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Abstract. This paper presents the integration of natural language pro-
cessing and computer vision to improve the syntax of the language gener-
ated when describing objects in images. The goal was to not only under-
stand the objects in an image, but the interactions and activities occur-
ring between the objects. We implemented a multi-modal neural network
combining convolutional and recurrent neural network architectures to
create a model that can maximize the likelihood of word combinations
given a training image. The outcome was an image captioning model that
leveraged transfer learning techniques for architecture components. Our
novelty was to quantify the effectiveness of transfer learning schemes for
encoders and decoders to qualify which were the best for improving syn-
tactic relationships. Our work found the combination of ResNet feature
extraction and fine-tuned BERT word embeddings to be the best per-
forming architecture across two datasets - a valuable discovery for those
continuing this work considering the cost of compute for these complex
models.

1 Introduction

Simple object identification has become widely available through common pre-
trained image classification deep learning architectures and is even available as
a ready-made cloud service on Amazon Web Services and Google Cloud Plat-
form. These architectures are designed to report on the presence of an object or
return a bounding box that designates the object position and size. Our goal is
to move to higher order relationships of the objects in an image as understood
through natural language descriptions. Our work will focus on descriptive ad-
jectives about an object (a noun) itself and prepositions that describe proximity
between objects. For example - we are interested in determining adjectives de-
scribing the size or color of a single object: ”large cat”, ”blue ball”, and ”red sign”
and prepositions or prepositional phrases describing the relationships between
two or more objects: ”boy inside car”, ”grass outside window”, and ”statues on
top of a building”. We are also interested in preserving the correct context and
adjective relationships when applying our labels. For example, a label associated
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with ”soccer player wearing a blue jersey and red socks” should not be applied to
an image with a person wearing a red jersey and blue socks. Our project sponsor
Getty Images identified the disambiguation of image search terms as one of the
most challenging questions for image brokers where market differentiation for
their web presence is driven solely by image search.

Our approach to solve this problem was to create an image captioning model
that successfully blends natural language processing and computer vision in an
encoder/decoder deep neural network. Our model jointly learned specific rela-
tionships of image descriptions to the contents of an image. Once trained the
model was capable of generating the next most probable word given the con-
tents of the image and previous words until a full sentence was formed. This
problem is very challenging to the machine learning community as it combines
two domains that are in themselves very challenging. These domains are very
computationally expensive, which makes incremental updates to architectures
and model hyperparameters very hard to quantify (as updated models are very
expensive to train). While the application of transfer learning has lowered the
barrier to entry for performing these tasks, it’s not known which combinations of
architectures yield the best results. Thus our novelty is to understand which com-
binations produce the most accurate results for our problem statement above.
Ultimately, we found that combining ResNet image feature extraction and pre-
trained BERT word embeddings produced high performing results when mea-
sured on our datasets.

In Section 2 we will outline the related work that inspired our further re-
search and we frame the complexity of image captioning tasks. Section 3 pro-
vides a primer on natural language processing from a practical sense as well as
the applications of modern deep learning techniques to this domain. We will
provide a brief overview of word embeddings and the innovations brought about
by GloVe and BERT. Section 4 outlines the various Convolutional Neural Net-
works (CNNs) that we will apply to our image encoder. We give a light primer
on how CNNs provide value to our research and the distinctions between the
various architectures that we employed, including: VGG-16, VGG-19, ResNet,
and Inception. Our research utilized transfer learning for both our image en-
coder and word embeddings, which we outline in Section 5. We will discuss how
transfer learning is applied to our models and the nuance between frozen versus
fine-tuned applications. Section 6 discusses Recurrent Neural Networks (RNN)
and Long Short Term Models (LSTM) and their benefit to natural language gen-
eration required for an image captioning task. Section 7 discusses the data sets
employed in our research, including: Flickr8k and Microsoft COCO. In Section
8 we bring our multi-modal image captioning model together and discuss our
process for preparing our data and the complexities we encountered for compute
and memory capacity. Section 9 discusses measuring the effectiveness of each of
our models through the application of a scoring technique known as Bilingual
Evaluation Understudy Score (BLEU). This section also highlights our results
and future work. Section 10 outlines some of the ethical considerations we en-
countered when considering our research before concluding in Section 11.
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2 Related Work

