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Imaging Analysis of Photoswitching Fluorophores 

Using Single-Molecule Microscopy 
Katherine E. Binkley, Caleb M. Griffin 

kbinkley@patriots.uttyler.edu, cgriffin25@patriots.uttyler.edu  

Alexander R. Lippert1 

 
ABSTRACT 
Single-molecule localization microscopy (SMLM) is a developing field of biological imaging that employs the use of 
photoswitching fluorophores to image sub-cellular biological structures at a higher resolution than was previously possible.  These 
fluorophores are used for protein labeling, so that the sample can be imaged under fluorescence microscopy. This type of 
microscopy requires the use of many different types of fluorophores, which are fluorescent organic compounds that blink 
stochastically on and off. Thus, it is critical for developers in the field to have easy access to statistical models of the behaviors of 
different fluorophores. Here, we take AlexaFluor 647 and analyze it using a fluorescence microscope, taking data on its blinking 
behaviors and discerning its properties when immersed in a fluorescence-dampening buffer solution. We find that the compound 
behaves best in buffer solution, and we forge a new methodology for evaluating new fluorophores in a systematic fashion using 
readily available computer software. 
 
1. INTRODUCTION 

In conventional fluorescence microscopy, the 
resolution is restricted by the diffraction limit, a physical 
principle that refers to the minimum amount of space 
between two light-emitting species required in order for 
them to be distinguishable. [1] At the molecular level, this 
becomes problematic because fluorescent molecules do not 
have adequate spacing, resulting in low-resolution images. 
[2]  

 
Figure 1: The three basic concepts of SMLM depicted as 
images. 

 
1 Dr. Alexander R. Lippert is an Associate Professor in SMU’s Department of Chemistry. 

By labeling proteins in biological samples with 
molecules that spontaneously switch between a photon-
emitting fluorescent state and a non-emitting off-state, the 
emissions can be localized with high precision, [3] allowing 
samples to be imaged with a resolution that oversteps the 
diffraction limit. [4, 5, 6] This is done by compiling hundreds 
of images taken over time as the fluorophores blink, 
resulting in a near nanometer-resolution product. [7] Visual 
representations of photoswitching, localization, and 
reconstruction can be found in Figure 1.  

SMLM requires optimal fluorescent behavior of 
fluorophores. [8, 9] The dyes must blink stochastically and 
exhibit a high percentage of time spent in the off-state to 
prevent overlap of multiple emitting fluorophores. [10, 11] 
One goal set by developers in this field is to conjure a 
method of multicolor SMLM using multiple different dyes 
per sample, which would entail the availability of dyes that 
fluoresce with different wavelengths but do not send 
interfering signals. [12, 13] Because of this, in addition to the 
already burgeoning demand for SMLM dyes, new 
fluorophores must be easily assessed for their 
photoswitching properties in order to evaluate their potential 
for imaging. This requires an established and efficient 
method of analysis. [12] Ideally, such a proposed method 
should be possible before the dyes are conjugated to 
proteins, in order to eliminate unnecessary steps. Here, we 
developed such a method of analysis by evaluating Alexa 
Fluor 647, a commercially available fluorophore, using 
ImageJ and Microsoft Excel. We obtained graphs of single-
molecule emissions as well as rate constants. 
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2. METHODS 
A. Microscopy and data adjustment 

