2005

Cellular Phones on Airplanes - An Idea Not Ready for Take-Off

Heather J. Panko

Follow this and additional works at: https://scholar.smu.edu/jalc

Recommended Citation
https://scholar.smu.edu/jalc/vol70/iss3/7

This Comment is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu.
CELLULAR PHONES ON AIRPLANES — AN IDEA
NOT READY FOR TAKE-OFF

HEATHER J. PANKO

I. INTRODUCTION

PICTURE THIS: it's Friday night and you have just finished a long week of intense settlement negotiations for a client. You have been burning the midnight oil for the past four nights straight. You and the opposing party have finally come to an agreement. Armed with the settlement details in your briefcase, you board your flight and settle into your seat. You are looking forward to the solitude of the three-hour flight home. You view the time in the air as a quiet three-hour getaway from the hustle and bustle of life on the ground. Work, friends, and even family cannot bother you up here; your cellular phone and Blackberry are turned off because federal regulations do not allow you to use them once the aircraft has left the ground. You settle into your chair, close your eyes, and try to relax. Then, out of nowhere comes a loud, obnoxious noise. You perk up in your seat, trying to identify the source of the disturbance. No, it is not the infant you saw boarding the plane in front of you; thankfully, she is sound asleep in her mother's arms two rows up. Then what could this dreadful noise be? It is a passenger about three rows back yelling at his girlfriend. No, she is not in the seat next to him. The girlfriend is not even on the plane. Then you realize the passenger is talking on his cellular phone, and like most cellular users, he is talking as loudly as possible. A flight attendant is alerted, and she rushes down the aisle to inform the gentleman that he is violating airline policy and federal law. She instructs the passenger to terminate his call immediately. Thankfully, the passenger does not raise a fuss and hangs up his phone and powers it off.

While this scenario is fictional, there is no doubt many individuals attempt to use their cellular phones while they are traveling through the skies. Evidence shows this unauthorized use of
cellular phones and similar devices is on the rise.¹ Today, the Federal Aviation Administration ("FAA") and the Federal Communications Commission ("FCC") regulate the use of cellular phones and other portable electronic devices on board aircraft. Most travelers are familiar with the safety announcements given by flight attendants while the plane taxis away from the terminal and readies for take-off. Travelers are used to being told to make sure their seat-backs and tray tables are in their upright positions, to secure all carry-on luggage in the overhead bins or under the seat in front of them, to fasten their seatbelts, and to turn off all portable electronic devices ("PEDs"),² such as laptop computers, PDAs, CD players, and cellular phones. Following this command is the familiar reminder that federal regulations prohibit passengers from using their cellular phones during all phases of the flight. Once the plane takes off and reaches a specified altitude, the flight attendants notify passengers that they can begin using approved electronic devices and remind passengers not to use their cellular phones. However, in the near future, these safety warnings may change, and the next time our hypothetical lawyer flies, he may have to put up with more than one passenger yelling into his cellular phone. In December 2004, the FCC "voted to examine whether to modify its rule prohibiting the use of cellular telephones on airborne aircraft."³ Passengers should not get too excited yet. While the FCC expected to begin taking comments in January 2005,⁴ the FAA also

² PED refers to any "transportable devices for audio, video, communication, information and entertainment, including but not limited to notebook (laptop) computers, personal digital assistants ("PDAs"), and mobile phones." CONSUMER ELECTRONICS ASS’N ("CEA"), RECOMMENDED PRACTICE: STATUS INDICATOR FOR AND CONTROL OF TRANSMITTERS IN PORTABLE ELECTRONIC DEVICES (PEDs) 9 (Version 1.0 2004), available at http://www.ce.org/publications/books_references/Recommended_Practice_for_PEDs-V_1.0_October_2004.pdf.
⁴ At the time this article was written, the FCC has not begun to accept comments on the proposed rulemaking. The official Notice of Proposed Rulemaking was released by the Commission on February 15, 2005 and the official comment period ended 30 days after the publication the publication of the Commission’s Notice in the Federal Register. See Notice of Proposed Rule Making In the Matter of Amendment of the Commission’s Rules to Facilitate Use of Cellular Telephones and other Wireless Devices Aboard Airborne Aircraft, 20 F.C.C.R. 3753 (Feb. 15, 2005). However, the comment period has been extended at least twice
has a say on the issue, and passengers will not be permitted to use their phones on board an airborne aircraft until both agencies give the green light.

This comment examines both the FAA and the FCC bans on the use of cellular phones on an airborne aircraft and attempts to determine whether the bans are still justified in light of current technology and research. Part II examines the FCC ban, discussing the history of the ban and the technological developments that prompted the FCC to review its regulations. Part III considers the FAA ban and attempts to determine whether the current policy is valid in light of today's technology. Following this examination, Part IV discusses the social issues surrounding the use of cellular phones in flight and passenger concerns about the lifting of the ban. Finally, Part V predicts what action the FCC and the FAA will take regarding their respective bans and concludes with an analysis of whether the predicted course of action is appropriate at this time.

II. THE FCC'S BAN ON CELLULAR PHONES IN AIRBORNE AIRCRAFT

A. The FCC

The FCC is the regulatory agency charged with "ensur[ing] that the American people have available, at reasonable costs and without discrimination, rapid, efficient, [n]ation- and worldwide communication services; whether by radio, televisions, wire, satellite, or cable." The FCC was established by the Communications Act of 1934, and is divided into six bureaus, with
the Wireless Telecommunications Bureau ("WTB") in charge of regulating the use of "cellular and PCS phones, pagers, and two-way radios." In addition, the WTB regulates "the use of the radio spectrum to" ensure the communication needs of various entities (businesses, state and local governments, aircraft operators, for example) are fulfilled.

Every two years, the FCC is statutorily required to conduct a review of its regulations "that apply to the operations or activities of any provider of telecommunications service." The purpose of this review is to determine "whether any such regulation is no longer necessary in the public interest as the result of meaningful economic competition between providers of such service." If the FCC determines that a regulation is "no longer necessary in the public interest" then the FCC must repeal or modify the regulation. Included in this review is an examination of the regulation of cellular services, which is commonly referred to as the Part 22 review. The FCC's last Part 22 review initiated the proposed relaxation of the ban on the use of cellular phones aboard airborne aircraft.

B. THE FCC BAN ON THE USE OF CELLULAR PHONES ON AIRBORNE AIRCRAFT

The current FCC ban on the use of cellular phones on an airborne aircraft is found at 47 C.F.R. § 22.925, which provides that "[c]ellular telephones installed in or carried aboard airplanes, balloons or any other type of aircraft must not be operated while such aircraft are airborne (not touching the ground). When any aircraft leaves the ground, all cellular telephones on board that aircraft must be turned off." The regulation also

8 ABOUT FCC, supra note 7, at 3, 5.
9 Id.
11 Id. § 161(a)(2) (emphasis added).
12 Id. § 161(b).
requires the airline to post a notice stating: "the use of cellular telephones while this aircraft is airborne is prohibited by FCC rules, and the violation of this rule could result in suspension of service and/or a fine," next to any cellular phone installed in the aircraft. The ban was instituted by the FCC in 1991, in response to concerns that the use of a cellular phone while airborne would likely cause interference with the ground-cellular network "because an airborne unit [would] have a transmitting range much greater than the land-based unit for which cellular systems are engineered."