Our work builds from two complementary papers on image caption generation
[1] and [2]. The task of image caption generation has been explored using solu-
tions that attempt to merge the sub-tasks of object recognition and description,
but it wasn’t until recently that joint models optimized for these combined tasks
emerged. The earliest inspiration was found in the advancement of machine
translation to take advantage of RNNs configured in a encoder/decoder archi-
tecture. This discovery was an advancement from simpler approaches, which
included naively translating words individually, without regard for surrounding
context. The proposal of [1] suggested that the encoder RNN could simply be
swapped with a CNN. The CNN would now generate an encoded vector repre-
sentation of image contents to pass into the hidden layer of an RNN decoder
to produce a ”translation” - in this case an English description from an image.
The challenge became efficiently training the encoder/decoder network as well
as recognizing more complex interactions between objects in an image.

The authors of paper [2] innovated on this concept through the application
of attention. CNNs are designed to benefit from reducing noise and clutter in
an image to the most salient objects for simple object identification. However,
the issue with applying these methods and compressing an entire image down
to a single encoding is often lost in the interactions between objects. It’s clear
that a thoughtful algorithm should preserve this information by examining the
low-level representations of an input image, and to steer the algorithm towards
information that is relevant in the image. This concept was initially proposed in
paper [3], which shows that compressing all the necessary information into a fixed
length vector not only includes parts of the inputs that may not be important,
but poses problems for inputs (sentences in this case) that are longer than any
of the sentences in the training corpus. ”Bahdanau attention” - named for his
contributions - most importantly proposes an encoder/decoder model that learns
to align and translate jointly. That is, for each word generated in the decoder
translation a soft-search is performed for areas of the source sentence where the
most relevant related information can be found. The authors [2] demonstrated
how Bahdanau attention [3] can be applied to images.

The authors of [1] of [2] both utilized VGG-16 pre-trained weights for their
image encoding task and discussed the opportunities for initializing their word
embeddings (but were unsuccessful, so left them uninitialized). It’s clear how our
work to evaluate several pre-trained CNN architectures and word embeddings
will be important for future image captioning tasks.

3 Natural Language Processing

Natural Language Processing (NLP) refers to the development and use of ma-
chine learning methods for processing, understanding, and generating natural
language. NLP models do not understand language in the human sense, but
rather they are trained to understand an imposed statistical structure of lan-
guage [4]. Once the statistical structure of language has been learned it can be
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used to understand new language inputs or produce new language outputs from
arbitrarily trained inputs (other languages, or in our case image representations).

3.1 Word Embeddings, Word2Vec, and GloVe

Word embeddings provide a means to produce dense feature representation,
while also preserving word relationships. Most critically, these embeddings are
not manually encoded, but rather they are learned as part of the model training
[5]. Google paved the way for word embedding models with their release of
Word2Vec in 2013 [6]. The Stanford authors [7] and creators of Global Vectors for
Word Representation (GloVe) improved on the Word2Vec approach to produce
word embeddings by utilizing a global word-word co-occurrence matrix. GloVe
is trained on Wikipedia 2014 and Gigaword 5 and the corpus included over 6
billion tokens and has a 400,000 uncased vocabulary. Our models utilized the
200-dimension embedding vectors provided by [7] and as these embeddings were
used in their pre-trained state the implementation cost was quite low.

3.2 BERT

GloVe word embeddings are context-free representations with only a single rep-
resentation for each word in the vocabulary. State of the art contextual models
such as Bidirectional Encoder representations for Transformers (BERT) were
introduced into NLP to solve this problem by generating rich representations of
words based on other words in their sentence context.

