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Automated Pleural Effusion Detection on Chest
X-Rays

Muthu Palanisamy, Nathan Wall, and Dr. John Santerre
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Dallas, Texas USA
mpalanisamy@smu.edu, nwall@smu.edu, jsanterre@mail.smu.edu

Abstract. In this paper we present a lightweight solution to help iden-
tify a pathological condition called Pleural Effusion using chest x-rays
(CXR). Patients with Pleural Effusion have been found to have increased
mortality rates, and if left undiagnosed effusion has been found to con-
tribute to congestive heart failure, malignancy, pulmonary embolism, and
tuberculosis [15] [13]. Using convolutional neural network architectures
we developed a model to assist in the successful diagnosis of Pleural Ef-
fusion. The effectiveness of our model was evaluated against 200 studies
manually labeled by consensus from 3 board certified radiologist. We
demonstrate that our model is able to reproduce current baseline perfor-
mance for this task with a model that is 10x smaller and 30x faster. This
lighter architecture allows for more flexibility in deployment including
the ability to deploy directly on an edge node. We present this model as
a tool for the radiologists to diagnose the presence of Pleural Effusion
from a diagnostic imaging study.

1 Introduction

Each year in the United States an estimated 1.5 million people develop Pleural
Effusions [13]. Patients with Pleural Effusions have been found to have increased
mortality rate and left undiagnosed contributes to congestive heart failure, ma-
lignancy, pulmonary embolism, and tuberculosis[15] [13]. Both frontal and lateral
chest x-rays remain the primary means for initial diagnosis of this condition [10].
In this work we present a model to help assist in the accurate diagnosis of Pleural
Effusion from diagnostic imaging studies.

Technological advancements in medical imaging devices allow radiologist to
better diagnose a variety of diseases. With the increase in quality, volume and
complexity of these images has also increased leading to larger workloads for
radiologist [17]. This resulted in a shortage of qualified radiologists in both the
US & UK and is directly impacting the quality of care [19] [17]. Based on the
2018 UK census of radiologist, only 20% of clinical directors feel their current
staffing are able to deliver a safe & effective care. In addition, the UK is reporting
that almost half of the imaging studies have not been reviewed by radiologists
[17]. In the US these shortages are believed to adversely impact low-income and
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rural communities in both quality of care and cost [19]. Forecasts indicate that
these staffing shortages will continue to rise unless radiologists are able to be
shifted around to under-served geographies [19] or governments begin offering
significant funding to the training of new radiologists [17].

In addition to increases in staffing concerns, 2-20% of radiologist reports
have been found with clinically significant or major errors [5]. Current research
has even found a day-to-day error rate around 3-5% and much higher rates on
targeted studies [1]. The most common type of errors uncovered are perceptual
errors or failure to identify any abnormality in the images to begin with. These
errors taken in combination the staffing shortages highlight two key issues with
the current methods used to diagnose patient’s x-rays. In this paper we present
a mobile ready convolutional neural network trained using the CheXpert [8].
The input to the model is a chest X-ray and the output is a probability of the
pathology, and an image highlighting the area of the X-ray most likely repre-
senting the pathology. These outputs are intended to help radiologists quickly
assess the highest risk studies and closely review the region contributing to high
risk studies.

Our paper is structured into several sections beginning with general infor-
mation about Pleural Effusion. Specifically, on the importance of X-rays in the
successful diagnosis and potential treatment. Information about the causes and
contributing factors are outside the scope of this paper as patient history or
medical records are not considered in our analysis.

The data section documents our data source used from training our model,
CheXpert [8]. This dataset contains labeled 224,316 chest radiographs from Stan-
ford hospital, as well as, 200 hand annotated studies based on the presence of 14
different pathologies. The annotation are determined by a consensus diagnosis
from 3 board level radiologists. We also discuss several of the decisions made for
our handling uncertain & missing labels and our data pre-processing steps.

The convolutions neural network (CNN) section details the high level topics
specific to CNN and how they apply to our task of image classification. This
review is intended for audiences unfamiliar to CNN architectures. However, fur-
ther theoretical understanding may be necessary as we detail the specific hyper-
parameters used in our model.