C. DOES THE USE OF CELLULAR PHONES ABOARD AN AIRBORNE AIRCRAFT DISRUPT THE GROUND CELLULAR NETWORK?

When the FCC instituted its ban in 1991, it had reasonable concern that the use of cellular phones aboard an in-flight aircraft would disrupt the proper operation of the ground-cellular network. Cellular phones work by connecting to nearby cell towers (or base stations), which connect to the local land-based telephone network. The connections work on a line-of-sight basis, which limits the number of cell towers with which a person on the ground can connect to at one time. When a cellular phone user is moving, she may move out of the range of one cell tower and into the range of another. To keep her call from dropping, the cellular network tracks the user’s movement, and the original tower will transfer the call to the next cell tower. This transferring of calls between towers is referred to as a "hand off" and repeats as many times as necessary until the user ends her call.

16 Id.
17 NPRM 1, supra note 14, at 8386; David Hunter, Cellular Phones & Aircraft, Cellular Business, § 12, July 1991 at S12 (quoting FCC, Public Notice, Report No. CL-142 (Oct. 11, 1984)).
19 Cellular Basics 1, supra note 18, paras. 2-4.
20 How Does a Cell Phone Work?, supra note 18, para. 5.
21 Id.
The problem with cellular calls made from an aircraft flying 30,000 feet above the ground is two-fold. First, the cellular phone is being used at a height where it can access any number of cell towers on the ground simultaneously, which can clog the network and interfere with calls from customers on the ground. Second, the cellular network was not designed to handle transfers between towers as rapidly as would be required by a passenger on an airplane traveling anywhere between 500- and 600-miles per hour.

D. RECENT DEVELOPMENTS THAT MAY SOLVE THE FCC'S CONCERNS

The cellular network and cellular phone design capabilities have come a long way since the FCC instituted its ban. Cell phones and cell towers are smaller, and coverage areas are broader than they were 14 years ago. Consumer demand has also increased drastically. Whereas ten years ago everyone assumed you were someone important if you carried a cellular phone, today almost every consumer carries a cell phone and feels lost if she leaves it at home.

Over the last few years, a number of companies have dedicated an enormous amount of time and effort to develop systems that would allow airline passengers to surf the Internet, check e-mail, send text-messages, and talk on their cellular phones while flying from one city to the next. The Internet providers won the race, and on December 15, 2004, the FCC announced it will auction off new licenses in the “4 MHz of spectrum in the 800 MHz band currently dedicated to commercial air-ground service.” This move will allow the use of high-speed wireless Internet by airline passengers.

Presently, Verizon Airfone is the only licensed operator in this spectrum and is the only U.S. company providing services on domestic flights. Id. Connexion-by-Boeing also provides Internet access to airline passengers but is currently only used by foreign
The development of cellular phones is not far behind. Several companies have developed technologies capable of controlling cellular phones and keeping the signals from in-flight phones from overloading the ground network. Currently, two approaches are competing to become the industry standard. The first method, developed by Qualcomm (a leading wireless communications company), routes airborne cellular calls through a base station, called a pico-cell, located on the airplane to a SATCOM system also located on the aircraft. The SATCOM system connects to the GlobalStar satellite system, and the call is routed over the satellite network to an Earth-based station that distributes the call to the land-based cellular network. Currently, Qualcomm’s system only works with CDMA-disabled phones, which means foreign phones using the Global System for Mobile Communicators (“GSM”) protocol cannot connect to Qualcomm’s systems. However, both GlobalStar and Qualcomm say the system could be adapted to work with GSM phones.

Two international teams have developed similar systems for GSM-disabled phones. These systems, developed by SITA Inc. and ARINC Inc., take partial control of the cellular phone, instructing “the phone to communicate only with an onboard base station.” This prevents the phone from trying to access too many ground stations at once. In addition, these systems

22 Lott, supra note 27, para. 6.

23 George Marsh, The Race to Allow Airborne Cell Phone Use, Avionics Magazine (Oct. 2004), available at http://www.aviationtoday.com/cgi/av/show_mag.cgi?pub=av&mon=1004&file=racetoallow.htm. CDMA and GSM are cellular phone operating protocols. While CDMA is currently the prevalent technology in the United States, several cellular companies are introducing GSM phones into the United States market, making it necessary for any airborne system to be compatible with both standards.

24 Id.

25 Id.

26 Id.

27 Id.
provide airline personnel the ability to control access to the onboard network. This control includes the ability to shut down the network while flying over countries "where airborne cellular use still is not permitted," and the ability to "pre-empt the [SATCOM] system in the event of an aircraft operational emergency."

In 2004, both foreign and domestic companies conducted test-flights of the pico-cell based systems. In July 2004, after receiving a waiver from the FCC and the FAA, Qualcomm teamed with American Airlines to conduct a test-flight over Texas. The flight from Dallas to El Paso included placing calls from airborne cellular phones and receiving calls from the ground. During the ninety-minute flight, the only complaint was that callers experienced a short delay due to the routing of the calls through the satellite network. Airbus conducted a similar flight in September over Toulouse, France.

The second method of providing cellular phone services to airline passengers was developed by AirCell Inc. AirCell has been providing cellular-styled services in private jets for a number of years under an FCC waiver. This system is similar to the Qualcomm system and its international counterparts, but it requires the use of AirCell-manufactured and installed cordless handsets onboard the aircraft. Thus, it is not a true cellular service. The other key difference between AirCell's system and the more common pico-cell system is that AirCell does not route the calls through the ground-based cellular network. Instead, AirCell's system links with an Iridium satellite and routes the

34 Id.
35 Id.
36 Lott, supra note 27, para. 4-8.
37 Id.; David Koenig, Qualcomm Tests Cell Phones Aboard Airliner, CNEWS (July 16, 2004), at http://www.eweek.com/article210,1895,1624543, David Brinn, supra note 27, para. 3-4.
38 Lott, supra note 27, para. 7; Koenig, supra note 37, para 7.
41 Id.
42 Id.
calls back down to AirCell’s own private cellular network, which covers the continental United States.43

In sum, the cellular companies and airlines have banded together to develop new technologies to address the FCC’s concerns regarding the disruption of the ground-based cellular network by airborne cellular calls. The industry has performed extensive work in this area, and it seems as though this concern is no longer valid. By placing a control unit aboard the aircraft and routing the phone calls through the satellite network, the cellular signals can be controlled and routed to a single base station designated by the cell carrier. This capability prevents flooding of the network and allows airline passengers to place calls using their cellular phones as if they were standing on the ground. Although it seems that recent technological developments have taken care of the FCC’s concerns, the FCC ban is not the only obstacle to overcome. The FAA has safety concerns regarding the use of cellular phones and other personal electronic devices in flight, and these concerns demand consideration before passengers should be allowed to use their cellular phones in flight. The next section of this article addresses these safety concerns, including an examination of the concerns to determine whether they are fact or fiction.