Google’s transformer model BERT [8] gained popularity in the NLP commu-
nity in 2018 and is now known to perform NLP tasks with cutting edge results.
BERT utilizes transformers, which consist of multiple layers where each layer
contains multiple attention heads. Since BERT transformers read a sequence
entirely at once, the sequence is learned bidirectionally and important contex-
tual words further away from key words maintain importance.

BERT added a layer to our core model and this layer needed fine-tuning for
our image captioning task (fine-tuned to each dataset). The BERT architecture
(as shown in Figure 1) is complex and highlights a theme in modern NLP that
many tasks can be improved at the expense of model complexity. Our fine-
tuning task took over 30 hours for each dataset on a leading Google Cloud
Compute GPU-enabled instance. The newest innovations on BERT, such as
ALBERT [9], focus on reducing the complexity of the transformer architecture
while maintaining its distinction as the most powerful tool in modern NLP.
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Fig. 1. Bidirectional Encoder Representations for Transformers (BERT) Architecture

4 Convolutional Neural Networks for Image Classification

Deep learning applications for image analysis and classification through the use
of CNNs has made many significant advances in recent years as access to cloud
computing and graphics processing units (GPU) has become more widespread.
Many pre-trained CNN architectures are available that we can apply through
transfer learning (described in Section 5). For our CNN models, we selected:
VGG-16, VGG-19, ResNet and Inception. All of these models have been pre-
trained on the ImageNet dataset, which consists of 15 million labeled images
belonging to almost 22,000 categories.

4.1 VGG-16

The VGG models for image classification were developed by the Oxford Visual
Geometric Group [10]. VGG-16 became renowned upon winning the 2014 Im-
ageNet Large-Scale Visual Recognition Challenge (ILSVRC). Figure 2 depicts
the VGG-16 architecture and processing steps.
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Fig. 2. VGG-16 Architecture

4.2 VGG-19

VGG-19 was also proposed in [10]. Unfortunately, both VGG architectures suf-
fered from two major drawbacks. The first is that they were both very compu-
tationally expensive to train. The second issue is that once they were trained
the resulting model weights were hefty considering the size of the architectures.
This made the deployment of VGG difficult and reduced practical portability in
terms of disk space and network bandwidth.

VGG-19 increased the depth of the network when compared to VGG-16,
which also improved the accuracy. However, additional accuracy gains are stifled
by the vanishing gradient. As the number of layers in a network increases, the
calculated gradient provided by back propagation becomes very small in early
network layers and the network performance deteriorates.

4.3 ResNet

Residual Network (ResNet) addresses this specific scenario. ResNet requires that
the convolution layer takes the previous layers output as input and learns the
additional features that need to be learned to perform classification. The term
”residual” is the additional feature that the model is expected to learn from
one layer to the next layers. The ResNet architecture in Figure 3 suggests that
extremely deep networks can be improved through the use of residual modules.
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Fig. 3. ResNet Architecture

Resnet was first introduced in [11] and has become an important work in
the deep learning literature. The authors [11] were able to further increase the
accuracy by using identity maps outlined in [12].

4.4 Inception

GoogleNet (Inception v1) was first introduced in [13] and subsequently improved
to Inception v2 in [14].

The innovation brought about by Inception stems from applying not one, but
three different size filters to the same input versus progressive application. An
Inception module is shown in Figure 4. Inception-based networks are evolving
quickly and popular versions include v1, v2, v3, v4, and Inception-ResNet. Our
architecture utilized Inception v3.
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Fig. 4. Inception Architecture

5 Transfer Learning

Transfer learning emerged from the discovery that initial layers in deep neural
networks are not specific to any single task, but generalize to all tasks once
appropriately trained. It’s been shown that this practice will not only save com-
putation, but may also improve generalization across disparate datasets [15]. For
example - the authors [15] found that a CNN trained for the detection of natu-
ral entities (animals, plants) could perform a new task of detecting man-made
entities (buildings, vehicles) with little tuning. Transfer learning can be imple-
mented in two ways depending on project requirements: using the pre-trained
architecture in a locked state or fine-tuning. The distinction is whether you al-
low the pre-trained weights to be adjusted to a new task or you lock them from
backpropagation during new task specific training [4].

