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ABSTRACT 
There are many reasons people listen to music, and the type of music is largely determined by what the listener may be doing while 

they listen. For example, one may listen to one type of music while commuting, another while exercising, and yet another while 
relaxing. Without access to the physiological state of the user, current music recommendation methods rely on collaborative 

filtering - recommending music based on what other similar users listen to - and content based filtering - recommending songs 

based on their similarities to songs the user already prefers. With the increasing popularity of smart devices and activity trackers, 

physiological context can emerge as a new channel to inform music recommendations. We propose deep learning solutions for 
context aware recommendation and playlist generation. Specifically, we use variational autoencoders (VAEs) to create a song 

embedding. We then explore multi-task multi-layer perceptrons (MLPs) and Gaussian mixture models to recommend songs based 

on context. We generate artificial user data to train and test our models in online learning and supervised learning settings. 

 

1. INTRODUCTION 
As smart devices and activity trackers become 

more available and affordable, more people purchase these 

products which constantly monitor their physiological state. 

We believe that music recommendation systems can be 

improved and personalized by leveraging the increasing 
prevalence of activity trackers. In general people listen to 

different types of music for different activities [1]. We 

believe that by recommending the right music for these 

activities, we can build a recommendation system that can 
enhance the experiences for the user. 

In this paper, we explore two different methods for 

recommending music based on context. While we 

experiment with the context groups running, commuting, 
and relaxing, context can be expressed in a variety of ways 

including the user’s physiological state or location for 

example. 

For our analysis, we use a subset of the Million 
Spotify Playlist Dataset [2]. This subset consists of 32,200 

songs retrieved using the Spotify API. For each song we 

retrieve metadata - genres, popularity, artist etc. - and song 

features - tempo, key, loudness etc. - from the Spotify API. 
All features and metadata were created by Spotify [3]. 

We use a VAE [4] to create a regularized song 

feature embedding. We use genre-based clustering within 

that embedding to generate artificial users with specific 
preferences for different activities. For our first 

recommendation method, we create a multi-task neural 

network to predict during which activities a user would listen 

to given song. For our second method, we created an online 
learning environment in which we created a Gaussian 

mixture model [5] to learn user preferences and create online 

task-specific song recommendations. 
 

 
1 Department of Computer Science, Southern Methodist University 

2. BACKGROUND 
 

     2.1 Recommendation Systems  
Recommendation systems filter information in 

order to personalize which content is presented to a user at a 

given time [6]. Most state-of-the-art music recommender 

systems use a combination of collaborative filtering and 

content based filtering [7]. 
In the context of music recommendation systems, 

collaborative filtering [8, 9] is a process that uses the 

relationships between multiple users and their listening 

preferences to make recommendations to individual users 
[10]. For example, if user 1 and user 2 have similar listening 

histories, user 1 may be recommended a song that user 2 

likes that user 1 has not yet heard. This technique is 

implemented in varying levels of complexity. 
Another umbrella term for recommendation 

strategies is content-based filtering [11, 12]. This refers to a 

recommendation system which uses features from the songs 

in a user’s listening history in order to recommend other, 

similar songs. Similarity can be represented in many layers 

of abstraction from raw audio signals to similarities between 

lyrics, to song metadata. The popular music streaming 

service Spotify uses a combination of these methods to 
personalize user recommendation [3]. 

Another increasingly prevalent type of 

recommendation system is context-based recommendation 

[13, 14]. These systems further personalize 
recommendations by considering contextual factors like 

location, weather, and surroundings. Context can be 

provided in a variety of methods including using external 
internet-of-things (IOT) devices [15] like smart watches and 

activity trackers. 
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     2.2 Embeddings  
When working with high dimensional data, it is 

common to use an embedding to create lower dimensional, 
dense vector representations of the original data. This can be 

useful since working directly with high dimensional data 

requires larger amounts of computation, which can lead to 

“the curse of dimensionality”; a phenomenon in machine 
learning algorithms where performance deteriorates due to 

high dimensionality [16], and may not capture meaningful 

relationships in the data. 

When the data is compressed to lower dimensions, 
the process can reduce noise, and redundant and irrelevant 

information in the data. In doing so, a proper embedding 

highlights meaningful patterns and relationships in the data, 

which can improve model performance and generalizability 
[17]. 