\textbf{III. THE FAA BAN AND SAFETY CONCERNS SURROUNDING THE USE OF CELLULAR PHONES ON AIRBORNE AIRCRAFT}

\textbf{A. THE FEDERAL AVIATION ADMINISTRATION}

The introduction of jet airliners and a rash of midair collisions in the late 1950s prompted Congress to pass the Federal Aviation Act of 1958.44 The Act created the Federal Aviation Agency, the FAA’s predecessor, and charged the Agency with

43 Id. Additionally, AirCell announced that in July 2003 it obtained a patent on new technology that would allow commercial airline passengers to use their personal cellular phones to link up to the AirCell network and make phone calls. \textit{Id.} The company claims its system is much smaller and less complex than the popular pico-cell systems developed by its counterparts. Press Release, AirCell, Inc., AirCell Advances Toward Inflight Cell Phone Services (July 8, 2003), http://www.aircell.com/news/new_pr_detail.php?PR_ID=20 [hereinafter AirCell Press Release].

regulation of air safety and the reduction of “aviation hazards.” The Act also made the Agency responsible for the “development and [maintenance] of a common civil-military system of air navigation and air traffic control.” In 1966, Congress created the Department of Transportation (DOT) as a cabinet-level department, and the Federal Aviation Agency became part of this new organization. With this elevated position, the Federal Aviation Agency was renamed the Federal Aviation Administration (FAA). Over time, the FAA took on greater responsibility for safety in the skies and grew into the organization we know today.

Today, the FAA is responsible for numerous aspects of the “safety of civil aviation.” In the realm of safety regulation, “the FAA issues and enforces [safety] regulations.” It provides minimum standards for “manufacturing, operating, and maintaining aircraft.” This responsibility includes regulation of passengers by placing limitations on luggage, passenger behavior, and the use of cellular phones and other electronic devices onboard an aircraft.

The safety concerns surrounding the use of PEDs date back to the 1950s and 1960s, when several aircraft experienced interference with navigational and communications systems while a passenger operated a portable FM radio onboard the plane. In response to concerns that FM radios could disrupt critical flight systems, the “FAA adopted the predecessor to its current rule in 1961” Over time, the proliferation of CD-players, laptop computers, PDA’s, hand-held games, and other PEDs created concern that these items would also interfere with the airplane’s.

45 FAA History, supra note 44, para. 1.
46 Id.
47 Id. para. 9.
48 Id.
49 Id. paras. 10-17.
51 Id.
52 Id.
54 Hunter, supra note 17, at S12; Portable Electronic Devices: Do They Really Pose a Safety Hazard on Aircraft?: Hearing before the House Aviation Subcommittee, 107th Cong. (2000) (Statement of Robert H. Frenzel, Senior Vice President for Aviation Safety and Operations, Air Transport Association) [hereinafter Testimony].
55 NPRM 1, supra note 14, at 8385.
navigational equipment. Consequently, the FAA added a number of PEDs to its list of prohibited devices. The current regulation prohibits "the operation of, any portable electronic device on any . . . U.S.-registered civil aircraft (1) operated by a holder of an air carrier certificate or an operating certificate; or (2) any other aircraft while it is operating under IFR [instrument flight rules]." However, this prohibition "does not apply to (1) [p]ortable voice recorders; (2) [h]earing aids; (3) [h]eart pacemakers; (4) [e]lectric shavers; or (5) [a]ny other portable electronic device that the operator of the aircraft has determined will not cause interference with the navigation or communication system of the aircraft on which it is to be used." Thus, an aircraft operator cannot allow the use of a PED unless the PED falls under one of the listed exceptions, or he conducts his own study of the device and "determines that the operation of that device will not interfere with the communication or navigation system of the aircraft." As it does with many of its regulations, the FAA issued an Advisory Circular to provide airlines with guidance on how to comply with the regulations regarding PEDs. The Advisory Circular recommends "[p]rohibiting the operation of any PED's during takeoff and landing phases of the flight." Additionally, the Advisory Circular prohibits the operation of any PEDs classified as intentional transmitters during all phases of the flight.

56 Id.; Testimony, supra note 54, at para. 4.
57 NPRM 1, supra note 14, at 8385; FAA, U.S. Dep't of Trans., AC 91.21-A, ADVISORY CIRCULAR, USE OF PORTABLE ELECTRONIC DEVICES ABOARD AIRCRAFT (Oct. 2000) [hereinafter ADVISORY CIRCULAR].
60 ADVISORY CIRCULAR, supra note 57, para. 6 (a)(5).
61 Id. para. 1.
62 Id. para. 6 (a)(6).
63 Id. para. 6(a)(7). The airline industry has created a distinction between devices that transmit electronic signals intentionally, and those that emit signals unintentionally. Bruce Donham, Electromagnetic Interference from Passenger-Carried Portable Electronic Devices, 10 AERO MAGAZINE 13, 13-19 (2000), available at http://www.boeing.com/commercial/aeromagazine/aero_10/interfere.html (last visited Jan. 14, 2005); Leaflet No. 29, GUIDANCE CONCERNING THE USE OF PORTABLE ELECTRONIC DEVICES ON BOARD AIRCRAFT (Dec. 2001), in CIVIL AVIATION AUTHORITY PAPER 2003/3, EFFECTS OF INTERFERENCE FROM CELLULAR TELEPHONES ON AIRCRAFT AVIONIC EQUIPMENT (2003) [hereinafter CAA Leaflet 29]. Non-intentionally transmitting PEDs are devices that "do not need to transmit electromagnetic signals outside the device to accomplish their functions." Donham, supra note 63, at
Examples of intentionally transmitting devices ("T-PEDs") include "citizen band radios, cellular telephones, [and] remote control devices." In addressing the use of cell phones, the Advisory Circular cites the FCC ban and states:

"[T]he FAA supports this airborne restriction for reasons of potential interference to critical aircraft systems. Currently, the FAA does not prohibit the use of cellular telephones while on the ground if the operator has determined that they will not interfere with the navigation or communication system of the aircraft on which they are to be used.

The Circular goes on to add that "[a] cellular telephone will not be authorized for use while the aircraft is being taxied for departure after leaving the gate. The unit will be turned off and properly stowed"

While the Advisory Circular does not specifically prohibiting in-flight use of cellular phones during all phases of flight, the consensus in the industry is that the regulations and the Advisory Circular prohibit the use of cellular phones while in flight. In fact, the FAA repeatedly states on its Web site that

19. Non-intentionally transmitting PEDs radiate some electromagnetic emissions but these emissions are much weaker than an intentionally transmitting PED and may or may not cause interference with aircraft systems. Id.; CAA Leaflet 29, supra note 63, at 1. Examples of non-intentionally transmitting PEDs are laptop computers with their wireless cards turned off, hand-held games, toys, and CD- or MP3 players. Donham, supra note 63, at 19; CAA Leaflet 29, supra note 63, at 1. Intentionally transmitting PEDs or T-PEDs, are devices that must emit external radio signals in order to achieve their designed functions. Bruce Donham, supra note 63, at 19; CAA Leaflet 29, supra note 63, at 1.