Our first application of transfer learning was using pre-trained CNNs as fixed
feature extractors as outlined in Section 4. Our goal was to compare the archi-
tectures so we used the frozen pre-trained weights. Technically, there was no
opportunity for fine-tuning these architectures as the extracted image features
were used in combination with our recurrent language model outlined in Section
8. Our merged model [16] learned these joint combinations, which occurred after
the raw image feature extraction.

Our second application of transfer learning was our application of word em-
beddings discussed in Section 3. We implemented frozen GloVe embeddings as
released by [7], which may leave opportunity for future work to explore fine-
tuning the GloVe embeddings. We chose to fine-tune our BERT embeddings on
our corpus (all image captions per dataset) as BERT is a contextualized language
model and benefits from understanding the specific context in our captions. This
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also leaves opportunity for future work to explore how well the existing BERT
embeddings [8] may perform in their base state.

6 Recurrent Neural Networks

Modern deep learning practitioners agree that the proposal of a deep neural net-
work emulating the human brain is fairly absurd [4]. This becomes even more
apparent considering that the human brain has capacity to remember short and
long term dependencies that are related to inputs in real time. The role of RNN
architectures is to address these dependencies. This concept diverges from a
standard feed-forward neural network architecture where inputs are converted
to outputs by a fixed transformation and is a requirement for our language gener-
ation models. All RNN architectures have the form of repeating modules (Figure
5) where each sequence step considers the current step inputs and recurrent out-
puts of all previous steps.

Fig. 5. Simple RNN

Our models utilized a LSTM layer (consisting of LSTM cells shown in Figure
6) which are highly effective for sequence to sequence learning like our image
captioning task. LSTMs have a chain like structure with layers interacting like
a conveyor belt, with the capability to add and remove information to each cell
state through gates which optionally filter or forward information. [17].
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Fig. 6. LSTM Cell Architecture

7 Datasets

Our initial models utilized the Flickr8k dataset, which consists of 8,000 images
that are each paired with 5 different captions providing clear descriptions of im-
age entities and interactions. These images were chosen from 6 different Flickr
groups and were manually selected to maximize the variety of scenes and situ-
ations. The Flickr8k dataset was an excellent choice for initial discovery as it
could be used to train models on basic hardware (like utilizing only a CPU).

We also took advantage of the popular Microsoft COCO: Common Object in
Context dataset (COCO) [18]. The COCO image dataset seeks to elevate simple
object detection by placing objects in their natural context and encouraging
complex scene understanding. To achieve these goals the COCO dataset provides
non-iconic views of common objects in scenes comprised of many objects versus
objects in isolation. The creators argue that other data sets often only include
common (iconic) vantage points of objects and models trained on these images
will struggle to recognize the same objects in other natural contexts. COCO
consists of 118,000 training and 5,000 validation images each with 5 descriptions.

8 Final Image Caption Model Integration

For our architecture we used the merge model described in [16]. We were able
to outperform the results in this paper (measured in BLEU on Flickr8k) with
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our initial architecture evaluation. There are three phases to the merge model
shown in Figure 7.

Feature Extractor: For feature extraction we used pre-trained CNN models
described in Section 4. We instantiated these pre-trained models and removed
the last layer from the model as it is used to predict a classification label in
the original architecture. We were not classifying images, but rather using these
models to extract the principal features of the input image in the form of a fixed-
length vector. For feature extraction we did not fine-tune any of the weights of
the CNN models, but leveraged them with their existing learned weights on the
ImageNet dataset. This process is known as transfer learning (see Section 5).

Sequence Processor: During the second phase we used the word embedding
layer produced by either GloVe or BERT for handling the text input (see Section
3), which was followed by a LSTM RNN (see Section 6).