Common uses for embeddings can be found in 

natural language processing (NLP) with the popular GloVe 

[18] and Word2Vec [19] embeddings which are used to 
represent words in a continuous vector space. These vectors 

represent the semantic relationships between words and are 

the foundation of many NLP models. 

We create a song embedding using a variational 
autoencoder to train our recommendation and playlist 

generation models. 

 

     2.3 Variational Auto Encoders  
A variational autoencoder (VAE) [4, 20] is an 

encoder-decoder model. The encoder learns to map data 
from a high dimensional input space to a low dimensional 

latent space, and the corresponding decoder maps the data 

from the low dimensional latent space back to the high 

dimensional input space. Unlike traditional autoencoders, 
VAEs use variational inference to force a regularized 

distribution on the latent space. This is done by modifying 

the loss function to include a Kullback-Leibler (KL) 

divergence penalty term, and by employing a sampling layer 
to generate new data from the learned latent space. 

The KL divergence term is a measure of how 

different the latent space distribution is from a standard 

normal distribution. The KL divergence term is minimized 
by the VAE so the latent space distribution is as close to a 

standard normal distribution as possible. 

The VAE is trained by minimizing the sum of the 

reconstruction loss and the KL divergence term. In the 
simplest methods, the reconstruction loss can be defined by 

mean squared error. 

 

MSE =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

KL(𝑞𝜙(𝑧|𝑥)||𝑝(𝑧)) = −
1

2
∑(1 + log(𝜎𝑗

2) − 𝜇𝑗
2 −  𝜎𝑗

2)

𝐽

𝑗=1

 

VAE Loss = MSE + KL 

 

It is also common to use binary cross entropy 

(BCE) for reconstruction loss and add a small scaling factor 
λ to the KL divergence term. We also tested our VAE using 

this method but found better results with MSE. This could be 

because we had more continuous than discrete feature 

values, MSE tends to perform better for continuous data 
while BCE tends to perform better for discrete data. 

Another way that smoothness in the latent space is 

enforced in the VAE is through the sampling layer. This 

allows the models to generate new samples that are similar 
to the ones that it has already been trained on. During the 

sampling process a noise variable is added which is 

randomly drawn from a Gaussian distribution. Samples are 

generated by mapping the variable to the mean and variance 
of the learned distribution of the latent space. This process is 

called the reparameterization trick, and makes sampling 

differentiable so that the model can be optimized using 

gradient descent [4]. This enforces smoothness by 
constraining the latent vectors to be near the origin and 

exhibit a Gaussian distribution. 

Together, the KL-divergence penalty term and 

sampling layer force the learned latent space to be smooth, 

regular, and distances between points in the latent space to 

be meaningful. 

 

     2.4 Multi-Task Learning  
Multi-task learning [21] is an approach where a 

single model is trained to perform multiple related tasks 
simultaneously, rather than training separate models for each 

task. This approach is based on the intuition that tasks often 

share common features or information; by learning them 

jointly, the model can exploit these shared characteristics to 

improve performance on all tasks. 

In the context of music recommendation, this 

learning strategy can be utilized to ameliorate the cold start 

problem, an issue with content-based recommendation 
systems [22]. If each task represents a different user, weights 

for the branches of a new user can be initialized as an average 

of the weights from the other users. This would be an 

example of introducing a “warm start” to the model. 
 

     2.5 Gaussian Mixture Models  
A Gaussian mixture model (GMM) [5] is a 

probabilistic model that assumes that the observed data is 

generated from a mixture of several Gaussian distributions, 

each with their own mean and covariance matrix. The PDF 
for a Gaussian mixture model is as follows 

 

𝑝(𝑥) = ∑ 𝜋𝑘

𝐾

𝑘=1

𝒩(𝑥|𝜇𝑘 , Σ𝑘) 

 

where 𝑥 is the observed data, 𝜋𝑘 is the mixing 

coefficient for the 𝑘th Gaussian distribution, and 

𝒩(𝑥|𝜇𝑘 , Σ𝑘) is the multivariate Gaussian probability density 

function with mean vector 𝜇𝑘 and covariance matrix Σ𝑘. 

In this paper, the user preferences are modeled by 

a Gaussian mixture with each activity being a component k. 

Each distribution has full covariance and the component is 
explicitly defined at training and inference. 