64 ADVISORY CIRCULAR, supra note 57, at para. 6(a)(7). Some authorities classify cellular phones as a hybrid device, claiming that when the cellular phone is used for its non-voice related functions the phone is not transmitting signals and thus, is acting like a non-intentionally transmitting device. CAA Leaflet 29, supra note 63, at 2. This classification is flawed. Whenever a cellular phone is turned on, it is constantly scanning the cellular network searching for the best connection. This is an intentional transmission by the device for its primary function, placing calls. Thus, as long as a cellular phone is turned on it is always acting as a T-PED.

65 ADVISORY CIRCULAR, supra note 57, at para. 6(b).

66 Id. Today, many airlines allow passengers to use their cellular phones once the airplane has landed. This policy change is probably due to the wording in the Advisory Circular that says the FAA does not prohibit use of cellular phones on the ground as long as the air carrier has determined ground use will not interfere with navigation equipment. Id. Post-landing use is also different from using a cellular phone while the plane is preparing for take-off. The period when the plane taxis back to the gate is not considered a "critical phase" of flight.

67 Id.; Associated Press, supra note 5, para. 15; Alexander, supra note 22, at para. 5-6.
the use of cellular phones aboard an airborne aircraft is prohibited by its regulations. Thus, anyone wishing to use their cellular phone in flight will have to convince both the FCC and the FAA to change their regulations.

Because the FAA regulation is based on the fear that signals from cellular phones will interfere with the navigational and communication systems of the aircraft, it is necessary to develop an understanding of the science involved in the controversy and the evidence that supports or rejects the theory that PEDs interfere with aircraft systems. The rest of this section examines the science relating to interference from PED’s and the evidence supporting and rejecting the claims that cellular phones are guilty of interfering with aircraft navigational systems.

B. THE SCIENCE BEHIND THE INTERFERENCE CONCERNS

All electronic devices emit radio frequency waves (RF waves). This interference is called electromagnetic interference ("EMI") and has long been a problem for electronic devices of all kinds. The amount of radiation given off by a particular device depends on a number of factors, including, “the magnitude of the current involved, the size and shape of the wires conducting the current and the frequencies involved.”

Most electronic devices have some shielding incorporated into their design to decrease the amount of unwanted RF emissions, but often it is not possible to completely contain all of the RF waves emitted by a given device. RF emissions from electronic devices concern the FAA and the airline industry because an airplane’s navigational systems are ultra-sensitive to electromagnetic emissions. Although many of an aircraft’s systems are heavily shielded to prevent interference, certain “navigation systems cannot be made totally immune to radiation.”

\[\text{\[70\] Id.}\]

\[\text{\[71\] Id.}\]

\[\text{\[72\] Id.}\]

\[\text{\[73\] Id.}\]

\[\text{\[74\] Id.}\]
tion systems requires them “to receive weak electromagnetic [signals] from ground-based radio” navigation systems.74 Whereas these systems are designed to receive signals only on the frequency bands designated “for airborne navigation” systems, other electronic systems can intentionally or unintentionally emit signals on these frequencies.75

The FCC and its foreign counterparts regulate the use of various frequency bands.76 The FCC assigns different frequencies to different devices to ensure one device does not interfere with the operation of another device.77 For example, an AM/FM radio operates on a frequency band distinct from the frequency band on which a cordless phone or television operate. This allows a person to listen to the radio, watch the television, and talk on a cordless phone all at once (if the person is capable of performing all these things at one time). The FCC has also set aside specific frequency bands for the operation of air navigation systems.78

Given that the FCC has set aside specific frequency bands for air navigation systems, one may wonder how a PED may possibly interfere with the operation of systems operating on protected signals. The problem is PEDs do not adhere to the same stringent standards that airline equipment must meet.79 PEDs are generally designed for operation on the ground and “are not manufactured or regulated with the intention of allowing operation in sensitive electromagnetic environments, such as that existing onboard an aircraft.”80 In addition, once a PED leaves the hands of the manufacturer, the device is “no longer subject to effective controls regarding [its] use or maintenance.”81 Most PEDs are easily altered by the general consumer, and any altera-
tion to a device can cause changes in the RF emissions from the device.82

Many people argue that there is no real threat to aviation systems from the use of cellular phones and other devices. They base their skepticism on the fact that most PEDs emit RF waves on relatively low frequencies with small signal strength, while aviation equipment operates on higher frequency bands.83 However, the concern is that while PEDs normally operate with relatively low RF radiation levels, under current regulations, the RF emissions from PEDs are “allowed to be high enough to interfere with aircraft avionics systems.”84 Some interference may not be harmful, but a strong interfering signal can cause significant problems with a number of avionics systems.85 For example, a strong signal from a computer has the potential to cause critical problems with the VOR system.86 This type of interference could cause false readings, the appearance of error flags, and distortion of the audio transmissions of the navigation system.87 In this type of situation, the flight crew would immediately recognize something was wrong and would take appropriate actions to correct the problem.88 However, it is also possible for weaker signals to interfere with the avionics systems. Interference from weaker signals causes greater concern because this type of interference is more difficult to detect and may go unnoticed for a considerable amount of time.89

Cellular phones pose a special problem to airlines because a cellular phone does not always transmit on the same frequency or at the same signal strength. The frequency and signal strength depends largely on the cellular network and things such as “distance of the cell phone from the nearest base station,” network traffic, and obstacles that may disrupt the line-of-site connection between the cellular phone and the base station.90 A cellular user located on the ground is usually close to a

82 Id.
83 Id. at 45; Sandler, supra note 76; Helfrick, supra note 69.
84 RTCA Study, supra note 79, at 45.
85 Helfrick, supra note 69.
86 Id.; VOR stands for very high frequency omnidirectional radio, which is a ground-based navigational system relied upon by most modern airlines. Ritchie, supra note 76, at 687.
87 Helfrick, supra note 69.
88 Id.
89 Id.
90 CAA Leaflet 29, supra note 63, at 2.
cell tower, and, as a result, his signal strength will be strong.91 This strong connection between the cell tower and the cellular phone allows the cellular phone to operate at a lower power level, which produces lower levels of emissions.92 However, a cellular phone in the air is dramatically farther away from a cell tower, causing the phone to strain to maintain a good link between the phone and the network.93 This strain requires the phone to operate at a much higher power level.94 Thus, the potential for interference with the aircraft’s navigation systems is greater when the cellular phone is in the air.95 This situation is one of the reasons why the FAA’s current policy allows use of cellular phones while the aircraft is at the gate, but requires passengers to turn off their cellular phones when the flight crew closes the aircraft door and the plane begins to taxi away from the gate.96

Another cause for concern is that the cell tower determines the frequency on which the cellular phone operates, possibly assigning the phone to a different frequency with each new call.97 This means it is impossible to predict the frequency on which a particular cellular phone will be operating at any given time, and no guarantee exists that the tower will assign an airborne call to a frequency more or less likely to interfere with the aircraft’s avionics.98 In addition, as the number of passengers talking on their cellular phone increases, the number of frequencies transmitting within the aircraft will increase, causing a more pronounced interference environment.99 The effect of this interference is two-fold: (1) greater potential for interference with the aircraft’s avionics, and (2) cellular phones within the cabin will experience greater levels of interference, causing the phones to operate at higher power levels and emit more radiation, also increasing the level of potentially threatening interference within the plane.

