
SMU Journal of Undergraduate Research SMU Journal of Undergraduate Research

Volume 8 Issue 2 Article 2

May 2024

Context Aware Music Recommendation and Playlist Generation Context Aware Music Recommendation and Playlist Generation

Elias Mann
Southern Methodist University, emann@smu.edu

Follow this and additional works at: https://scholar.smu.edu/jour

 Part of the Artificial Intelligence and Robotics Commons, Data Science Commons, and the Statistical

Models Commons

Recommended Citation Recommended Citation
Mann, Elias (2024) "Context Aware Music Recommendation and Playlist Generation," SMU Journal of
Undergraduate Research: Vol. 8: Iss. 2, Article 2. DOI: https://doi.org/10.25172/jour.8.2.1
Available at: https://scholar.smu.edu/jour/vol8/iss2/2

This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU
Journal of Undergraduate Research by an authorized administrator of SMU Scholar. For more information, please
visit http://digitalrepository.smu.edu.

https://scholar.smu.edu/jour
https://scholar.smu.edu/jour/vol8
https://scholar.smu.edu/jour/vol8/iss2
https://scholar.smu.edu/jour/vol8/iss2/2
https://scholar.smu.edu/jour?utm_source=scholar.smu.edu%2Fjour%2Fvol8%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholar.smu.edu%2Fjour%2Fvol8%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholar.smu.edu%2Fjour%2Fvol8%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=scholar.smu.edu%2Fjour%2Fvol8%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=scholar.smu.edu%2Fjour%2Fvol8%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/jour/vol8/iss2/2?utm_source=scholar.smu.edu%2Fjour%2Fvol8%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

Context Aware Music Recommendation and Playlist Generation Context Aware Music Recommendation and Playlist Generation

Cover Page Footnote Cover Page Footnote
I would like to express my gratitude to Dr. Michael Hahsler, for his guidance and support throughout this
research project. His insightful feedback and expertise have been instrumental in shaping the direction
and focus of this work. I would also like the thank Dr. Eric Larson for his guidance and instruction in his
machine learning course through which he allowed me to explore multi-task learning in this research as a
project for his course.

This article is available in SMU Journal of Undergraduate Research: https://scholar.smu.edu/jour/vol8/iss2/2

https://scholar.smu.edu/jour/vol8/iss2/2

Context Aware Music Recommendation and Playlist

Generation

Elias Mann1

emann@smu.edu

Michael Hahsler1

ABSTRACT
There are many reasons people listen to music, and the type of music is largely determined by what the listener may be doing while

they listen. For example, one may listen to one type of music while commuting, another while exercising, and yet another while
relaxing. Without access to the physiological state of the user, current music recommendation methods rely on collaborative

filtering - recommending music based on what other similar users listen to - and content based filtering - recommending songs

based on their similarities to songs the user already prefers. With the increasing popularity of smart devices and activity trackers,

physiological context can emerge as a new channel to inform music recommendations. We propose deep learning solutions for
context aware recommendation and playlist generation. Specifically, we use variational autoencoders (VAEs) to create a song

embedding. We then explore multi-task multi-layer perceptrons (MLPs) and Gaussian mixture models to recommend songs based

on context. We generate artificial user data to train and test our models in online learning and supervised learning settings.

1. INTRODUCTION
As smart devices and activity trackers become

more available and affordable, more people purchase these

products which constantly monitor their physiological state.

We believe that music recommendation systems can be

improved and personalized by leveraging the increasing
prevalence of activity trackers. In general people listen to

different types of music for different activities [1]. We

believe that by recommending the right music for these

activities, we can build a recommendation system that can
enhance the experiences for the user.

In this paper, we explore two different methods for

recommending music based on context. While we

experiment with the context groups running, commuting,
and relaxing, context can be expressed in a variety of ways

including the user’s physiological state or location for

example.

For our analysis, we use a subset of the Million
Spotify Playlist Dataset [2]. This subset consists of 32,200

songs retrieved using the Spotify API. For each song we

retrieve metadata - genres, popularity, artist etc. - and song

features - tempo, key, loudness etc. - from the Spotify API.
All features and metadata were created by Spotify [3].