 

 

     2.6 Online Learning  
Online learning [23] is a process in which a model 

is trained on real-time data as it becomes available, 
continuously adapting the model. This is in contrast with 
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batch learning in which the model is trained in batches of 

data after it has all been collected. Online learning is useful 

for models that need to adapt to changes in the distribution 

of data, and continuously improve the model as new data 
becomes available. This is especially useful in 

recommendation systems, speech recognition, and 

autonomous vehicles [24]. 

 

3. METHOD 

 

     3.1 Dataset  
Our data was a 32,200 song subset for the Million 

Spotify Playlist Dataset [2]. This dataset consists of user 

generated playlists on Spotify, each with a list of songs and 

identifying information about each song. The dataset was 

publicly released in 2018 as part of a recommendation 

system challenge and is available for research and 

noncommercial use. 

The information we used were the track id, and 

artist id. With these identifiers, we used Spotify API to 
retrieve features and metadata about each song. Song 

features were created by Spotify through their proprietary 

music information retrieval models [3]. The features and 

metadata we used are detailed in Table 1. 
We simplified genres by only assigning the first 

genre in the genre list to each track. Additionally, we only 

maintain the top 25 genres, which account for 78% of our 

data. The rest of the genres we labeled as ’other’. All of the 
listed metadata and features except for genre were used to 

create our song embedding. Songs with similar features 

sound similar [3] and songs in the same genre also tend to 

sound similar. We used the genre to validate that our 
embedding created meaningful spatial representations of 

song similarity. Songs in the same genre should tend to be 

closer to one another than to songs from different genres. 

 

     3.2 Song Embedding  
In order to create our song embedding, we 

constructed a (VAE) using mean-squared error and KL 

divergence for the loss function. After encoding our 

categorical features, we expanded our 12 input features to 24 

dimensions. The VAE scales feature representations down to 

a 12 dimensional latent space. We chose to scale down to 

half of the original dimensions in order to preserve 

information from the original features, while still allowing 
the model to be deep enough to learn complex relationships 

in the data. The encoder and decoder each had 3 dense layers. 

In the encoder the size of each subsequent layer was scaled 

down by a factor of approximately 0.75. In the decoder, the 
size of each subsequent layer was scaled up by a factor of 

approximately 1.3. Hidden layers used ReLU [27] activation 

functions and the decoder output is tanh [28] activation 

function. 
 

     3.3 Multi-Task Model  
The goal for our multi-task model wad to generate 

playlists for different activities given the user’s listening 

history. The input was a song and the model predicted which 

activity class it belonged to. Multiple activities could be 
predicted for a given song. In this model, we started by 

retrieving the 12 dimensional latent space vector for a given 

song. While the rest of the model was trainable, the encoder 

was not. The general branch and shared dense layer were 
trained first on all of the users in a supervised setting. The 

shared layer had 12 units, the same as the latent space, and 

acted as a trainable embedding layer for the model. There 

were two middle layers in the general model with sizes of 9 
and 7 and ReLU [27] activation. The output later had 3 units 

with sigmoid [29] activation. The user branches, which were 

identical to the general model in architecture, were 

initialized with the weights of the general branch. During the 
training for the rest of the model, the general branch was 

removed. In each training step, the model alternated training 

between each user branch as not to over-fit the model to one 

user. All models shared an early dense layer, the intuition for 
which was to allow the model to learn shared information 

across all users, while also allowing each user branch to 

learn information specific to their listening preferences. By 

having a shared dense layer, the model could learn common 
features that are important for all users. At the same time, 

each user branch could learn personalized features that were 

unique to their individual preferences. This approach 

Feature/Metadata Explanation Type 

acousticness A confidence measure of whether the track is acoustic. float 

energy 

danceability 

A perceptual measure of intensity and activity. 

A measure of how suitable a track is for dancing. 

float 

float 

instrumentalness A likelihood measure of whether the track contains no vocals. float 

key The key of the track. Encoded with pitch class notation [25]. integer 

liveness A likelihood measure of whether the track was performed with an audience. float 

mode 

speechiness 

Indicates if the track is major or minor. 

A measure of whether the track contains spoken (not sung) words. 

integer 

float 

tempo 

valence 

Estimated beats per minute of a track. 

A measure of the musical positiveness conveyed by a track (happy or sad) 

float 

float 

artist popularity 
genre 

track popularity 

Popularity of the artist 0 to 100. 
List or genres associated with artist. 