As it is scientifically possible for cellular phones and other PEDs to transmit RF radiation capable of interfering with an air-

91 Id.
92 Id.
93 Id.
94 Id.
95 Id.
96 ADVISORY CIRCULAR, supra note 57, para. 6(b).
97 Cellular Basics 2, supra note 18.
99 CAA Leaflet 29, supra note 63, at 2.
craft’s avionics, one would wonder why there is such a large debate over the safety of the use of T-PEDs, such as cellular phones, aboard an aircraft. The problem is that the prevailing attitude has been “better safe than sorry,” and the FAA has not done much to study the problem. Instead, it instituted the ban and left the matter alone. While the FAA has not conducted any substantial studies of the issue, other entities have conducted various studies. The next section of this article examines the available evidence from these studies.

C. STUDIES RELATING TO THE USE OF CELLULAR TELEPHONES ON AIRCRAFT

While all electronic devices emit RF radiation, some devices are more dangerous than others. Generally, non-intentional transmitters are less likely to cause interference than intentionally transmitting devices. Consequently, many researchers are focusing their efforts on interference from T-PEDs. The following studies include studies on PEDs and T-PEDs, in general, in addition to a few studies focusing exclusively on cellular phones.

1. Boeing

Boeing conducted a study in which it tested the emissions from sixteen cellular phones representative of the cellular phones carried by passengers. The study included the testing of the phones in a laboratory and in an airplane on the ground. During the lab tests, the cellular phones produced emissions at their operating frequency and also produced emissions in other ranges. The emissions produced at operating frequency measured “as high as 60 dB over the airplane equipment emissions limits.” This indicates a high potential for producing interference with aircraft systems. The phones also produced emissions that registered at frequency ranges cor-

100 Advisory Circular, supra note 57, paras. 6(a)(6)-(7) & 6(b) (stating that intentional transmitters are barred from operation at all stages of flight, but no mention is made about whether non-intentional transmitting devices can be used during non-critical phases of the flight); see also Donham, supra note 63, at 17 (stating that Boeing recommends prohibiting the use of non-intentional transmitting devices only during critical stages of flight such as take-off and landing).
101 Id.
102 Id.
103 Id.
104 Id. at 16.
105 Id.
responding to the frequency bands for various navigation systems. While these other emissions had low signal strengths within “airplane equipment emission limits,” Boeing is concerned that these emissions from cellular phones may interfere with the proper operation of communication and navigation systems.

After performing laboratory tests, Boeing used the same sixteen cellular phones in a test aboard an airplane on the ground. In an effort to make the test as real as possible, researchers parked the plane on the runway and placed the aircraft in flight mode. The researchers then monitored the reaction of the navigation systems to emissions from the cellular phones placed throughout the airplane. This test did not produce any anomalies. With the information Boeing gained from these tests and the information the company has accumulated regarding emissions from PEDs, Boeing continues to recommend the prohibition of cellular phones during all phases of flight.

2. NASA Review of Accident Reports – 2001

In 2001, the National Aeronautics and Space Administration (“NASA”) conducted a study in which it sought to determine the potential for interference from various PEDs. While the purpose of this report was only to prove there is a need for additional research in the area of interference from PEDs, its findings are helpful in understanding the perceived prevalence of anomalies resulting from the use of cellular phones onboard an airborne aircraft. NASA’s study involved a survey of the Aviation Safety Reporting System’s (“ASRS”) database in which it checked for reports that identified PEDs as the possible source of the experienced anomaly. The ASRS is a voluntary reporting system used by NASA and the FAA to study aviation inci-

106 Id. at 15-16.
107 Id.
108 Id.
109 Id.
110 Id.
111 Id.
112 Id. at 17.
114 Id. at 3.
115 Id.
dents and take appropriate actions to remedy potential hazards. Because it is a voluntary reporting system, the data provided in the study is only representative of the reported incidents and not total occurrences. However, the resulting statistics are important because, at the very least, "they represent the lower measure of the true number of such events that are occurring."

The survey of ASRS reviewed incident reports for the period spanning from 1986 to 1999. During this time period, PEDs were identified as a contributing factor in 118 incidents. The reports identified devices such as PDAs, CD players, electronic games, laptop computers, cellular phones, etc., as the sources of various anomalies. Out of the PEDs identified by the reports, cellular phones and laptop computers were the top offenders with 25 incident reports each. In addition, cellular phones were the offending devices in 15 out of 59 incidents where the flight crews reported critical anomalies. These findings placed cellular phones at the top of NASA’s list of candidates for additional research and testing.

In this study, NASA explored the risks to aircraft navigation radios created by electromagnetic emissions from two categories of cellular phones, CDMA and GSM phones. The aim of the study was to determine the potential for interference with various navigational devices. The study specifically looked at the effects of cellular phone emissions on the following navigational

116 Id.
117 Id. at 4.
118 Id. at 5.
119 Id. at 7.
120 Id. at 20.
121 Id.
122 Id.
123 Id. at 21–22. The report defines a critical equipment problem as an “equipment problem that is vital to the safety of the flight.” Id. at 6.
124 Id. at 20.
126 Id.
aids: VOR, LOC, GS, and GPS navigation radios.127 Researchers tested the emissions from CDMA- and GSM-enabled phones in multiple operation modes and power output levels.128 In addition, the phones were tested while resting in a cradle and while being handled by a user.129 The study found manipulation of the cellular phone by the user increased the emissions levels of the devices.130 The study concluded that if a CDMA or a GSM phone operated at "its maximum FCC-allowable levels, it would result in large NEGATIVE safety margins."131 This indicates the emissions from the phone could pose a risk to the aircraft's navigational equipment.132 The report also notes that emissions in the GPS- and DME-designated bands were recorded when two phones were placed "in close proximity to one another."133 These unexpected emissions were the result of the signals from the two phones interacting with one another and producing emissions on multiple frequency bands.134 This indicates that multiple passenger phones interacting with one another could increase the range of frequencies on which emissions are produced by the cellular phones on the aircraft.135 This should cause concern because it increases the number of potentially interfering signals on the airplane; making it more likely that one of these emissions will cause interference with the airplane's navigational systems.

4. Civil Aviation Authority's Study on the Effects of Interference from Cellular Telephones on Aircraft Avionic Equipment

In October 2002, the Civil Aviation Authority ("CAA") conducted an experiment in which it tested several avionic devices for susceptibility to interference from cellular phones.136 The

127 Id. As noted previously, VOR stands for very-high frequency omni-range radio. Id. at 84. LOC stands for localizer. Id. GS stands for glide slope and GPS stands for global positioning system. Id. All of these systems are critical to proper navigation of the airplane. Id.