We use a VAE [4] to create a regularized song

feature embedding. We use genre-based clustering within

that embedding to generate artificial users with specific
preferences for different activities. For our first

recommendation method, we create a multi-task neural

network to predict during which activities a user would listen

to given song. For our second method, we created an online
learning environment in which we created a Gaussian

mixture model [5] to learn user preferences and create online

task-specific song recommendations.

1 Department of Computer Science, Southern Methodist University

2. BACKGROUND

 2.1 Recommendation Systems
Recommendation systems filter information in

order to personalize which content is presented to a user at a

given time [6]. Most state-of-the-art music recommender

systems use a combination of collaborative filtering and

content based filtering [7].
In the context of music recommendation systems,

collaborative filtering [8, 9] is a process that uses the

relationships between multiple users and their listening

preferences to make recommendations to individual users
[10]. For example, if user 1 and user 2 have similar listening

histories, user 1 may be recommended a song that user 2

likes that user 1 has not yet heard. This technique is

implemented in varying levels of complexity.
Another umbrella term for recommendation

strategies is content-based filtering [11, 12]. This refers to a

recommendation system which uses features from the songs

in a user’s listening history in order to recommend other,

similar songs. Similarity can be represented in many layers

of abstraction from raw audio signals to similarities between

lyrics, to song metadata. The popular music streaming

service Spotify uses a combination of these methods to
personalize user recommendation [3].

Another increasingly prevalent type of

recommendation system is context-based recommendation

[13, 14]. These systems further personalize
recommendations by considering contextual factors like

location, weather, and surroundings. Context can be

provided in a variety of methods including using external
internet-of-things (IOT) devices [15] like smart watches and

activity trackers.

1

Mann: Context Aware Music Recommendation and Playlist Generation

Published by SMU Scholar, 2024

 2.2 Embeddings
When working with high dimensional data, it is

common to use an embedding to create lower dimensional,
dense vector representations of the original data. This can be

useful since working directly with high dimensional data

requires larger amounts of computation, which can lead to

“the curse of dimensionality”; a phenomenon in machine
learning algorithms where performance deteriorates due to

high dimensionality [16], and may not capture meaningful

relationships in the data.

When the data is compressed to lower dimensions,
the process can reduce noise, and redundant and irrelevant

information in the data. In doing so, a proper embedding

highlights meaningful patterns and relationships in the data,

which can improve model performance and generalizability
[17].

Common uses for embeddings can be found in

natural language processing (NLP) with the popular GloVe

[18] and Word2Vec [19] embeddings which are used to
represent words in a continuous vector space. These vectors

represent the semantic relationships between words and are

the foundation of many NLP models.

We create a song embedding using a variational
autoencoder to train our recommendation and playlist

generation models.

 2.3 Variational Auto Encoders
A variational autoencoder (VAE) [4, 20] is an

encoder-decoder model. The encoder learns to map data
from a high dimensional input space to a low dimensional

latent space, and the corresponding decoder maps the data

from the low dimensional latent space back to the high

dimensional input space. Unlike traditional autoencoders,
VAEs use variational inference to force a regularized

distribution on the latent space. This is done by modifying

the loss function to include a Kullback-Leibler (KL)

divergence penalty term, and by employing a sampling layer
to generate new data from the learned latent space.

The KL divergence term is a measure of how

different the latent space distribution is from a standard

normal distribution. The KL divergence term is minimized
by the VAE so the latent space distribution is as close to a

standard normal distribution as possible.

The VAE is trained by minimizing the sum of the

reconstruction loss and the KL divergence term. In the
simplest methods, the reconstruction loss can be defined by

mean squared error.