Our model section discusses the pre-processing steps used to prepare our
training images and review the architectures used in this analysis. We evaluate
the performance of our model against 200 ground truth studies. We evaluate two
separate architectures for this task, DenseNet121 & MobileNetV2. We have not
seen other research evaluate the performance of any mobile architectures for this
task. Our performance is compared against the published baseline performance
reported with the original CheXpert dataset. The original authors reported an
AUROC of .936 with a 95% confidence interval of (.904, .967). We find our model
is able to produce similar results to those achieved by the original authors but
at a much smaller size, with the MobilenetV2 network showing an AUROC of
.90.
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Finally, we will review some of the important ethical consideration with our
model and others trained for similar tasks. We also will discuss the use of public
healthcare datasets for AI tools like the model presented here.

2 Background

A Pleural Effusion is a build up of fluid in an area between the layers of tissue
that line the lungs [21]. Pleural Effusion is classified into 2 groups transudative &
exudative [16]. While both may require procedures to address the issue exudative
Pleural Effusion is often related to a structural pleural involvement that impacts
the chest mechanics of the patient. A diagram of this pathology is shown below
in Figure 1.

Fig. 1. Pleural Effusion: Fluid in the chest/lung

Routine bedside checks have approximately 8% chance of identifying this
pathology, making x-rays the most common means of initial diagnosis of this
condition [21]. Usually, radiologists are able to detect this condition in frontal
x-rays from effusions with over 200ml of fluid, or 50ml in some lateral x-rays[10].
An example of frontal x-ray with Pleural Effusion is shown in Figure 2.

The mortality rates associated with Pleural Effusion seems to be dependent
on a variety of factors however, the initial diagnosis of this condition is key for
doctors to more efficiently assess the severity and best course [13].

The most common treatment for Pleural Effusion is thoracenteses which is a
procedure to remove fluid from the space between the lining outside of the lungs
and the wall of the chest. However, despite the 1.5 million patients diagnosed
every year approximately 178,000 thoracenteses (12%) are performed and/or the
underlying conditions are evaluated and treated for that condition. [13].
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Fig. 2. Pleural Effusion: Frontal X-Ray

3 Data

Our model utilizes a collection radio-graph studies done at Stanford between
October 2002 and July 2017, and has been made available by Stanford’s Ma-
chine Learning group. CheXpert is the largest collection of labeled radiographs
with over 220,000 different images from 64,000 different patients [8]. The clos-
est comparable dataset of this size is the MIMIC-CXR dataset made available
through MIT [9].

3.1 CheXpert

The patients data that we have for this study is made up of older men and
women with the mean age of our patients at time of study at 60 years old and
a median of 62. We have a somewhat equal distribution of men & women with
55% of our training sample made up of men. Additionally, about 47% of our
patients in the training data have had more than one study in our data.

For each patient study we were provided the x-rays from the study in either
the full high resolution or down sampled resolution of 330x330 pixels.

The majority of the images are frontal X-ray images (85%) however, some
studies provide both a frontal and lateral x-ray. An example of the images from
a patient study are shown in Figure 3.

In order to get a labeled data set of this size the CheXpert authors utilized
an NLP algorithm to label the data. The labeler was trained using 1000 studies
that were manually labeled by board certified radiologists to determine whether a
specific pathology was mentioned in the report and if that pathology was present
or not. The labeling process is described in three different steps, with the first
step being mention extraction. This step utilizes a large lists of phrases curated
by a group of radiologists that would signify the mention of one or more of the 14
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Fig. 3. Example Study Images

classes. Once extracted the mentions were classified into one of three potential
categories; presence of the condition, condition not found, and uncertain. Lastly,
the classified mentions are aggregated into the final labels. Any positive mention
of the pathology is considered positive (1), if no positive mentions are found and
and at least 1 uncertain mention it is uncertain (-1), if one or more negative
mention is found it is negative (0), and if no mention is found the label is left
blank. Table 1 shows the results of this labeling process on the complete dataset.

Pathology Positive (1) Uncertain (-1) Negative (0)

No Finding 22381 0 201033
Enlarged Cardiomediastinum 10798 12403 200213

Cardiomegaly 27000 8087 188327
Lung Opacity 105581 5598 112235
Lung Lesion 9186 1488 212740

Edema 52246 12984 158184
Consolidation 14783 27742 180889
Pneumonia 6039 18770 198605
Atelectasis 33376 33739 156299

Pneumothorax 19448 3145 200821
Pleural Effusion 86187 11628 125599
Pleural Other 3523 2653 217238

Fracture 9040 642 213732
Support Devices 116001 1079 106334

Table 1. Results of Pathology Labeling

In addition to the large training set CheXpert also contains 200 ground-truth
examples to assess our model performance. This set is made up of 200 labeled
studies from 200 different patients. Each study was labeled based on a consensus
of three different radiologists. These labels are only positive or negative as the
three radiologists were able to reach a definitive consensus on all 200 studies.