A slide was prepared containing Alexa Fluor 647 
(Figure 2) immersed in a fluorescence-dampening buffer 
solution, on a thin film of polyvinyl alcohol. [12] The 
fluorophores were photographed under an OMX SR 
NL5.120R super-resolution microscope every 5 seconds for 
about 10 minutes, totaling 116 images. These images were 
then collected into a stacks file, which operates similar to a 
video, with 116 distinguishable frames. The stack images 
were edited and analyzed using ImageJ, an imaging analysis 
software developed by the National Institutes of Health. 
When the stacks file was opened using ImageJ, it was 
converted into an 8-bit format from a 16-bit format (image > 
type > 8-bit). The contrast and brightness were then adjusted 
to sharply distinguish the dots from the background (image 
> adjust > brightness/contrast). The brightness was adjusted 
by positioning the stack to the first frame and the selecting 
“Auto” in the “B&C” panel. Contrast was increased to 
maximum by moving the contrast slider completely to the 
right. The stacks were then overlaid with a 5x5 square grid 
(analyze > tools > grid). The area per point for the grid was 
changed from 20 to 67 square micrometers, and “center grid 
on image” was selected. The file was then saved and re-
opened in Fiji, an updated version of ImageJ, in order to 
correct a camera-drift using a plug-in called “Manual drift 
correction.” In order to run the drift correction, a specific test 
dot was selected out of a zoomed-in area of the stack. This 
dot was measured for diameter using the “line” feature, in 
frame 1, and then added to the ROI manager (see explanation 
below). This same dot was then selected in the same way in 
several other frames throughout the stack, ending in the last 
frame. All ROI’s were then selected, and the manual drift 
correction was run, outputting the corrected stack (plugins > 
registration > manual drift correction). The file was saved 
again and re-opened in ImageJ to continue. 

 
Figure 2: The chemical structure of Alexa Flour 647. 
 

B. Systematic analysis 
The grid squares were labeled by horizontal rows 

(A-E) and vertical columns (1-5). Beginning with A1, each 
square was magnified and analyzed to find four 
representative fluorophores and their graphs. To select a 
molecule, first the stacks were viewed as a gif with a frame 
rate of 24 frames per second, and molecules which exhibited 
characterized behavior were chosen for analysis. Once a 
fluorophore had been chosen for analysis, the stack gif was 
paused, and it was highlighted using ImageJ’s region-
selecting tools. These include the “wand” feature, which 
auto-outlines a bright area; the freehand feature; and the 
circle feature (Figure 3). 

 
Figure 3: ImageJ. 
 

Once the “region-of-interest” (ROI) had been 
outlined, it was saved to the ROI-manager (analyze > tools 
> ROI manager > Add; shortcut, “t”). Graphs were found 
from the ROI’s, were converted into list form (image > 
stacks > plot z-axis profile > list > copy), and were then 
pasted into Excel. This process was repeated for four 
fluorophores in each square, totaling 100 molecules. 

C. Data Entry into Microsoft Excel 
Each fluorophore in Excel was graphed and 

labelled according to the square it was from. From the 
graphs, the fluorophores were categorized based on their 
behavior, into one of 8 types: stays on the whole time (1), 
blinks on only once (2), blinks off only once (3), 
photobleaching (4), turns on and stays on (5), blinks off 
multiple times (6), blinks on multiple times (7), and 
uncharacterized (8). Above each data column, three 
calculation cells were added: off-frames, on-frames, and 
duty cycle. [12] Specific Excel commands can be found in 
Table 1. 

Calculation Excel Command 

Off-Frames =COUNTIF(Initial:Final, “<=100”) 

On-Frames =(total frames)-(off frames) 

Duty-Cycle =(on-frames)/(total frames) 
 

Table 1. The table of excel functions used to  
find the duty cycle of individual molecules. 

 
The data columns were then analyzed for their 

average on-times. This was defined as the average duration 
of fluorescence between periods of no fluorescence. Because 
of this definition, a period of fluorescence at the beginning 
or end of the stack was omitted, since it could not be 
determined how long the molecule had fluoresced outside 
the duration of the stack. A molecule was fluorescing if the 
intensity was greater than 100 on the 8-bit image, which 
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ranges in values from 0 to 255. Because Excel does not have 
a function that directly computes average durations, a 
program was written in Python to accomplish this task (see 
Supporting Information).  Specifically, the program 
presented the average on-times into the Excel file as its 
output. Below these, the rate constants for each of the 
fluorophores were calculated by taking the inverse of the on-
times. [14] The rate constants were averaged over all the 
fluorophores, as well as for each of the 8 types. 