128 Id. at 87.

129 Id. at 75-76.

130 Id.

131 Id. at 87.

132 Id.

133 Id.

134 Id.

135 Id.

136 Id.

136 Effects of Interference from Cellular Telephones on Aircraft Avionic Equipment, CAA Paper 2003/3, v (2003), available at http://www.caa.co.uk/docs/33/CAPAP2003_03.PDF [hereinafter CAA Study]. The Central Aviation Authority is the United Kingdom's aviation regulatory agency. Among its
project tested the equipment's responses to cellular phone transmissions at the following frequencies: 412 MHz, 940 MHz (which corresponds to a GSM phone), and 1719 MHz. The test also varied the strength of the transmissions to determine whether signal strength caused a difference in the level of interference.

The data gathered from the study revealed several anomalies, which occurred when the cellular phone operated at its maximum power levels. The anomalies ranged from things such as the “[c]ompass [freezing] or [overshooting] [its] magnetic bearing” to “background noise on audio outputs.” The VOR navigation system experienced several anomalies including: bearing display errors, indicator reversals, and course deviation indicator errors. The report indicated these types of anomalies could produce consequences such as “crew distraction, confusion and loss of confidence in the equipment.” Of greater concern is the “degraded navigation precision” experienced from these types of anomalies “could result in an inability to meet required navigation performance with potential adverse effects on aircraft separation and terrain clearance.” With this information, the CAA concluded cellular phones are not safe and should continue to be restricted. The report also recommended banning the use of cellular phones until the risks of interference are fully understood and mitigated.

5. RTCA Study Commissioned by the FCC

The RTCA is a private organization that studies various issues in the aviation industry and submits reports and recommenda-
tions to the FAA. The RTCA's members represent all areas of
the aviation industry, including airlines, airplane manufacturers,
suppliers, and government organizations. Recently, the FAA
requested the RTCA to form a special committee made up of
government, industry and academic experts to specifically ad-
dress the risks associated with the use of portable wireless de-

The RTCA's members represent all areas of
the aviation industry, including airlines, airplane manufacturers,
suppliers, and government organizations. Recently, the FAA
requested the RTCA to form a special committee made up of
government, industry and academic experts to specifically ad-
dress the risks associated with the use of portable wireless de-

This request resulted in the creation of special committee RTCA SC-202, Portable Electronic Devices. SC-202 was charged with providing a current update on the use of PEDs "on board civil aircraft with an emphasis on intentional transmitters such as mobile phones, wireless RF network devices, and other wireless-enabled devices." Unfortunately, at the time of the writing of this article the committee has only com-
pleted the first phase of its study. The resulting report indi-
cates that the study of individual T-PEDs is a daunting task that
should not be taken lightly. As a result, the committee report
lays out a testing procedure for airlines and manufacturers to
use when determining whether certain T-PEDs are safe to use
aboard an aircraft.

In addition to identifying the recommended procedure for
determining the safety of T-PEDs, the committee report indi-
cates that now is not the correct time make changes to the cur-
rent "policies regarding the use of T-PEDs on board aircraft." Presently, the committee does not believe there is enough infor-
mation available to support an informed policy decision on this
issue. The committee also warns against making broad policy
changes in a climate where individual T-PEDs are "indistinguish-
able to the casual observer." The committee is concerned
that the creation of a device- or brand-specific policy would cre-
ate an enforcement nightmare for flight crews and passengers
alike.

147 Id.
148 NPRM 1, supra note 14, at 8386.
149 RTCA Study, supra note 79, at 1.
150 Id.
151 Id.
152 Id.
153 Id.
154 Id. at 2.
155 Id.
156 Id.
157 Id.
Over the last five years, several studies have been conducted on PEDs, all with the same lofty goal of determining whether it is safe to use T-PEDs, such as cellular phones, while airborne. Most of the studies have reached the same conclusion: it is possible for cellular telephones to emit transmissions in the air navigation frequency bands, and it is possible for these emissions to interfere with critical navigational equipment.158 With this possibility of interference, the majority of the studies recommend maintaining the current policies banning the use of cellular phones until more research in the area is completed.159 Part of the difficulty of coming to a conclusion on the safety issue is that there are numerous types of cellular phones on the market, all with different technologies behind them. Another issue is that when flight crews report anomalies, it is often difficult to recreate the exact situation to determine the source of the anomaly.160 Additionally, most studies are conducted in laboratories or aboard planes on the ground, and it is difficult to predict how the navigational equipment will react to the same emissions 30,000 feet in the air, out of the controlled environment created on the ground.

IV. A BRIEF DISCUSSION OF SOCIAL POLICY

Before predicting whether the FCC and the FAA are likely to change their positions on their respective bans, it is necessary to take a brief look at what passengers think about the possibility of using their cellular telephones in flight. While most passengers agree that being able to use their personal cellular phone would be a welcome alternative to the high-priced seat-back phones currently installed in planes, a number of passengers have their

158 See previous discussion of the Various Safety Studies, \textit{supra} Part III, Section C.

159 One important issue the FAA should consider is whether the location of the cellular phone within the airplane has an effect on the strength of the potentially threatening emissions. The research conducted in preparation for this article did not uncover any studies analyzing the relationship between placement of the phone within the cabin and the level of interference experienced.

160 See \textit{supra} Part III, Section C.
reservations about the idea. Consumers are particularly concerned with two issues: (1) "cell yell" and (2) air rage.

Many airline passengers have expressed a desire to have greater connectivity while they are in the air, but most of these passengers stop with e-mail and Internet connectivity. Consumers are afraid of losing one of the last few places where cellular phones are not allowed. Countless articles relating to the FCC's recent announcement that it may relax its ban, express a general desire to keep the airways free of cellular noise. One article reported that the FCC, which at the time this article was written had not begun accepting comments on its proposed rules, has been bombarded "with hundreds of e-mails opposing phones on planes." Most of the comments received recommend limiting cellular phone use to the phone's non-voice related functions, such as games and text messaging. Passengers complain they already overhear enough conversations, and they do not want their flights disrupted by cellular users trying to talk over each other. Some consumers have said that if airlines want to provide in-flight cellular connectivity, the airlines need to establish a way to designate a quiet section of the plane where cellular phone use is not allowed.

161 The seat-back phones that are installed in many planes have fallen out of favor in recent years because they are exorbitantly priced at around $4 per call. Cook & Nyhan, supra note 39, para. 11; Koenig, supra note 37, para. 14. Most passengers look at this price and determine that their call is not so important that it cannot wait until they hit the ground. Cook & Nyhan, supra note 39, para. 11; Koenig, supra note 37, para. 14.

162 "Cell yell" refers to the "the futile practice of yelling on a cell phone caused by a lack of understanding of the technology or in attempt to overcome a bad connection." Forum – Cell Slang, http://www.cellmanagers.com/forum/slang/htm (last visited Jan. 18, 2005). Air rage is a condition similar to road rage in which airline passengers become unruly and sometimes violent. Id.

164 Id. at para. 2; Hampson, supra note 22, paras. 1-2.

165 Alexander, supra note 22; Hampson, supra note 22.

166 Hampson, supra note 22, para. 8.

167 Id.

168 Alexander, supra note 22, para. 14. While some passengers would like to allow the use of the phone's text messaging capabilities, this function poses the same threat the voice-related functions pose to the airplane's navigational equipment. Id.; Hampson, supra note 22, para. 8. Text-messaging requires the cellular phone to communicate with the cellular network in order to transmit the messages across the network. Thus, limiting cellular phone use to text-messaging only solves the passengers' concerns regarding noise, but it does not address the more serious safety concerns.

