λC, λ(,… , λ1), and 𝐴1

C/( ≡
Λ𝑂. 
𝐴1
C/( generates an isomorphism that maps �⃑� onto a unit 

vector 𝑛:⃑ = 𝐴1
C/(�⃑� satisfying 𝑛:⃗ E ⋅ 𝑛:⃗ = 1. In other words, the 
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affine transformation specified by 𝐴1
C/( associates any 

�⃗�		ending on the ellipsoid’s surface to a vector 𝑛:⃗  from the 
origin to a unit sphere. The inverse transformation also 
exists: 
 

(Eq. 11) 
 

Similarly, the projections �⃗��  are related to the 
projections 𝑛:⃗� ≡ 𝑃(←1 ⋅ 𝑛:⃗   by 
 

 (Eq. 12) 
 

From Eqs. 9, 11, and 12, we conclude that 
 

 
 

Multiplying both sides by their transpose 
matrices on the right, and using 𝑃(←1 ⋅ 𝑃(←1E = 𝕀(×(, we 
arrive at the desired relation, 
 

 (Q.E.D) 
 
 In our practical algorithm, Eq. 10 is used to read  
off the coefficients of 𝐴1ZC directly from the coefficients of  
𝐴(ZC. If we generate 𝑑(𝑑 − 1)/2  projections on planes 𝑥*𝑥I 
with 1 ≤ 𝑖 ≤ 𝑑,	 𝑖 < 𝑗 ≤ 𝑑, the diagonal elements (𝐴1ZC)**	 
will be equal to the diagonal elements in (𝑑 − 1) 
projections, and an off-diagonal element  (𝐴1ZC)*I 	 will 
appear once in the projection 𝑥*𝑥I (𝑖 ≠ 𝑗). Due to noise, the 
(𝑑 − 1) computations of each diagonal element will not 
necessarily be exactly equivalent. The final estimate of a 
diagonal element is simply taken to be the mean value of 
the computations, and a comparison of the diagonal 
elements from the projections via their standard deviations 
and mean values provides a test of mutual consistency of 
the input projections.  
 A straightforward generalization of Eq. 10 relates 
the 𝑑-dimensional matrix 𝐴1 to the matrices 𝐴1� of 
ellipsoids in lower-dimensional projections (𝑑� < 𝑑) using 
𝑑� × 𝑑 projection operators 𝑃1�←1: 
 

 (Eq. 13) 
 

4. APPLICATIONS 
A: A Solid 3-Dimensional Ellipsoid  

Depending on the context, either the Convex Hull 
(CM) method or Covariance Matrix (CM) method may be 
preferable for the ellipsoid reconstruction.  In the case of the 
solid 3-dimensional ellipsoid presented in Figure 1, the CM 
method under/overestimates the spread of the input data 
points. In the 𝑥C𝑥( projection of the ellipsoid in Figure 1 and 
its other projections, the boundary ellipse predicted based on 
the covariance matrix (red line) has lower eccentricity than 
the input data. The CH method (black dashed line), on the 
other hand, traces well the outer boundary of the ellipsoid. 
Furthermore, the ellipsoid matrix 𝐴'{�  reconstructed using 

the CH method agrees well with the input ellipsoid matrix 
𝐴'
*o��m used to generate the data, with the relative differences 

not exceeding 1.5%: 
 
 

Figure 1. Reconstructed projections of the 3-dimensional 
ellipsoid shown in Fig.1. 
 

 
  