Popularity of the track 0 to 100. 

integer 
array of strings 

integer 

Table 1: Descriptions of track features and metadata retrieved from Spotify API, derived from its documentation [26]. 
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allowed the model to balance between generalization and 
personalization, which is important for creating a successful 

recommendation system that can generalize to a diverse set 

of users. 

 

     3.4 Gaussian Fit Model  
The Gaussian fit model was trained in a online 

learning environment. It was initialized with 4 preferences 

for the user for each activity. The model then batch fitted a 

Gaussian distribution with full covariance to the initial 

points. 

Given a batch of data 𝑋 ∈ ℝ𝑚×𝑛, where 𝑚 is the 

number of samples and 𝑛 is the dimensionality of each 

sample, batch fit computes the maximum likelihood 

estimates of the parameters of a Gaussian component 𝑗 with 

full covariance matrix: The mean vector 𝑥𝑗 ∈ ℝ𝑛 is 

estimated as: 

 

𝑥𝑗 =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

 

 

where 𝑥𝑖  is the 𝑖-th sample in 𝑋. The covariance matrix 𝑄𝑗 ∈

ℝ𝑛×𝑛 is estimated as 

 

𝑄𝑗 =
1

𝑚
∑(𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑗)

𝑇
𝑚

𝑖=1

 

 

At inference time, the model randomly picked a 

song that fell within radius 𝑟 away from the mean of that 
Gaussian in the latent space for recommendation. For our 

experiment we chose 𝑟 to be 1 standard deviation of the 

Gaussian distribution in order to include characteristic songs 

for that distribution. It then proposed the song to the user. If 
the user rejected the song, then the model recommended a 

new song. Previously recommended songs were not re-

recommended within the same session. If the song was 

accepted, the model online-fitted the distribution to include 
the newly accepted song. 

Given a new observation 𝑥 ∈ ℝ𝑛, the online-fit 

updates the running mean 𝜇: 

 

𝑥𝑗 ← 𝑥𝑗 + 𝛼𝜇(𝑥 − 𝑥𝑗) 

 

where the scaling factor 𝛼𝜇 =
1

𝑁
. 𝑁 Is the total number of 

observations 𝑥 that the distribution has been fitted to, 
including those that were fit with batch fit. The function 

updates the running covariance matrix 𝑄𝑗: 

 

𝑄𝑗 ← 𝑄𝑗 + 𝛼𝜎[(𝑥 − 𝑥𝑗) ⊗ (𝑥 − 𝑥𝑗) − 𝑄𝑗]/𝑁 

 

where ⊗ denotes outer product, / denotes element-wise 

division and the scaling factor 𝛼𝜎 = 𝛼𝜇(1 − 𝛼𝜇). 

When a user accepted a new song the next song 

could picked as a “nearby song” within the distribution. This 
means that the next song choice could be biased towards an 

area in the latent space that was near to the previously 

accepted recommendation. We dd this by defining a new 

distribution with the mean at the location in the latent space 
of the previously accepted song, and the same covariance 

matrix as the overall preference distribution. The new 

distribution was then scaled down in magnitude by a tunable 

parameter that defaults to 10%. The next recommendation 

was chosen from the subset of songs that existed in the area 

that was within one standard deviation from the mean of the 

new distribution and within one standard deviation from the 

mean of the overall preference distribution. 

 
Fig. 1: Multi-task recommendation architecture. Output is a sigmoid activation function with 3 output units each corresponding 

to the probability of a song existing in a given activity preference. Notice that one song can be recommended for multiple 

activities. 𝑊𝑔 denotes the weights of the general branch, 𝑊𝑖 denotes the initial weights for a user branch. 
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In order to avoid over fitting to one area in the 

latent space, the next song recommendation was not always 

a “nearby song”. Every 𝑏 recommendations, the next song 

was randomly sampled from the overall preference 

distribution without nearby bias. 𝑏 was a tuneable parameter. 

Since the model was actively learning, this parameter 

encouraged the mean and covariance of the model to better 

represent that of the users true preferences, and mitigated 
optimizing to small local areas of the latent space. 

The intuition behind choosing a nearby song to the 

previously accepted song was to capture the preferences of 

the current listening session. Additionally, just because a 
user liked listening to two different songs for exercising, that 

does not necessarily mean that the user wants to hear them 

consecutively. Choosing a “nearby song” can facilitate 

smoother transitions between songs in a session. An intuition 
behind abandoning closeness after successfully 

recommending 𝑏 songs was that the user gets tired of 

listening to songs that sound similar and want to hear 

something new. 