169 Id. at 12. Many of the comments make reference to Amtrak's "quiet cars." Id. After being flooded with complaints of "cell yell" on its trains, Amtrak insti-
ever, this type of system would be difficult to institute. Designating a quiet section would require the installation of some sort of “phone booth” or sound proofing materials between the “cellular free” area and the “yell all you want” section of the plane. Such a system is likely to be costly and may not be worth the expense.

In addition to the general annoyance of overhearing someone else’s conversations, passengers are also concerned about the safety risks cellular phones may add to the plane ride. Air rage is already a prevalent problem aboard airplanes, and some passengers fear that allowing cellular phones on airplanes could increase the problem. In 2004 alone, the FAA reported 238 incidents of “unruly passengers.” In the last six years, the numbers have been as low as 226 incidents in 1999 to as high as 299 incidents in 2001. Passengers become unruly for reasons ranging from long delays, to crankiness, and sometimes for no apparent reason. With air travel being as tense as it is in the post-September 11th world, many passengers question whether adding cellular phones to the list of annoyances is a good idea.

Other passengers are not worried about air rage in and of itself. They are more concerned with safety in general. Seasoned travelers have commented that too many people already ignore flight attendant instructions without the added distraction of talking on their cellular phones. These travelers worry that allowing passengers to talk on their cellular phones will increase the number of passengers ignoring flight attendant instructions; creating more safety hazards and flight delays.

On the other hand, a small group of passengers would like to see both bans removed. These passengers believe that the current regulations have outlived their usefulness and only remain in place for monetary purposes. They claim the airlines, the FAA, and the FCC are acting in concert to keep the seat-back phones in airplanes because the airlines get a share of the proceeds a policy where certain cars are designated as quiet cars and cellular phone use is prohibited in these cars at all times. Id.

170 Hampson, supra note 22, para. 38.

172 Id.

173 Hampson, supra note 22, paras. 36-38.

174 Id.

ceeds from the use of these phones.176 Passengers who are sick of paying $3 to $4 per phone call want to see the ban lifted, so they can save money by using their personal cell phones.177 However, these passengers fail to realize that they will be charged a fee to use their personal cellular phones to make a call from the air.178 The airline must recoup the cost of installing onboard cellular systems, and the service provider will also charge a fee for the use of their system.179 Thus, while the calls may ultimately cost less, making a cellular call from the air will not be free. Instead, passengers will likely pay charges similar to typical cellular roaming fees.180

V. PREDICTIONS AND RECOMMENDATIONS

This section of the article relies on the previous discussion about the current state of the law, technological developments, and studies and attempts to predict what action the FCC and the FAA will take regarding the relaxation or lifting of their respective bans on the use of cellular telephones in flight. Following these predictions is an analysis of whether the predicted actions are appropriate, given the current state of technology, and a recommendation as to what the FCC and the FAA should do to address this issue.

A. Prediction 1: The FCC is Likely to Relax Its Ban

The FCC has a statutorily mandated duty to review and revise its regulations regarding cellular phones as part of its Part 22 biennial review process.181 Under this process, if a regulation no longer serves the public interest, the FCC is required to either modify or repeal the regulation.182 With this responsibility in mind, it seems as though the stage is set for the FCC to relax its current ban on the use of cellular telephones in flight.

The FCC announced a proposed change to its current rules in December 2004 that would allow the use of “off-the-shelf” wireless devices, provided the device is under the control of a pico-

176 Batista, supra note 23; Auerbach, supra note 175.
177 Koenig, supra note 37.
179 Koenig, supra note 37.
180 Mobile Review, supra note 178.
cell located onboard the aircraft, and the use of the device does not interfere with the operation of the ground-cellular network.183 The ban was originally put in place to protect cellular phone users on the ground from disruption of the cellular network by calls originating in the air.184 Competition in the cellular industry and constant consumer demand for new and better features has fueled the development of systems that make it possible for cellular calls originating from the air to coexist with calls originating from the ground. Several companies have already conducted product tests and proven that the pico-cell technology works.185 This evidence suggests that the current ban is no longer necessary.

In addition to ensuring the protection of the ground-cellular network, the FCC also has the responsibility to encourage competition in the industry.186 Sometimes it is necessary for the FCC to relax some of its regulations to allow more competitors to enter the market.187 For example, at the same time the FCC announced its plans to review the cellular phone ban, the FCC restructured its regulation of the 4 MHz of the air-ground spectrum reserved for broadband services.188 Before the announcement, only one service provider was allowed to provide broadband services (Internet) on airplanes.189 The changes were part of an effort by the FCC to encourage competition in this area and to allow more market participants the opportunity to provide similar broadband services.190 The FCC faces the same situation with the cellular ban. AirCell is currently the only company with a waiver allowing the company to provide cellular services to airline passengers.191 With the development of new technology that protects the ground-cellular network, it is necessary for the FCC to allow more competition into the mar-

184 Id.

185 For a discussion of the various technologies in development supra, Part II Section D.

187 Broadband Release, supra note 24.

188 Id.

189 Id.

190 Id.

ket. As such, it may be in the consumer’s best interest to relax the ban and allow cellular companies to compete with one another.

While the FCC has stated that it is aware of the FAA’s policies and is open to comments from passengers, it is not likely that the safety concerns and social problems related to cellular phones will keep the FCC from relaxing its ban. The FCC’s duty is to determine whether the provision of cellular services is technologically possible; the FCC is not responsible for regulating social conduct or airline safety. Thus, the FCC is likely to relax its ban in the near future.

B. Prediction 2: The FAA is Not Likely to Relax Its Ban.

On the other hand, it is not likely that the FAA will change its policies any time soon. The current regulation prohibits the use of any personal electronic device that has not been deemed safe for use on board an aircraft. Although the industry has made a lot of progress in both cellular technology and the shielding of aircraft avionics, the technology has not come far enough. Every study reviewed in preparation of this article indicated it is scientifically possible for cellular phones to generate emissions in the air navigation frequency bands and it is possible for these emissions to interfere with the aircraft’s avionics. No study indicated that cellular phone use on an aircraft is safe.

The uncertainty in this area prompted the FAA to request the RTCA to conduct a study looking at transmitting PEDs specifically, and to develop a procedure for determining the safety of various T-PEDs. Phase I of this study was completed in December 2004 and Phase II is not expected to be completed until 2006. Like the studies before it, the Phase I report concluded that now is not the time to change the current policies, and it

193 Associated Press, supra note 5, para. 18 (quoting Commissioner Adelstein).

194 The commission is expected to make a decision on the issue sometime this year. Id.

195 14 C.F.R. § 91.21 (2005); Advisory Circular, supra note 57, at para. 1.