The entire above process was repeated for a 
second data set, taken of Alexa Fluor 647 without the 
fluorescence-quenching buffer solution and at 10x the 
original concentration. This data set only covered 30 frames 
at 5-second intervals, and also used the TIRF feature of the 
microscope. The data was logged into Excel and analyzed in 
a near identical fashion to the first data set. In order to obtain 
a fair comparison of the two data sets, the first set was 
shortened to 30 frames and re-analyzed for comparison 
against the second data set. 

3. RESULTS AND DISCUSSION. 
Each of the small white dots seen in Figure 4 

represents a single molecule of a commercially available 
SMLM dye. The molecules are photoswitching 
fluorophores, which turn stochastically off and on over time. 
A slide was prepared containing this compound, Alexa Fluor 
647, immersed in a fluorescence-quenching buffer solution 
on a PVA film [12] and analyzed using an OXR super-
resolution microscope. The slide was photographed 120 
times every 5 seconds over a 10-minute period, resulting in 
a stack file containing 120 individual frames. Figure 4 shows 
three frames of the stack. From frame to frame, the 
molecules scintillate and blink, and in every dark space there 
are invisible molecules in the dark state. Since the blinking 
patterns vary greatly from molecule to molecule, it was 
determined that single molecules needed to be analyzed. 

 
Figure 4: A zoomed in section of the stack at 3 different 
points in time with 4 examples of blinking molecules 
circled in yellow. 
 

First, in order to more sharply distinguish the dots 
from the background, the stack file was raised in contrast and 
converted from a 16-bit format to an 8-bit format. The new 
image was overlaid with a 5x5 square grid, labelled by 
column and row, and analyzed for 4 data points per square 
in order to total 100 molecules. 

 
 
 

 
Figure 5: On the left, a single grid square.  In the middle, 
ROI selection of molecule.  On the right, ROI z-axis profile 
plotted. 
 

In order to analyze a molecule, one was chosen 
and highlighted (Figure 5a), saved to the program’s ROI-
manager (Figure 5b), and plotted for the z-axis profile 
(Figure 5c), where the z-axis is the intensity of emission. 
Each graph was converted into list form and then copied into 
Excel for analysis. Once in Excel, each set of data was 
graphed again and then given a characterization as one of 
eight types (Figure 6). The eight different types represent 
different blinking patterns. These include those which stay 
on the whole time and do not turn off (Type 1); those which 
blink on for only one interval (Type 2); those which turn off 
for only one interval (Type 3); those which are on at first and 
then turn off permanently, i.e., photobleaching (Type 4); 
those which are off at first and then turn on for the remainder 
of the time (Type 5); those which blink off multiple times 
(Type 6); and those which blink on multiple times (Type 7); 
In Figure 6, we find a representative graph from each of the 
eight types. 
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Figure 6: The list of types with an example graph 
of each type. 
 

Photobleaching occurs when a molecule 
permanently ceases to fluoresce; Type 4 molecules show 
this. This could happen for a number of reasons, and could 
potentially impact the quality of the dye if it becomes a 
prevalent type. Thus this is a problem that necessitates future 
exploration, although such exploration was not deemed 
relevant for a kinetics study. 

Based on the intensity graphs, the molecules were 
analyzed for duty cycles, on-times and rate constants. Duty 
cycles are calculations of molecules’ percentage of time 
spent in the on-state, defined as frames for which the 
molecules are on divided by the total frames in the 
acquisition. [12] On-time was determined by averaging the 
number of consecutive frames a molecule was in an on state 
between periods of off states, and the number of on frames 
was multiplied by the time interval between frames. The rate 
constants were found by taking the reciprocal of each 
respective on-time, [12] thus converting seconds to s-1. The 
average rate constant for all molecules from the first data set 
was found to be 0.0443 s-1. Table 2 expresses the rate 
constants for the individual types, better reflecting the 
unique behaviors of the molecules rather than the compound 
as a whole. Since the rate constants were found by inverting 
the on-times, molecules with on-times of zero did not yield 
a rate constant. 