Decoder: We implemented 50 percent dropout in both our language and
image feature extractor to reduce overfitting on the training dataset. Both our
feature extractor and sequence processor produced a 256 element vector, which
was concatenated together in the decoder phase using an addition operation.
This vector was fed to a 256 dense neuron layer and to a final dense layer. The
final layer made a single softmax prediction over the entire output vocabulary
for the next word in the sequence. This is known as greedy search.

Fig. 7. Encoder/Decoder Architecture
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8.1 Data Preparation and Compute Constraints

While our datasets consisted of images with five captions per image, our merge
model [16] used much more training data. We prepared our data to combine
the features extracted from the image and each sequence data to estimate the
next word in the sequence. We formed this data progressively. For example, the
token at sequence position one (which happens to be a start token in language
generation models) was combined with the features extracted from the image to
estimate the token at sequence position two. Next, the extracted image features
were combined with the tokens at sequence one and two to estimate the token
at sequence position three. This method was applied for each sequence position
in each of the captions. This process resulted in training data that was 20 GB
in size for Flickr8k and 225 GB in size for COCO.

We ran our models in memory, but recommend that future work use a genera-
tor for real time training data preparation (especially for the COCO dataset). We
also noted the hurdle of compute for datasets of this size. We ran our Flickr8k
models on Google Colab (25GB RAM, 1 vCPU, Tesla K80 GPU) and train-
ing took between 8 and 10 hours to process each architecture configuration.
Our COCO models ran on a highly optimized Google Cloud Compute instance
(600GB RAM, 24 vCPU, Tesla K80 GPU) and took between 18 and 20 hours
to process each architecture configuration.

9 Results and Discussion

We implemented a deep encoder-decoder neural network architecture that uti-
lized four different pre-trained CNN models (VGG-16, VGG-19, Resnet, Incep-
tion) and two different pre-trained word embeddings (GloVe, BERT). We per-
formed experiments on two datasets, which produced 16 sets of results. These
results are shown in Figure 8. For precise BLEU scores please reference Table
1-4 in the Appendix (Section 12).

9.1 Testing and Evaluation

Caption generation models are very difficult to evaluate as syntactic nuance in
language is difficult to quantify without human intervention. A popular approach
to evaluating description generation was proposed as the Bilingual Evaluation
Understudy Score (BLEU) [19]. N-grams are defined as an n-length sequence of
contiguous words sampled from text or speech. The BLEU metric is generated by
comparing n-gram candidates in our predicted image captions with n-grams in
the actual image captions. These n-gram sequences are position independent and
in general the more matches that are made between the candidate and reference
captions the higher the BLEU score (a value between 0 and 1). The BLEU metric
also takes into account that machine translation and image caption generation
systems tend to over generate reasonable words. The BLEU metric is designed to
not reward candidate descriptions simply by the presence of reasonable words -
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what the authors [19] call modified n-gram precision. Our testing metrics utilized
unigram, bigram, trigram, and 4-gram BLEU scores for each image averaged
across each testing dataset. Intuitively, the larger the n-gram the harder it is to
generate a match, which is clear upon quick inspection of our results in Figure
8.

9.2 Results

Through the analysis of our results for the Flickr8k dataset we were able to
quickly validate our assumptions that the BERT embeddings would perform
better than GloVe. This can be observed in the upper results of Figure 8 by
noticing that the scores for each of the models are generally improved when
implementing BERT versus GloVe. The Resnet feature extractor performed the
best for each of the word embedding schemes, but clearly performed better using
BERT. VGG-16 exhibits the next best scores and is also better when using BERT
versus GloVe.

The COCO results in the lower results shown in Figure 8 revealed a much
tighter distribution when compared with the Flickr8k results. Surprisingly, the
BERT embeddings did not improve the BLEU scores for most of the mod-
els, with the exception being VGG-16. However, the improvements for utilizing
BERT with VGG-16 were not very significant. The Resnet feature extractor also
proved to be the best across BERT and GloVe embeddings like observed with
the Flickr8k dataset. We were surprised that our models did not perform as well
on the COCO dataset in general. Both datasets have sufficiently high resolution
images with 5 captions per image and should be comparable. Our hypothesis
is that COCO is truly designed to have more objects in context than Flickr8k,
which makes the task we tried to perform even harder on this dataset. This
discovery was also noted as an opportunity to directly evaluate in future work.