 

4. EXPERIMENT 
 

     4.1 Generating Artificial Users  
Without access to a large user base or test subjects, 

we created artificial users in order to efficiently train and test 

our models. To create these users, we used genre-based 

clustering. Since songs in the same genre have higher 

probabilities of sounding similar, we believe this is a 

convenient way to create realistic a listening preference. We 

initially compiled a list of genres that would be characteristic 

genres to listen to for exercising, commuting, and relaxing. 

These lists of genres did have some overlapping genres. The 
listening preference for each activity for each user was 

represented by a randomly chosen genre that represented the 

activity. In order to create the clusters and populate the 

listening preferences, we found the centroid of a given genre 
and determine all of the songs which were within a given 

radius from that centroid - for our experiments, we chose one 

standard of deviation as the radius. By selecting all of these 

songs, we are left with songs that sound like a characteristic 
song of the genre, even if it was not explicitly labeled as that 

genre. Next we introduced randomness which we 

implemented in two different ways. The first was to choose 

a percentage of the songs within the radius, remove them 
from the preferred songs, then randomly sample the same 

number of songs from the rest of the latent space and add 

them to the preferences. The second method was to define a 

second radius in the latent space - 2 standard deviations from 
the mean in our experiments - and the new randomly 

sampled songs came from the area in the latent space 

between the radii. Both methods of introducing randomness 

were attempts to more accurately simulate a real user’s 

preferences. The second method intuits that the outlier songs 

will still be somewhat near the characteristic centroid song, 

not on the opposite side of the latent space. 

 
 

 

 
Fig. 2: Online learning environment for Gaussian mixture model. Fitting a Gaussian distribution with full covariance to user 

preferences in latent space. Notice that when the previous recommendation was correct, the model may sample from within a 

similar scaled-down Gaussian distribution to enforce closeness to the previous song. The actual latent space is 12 dimensional, 
yet we are depicting 2 principal components in this figure. 
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     4.2 Multi-Task Training  
We first trained our multi-task model on 3 users 

with a centroid radius of 1 and 10% randomness. Then we 
trained them on similar users with 20% randomness. These 

users did not include an outer radius so the random sampled 

were from the entire latent space. As detailed in section 3.3, 

we first train a general branch to initialize the weights of the 
individual user branch, remove the general branch after 

weight initialization, then train the multi-task model to 

convergence. 

 

     4.3 Gaussian Fit Training  
We trained our Gaussian fit model in an online 

learning environment. In our environment, the user initially 

gives 𝑛 songs that they prefer for each genre, which we batch 
fit our model to. This was the smallest amount of initial 

samples required to reliably be able to sample real songs 

from the latent space. After a song is recommended, the user 

accepts or rejects the song. As detailed in section 3.4, the 
model fits to accepted songs, and may enforce the next 

recommendation to be close to the previously accepted song. 

We trained models on 2 types of users: a user whose 

preferences are randomly sampled from the entire latent 
space, and on a user with an inner radius of 1 standard 

deviation, an outer radius of 2 standard deviations, and 20% 

randomness. The completely random user was tested with a 

model that does not select nearby recommendations. The 
second user was tested with 3 different model 

configurations: 1 that does not recommend nearby samples, 

1 that can recommend up to 5 consecutive nearby samples, 
and 1 that always recommends a nearby sample if the 

previous sample was correct. All models were trained with 

an initial 4 random samples songs for each activity. After 

batch fitting on these samples, we ran our online learning 
environment for 3000 episodes, switching between activities 

every 10 episodes as a rudimentary way of simulating users 

moving between environments. 

5. RESULTS 
We found that our multi-task model is able to 

accurately predict preferences for 3 different users across 3 
different listening contexts with the low AUC of 0.86 and 

high of 0.96 a across all users and contexts. We also found 

that the multi-task nature of our model with individual 

branches for each user does allow for a better representation 
of individual user preferences. This is evident from our 

individual user branch scores being greater than or equal to 

the scores of the general branch across all contexts. The AUC 

scores for each user across all contexts decrease by about 
0.05 when the user’s random preferences are increased from 

10% to 20%. The AUC scores for users with 20% random 

preferences were still high with the lowest being 0.86 and 

highest being 0.89. This shows that our model can generalize 
well to users with more sporadic listening preferences. 