Type All 2 5 6 7 

Rate 
constant  
(s-1) 

0.0443 0.0370 0.0545 0.0274 0.0968 

 

Table 2. The experimentally determined rate constants, 
organized by type, of the complete first data set. 
 

Comparing the two data sets, which included data 
taken with and without the buffer solution, showed that the 
average rate constant of two sets differed by less than 1%, 
but the rate constants for each type vary widely. The buffer 
appeared to stabilize the solution, as it experienced less 
standard deviation in rate constants for each molecule (Table 
3). 

Type All 2 5 6 7 

Buffer  
(s-1) 

0.0746 
±0.0665 

0.178 
±0.035 

0.200 0.0500 
±0.0482 

0.108 
±0.062 

No  
Buffer  
(s-1) 

0.0741 
±0.0725 

0.0784 
±0.0692 

0.0533 
±0.0977 

0.0566 
±0.0423 

0.169 
±0.037 

 

Table 3. The rate constants of the first and second data 
sets, with and without the buffer solution, respectively. 
The rate constants are arranged by type with the standard 
deviation of the entire sets. The buffered Type 5 standard 
deviation is empty because only one data point was 
present. 

Type All 2 5 6 7 
Buffer 
(s) 
 

13.4 
±10.3 

5.63 
±2.61 

5.00 
±2.24 

20.0 
±15.9 

9.23 
±6.78 

No 
Buffer 
(s) 

13.5 
±17.7 

12.8 
±17.9 

18.8 
±12.7 

17.7 
±28.9 

5.91 
±3.08 

 

Table 4. The on-times with standard deviations, listed per 
type. 

The on-times of the types was the measure directly 
found from the data, and as a result, also utilizes the zero 
values in the data. The difference between the standard 
deviation of the buffered and non-buffered data was much 
more significant. The standard deviation per type also seems 
to be less for the buffered solution, with Type 7 being the 
exception (Table 4). 

The first data set included four preliminary data 
points which were selected while designing the techniques 
for analysis. These four extra points were used in the 
analysis of the first as well as the 100 main points. While the 
buffered solution contained a plurality of Type 2 molecules, 
the non-buffered solution had a majority of Type 2 
molecules. The no-buffer data set did not exhibit any Type 3 
or Type 8 molecules, while the buffered data set contained 
at least 2 examples of Types 2-8 (Table 5). Although both 
solutions contained Type 1 molecules, they were not 
selected for analysis, and therefore the quantities cannot be 
compared. 

Type All 2 3 4 5 6 7 8 
Buffered 
 

104 32 2 11 5 19 24 11 

No 
Buffer 

100 53 0 18 6 9 14 0 

Table 5. The quantity of data points collected for each type 
in the buffered and non-buffered data sets. 
 

The most common occurrence of fluorophores 
across both data sets was Type 2, which are molecules that 
blink on for only one interval. This represents the most ideal 
behavior of the dye; however, it is speculated that many of 
the data obtained for Type 2 merely encompass “drifter” 
molecules rather than true blinking. Although the PVA films 
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are designed so that the fluorophores bind to the surface for 
imaging, [12] PVA is soluble in water, so the aqueous buffer 
solution over time dissolves the films and thus loosens 
molecules from the surface, creating drifters. For ROI graphs 
for which the on-time duration is only one frame, it is most 
likely that the molecule drifted briefly into the ROI as it 
migrated across the slide. However, some of the Type 2 
fluorophores remained on for several frames, which is 
indicative of true on-time. 

As seen in Figure 6, Type 1 did not have any on-
time by definition, and therefore concluded no rate 
constants. Types 6 and 7 both strayed much further from the 
average value. Types 2 and 5 retain values closer to the 
average, and Types 3 and 4 did not yield any rate constants 
because they exhibited no on-time, by definition. See Table 
2 for representative graphs of each type. Category 8 was 
reserved for molecules that exhibited behavior that was 
incongruent with other species - for example, molecule A3.3 
(Figure 7) appears to begin in a blinking state between 
mostly on and sometimes off, but then at about frame 52, it 
turns off almost completely, only blinking on a couple more 
times for the rest of the file. This could be seen as switching 
from Type 6 to Type 7.  