One consideration important with the use of this data is the potential de-
mographic biases built into the studies captured in this data. While ideally, any
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training would be representative of the larger population we know that this set
is specific to Stanford Hospital patients. While much of the demographic infor-
mation is masked in this study we are able to review the age and sex of the
patients in figure 4 below.

Fig. 4. Age & Gender of Patients in Training Data

This does give us some indication that our training data may not accurately
represent the general population, as we see that our data appears skewed to older
males. This is important to note when reviewing our results and considering the
ethical implications of using a model trained with minimal observations on the
younger age groups.

3.2 Data Preparation

In our model we have chosen to work with the down sampled images (11GB)
and not the high resolution images (400GB). We did not test any potential
improvements in model performance by working with the original images. The
baseline we are comparing against was trained using the down sampled 320x320
pixel images.

In our training set we have a third ”uncertain” class in our labels that repre-
sents 5% of our training data. There is no uncertain class in the validation set.
We have considered various methods for handling this, however our models were
all trained with these observations excluded from our training set. This is based
on the findings from the original authors where a more thorough examination
of how to handle these uncertain labels [8]. Additionally, with our labels we just
have extracted the Pleural Effusion labels and will train our models against this
as a binary target rather than predict across all 14 pathologies.

For some of the studies we were provided both the frontal and lateral x-rays.
For our model we have chosen to train the same model for both of these image
types as only 15% of our images are from the lateral view. Although lateral views
have been seen to allow earlier detection of Pleural Effusion [10]. This may be
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an important distinction and future work could train different models based on
the type of x-ray.

Finally, there are a large proportion of our patients with multiple studies in
our data. Due to the method of labeling this data we must consider how the
reports have been written up for patients with multiple studies. For example a
patient seen at 83 may have a report identifying and diagnosing the existence of a
given condition. If they are seen again a few months later and the same condition
is present we can not be certain how that is represented in the reporting and
if the labeler will be able accurately extract and classify that report. We have
chosen to trust the labels in our training set and use all patient studies with
labels positive or negative for Pleural Effusion.

4 Convolutional Neural Networks

In order to understand the model presented in this paper some understanding
of convolutional neural networks is expected. We will review some high level
concepts that are important to understand why these algorithms are ideal for
our problem. To explain these concepts we will assume we have a gray scale
image similar to the type of image in our data. That image is converted to i× j
matrix with each value representing it’s gray scale for the corresponding ijth

entry in the matrix.

4.1 Convolutional Layer

Convolutional neural networks function very similarly to neural networks, the
primary difference being the convolutions employed in the network layers for
extracting and mapping features to be used in the training of different classifiers
or regressors [14].

Convolutions move across the image matrix extracting smaller matrices and
mapping it to a single value using the same weight matrix, referred to as a
kernel or filter. The resulting output is commonly referred to as a feature or
activation map of the prior input. A visual explanation of this process is shown
in Figure 5 [6]. Through the training process those kernel weights are adjusted
through forward and back-propagation to minimize a loss function using different
optimizers, learning rates, and other hyper parameters. A detailed understanding
of all these parameters is outside the scope of this tutorial although we will
discuss the parameters used in our model in a later section.

The convolution layer is controlled primarily by 4 hyper-parameters; spatial
extent, filters, padding, and stride. The spatial extent is the size of each sub-
matrix that is extracted from the originally image. Filters control the depth of
the resulting output and can be used to extract features of the spatial extent.
Padding is another parameter that helps control the output size. This allows
the resulting output feature map to be the same width and height as the input
feature map by adding additional rows and columns to the input. Strides are
often another parameter that can be uses as a means of down-sampling. This

7

Wall et al.: Automated Pleural Effusion Detection on Chest X-Rays

Published by SMU Scholar, 2019



Fig. 5. Convolution Operation from [6]

controls the step size of spatial extent as it moves through original matrix.
The default is normally 1, meaning it moves through one pixel at a time. An
important consideration is that these parameters cannot be set arbitrarily as the
value of one often relies on the values set in the others. Figure 6 shows how the
dimensions of an original image are mapped to the final output map.

The corresponding calculations for determining the output dimensions of
a layer can be found in Equation 1. For these equations nch is the number of
channels, p is the padding, s is the stride and the filter is described by f×f×nch.