We also found our best Gaussian fit model 

recommends songs in our listening simulation environment 

with an average of 92.6% accuracy across all listening 
contexts. Averaging over 100 simulations of 1000 episodes 

 
Fig. 3: Left: Representation of different genres in the latent space. Right: Preferences for an artificial user with a radius of 1 

standard deviation, an outer radius of 2 standard deviations and randomness of 25%. 
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on different users, the model had an accuracy of 97% for 

exercise context, 85.9% for relax context, and 94.9% for 

commute context. 

Interestingly, the highest performing model is the 

one which can recommend unlimited consecutive “nearby 
songs”. We expected this model to over-fit to small areas in 

the latent space, and therefore be unable to effectively model 

the user preference distribution across contexts. The model 

which we designed to mitigate over-fitting by only 
recommending 5 consecutive “nearby songs” performed 

worse than the unlimited model with an average accuracy of 

84.6% across all contexts. Our model which does not 

recommend “nearby songs” performed the worst with an 
average accuracy of 64.4% across all contexts. 

 

     5.1 Multi-Task Model  
For our AUC scores and ROC curves [30], true 

positives are when the model predicts a greater than 50% 

chance that a song belongs to a given activity and that song 
is indeed a preference for the given user. A false positive is 

when the model predicts a greater than 50% chance that a 

song belongs to a given activity, and it is not a preference for 

the user. 

We found that the AUC scores for the individual 

user branches exceeded those of the general model for relax 

and commute, but were the same for exercise (see Figure 5). 

The individual users also had slightly varying scores. We 

expected the user branches to have better results than the 
general branches since they were designed to optimize to 

their respective users. We believe inconsistencies between 

the individual models could be due to some preferences 

being more difficult to learn than others. Since the genres 
which represent activities are chosen at random, activities 

with lower AUC scores could have fewer examples to learn 

from. 

We found that when predicting users with 20% 
randomness instead of 10% randomness, that while our 

model scores did decrease by about 0.05 on average, the 

AUC scores were still high (see Figure 6). This shows that 

the model can generalize well to users with less consistent 
preferences. 

 

     5.2 Gaussian Fit Model  
Accuracy is defined by the total number of 

accepted recommendations divided by the total number of 

recommendations made during the simulation. 
We validated our model by conducting four 

different experiments. The first was to test the Gaussian fit 

model on completely random data. As expected accuracy 

was low, this establishes a baseline to compare models on 
no-random users. This experiment also shows that the 

Gaussian bias of our model does not allow it to over-fit to 

random noise. 

Next we generated a user, and tested a model that 
does not make nearby recommendations. This model fits an 

individual Gaussian distribution to each listening context. 

While the performance of this model was still able to 

adequately make 66-69% correct predictions depending on 
the context, this model performed the worst out of the models 

fit to non-random users. 

Our next model used a nearby recommendation 

method where if the previously recommended song was 
accepted, it would choose a “nearby song”. However, after 5 

consecutive nearby songs, the model again sampled from the 

overall preference distribution. We believed that this would 

be the best method as it would be more likely to focus on 
areas of the latent space where preferences have been found, 

but would not over-fit to that area. This model outperformed 

Model User Exercise Relax Commute 

General Branch 10% Random  0.90 0.88 0.90 

Individual Branches 10% Random     

 User 1 0.93 0.96 0.94 

 User 2 0.94 0.91 0.94 

 User 3 0.93 0.92 0.90 

Individual Branches 20% Random     

 User 1 0.89 0.88 0.86 

 User 2 0.88 0.88 0.87 

 User 3 0.87 0.88 0.89 

Table 2: AUC scores for each branch with a 10% random user, and AUC scores for individual branches with a 20% random 

user. 

 
Fig. 4: ROC curve for the general branch of the multi-

task model. AUC scores: exercise = 0.90, relax = 0.88, 

commute = 0.90 
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the random model drastically and it outperformed the model 

without nearby recommendations by about 20% across all 

contexts. However this model did not outperform the model 
without a limit to nearby preferences. 

The final model will always pick a “nearby song” 

if the previous recommendation was accepted. Despite our 

worries about over-fitting, this model performed the best, 
exceeding the accuracy of the model that limits nearby 

recommendations to 5 by about 10% across all listening 

contexts. 