 

 
Figure 7: The intensity vs time graph of molecule A3.3. 

 
Another example of abnormal behavior, molecule 

B1.1, (Figure 8) is rather unique in that it appears to be  “on” 
and blinking for a while at the expected intensity of ~255; 
however, at frame 67, its intensity drops to around 150. It 
then hovers around this value until the last four frames, 
where it drops to zero. This abnormal curve displays 
quantized emission levels very nicely, although the precise 
reason for the 150 bar is uncertain. It is speculated that this 
could represent two molecules either on top of or very 
closely side-by-side to one another, where one blinks off 
near frame 67, and the other blinks off around frame 112. 

 
 
 
 

Type All 2 5 6 7 

Duty 
cycle 

0.307 0.0612 0.266 0.796 0.119 

Table 6. The list of duty cycles, organized by type, for the 
analysis of the complete first data set. 
 

 
Figure 8: The intensity vs time graph of moleucle B1.1. 

 
The duty cycle calculations proved to be much 

simpler. The entire first data set yielded an average duty 
cycle of 0.307, much greater than the 0.0138 found by Bittel 
et al. [12] The individual types were extremely varied in 
duty cycle, with Type 2 being the smallest and closest to the 
literature values. Conversely, Type 6 had the greatest duty 
cycle and was farthest from the literature values. (Table 6). 
Types 2 and 7 are similar by definition since Type 2 is, 
fundamentally, a singular form of Type 7. This similarity is 
coherent with the duty cycle results, as the two types 
produced the most similar duty cycles. 

The buffered and non-buffered solution duty 
cycles were notably different; Type 5 was dramatically so. 
Type 5 is defined as those which are initially off and then 
“un-bleach,” per se; it is likely that the extreme difference in 
the two duty cycles is because the point at which the 
molecules turned on was in the portion of the data set which 
was removed to make the buffered and non-buffered data 
sets the same length. This is supported by comparing the 
duty cycle of the full-length buffered solution to the 
shortened solution. Type 5 yielded a duty cycle of 0.266 in 
the full length and 0.00667 in the shortened data set (Tables 
6 and 7).  

Type All 2 5 6 7 

Buffered 0.308 0.0208 0.00667 0.749 0.0778 

No 
Buffer 

0.239 0.0937 0.422 0.533 0.0690 

 
Table 7. Table comparing the duty cycles of the buffered 
 and unbuffered solutions, by type. 

 
Comparison of the data on the slide containing the 

buffer solution versus the one without shows that the buffer 
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solution helps to produce ideal photoswitching behavior. 
The data from the non-buffered slide was erratic, harder to 
analyze, and exhibited a larger standard deviation in rate 
constants. It is noted that a true comparison between these 
two data sets in this respect is difficult to make, because the 
second data set also contained a higher concentration, fewer 
frames, and the TIRF feature. However, it is helpful to 
consider the comparison in light of the overarching goal of 
the project. The high-resolution of this type of microscopy 
requires fluorophores to spend more time in the off-state 
than in the on-state, since the localization of single 
molecules is dependent upon their temporal separation. 
Ideally, each fluorophore only spends a short interval on 
before staying off for the majority of the acquisition, so that 
no two fluorophores are in close proximity at any given time. 

4. CONCLUSION 
Duty-cycle calculations were comparatively 

higher from literature values, indicating that this particular 
sample of Alexa Fluor 647 remained in the “on” state for a 
higher percentage of time. One proposed reason for this 
could be the nature of the data collection—for this analysis, 
molecules were intentionally chosen based on their different 
types of behaviors, rather than for one specific behavior. 