(n+ 2p− f)/(s+ 1) × (n+ 2p− f)/(s+ 1) × nc
(1)
h

4.2 CNN for Computer Vision Problems

One of the major benefits of CNNs for image problems is their ability to learn
invariant features [11]. Thought of simply this means that the features learned
in one portion of the image or in a spatial extent can be identified in a different
location in another image. This allows the CNN to learn fewer features improving
the overall performance, for example a network that learns a pattern for a cat
in the bottom left of an image, would be able to identify a cat in the top right
of another image.

The second largest benefit is their ability to learn the hierarchies of images
when run through several convolutional layers [2]. As discussed above each con-
volutional layer outputs an activation map from a provided input. One way to
think that is each value in the output map represents the activation of certain
type of feature. So for example the activation map has learned how to identify
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Fig. 6. Convolutional Layer Input to Feature Map from [4]

edges of an object. The values from that activation fed into another convolutional
layer that layer could learn that these edges together form an eye, ear, or nose.
Then fed through another layer it could begin to learn a face. So when thinking
of the an entire convolutional network it is common that some of the early layers
identify things like edges and shapes, with the deeper layers beginning to learn
more complex features like faces. To highlight this we output what the different
layers our network was learning through out a small network in Figure 7.

Fig. 7. Convolutional Layers
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5 Prior Work

Prior to the release of the CheXpert there has been a large number of stud-
ies done using convolutional neural networks to classify some of the common
pathologies in chest X-rays [22, 18]. With findings showing models performing
well at predicting Pleural Effusion using the ChestX-ray14 data set. Specifically,
the model CheXNet which showed a 0.86 AUC against it’s validation set.[18].
This was considered state of the art for this dataset.

However, in 2019 CheXpert was released by the Stanford ML group that
was seen to be a much larger data set with higher accuracy labels than what
was previously available from the ChestX-ray14 set [8]. With this dataset the
authors also created baseline models for 5 different pathologies for researchers
to compare against. The baseline model was trained using the same training
and validation data used in this paper. Although, the final model was evaluated
against a separate 500 images that were hand labeled by a consensus from 5 board
certified radiologists. The results of their original baseline models for Pleural
Effusion were very strong, reporting their strongest ROC value of 0.936 with
a 95% CI between (.904 , .967). We will compare our results to this baseline
moving forward.

Additionally, we could not find any work utilizing mobile architectures for
this data as most work focuses solely on performance. We introduce a mobile
architecture to this problem to evaluate potential trade-offs between performance
and model size. Our goal is to determine the feasibility of a potential edge
deployment of these models using MobileNetV2.

6 Model

In this section we present our methodology for training and evaluating our mod-
els for this task. The goal of each model is to predict the probability of the
Pleural Effusion from a patient diagnostic imaging study. Both models were
trained using a stack of Keras on top of Tensorflow, trained on an AWS GPU
instance.

6.1 Model Training

For our model we have chosen to train models using two different architectures
DenseNet121 & MobileNetV2 architecture. During our research we found that
it DenseNet121 outperformed other common CNN architectures such as ResNet
for this task [8] [18]. As no mobile architectures were compared in the original
work we have chosen to compare the currently utilized dense architecture to a
lighter mobile architecture for this task.

Google’s MobilNetV2 builds off a concept known as Depthwise Separable
Convolutions which essentials divides the convolutional layer that allows for less
costly feature creation from the convolution with a very minimal performance
trade-off. Additionally it utilizes uses a more memory efficient layer called a
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residual bottleneck layer capable of minimizing the memory usage only the input
& output operations. This model was used with a width-multiplier equal to 1
and depth multiplier equal to 1 which are the default parameters used by the
MobileNet team [20].

The DenseNet121 architecture provides dense connections between the con-
volutional layers in the network which is shown to reduce compute resources and
alleviate vanishing gradient issues common in deep networks [7]. Max pooling
was chosen for the pooling layers, differing slightly from the original published
paper, but not uncommon. All other parameters match the original architecture.

For both of our models we tested using both 224x224x3 and 320x320x3 as
the resolutions for our input dimensions. For this work, we did not explore how
the original hi-res x-rays performed for this task. Using the compressed images
would significantly reduce the memory requirements at time of inference but un-
derstanding the performance trade-offs could be valuable future work. For our
dense architecture we found that the 223x224x3 performed slightly better, while
the mobile performed slightly better with 320x320x3, although neither differ-
ences were significant. The only pre-processing that was performed on our data
was a scaling of of the pixel values between 0,1. No other image pre-processing
or enhancements were used in this model. Based on our experimentation, we
found that our performance was only minimally impacted when including pre-
processing steps commonly used for smaller training sets, although an we did
not perform an exhaustive search of pre-procesing steps.