We tested each model on 100 different users with 
20% randomness, an inner radius of 1 standard deviation and 

an outer radius of 2 standard deviations to obtain average 

accuracy for each configuration. Interestingly, the models 

trained on non-random users performed about 10% worse on 
average for the relax context than they did for the other 

contexts. While we expected slight variation between 

contexts, we did not expect to see this significant of a 

variation averaged over 100 different users. This could be 
because the centroids of the genres in the relax context tend 

to be in a sparser area of the latent space. 

In Figures 7-9 we generated a single user and 

visualized how each of our 3 models updated their means 

during a simulation of 1000 episodes. 
In Figure 7, we see the means of the model which 

does not recommend any “nearby songs” to a previously 

accepted recommendation. In this example the mean only 

appears for the exercise context. It is likely that this is 
because the model is making more correct recommendations, 

allowing it to more accurately fit to the distribution of the 

data. 

Even though the initial and final means for the 
commute context were nearby the true mean, the component 

still had low accuracy. The relax component had comparable 

accuracy to the commute component even though the initial 

and final means in the relax component were far from the 
true mean. 

In Figure 8 we see the means of the model that can 

recommend 5 consecutive “nearby songs”. In this example, 

we see that final means are far from the true means in all 
three contexts, and they do not seem to move far from their 

initial positions in the latent space. Since the models have 

decent accuracy scores, we know that correct 

 
Fig. 5: ROC curve for the user branches of the multi-task model with 10% randomness. User 1 AUC scores: exercise = 0.93, 

relax = 0.96, commute = 0.94. User 2 AUC scores: exercise = 0.94, relax = 0.91, commute = 0.94. User 3 AUC scores: exercise 
= 0.93, relax = 0.92, commute = 0.90. 

 

 
Fig. 6: ROC curve for the user branches of the multi-task model with 20% randomness. User 0 AUC scores: exercise = 0.89, 

relax = 0.88, commute = 0.86. User 1 AUC scores: exercise = 0.88, relax = 0.88, commute = 0.87. User 2 AUC scores: exercise 

= 0.87, relax = 0.88, commute = 0.89. 
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recommendations are being made. This may indicate that the 
model is over-fitting to its initial area in the latent space. 

It could be argued that this is because the initial 

mean is already nearby the true mean in the exercise and 

commute components; however, we can see in the relax 
component that the initial and final means are far from the 

true mean. 

However the means of the exercise and commute 

contexts are nearby the true mean, so they may be adequately 
representing the data. 

These plots show that the correlation between 

proximity to true mean and accuracy is complex and not easy 

to interpret from the plots. This may be a result of the 2 
dimensional PCA plot being unable adequately represent the 

true nature of the 12 dimensional space. 

In Figure 9 we see the means of the model that can 

recommend unlimited consecutive “nearby songs”. In these 
plots, we have the highest accuracy out of all of our models. 

However we don’t see a clear trend of predicted means 

approaching the true mean. Perhaps the model is over fitting 

to a certain area of the latent space and there are enough 
positive examples in that area to yield a high score. The final 

means do seem to travel farther from the initial means in this 

example as well. 

We see similar trends with Figure 8 where the 
predicted means of the relax component biases towards a 

specific area in the latent space which is far from the true 

mean. We also see that proximity of predicted means to the 

true mean does not necessarily correlate to higher accuracy. 
 

6. CONCLUSIONS 
In this work, we have demonstrated performant 

methods of modeling user song preferences across different 

user listening contexts. We have created methods for a 

supervised learning setting using a multi-task neural 

network, and in an online learning setting with our Gaussian 

fit model. Both models use a song embedding created by a 

VAE. 

Our multi-task neural network has less bias and is 
more generalizeable than our Gaussian fit model, but must 

be trained on a larger set of user listening history. With 

enough data, this model can be used to predict user song 

preferences with high AUC scores of up to .96. This model 
classifies whether or not a song would be preferred by a user 

in a given context, and could be used to assign songs to the 

appropriate playlists for different activities. 