Another reason could be the length of the 
acquisition. The frame count for the first data set was 
reduced to 30 frames at 5 second intervals in order to match 
the second data set, whereas it was originally 120 frames. 
Furthermore, since the second data set’s on-times exhibited 
much higher standard deviations, it can be inferred that 
stable fluorophore behavior results from slides prepared with 
the fluorescence quenching buffer solution. This is necessary 
for optimal SMLM image quality since excessive 
fluorescence causes fluorophores to not be temporally 
separated. 

The rate constants of Alexa Fluor 647 serve to 
provide the probability of a molecule to revert to the on-
state. According to the units of the rate constants (s-1), the 
observed reaction rate is first-order. However, the kinetics 
are rather complicated, since the buffer solution has been 
shown to be a necessary component, indicating a 
bimolecular process. For the purposes of this paper, we are 
assuming a first-order observed rate. 

Some ideas for future experimentation include 
comparison of two data sets with only one variable that 
differs between the two. Here, the second data set analyzed 
contained a higher concentration of fluorophores, a shorter 
frame count, and used the microscope’s TIRF feature, 
making a true comparison to the first set difficult. 
Additionally, future work might exclude graphs of 
molecules which only turn on for one frame. As previously 
described, these are speculated to merely be drifter 
molecules; a better definition of Type 2 might require 
molecules to be on for at least 2 frames in order to be counted 
in the data collection. Lastly, although this data analysis 
included appreciable data with only 100 molecules, an ideal 
analysis would include all the molecules of a stack. This task 
proved difficult to do by way of program writing, and was 

judged to be nearly impossible to do manually considering 
the likelihood of the user to either skip or repeat molecules. 
However, if it were possible for future experimenters to find 
an automated way to find the ROI’s of all molecules without 
skipping or repeating any, the data obtained might be better 
and less subject to experimenter bias. 

As the described methods have shown, the 
combination of ImageJ and Excel to select and analyze 
single molecules provides a prospective method for 
gathering data on a vast library of fluorophores, contributing 
to the need for quick access to fluorophore data for SMLM 
imaging.1 Protein conjugation requires multiple synthesis 
steps, which is highly time-consuming, especially if the dye 
properties can only be assessed post-conjugation. 
Previously, dye properties could only be assessed post-
conjugation. [12]  Thus, as SMLM advances, it is critical that 
new dyes can be assessed for optimal properties prior to 
protein conjugation, because it is advantageous for SMLM 
developers to have convenient access to information on 
various dyes. This analysis of Alexa Fluor 647 demonstrates 
one efficient method that accomplishes this using  user-
friendly, easy-to-access software. 
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5. SUPPORTING INFORMATION 
Section S1: Full data set, including time-intensity profiles of all single molecule observations. 

 
1 4 A1.1 A4.1 

A4.3 A5.1 B2.1 B2.4 

B4.4 C2.2 C2.4 C3.1 

C3.2 C4.4 C5.3 D1.3 

D1.4 D2.2 D2.3 D3.2 

D3.4 D4.2 D4.3 D4.4 
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D5.2 D5.3 D5.4 E1.4 

E2.4 E3.2 E4.1 E5.4 
 

Type 2 graphs of the complete first data set, buffered. 
 

D2.4 E2.1 
 

Type 3 graphs of the complete first data set, buffered. 
 

2 3 A1.3 A1.4 

A5.4 C1.2 C2.1 C5.2 

D1.1 E1.2 E1.3 

 

 

Type 4 graphs of the complete first data set, buffered. 
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A2.1 A5.3 B5.1 C4.3 C5.4 
 

Type 5 graphs of the complete first data set, buffered. 
 

A2.4 A3.1 A4.2 B3.3 

B3.4 B4.1 B4.2 B4.3 

B5.3 C1.1 C1.3 C2.3 

D3.1 D5.1 E1.1 E2.3 

E3.1 E3.3 E5.1 

 

 

Type 6 graphs of the complete first data set, buffered. 
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A1.2 A2.2 A2.3 A5.2 

B1.2 B1.3 B1.4 B2.2 

B3.2 B5.2 B5.4 C1.4 

C3.4 C4.2 C5.1 D1.2 

D2.1 D3.3 D4.1 E3.4 

E4.2 E4.3 E4.4 E5.3 
 

Type 7 graphs of the complete first data set, buffered. 
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A3.2 A3.3 A3.4 A4.4 

B1.1 

 

B2.3 
B3.1 C3.3 

C4.1 E2.2 E5.2 

 

 

Type 8 graphs of the complete first data set, buffered. 
 