9.3 Application and Future Work

The application of our work is our recommendation that a combination of Resnet
image feature extraction and BERT word embeddings are chosen for image cap-
tioning tasks when compared with the other architectures evaluated in this pa-
per. This recommendation is valuable considering the cost of training the models
in our research. It is notable that the performance gains from our recommen-
dation comes with a cost as we opted to fine-tune our BERT embedding. Fine-
tuning BERT embeddings for our specific task was very significant, especially
when compared to GloVe embeddings, which we used in their pre-trained state.

There are several areas where improvements can be made for future work.
Most of these considerations require additional time and/or compute to be able
to quantify improvements. We could explore a wider range of hyperparameters
to adjust the number of epochs, dropout rate, embedding size, LSTM output
size, LSTM layers, batch size and learning rate of our networks. Next, we could
implement beam search instead of greedy search. Greedy search inputs the word
with the highest probability at each decoder step, while beam search considers a
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set of words at each step. The next word is generated from each word in the set
and evaluated with conditional probability. Beam search adds another element
of sophistication, but numerous copies of the encoder-decoder network must be
applied to every step. Next, we should also consider comparisons between alter-
natives to handling our word embeddings, such as fine-tuning GloVe embeddings
or freezing BERT embeddings in their original state (discussed in Section 5). Fi-
nally, we could configure the model architecture to use an attention mechanism
as described in Section 2. Attention based models tend to yield better results
by allowing the model to attend to information earlier in recurrent layers at the
expense of model complexity.

We also discovered many limitations for using BLEU as a metric for image
caption generation especially considering our focus was to ensure the correct
reference of adjectives and adverbs [20]. Primarily, BLEU scores are position
independent, which meant matching n-grams could have completely different or-
dering and still contribute to a valid image caption score [21]. This also meant
that completely nonsensical captions that were not grammatically correct (miss-
ing a verb or a reference object) could also contribute to a valid score. Next,
we discovered that averaging individual caption scores across a whole corpus
will artificially inflate the total score. Furthermore, the authors of [22] found
that BLEU negatively correlates with simplicity by rewarding simple language,
which is something the creators hoped to prevent. The authors of [23] suggested
that even more sophisticated automatic evaluation systems than BLEU are poor
at distinguishing outputs of medium and good quality. Finally, the authors [24]
found a wide range of correlation between BLEU and human evaluation for
similar tasks.

Our future work should consider an evaluation metric that focuses on mea-
suring syntactic features proposed by [25]. These approaches break sentences
down into noun phrases, verb phrases, and prepositional phrases as part of the
candidate to reference comparison. This would both ensure that adjectives and
adverbs are referring to the correct objects while also penalizing sentences that
are not grammatically sound. These evaluation discoveries may have impacted
the accuracy of our individual results, however we believe that our work and
recommendations are still valid from an architecture comparison perspective.

10 Ethics

The promise of harnessing deep learning and transfer learning for image analysis
is exciting and full of potential, however, there are important ethical issues that
arise. In this section we explore significant hidden subtleties related to bias in
datasets, privacy, and misinformation.

10.1 Training Dataset Bias

Deep learning is driven by the availability of large datasets for model training.
However, the use of pre-trained models for transfer learning depends on reusing
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Fig. 8. BLEU Results by Architecture Combinations

others work. This means that anyone putting transfer learning into practice
needs to be aware of the potential for bias in these models and take ownership
of mitigating or documenting them. We are far from having the capability to
produce bias-free models. Professor Vicente Ordóñez [26] describes how he no-
ticed gender bias in the image recognition software he was building and how
Microsoft’s COCO dataset had significant gender bias. Data biases could also
cause harm within other types of image data. For example, cancer lesion detec-
tion models built using medical image samples from people in North America
will not work well for people in Asia and Africa. Self-driving car models trained
on North American roads may struggle in parts of Asia and Africa. This could
mean that life-saving cancer diagnosis software will be unavailable to certain
parts of the world, or that the safety and efficiencies provided by autonomous
vehicles won’t be available to less developed countries.