Since our Gaussian fit model has more bias, it is 
better suited to recommend songs when the listening history 

is limited. This Gaussian bias is well suited recommend 

songs based on distances in an embedding space created by 

our VAE because the VAE enforces a smoothness and 

regularization in latent space. This model recommends songs 
and updates parameters based on whether or not a song is 

accepted for a given listening context. A different Gaussian 

distribution with full covariance is fit to each listening 

context. 
We also found that the Gaussian fit model makes 

better recommendations when it biases subsequent 

recommendations to areas nearby a previously accepted 

recommendation in the latent space. This model can 
recommend songs with an average accuracy of up to 97%. 

If used in tandem, the Gaussian fit model could be 

used to recommend songs and create a listening history. 

When the listening history is large enough, the multitask 
neural network can be used to create personalized playlists 

for different listening contexts. 

It is important to address the limitations involved 

in this experiment regarding the use of artificially generated 
users. The methods used to train and test our models are only 

constructive if our artificial users can accurately model a true 

user. We designed the artificial users and constructed a 

model that is optimized to solve it. However, we do believe 
our methods were stringent and our artificially generated 

users do represent a useful representation of user’s listening 

habits for different contexts. 

 

Model Exercise Relax Commute 

Random User No Nearby 3.2% 2.7% 2.8% 

No Nearby 68.1% 58.9% 66.1% 

5 Nearby 89.7% 77.9% 86.3% 

All Nearby 97.0% 85.9% 94.9% 

Table 3: Average accuracy over 100 users for each activity. Each activity runs for 1000 episodes. The first row is a model 

fit on users with completely random preferences. The other rows are models fit on a users with 20% random preferences 

with different nearby recommendation limits. 
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Fig. 7: Principal components plot with the means of a model 
that does not recommend “nearby songs”. The cyan triangle 

depicts the true mean of the activity preferences, the yellow 

circle depicts the mean of the preference before adding 

noise, the black square depicts the initial mean of the model 
after batch fitting, the red ’X’ depicts the final mean of the 

Gaussian, and the orange dots represent the path that the 

mean of the Gaussian fit takes as it travels from first to last 

mean. Blue dots are ground truth user preferences. 

 
Fig. 8: Principal components of the means of a model that 
recommends up to 5 consecutive “nearby songs”. The cyan 

triangle depicts the true mean of the activity preferences, the 

yellow circle depicts the mean of the preference before 

adding noise, the black square depicts the initial mean of the 
model after batch fitting, the red ’X’ depicts the final mean 

of the Gaussian, and the orange dots represent the path that 

the mean of the Gaussian fit takes as it travels from first to 

last mean. Blue dots are ground truth user preferences. 
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Fig. 9: Principal components of the means of the model can 

recommend unlimited consecutive “nearby songs”. The cyan 

triangle depicts the true mean of the activity preferences, the 
yellow circle depicts the mean of the preference before 

adding noise, the black square depicts the initial mean of the 

model after batch fitting, the red ’X’ depicts the final mean 

of the Gaussian, and the orange dots represent the path that 
the mean of the Gaussian fit takes as it travels from first to 

last mean. Blue dots are ground truth user preferences. 

 

7. FUTURE WORK 
To expand on this work, we could improve on our 

song embedding by experimenting with different types of 
encoders. We use a simple VAE with mean squared error as 

reconstruction loss because our data contained more 
continuous than categorical variables. However using a 

method like Gaussian Bernoulli Variational Auto Encoder 

(GB-VAE) [31], we could compute a binary cross entropy 

reconstruction loss for one-hot encoded categorical 
variables, and mean squared error reconstruction loss for 

continuous variables. Other encoding methods like an 

Adversarial Auto-Encoder (AAE) [32] or Adversarial Latent 

Auto-Encoder (ALAE) [33] would be able to better enforce 
a desired distribution on the song embedding. 

We could improve our artificial users by 

representing each activity preference as a random mixture of 

n genres pertaining to the activity. This could result in a 
better representation of actual user preferences and be left 

with more irregularly distributed preferences. 

We may also improve our Gaussian fit model by 

representing the overall preference distributions for each 

context as Gaussian mixture. By using Variational Bayesian 

Gaussian Mixture Model [34] we could learn the number of 

Gaussian components instead of setting the number as a 

fixed parameter. 
We believe that recommending music to listeners 

based on their current activities and listening contexts can 

enhance the user’s listening experience [1]. We envision our 

models recommending music customized to tasks like 
exercising, studying, relaxing or commuting. As activity 

tracking technology becomes more accessible and 

unobtrusive, our methods can lay the groundwork for the 

next leap in music recommendation. 
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