Section S2: Python source code used for analysis. 

 On-time program [python 3 script] 
excel_file = "name.xlsx" 
boundary_value = 100 
interval = 5 
data_list = [] 
import openpyxl 
from statistics import mean 
 
excel_data = openpyxl.load_workbook(excel_file) 
raw_data = excel_data.active 
height = raw_data.max_row 
width = raw_data.max_column 
 
for progress in range(1, width+1): 
    for cell_height in range(1, height+1): 
        cell_raw_data = raw_data.cell(row=cell_height, column=progress) 
        value = cell_raw_data.value 
        try: 
            if value >= boundary_value: 
                data_list.append(1) 
            else: 
                data_list.append(0) 
        except: 
            print("Unrecommended Data Format, Errors Are Possible") 
    data_list.append(2) 
 
print(data_list) 
 
count = -1 
length = 0 
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on_time = [] 
for number in data_list: 
    if number == 1 and data_list[count] == 2: 
        length = -1 
    elif number == 1 and length >= 0: 
        length += 1 
    elif number == 0 and length == -1: 
        length = 0 
    elif number == 0 and length != 0: 
        on_time.append(length) 
        length = 0 
    elif number == 2: 
        length = 0 
        on_time.append(0) 
    count += 1 
print(on_time) 
 
values_list = [] 
times_list = [] 
for value in on_time: 
    if value != 0: 
        values_list.append(value) 
    elif value == 0: 
        try: 
            times_list.append(mean(values_list)) 
            values_list = [] 
        except: 
            times_list.append(0) 
            values_list = [] 
 
converted_times_list = [element * interval for element in times_list] 
print(converted_times_list) 

 
all_times = [] 
for value in on_time: 
    if value != 0: 
        all_times.append(value) 
 
for each in range(1, width+1): 
    raw_data.cell(row=height+2, column=each).value = converted_times_list[each-1] 
 
raw_data.cell(row=height+3, column=2).value = mean(all_times) * interval 
raw_data.cell(row=height+1, column=1).value = "Average  on-time for each column" 
raw_data.cell(row=height+3, column=1).value = "Total average on-time" 
 
excel_data.save(excel_file) 
print("Success!") 
 

6.  REFERENCES
[1] Nahidiazar, Leila, et al. “Optimizing Imaging Conditions 

for Demanding Multi-Color Super Resolution 
Localization Microscopy.” PloS 
one 11.7, ProQuest. Web. 8 Aug. 2020. 

[2] van de Linde, Sebastian, Sarah Aufmkolk, Christian 
Franke, Thorge Holm, Teresa Klein, Anna Lo¨ 
schberger, Sven Proppert, Steve Wolter, and 
Markus Sauer. “Investigating Cellular Structures 
at the Nanoscale with Organic Fluorophores.” 
Chemistry and Biology, 2020, vol. 20, no. 1, 
pp.8-18. doi: 10.1016/j.chembiol.2012.11.004. 

 

[3] Rust, M., Bates, M. & Zhuang, X. “Sub-diffraction-
limit imaging by stochastic optical reconstruction 
microscopy (STORM).” Nat Methods, 2016, 3, 
793–796. doi: 10.1038/nmeth929. 

 
[4] “Periodic Structures Gets Patent for Apparatus and 

Methods for Microscopy having Resolution 
Beyond the Abbe Limit.” Global IP News.Optics 
& Imaging Patent News, Jul 08 2015, ProQuest. 
Web. 8 Aug. 2020. 