B: Cross Sections for Electroweak Boson 
Production at the Large Hadron Collider 
 Our second example establishes a connection to 
elementary particle physics, where the ellipsoid 
reconstruction may be employed in large-scale statistical 
analyses of experimental data from particle colliders. 
Parton distribution functions (PDFs) quantify the inner 
structure of the protons in many theoretical calculations in 
quantum chromodynamics (6). PDFs are published as 
effective functions dependent on tens to hundreds of free 
parameters determined from the global analysis of collider 
data. Knowledge of the statistical distributions of PDF 
parameters allowed by the experimental data is essential for 
quantifying the uncertainty on theoretical predictions. In 
the situations when the parameter distribution is established 
by stochastic sampling of the multi-dimensional 
(sometimes 100-dimensional) parameter space (12) (13), 
the information contained in the PDFs can be effectively 
compressed using the principal component analysis [PCA] 
(7) or an alternative compression method (14) (15). 
Compression of PDFs simplifies their use and combination 
(16). The Convex Hull ellipsoid reconstruction is similar in 
its spirit to the PDF compression based on the PCA, while 
it also reflects deviations from the normality identified by 
the other compression methods.  
 As an example of such an application, consider 
theoretical uncertainties in predicting probabilities (or cross 
sections) for production of elementary particles in high-
energy physics experiments in proton-proton collisions at 
the Large Hadron Collider (LHC). Rates for production of 
electroweak bosons 𝑊±, 𝑍$,  and 𝐻$ or other heavy 
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particles depend on distributions of partons (quarks and 
gluons) inside the proton, which are not fully known, but 
parameterized based on experimental measurements within 
some uncertainty. If the parton distributions are similar in 
production of particles A and B, the measurement of the 
cross section for production of A can constrain the parton 
distributions in production of B.  
 We can estimate the probability that the 
measurement of A will constrain B by plotting pairs of 
cross sections for A and B for an ensemble of parton 
distributions. Such plots for production of electroweak 
bosons at the Large Hadron Collider at beam energy 8 TeV 
were obtained using Neural Network PDF (NNPDF2.1) 
parton distributions (17) in Figure 4. 
 The NNPDF2.1 set provides 1000 forms of PDFs 
whose parameters are distributed according to the 
probability prescribed by the pre-LHC data. For each 
NNPDF parameterization, we plot the total cross sections 
for two types of bosons (𝑍$		vs.		𝑊±,  𝑊�		vs.		𝑊Z, 
𝐻$		vs.		𝑍$, and  𝐻$		vs.		𝑊±), and hence obtain a set of 
1000 discrete points (indicated by black dots) in 2-
dimensional planes of the respective cross sections.  
 Next, we wish to ask if the predictions based on 
the NNPDF set follow the Gaussian distribution. If they do, 
the central regions will be elliptical and concentric for all 
cumulative probabilities, and thus our ellipsoid 
reconstruction method may accurately quantify the 
predictions. For each pair of cross sections, we fit the 68% 
(red) and 90% (green) ellipses using the Convex Hull 
Method. [The uncertainties of parton distributions are 
presented often at the 68% or 90% probability levels.] As 
we see, for all pairs of cross sections, the 68% and 90% 
intervals can be approximated by ellipses, but the ellipses 
are not always concentric. This indicates some deviations 
from the Gaussian approximation. The reason is that the 
1000 NNPDF parton distributions are obtained using a 
Monte-Carlo statistical method that does not rely on the 
Gaussian approximation (12) (13). The CH method can be 
used to reveal deviations from the Gaussian statistics.    
 

 

 

 

 
Figure 2. Next-to-leading order predictions for total cross 
sections of 𝑊±, 𝑍$, and 𝐻$ boson production at the Large 
Hadron Collider obtained using NNPDF2.1 
parameterizations of parton distributions and the Convex 
Hull Method. 
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Figure 3. Representative 95% probability projections of 
ellipsoids formed by NNPDF2.1 predictions for W, Z, and 
H production cross sections. The solid red and dashed black 
lines indicate the projections of the CM and CH 
reconstructed ellipsoids, respectively. 
 

The eccentricity of the ellipses quantifies the 
degree of correlation of the pairs of the cross sections 
through their PDF dependence (18). Figure 5 shows the 
correlation ellipses for  𝑊± − 𝑍$, 𝑊� −𝑊Z, and 𝑊� −
𝐻$ cross sections at the 95% probability level. Here we 
normalize the cross sections of each type to their mean 
values over the sample of 1000 replicas, in order to 
eliminate the dependence on the average magnitude of the 
production cross sections, which varies depending on the 
type of the produced particle. We see from the figure that 
the relative variations due to the parton distributions are of 
the same order of magnitude for all particle types, not 
exceeding ±4%	 in the cross section magnitude at the 95% 
probability level.   
 The solid red ellipses in Figure 5 are obtained 
using the CM method, while the black dashed ellipses are 
found by fitting the convex hull of the data points enclosed 
in the overlap of ±2𝜎 intervals for each cross section of the 
pair (shown by blue short-dashed lines). Orange squares 
indicate the points fitted by the convex hull. The 95% CM 
ellipse automatically lies within the square corresponding 
to the overlap of the single-variable ±2𝜎 intervals. The CH 
ellipse, on the other hand, may go outside of the 95% 
square. The CH ellipse is more sensitive to outliers and 