10.2 Privacy

To counteract the obvious harm that can be caused by surveillance using facial
recognition a joint effort between policymakers and data practitioners needs to
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be created that respects privacy standards. Such policy, should meet the ex-
pectations of the public in terms of scope and fairness. Recognizing the lack of
consent of the public in general surveillance, the City of San Francisco in May
2019 became the first US city to ban public use of facial recognition [27]. How-
ever, the Chinese, Indian and UK governments [28] are moving in the opposite
direction with regard to views on privacy in public image recognition.

10.3 Misinformation

Deep learning can now be used for image generation and natural language gen-
eration. This is great news for creativity and entertainment purposes, but it
can also be used intentionally or accidentally to confuse or mislead people, or
outright manufacture facts. Images or videos created using the image genera-
tion approaches are known as ”deepfakes”[29]. In a similar vein, OpenAI created
GPT2 [30] that can generate coherent paragraphs of text. These advancements
in deep learning can cause significant harm through misinformation. The solu-
tion will be a combination of technical and societal solutions where we track as
to where the information originated from, how it is made, and how it is gotten
and conveyed by people.

11 Conclusion

Our goal was to improve natural language generation given an image input
through the implementation of an image captioning model. Specifically, we set
out to improve syntactic relationships between descriptors and their objects. To
achieve our goal we presented a series of encoder/decoder merge models utiliz-
ing combinations of pre-trained image feature extractors and word embedding
schemes through transfer learning. We highlighted the differences in the CNN
architectures and our approach to applying word embeddings. We measured the
effectiveness of 8 models on 2 datasets, which produced 16 sets of results. We uti-
lized BLEU scores for model comparison, but ultimately found the score to not
be effective for our problem statement. We outlined the complexities of working
with models and datasets of this scale, while also providing our recommenda-
tion on the highest performing architectures. Finally, we highlighted the value
and application of our work and presented several compelling opportunities for
future work.
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12 Appendix

Table 1. Results for Flickr8K Dataset with GloVe Embeddings

GloVe BLEU-4 BLEU-3 BLEU-2 BLEU-1

VGG-16 0.041770 0.111938 0.186633 0.387293

VGG-19 0.030013 0.088527 0.145646 0.295786

Resnet 0.059307 0.150023 0.241076 0.452356

Inception 0.043951 0.116926 0.183449 0.350313

Table 2. Results for Flickr8K Dataset with BERT Embeddings

BERT BLEU-4 BLEU-3 BLEU-2 BLEU-1

VGG-16 0.052553 0.139985 0.225280 0.433748

VGG-19 0.052292 0.138914 0.225108 0.414702

Resnet 0.068185 0.168761 0.268223 0.481651

Inception 0.037636 0.110341 0.182212 0.341801

Table 3. Results for COCO Dataset with GloVe Embeddings

GloVe BLEU-4 BLEU-3 BLEU-2 BLEU-1

VGG-16 0.024933 0.079887 0.161678 0.387500

VGG-19 0.032032 0.087531 0.162469 0.366374

Resnet 0.048284 0.121182 0.194929 0.411474

Inception 0.060376 0.134606 0.204241 0.392499

Table 4. Results for COCO Dataset with BERT Embeddings

BERT BLEU-4 BLEU-3 BLEU-2 BLEU-1

VGG-16 0.018199 0.087608 0.176105 0.391411

VGG-19 0.018602 0.018602 0.141391 0.331898

Resnet 0.040080 0.111050 0.194672 0.396902

Inception 0.029009 0.091710 0.168333 0.361405
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