MSE =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

KL(𝑞𝜙(𝑧|𝑥)||𝑝(𝑧)) = −
1

2
∑(1 + log(𝜎𝑗

2) − 𝜇𝑗
2 − 𝜎𝑗

2)

𝐽

𝑗=1

VAE Loss = MSE + KL

It is also common to use binary cross entropy

(BCE) for reconstruction loss and add a small scaling factor
λ to the KL divergence term. We also tested our VAE using

this method but found better results with MSE. This could be

because we had more continuous than discrete feature

values, MSE tends to perform better for continuous data
while BCE tends to perform better for discrete data.

Another way that smoothness in the latent space is

enforced in the VAE is through the sampling layer. This

allows the models to generate new samples that are similar
to the ones that it has already been trained on. During the

sampling process a noise variable is added which is

randomly drawn from a Gaussian distribution. Samples are

generated by mapping the variable to the mean and variance
of the learned distribution of the latent space. This process is

called the reparameterization trick, and makes sampling

differentiable so that the model can be optimized using

gradient descent [4]. This enforces smoothness by
constraining the latent vectors to be near the origin and

exhibit a Gaussian distribution.

Together, the KL-divergence penalty term and

sampling layer force the learned latent space to be smooth,

regular, and distances between points in the latent space to

be meaningful.

 2.4 Multi-Task Learning
Multi-task learning [21] is an approach where a

single model is trained to perform multiple related tasks
simultaneously, rather than training separate models for each

task. This approach is based on the intuition that tasks often

share common features or information; by learning them

jointly, the model can exploit these shared characteristics to

improve performance on all tasks.

In the context of music recommendation, this

learning strategy can be utilized to ameliorate the cold start

problem, an issue with content-based recommendation
systems [22]. If each task represents a different user, weights

for the branches of a new user can be initialized as an average

of the weights from the other users. This would be an

example of introducing a “warm start” to the model.

 2.5 Gaussian Mixture Models
A Gaussian mixture model (GMM) [5] is a

probabilistic model that assumes that the observed data is

generated from a mixture of several Gaussian distributions,

each with their own mean and covariance matrix. The PDF
for a Gaussian mixture model is as follows

𝑝(𝑥) = ∑ 𝜋𝑘

𝐾

𝑘=1

𝒩(𝑥|𝜇𝑘 , Σ𝑘)

where 𝑥 is the observed data, 𝜋𝑘 is the mixing

coefficient for the 𝑘th Gaussian distribution, and

𝒩(𝑥|𝜇𝑘 , Σ𝑘) is the multivariate Gaussian probability density

function with mean vector 𝜇𝑘 and covariance matrix Σ𝑘.

In this paper, the user preferences are modeled by

a Gaussian mixture with each activity being a component k.

Each distribution has full covariance and the component is
explicitly defined at training and inference.

 2.6 Online Learning
Online learning [23] is a process in which a model

is trained on real-time data as it becomes available,
continuously adapting the model. This is in contrast with

2

SMU Journal of Undergraduate Research, Vol. 8, Iss. 2 [2024], Art. 2

https://scholar.smu.edu/jour/vol8/iss2/2
DOI: https://doi.org/10.25172/jour.8.2.1

batch learning in which the model is trained in batches of

data after it has all been collected. Online learning is useful

for models that need to adapt to changes in the distribution

of data, and continuously improve the model as new data
becomes available. This is especially useful in

recommendation systems, speech recognition, and

autonomous vehicles [24].

3. METHOD

 3.1 Dataset
Our data was a 32,200 song subset for the Million

Spotify Playlist Dataset [2]. This dataset consists of user

generated playlists on Spotify, each with a list of songs and

identifying information about each song. The dataset was

publicly released in 2018 as part of a recommendation

system challenge and is available for research and

noncommercial use.

The information we used were the track id, and

artist id. With these identifiers, we used Spotify API to
retrieve features and metadata about each song. Song

features were created by Spotify through their proprietary

music information retrieval models [3]. The features and

metadata we used are detailed in Table 1.
We simplified genres by only assigning the first

genre in the genre list to each track. Additionally, we only

maintain the top 25 genres, which account for 78% of our

data. The rest of the genres we labeled as ’other’. All of the
listed metadata and features except for genre were used to

create our song embedding. Songs with similar features

sound similar [3] and songs in the same genre also tend to

sound similar. We used the genre to validate that our
embedding created meaningful spatial representations of

song similarity. Songs in the same genre should tend to be

closer to one another than to songs from different genres.