The output of the final layers from both of the models were fed into a global
average pooling layer then into a dense layer of size 1 with a sigmoid activation.
This is a fairly standard architecture decision for this task, although no other
final layers were tested. This final layer’s output provides us with the predictions
for our binary class.

When training we used the Adam optimizer with β1 = 0.9 and β2 = 0.999
and a learning rate initialized at 1 × 10−2. Adam is a stochastic gradient-based
optimization algorithm that improves the efficiency of our learning process when
adjusting the weights of our kernels throughout the network. Adam is ideal for
high-dimensional learning problems like ours and has been shown to require very
little memory [12]. Adam is shown to perform most closely to RMSProp it was
observed to have a lower training cost on a variety of tasks[12].

Each model was trained for 6 total epochs. For the DenseNet121 model we
trained the first 3 epochs with a batch size of 32. The next 3 epochs trained
with a batch size of 16, at a learning rate of 1 × 10−3 which we reduced by a
factor of one from the initial learning rate as the loss appeared to plateau after
the first three epochs. For our MobileNetV2 model we trained all six epochs
with a fixed batch size of 16. We used the same learning rate initially as the
DensetNet, 1 × 10−2 reducing by a factor of 1 if the loss did not improve over
one epoch, which occurred after the 2nd epoch. We checked in with out model
performance against our training set at the end of every epoch for the loss,
accuracy, & AUROC and stored the weights if the loss performed better than
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the prior epoch. By the final epoch our training loss had not reduced since the
last epoch.

6.2 Model Evaluation

Once we trained our two models we evaluated their performance against the 200
ground truth studies contributed by the CheXpert authors. Using the binary
predictions we see our results for all 200 studies relative to the actual label in
Table 2.

DenseNet121
Positive Negative Total

Actual Positive 44 20 64
Negative 6 130 136

Total 50 150 200

MobileNetV2
Positive Negative Total

Actual Positive 49 15 64
Negative 16 120 136

Total 65 135 200

Table 2. Confusion Matrices for the Two Models

Based on the comparisons of the two tables we see that while our mobile
model has a lower overall accuracy it has fewer false positives than the dense
model. The error in DenseNet121 seems to driven primarily by the model’s false
negative rate which is concerning as a false negative indicates the model failed to
identify a harmful condition from the image. MobileNetV2 shows a lower false
negative rate, but a much higher rate of false positives. Each model appears
to have their own merits when evaluating across a fixed decision point of 0.5
however that is an unlikely scenario for this task. To better understand our
model fit we evaluate the precision-recall curves & ROC curves in Figure 8.

Fig. 8. PR & ROC Curves
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The precision recall curve on the left of Figure 8 shows that we are able to
sacrifice some of our recall score in favor of a higher precision. Similarly, our ROC
curve from these prediction, on the right of Figure 8, better illustrates our trade
off between true positive rate & false positive rates across the various decision
points. As you can see that the two different models both perform very similarly
with even several decision points along the graph that would yield the same
results. An even further indication that the two models have similar performance
overall, but the differences in the curves have learned different structures in the
data they are utilizing to make predictions. We also compare these results to
current baseline results for this task.

The results of their original baseline models for Pleural Effusion were very
strong, reporting their strongest ROC value of .936 with a 95% CI between (.904,
.967) [8]. For comparison purposes we constructed 95% bootstrap confidence
intervals for our AUC by taking 10,000, 50 observation samples with replacement
from our test set. We calculate our DenseNet121 AUC at 0.92 (95% CI of 0.819,
0.984) and our MobileNet AUC at 0.90 (95% CI of 0.789, 0.975). While the
results are slightly lower we do find that we are able to reproduce current baseline
performance with both a single dense network as well as the mobile network.

Fig. 9. Original X-Ray Image and Heat maps of class activation

In addition to the prediction, our model can be used to output have created
class activation heat maps. Figure 9 shows the original x-ray and super imposing
the class activation heat map on the original picture. This visualization points
the most activated portion of the image for this specific class. Meaning the area
contributing to the positive prediction the most. This helps radiologist see why
the model thinks the x-ray has positive pathological condition of Pleural Effusion
and where it is located for them to make there own diagnosis. Proper evaluation
of the model requires the guidance of a radiologist to validate the areas located
by the mappings are in fact Pleural Effusion, however after a review of several
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mappings we were able to determine several patterns in the images resulting in
heavy activation of our model.