 
[5] Laine, Romain F., Gabriele Kaminski Schierle, 

Sebastian van de Linde, and Clemens Kaminski. 

12

SMU Journal of Undergraduate Research, Vol. 6, Iss. 2 [2021], Art. 1

https://scholar.smu.edu/jour/vol6/iss2/1
DOI: https://doi.org/10.25172/jour.6.2.1



“From single-molecule spectroscopy to super-
resolution imaging of the neuron: a review.” 
Methods and Applications in Fluorescence, 2016, 
vol. 4, no. 2. doi: 10.1088/2050-
6120/4/2/022004. 

 
[6] Huang, Bo, Hazen Babcock, and Xiaowei Zhuang. 

“Breaking the Diffraction Barrier: Super-
Resolution Imaging of Cells.” Cell, 2010, vol. 
143, no. 7, pp.1047-1058. doi: 
10.1016/j.cell.2010.12.002. 

 
[7] Betzig, Eric, George Patterson, Rachid Sougrat, O. Wolf 

Lindwasser, Scott Olenych, Juan Bonifacino, 
Michael Davidson, Jennifer Lippincott-Schwartz, 
and Harold Hess. “Imaging Intracellular 
Fluorescent Proteins at Nanometer Resolution.” 
Science, 2006, vol. 313, no. 5793, pp. 1642-1645. 
doi: 10.1126/science.1127344. 

[8] Adam, Virgile, Benjamien Moeyaert, Charlotte David, 
Hideaki Mizuno, Mickaël Lelimousi, Peter 
Dedecker, Ryoko Ando, Atsushi Miyawaki, Jan 
Michiels, Yves Engelborghs, and Johan Hofkens. 
“Rational Design of Photoconvertible and 
Biphotochromic Fluorescent Proteins for 
Advanced Microscopy Applications.” Chemistry 
and Biology, 2011, vol. 18, no. 10, pp. 1241-
1251. doi: 10.1016/j.chembiol.2011.08.007. 

 
[9] Klein, Teresa, Sven Proppert, and Markus Sauer. “Eight 

Years of Single-Molecule Localization 
Microscopy.” Histochemistry and Cell Biology, 
2014, vol. 141, pp. 561-575. doi: 10.1007/s00418-
014-1184-3. 

[10] van de Linde, Sebastian, Anna Löschberger, Teresa 
Klein, Meike Heidbreder, Steve Wolter, Mike 
Heilemann and Markus Sauer. “Direct stochastic 
optical reconstruction microscopy with standard 
fluorescent probes.” Nature Protocols, 2011, vol. 
6, pp. 991-1009. doi: 10.1038/nprot.2011.336. 

 
[11] Bittel, Amy M., Andrew Nickerson, Isaac S. Saldivar, 

Nick J. Dolman, Xiaolin Nan, and Summer L. 
Gibbs. “Methodology for Quantitative 
Characterization of Fluorophore Photoswitching 
to Predict Superresolution Microscopy Image 
Quality.” Scientific Reports, 2016, vol. 6, no. 
29687, pp. 1-12. doi: 10.1038/srep29687. 

 
[12] Lehmann, Martin, Gregor Lichtner, Haider Klenz, and 

Jan Schmoranzer. “Novel organic dyes for 
multicolor localization-based super-resolution 
microscopy.” Journal of Biophotonics, 2015, vol. 
9, no. 1-2, pp. 161-170. doi: 
10.1002/jbio.201500119. 

 
[13] Levitus, Marcia. “Chemical Kinetics at the Single-

Molecule Level.” Journal of Chemical Education, 
2010, vol. 28, no. 2, pp. 162-166. doi: 
10.1021/ed100371m. 

13

Binkley and Griffin: Imaging Analysis of Photoswitching Fluorophores Using Single-Mole

Published by SMU Scholar, 2021


	Imaging Analysis of Photoswitching Fluorophores Using Single-Molecule Microscopy
	Recommended Citation

	Imaging Analysis of Photoswitching Fluorophores Using Single-Molecule Microscopy