more prone to random fluctuations, especially if it fits only 
a few points. Rather than fitting only the points exactly on 
the convex hull, we can fit instead the points within a 
narrow band around the convex hull in order to suppress 
the random fluctuations.  
 Figure 5 shows that the ellipses for  𝑍$		vs.		𝑊±  
and  𝑊�		vs.		𝑊Z cross sections are very eccentric (highly 
correlated). A very high correlation normally indicates that 
the measurement of one cross section will impose tight 
constraints on the PDFs in the other cross section. The CM 
method indeed predicts such high correlation. However, we 
see that a few input data points for these cross sections lie 
far outside of the CM ellipse. Those on the convex hull are 
fitted by the CH ellipsoid, but have a small effect on the 
CM ellipsoid, as the latter is reconstructed from the totality 
of all points in the Gaussian approximation. Therefore, the 
deviations from the Gaussian behavior captured by the 
Convex Hull method result in a smaller absolute correlation 
than according to the Covariance Matrix method.  
 On the other hand, the cross section for Higgs 
(𝐻$) boson production is weakly correlated with the 𝑊± or 
𝑍$ cross sections: measuring 𝑊± and 𝑍$ cross sections 
will not be very helpful for probing the parton distributions 
relevant for Higgs boson production. The CM and CH 
methods give comparable predictions for the correlations 
with the Higgs cross sections.  
 From 10 independent projections like the ones in 
Figure 5 we reconstruct the matrices for the 5-dimensional 
ellipsoid according to Eq. 10. The values of the matrices 
are 
 

 
 
for the 68% probability level ellipsoids, and 
 

 

 
 
for the 95% probability level ellipsoids. 
 The diagonal elements (𝐴h)** are taken to be the 
mean values of the (𝑑 − 1) = 4	 estimates found from 
independent projections, according to the discussion in 
Section III. The standard deviations 𝛿(𝐴h)**	of these 
constructed diagonal elements, divided by the mean values 
〈(𝐴h)**〉 of the same elements, serve as the estimates of the 
consistency between the projections. For the matrices 

8

SMU Journal of Undergraduate Research, Vol. 5, Iss. 1 [2020], Art. 4

https://scholar.smu.edu/jour/vol5/iss1/4
DOI: https://doi.org/10.25172/jour5.1.4



 

 
 

above, the ratios 𝛿(𝐴h)**/〈(𝐴h)**〉 are equal to zero for the 
CM ellipsoids and range between 0.03 and 0.2 for the CH 
ellipsoids. The geometric averages of 𝛿(𝐴h)**/〈(𝐴h)**〉 for 
the CH ellipsoids are 0.13 (0.1) at the 68% (95%) 
probability level.  
 The magnitude of inconsistency of the CH 
projections may be explained by a small number of points 
lying on the convex hull. [The 3-dimensional ellipsoid in 
the previous example contained a large number of points, 
so its CH projections were practically consistent.] The CH 
Method selects points on the boundary of the desired two-
dimensional probability region. In the projection 𝑥*𝑥I, the 
selection of 𝑥* points depends on the other dimension 𝑥I, as 
their coordinates must lie both within the probability 
intervals for 𝑥* and for 𝑥I. As the reconstruction algorithm 
cycles through different projections involving 𝑥*, different 
𝑥* points will likely be selected, causing some 
inconsistencies in the coefficients 𝑥*(. Meanwhile, the 
Covariance Matrix Method does not include a subset-
selecting process: all data points are used regardless of the 
probability level. Thus, in the Covariance Matrix Method, 
the ellipses are guaranteed to be consistent. In the CH 
method, the consistency improves by including more points 
or by fitting the points lying within a band around the 
convex hull, rather than just on the convex hull itself.   
 