196 For a discussion of the various studies see supra, Part III Section C.

197 RTCA Study, supra note 79, at 1.

instructed the FAA to continue to ban the use of cellular phones in flight.199

In light of the potential for interference and the lack of evidence to support the notion that cellular phones are safe in the air, it would be foolish to think the FAA will lift its ban on cellular phones any time in the near future. This contention is supported by the FAA’s statements in response to the FCC’s announcement regarding the proposed relaxation of its rules.200 After this report was released, the FAA placed a statement on its Web site stating that the FAA is not considering a change in its policies at this time.201 The FAA will not change its policy until someone proves to the FAA that the use of cellular phones is safe.202 Consequently, cellular phones will remain grounded for quite sometime.

C. Recommendations

Taking into account the current state of technology, consumer concerns, and the weaknesses in the FAA’s ban on the use of cellular phones in flight, it is not a good idea for the FCC to relax its ban at this time. The FCC should work more closely with the FAA and the two agencies should make sure their policies complement each other and work together to protect both the cellular network and the safety of airline passengers.

Currently, there is some controversy surrounding the FAA’s rules on cellular telephones in flight. The FAA’s regulation only prohibits those electronic devices that have not been deemed safe by the airlines.203 Although no airline proclaimed cellular technology to be safe for operation during flight, it is possible under the current regulation for an individual airline to decide that it believes cellular phones are safe. After making this determination the airline could allow passengers on their flights to use their cellular phones.204 Once one airline makes this move, other airlines will be pressured to offer their passengers the same services to remain competitive in the market. This could create a race to provide cellular services to passengers, and it is possible that safety considerations could be ignored. This is not to say the airlines will completely disregard the safety issues, but

199 RTCA Study, \textit{supra} note 79, at 2.
200 Frequently Asked Questions, \textit{supra} note 68.
201 \textit{Id}.
202 Alexander, \textit{supra} note 22, para. 6-7.
203 14 C.F.R. § 91.21 (2005); see also, \textit{supra} Part III, Section A.
204 14 C.F.R. § 91.21 (2005); Advisory Circular, \textit{supra} note 57, para. 6(a)(5).
with increasing pressures in the market, it is possible safety concerns may not receive the proper attention they deserve.

Fortunately, this controversy may not be as large of a concern as some believe. The FAA's stated position is that cellular phones are banned in flight, and most analysts agree with this position.205 However, the airlines are already experiencing difficulty in enforcing the ban, and there is evidence that unauthorized use of cellular technology is increasing.206 Currently, the FCC ban provides support for the FAA policies and threatens passengers with large fines.207 If the FCC removes its ban or even relaxes it, the FAA loses some of its regulatory support and the threat of enforcement is greatly reduced. Although the FCC is not responsible for the safety of the airways, it is important for the regulatory agencies to work together on this important safety issue. One agency should not make a move towards relaxation or removal of the ban until the other is prepared to do so as well. The FCC can still foster economic competition and technology development in this area through its practice of granting waivers for product testing.208 And even though the FCC is not charged with protection of airline passenger safety, one would argue that the protection of airline passenger safety is an important public interest served by keeping the current ban in place.209 Thus, the current regulation is not entirely lacking a public interest purpose, and the FCC does not necessarily have to lift its current ban just because technology has made it possible for the ground network and airborne cellular calls to coexist with one another.210

In addition, the technology is not 100 percent ready to hit the airways at this time. Although systems have been developed to

\begin{footnotes}
\item[205] Frequently Asked Questions, supra note 68; ADVISORY CIRCULAR, supra note 57, para. 6(b).
\item[206] Hester, supra note 1.
\item[207] Id.; 47 C.F.R. § 22.925 (2005).
\item[208] This type of procedure was used to allow American Airlines and Qualcomm to test Qualcomm's pico-cell technology on a flight from Dallas, Texas to El Paso, Texas in June 2004. Koenig, supra note 37; Lott, supra note 27, para. 6. In fact, the FAA and the FCC both gave the companies one-time waivers for the test flight and there is no reason to expect that this same procedure will not work in the future. Koenig, supra note 37; Lott, supra note 27, para. 6.
\item[210] Id.
\end{footnotes}
control airborne calls and route them through satellite networks so they do not interfere with the ground networks, the safety concerns remain unresolved.211 Numerous studies have been conducted on the electromagnetic interference emitted by cellular phones, and none of those studies has declared that cellular phones do not pose a threat to the aircraft’s navigation equipment. If the FAA and the FCC want to allow cellular phone operation, they need to heighten the manufacturing standards for cellular phones and ensure that the EMI from cellular phones does not spillover into the air navigation frequency bands, or at least prove that any spillover will not cause interference to critical avionic systems.

By the same token, there is the argument that the FAA has the sole responsibility for air safety, and the FCC should not concern itself with safety matters. The FCC is only required to regulate the communications market to ensure consumers are provided with adequate communication capabilities by promoting market competition and protecting the public from fraud and unsafe devices.212 As Commissioner Adlestien has stated, the FCC’s “job is to see if this is possible and then let the consumers work out the” rest.213 The FAA, on the other hand, is responsible for safety and should be the sole regulator of the use of cellular phones on board aircraft. The problem with this theory is that it assumes the two agencies operate in mutually exclusive spheres when, in actuality, their jurisdiction over cellular phones (and other devices for that matter) intersects.214 The FAA has the authority to ban the use of cellular phones and other devices on airplanes. However, if the FAA decides it wants to allow passengers to use their cellular phones, the FAA lacks the authority to regulate important issues such as shielding requirements, frequency bands, and power output levels. These types of regulations are outside the scope of the FAA’s authority and are the FCC’s responsibility. The FCC is in charge of making sure that devices do not interfere with each other, and it accomplishes this task by placing manufacturing requirements on these devices. If the FAA is the sole judge on the cellular phone issue, it is possible to end up with two conflicting regulatory schemes for cellular phones, one for the air and one for the

211 For a discussion relating to the safety of cellular phones on airplanes see supra, Part III Section C.
212 About FCC, supra note 7.
213 Associated Press, supra note 5.
214 NPRM 1, supra note 14, at 8386.
ground. This would create a nightmare for manufacturers and passengers alike. Manufacturers would have to expand their product lines and keep track of two different sets of regulations. Similarly, passengers would need one phone for everyday ground use and one phone for use in the air. Rather than disrupting the current regulatory system, logic demands that the FAA and the FCC work together to solve the cellular phone issue and create regulations that provide protection for both the air navigation systems and the ground-cellular network.

Similarly, the FAA needs to consider the passenger concerns about the use of cellular phones in flight. Many passengers do not like the idea of listening to 250 people talk on their phones for the duration of a two-hour flight. Thus, the FAA needs to work with the individual air carriers, the pilot's associations, and the public to study the issues and develop policies for the proper use of cellular phones in flight. Whether the FAA develops quiet zones, similar to Amtrak quiet-cars, limits the use of phones to their non-voice related operations, or uses some other mechanism to control the noise from passenger conversations, it should not allow the use of cellular phones until these important social issues are addressed.

More than likely the day will come when passengers can use their cellular phones in flight, but now is not the time to do it. Too many technical and safety issues remain unsolved, and the consuming public is not ready for cell phones to grow wings.

\[215\] For a discussion regarding passenger concerns see supra, Part IV.
Casenote