While model performance is a key metric for these models it is important
to understand the trade-offs between performance relative to the number of pa-
rameters and floating point operations (FLOPs). This provides more information
about the hardware requirements necessary to deploy this model and thus guides
decisions on how these predictions can be implemented into operations. We show
the the estimated size and model speeds in Table 3.

Model AUROC Model Parameters GFLOPs

Baseline 0.93 21,115,515* 34.76*
DenseNet121 0.92 7,038,505 5.69
MobileNetV2 0.90 2,259,265 1.23

Table 3. Model Performance, Size & Speed (Baseline values estimated based on avail-
able information)

As you can see that our models seem to degrade slightly in terms of per-
formance as the number of parameters & floating point operations decrease.
Although the overall model performance remains comparable, we are able to
reduce the number of parameters by a factor of 10 and the amount of FLOPs
by a factor of 30.

7 Ethical Considerations

One of the primary ethical considerations of working with personal medical in-
formation is with respect to the sensitivity of this information. All identifying
information was masked in our training data with the exception of age, gender,
and the diagnosis. Additionally access to this data was granted to us through
the Stanford University School of Medicine and all use of this data is in line with
our signed research use agreement. There is no indication that written consent
was provided from the patient for use of this data so we take reasonable means
to handle this data responsibly.

While this model is intended for research use only we also recognize implicit
bias from the demographics of the population used in training. If our sample is
not from a representative sample of the population the results and potential di-
agnosis would likely be impacted. Size, shape and lung capacity varies based on
race [3] as much as 17-20% difference between groups. Demographics, variations
in equipment, different imaging characteristics influences the outcome. These
factors increase the risk of misdiagnosis and potential harm to patients. For
our particular training data we recognize that our population may be under-
represented of younger population and slightly over-represented by males. No
other demographic information was provided with this data which limits our
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ability to assess the models robustness across various demographic characteris-
tics.

These results are intended as a tool for practicing radiologist and by no
means intended as a replacement. Marking an x-ray with Pleural Effusion posi-
tive whereas it is not could lead to inaccurate diagnosis or if it occurs frequently
would reduce confidence in the model. Inversely, the model’s failure to correctly
identify Pleural Effusion could result in variety of outcomes that could effect
the ability to deliver the correct treatment. Reducing false negatives should be
primary concern and the trade off between false negatives and false positives can
be determined through how we select decision points in our ROC & PR curve.
Legal liability issues would be raised if this model were to be used without the
supervision of radiologist as any misinterpretation leads to patient harm. Be-
cause of these concerns this tool is relies on human participation in the decision
loops. One additional benefit of incorporating humans into this loop is the ability
to obtain feedback on predictions. Capturing the radiologist diagnosis relative
to the prediction provides another mechanism to improve model performance.

8 Conclusion and Future Work

We found that both models were able achieve comparable performance to the
current baseline models for this data using two different single network models
(DenseNet121, MobleNetV2). The original authors were able to achieve state
of the art model for the task of identifying Pleural Effusion using an ensemble
of models. The models introduced are able to produce results with an AUC of
.92 using Densenet121 and .90 using MobileNetV2. By reproducing the baseline
performance we showed that lightweight architectures are able to produce com-
parable results with up to 10x fewer parameters and 30x fewer floating point
operations. This positive contribution would allow for a lot more flexibility in
terms of deployment strategies. For example, these models could be integrated
into portable x-ray machines as portable radiographs are one of the main tools
to monitor patients in intensive care unit (ICU) and in-patient facilities.

Future work could include the exploration of various lightweight architec-
tures to understand the trade-offs between model performance and model size
& speed. These trade-offs could help guide deployment decisions such as the
directly deploying to edge devices. These architectures also should be tested
against other pathology beyond effusion to determine if a similar trade-off be-
tween performance and size exists.

Additionally, our model only performance is evaluated on a small subset from
the same population sample as our training images. We recognize the concern
with these types of data sets and the potential for over fitting 1. As future work
we propose to collect additional test or validation images to asses the robustness
of our model to help address some of these concerns. Specifically, a collection
from a source outside of the Stanford hospital.

1 https://lukeoakdenrayner.wordpress.com/2018/01/24/chexnet-an-in-depth-

review/
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