 
Table 1. lists the principal semi-axes of the four 
reconstructed ellipsoids. In the Covariance Matrix method, 
the semi-axes of the 95% (2-sigma) ellipsoid are twice as 
long as the ones for the 68% (1-sigma ellipsoid), as a 
consequence of the assumed normality of the probability 
distribution. The lengths span from 0.0013 to 0.077 for the 
95% CM ellipsoid, reflecting high eccentricity of the CM 
ellipsoid in some directions.  
 
 The Convex Hull method produces less eccentric 
ellipsoids because it accounts for the few outlying points 
that indicate some non-Gaussian behavior. The lengths for 
the 95% CH ellipsoid range from 0.013 to 0.07, i.e., they 
are more uniform than the respective lengths of the 95% 
CM ellipsoid. The ratios of the lengths of the 95% and 68% 
CH ellipsoids are 0.99, 1.28, 1.55, 1.67, and 2.16 – very 
different from 2 for the shortest principal axes.   
 
5. CONCLUSION  

We presented an algebraic algorithm to obtain a 
unique, closed solution for the quadratic form of an 
ellipsoid reconstructed from d-dimensional discrete points 
using a complete and mutually consistent set of two-
dimensional (or, generally, lower-dimensional) orthogonal 
projections. The reconstruction algorithm requires fitting 
several two-dimensional ellipses. We explored two 
approaches to achieving this task: the Convex Hull method, 
a purely algebraic process that uses cross products and least 
squares minimization using a generalized eigenvalue 
equation; and the Covariance Matrix method, which 

employs strong assumptions of normality to calculate a 
covariance matrix that determines the ellipse. We then 
explained how to exploit a simple relationship between 
their coefficients and those of the inverse of the desired 
ellipsoid’s quadratic form. In outlining this process, we 
proved that it is guaranteed to lead to a unique solution.  

Finally, we realized the implementation of our 
algorithm in a Mathematica program and applied it to 
reconstruction of a three-dimensional solid ellipsoidal body 
as well as to a statistical distribution of cross sections for 
elementary particle production at the LHC. These 
applications illustrate when the Convex Hull and 
Covariance Matrix methods may produce different results. 
The suitability of each method depends on the context. The 
Convex Hull method is sensitive to outliers and deviations 
from the Gaussian behavior, though measures may be taken 
to suppress this sensitivity to a certain extent. In the non-
Gaussian cases, it may give inconsistent coefficients for the 
ellipsoid’s quadratic form. In general, the Convex Hull 
method estimates correlations between the parameters more 
conservatively than the Covariance Matrix method, which 
is less sensitive to outliers, produces perfectly consistent 
closed forms of elliptical projections, and can provide very 
aggressive predictions for correlations between parameters.  

Each method performs well under a certain set of 
circumstances, and comparing the ellipsoids determined by 
both methods serves as a normality test of the underlying 
probability distribution. In the above example of the 
electroweak particle production at the LHC , the Convex 
Hull method indicates a weaker correlation between the 
production cross sections of 𝑊± and 𝑍$ bosons than would 
be estimated by the commonly used Covariance Matrix 
formalism. The difference arises because of the non-
Gaussian effects revealed by the NN parton distributions 
and may have practical implications for constraining 
precision measurements of 𝑊± bosons by the “benchmark” 
measurements of 𝑍$ bosons.  
 As the basis of this algorithm is purely 
mathematical, it can be applied in many fields of science. 
The development of a program that fits ellipsoids to sets of 
discrete multi-dimensional data has proved to be a useful 
way of determining correlations between parton 
distributions and particle production. This is just one 
application of the algorithm discussed; countless more 
exist. The research’s goal of producing a program that can 
efficiently fit ellipsoids to sets of discrete multi-
dimensional data was accomplished, as the coded 
implementation of the algorithm has been tested and proven 
to be accurate. 
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