 3.2 Song Embedding
In order to create our song embedding, we

constructed a (VAE) using mean-squared error and KL

divergence for the loss function. After encoding our

categorical features, we expanded our 12 input features to 24

dimensions. The VAE scales feature representations down to

a 12 dimensional latent space. We chose to scale down to

half of the original dimensions in order to preserve

information from the original features, while still allowing
the model to be deep enough to learn complex relationships

in the data. The encoder and decoder each had 3 dense layers.

In the encoder the size of each subsequent layer was scaled

down by a factor of approximately 0.75. In the decoder, the
size of each subsequent layer was scaled up by a factor of

approximately 1.3. Hidden layers used ReLU [27] activation

functions and the decoder output is tanh [28] activation

function.

 3.3 Multi-Task Model
The goal for our multi-task model wad to generate

playlists for different activities given the user’s listening

history. The input was a song and the model predicted which

activity class it belonged to. Multiple activities could be
predicted for a given song. In this model, we started by

retrieving the 12 dimensional latent space vector for a given

song. While the rest of the model was trainable, the encoder

was not. The general branch and shared dense layer were
trained first on all of the users in a supervised setting. The

shared layer had 12 units, the same as the latent space, and

acted as a trainable embedding layer for the model. There

were two middle layers in the general model with sizes of 9
and 7 and ReLU [27] activation. The output later had 3 units

with sigmoid [29] activation. The user branches, which were

identical to the general model in architecture, were

initialized with the weights of the general branch. During the
training for the rest of the model, the general branch was

removed. In each training step, the model alternated training

between each user branch as not to over-fit the model to one

user. All models shared an early dense layer, the intuition for
which was to allow the model to learn shared information

across all users, while also allowing each user branch to

learn information specific to their listening preferences. By

having a shared dense layer, the model could learn common
features that are important for all users. At the same time,

each user branch could learn personalized features that were

unique to their individual preferences. This approach

Feature/Metadata Explanation Type

acousticness A confidence measure of whether the track is acoustic. float

energy

danceability

A perceptual measure of intensity and activity.

A measure of how suitable a track is for dancing.

float

float

instrumentalness A likelihood measure of whether the track contains no vocals. float

key The key of the track. Encoded with pitch class notation [25]. integer

liveness A likelihood measure of whether the track was performed with an audience. float

mode

speechiness

Indicates if the track is major or minor.

A measure of whether the track contains spoken (not sung) words.

integer

float

tempo

valence

Estimated beats per minute of a track.

A measure of the musical positiveness conveyed by a track (happy or sad)

float

float

artist popularity
genre

track popularity

Popularity of the artist 0 to 100.
List or genres associated with artist.

Popularity of the track 0 to 100.

integer
array of strings

integer

Table 1: Descriptions of track features and metadata retrieved from Spotify API, derived from its documentation [26].

3

Mann: Context Aware Music Recommendation and Playlist Generation

Published by SMU Scholar, 2024

allowed the model to balance between generalization and
personalization, which is important for creating a successful

recommendation system that can generalize to a diverse set

of users.

 3.4 Gaussian Fit Model
The Gaussian fit model was trained in a online

learning environment. It was initialized with 4 preferences

for the user for each activity. The model then batch fitted a

Gaussian distribution with full covariance to the initial

points.

Given a batch of data 𝑋 ∈ ℝ𝑚×𝑛, where 𝑚 is the

number of samples and 𝑛 is the dimensionality of each

sample, batch fit computes the maximum likelihood

estimates of the parameters of a Gaussian component 𝑗 with

full covariance matrix: The mean vector 𝑥𝑗 ∈ ℝ𝑛 is

estimated as:

𝑥𝑗 =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

where 𝑥𝑖 is the 𝑖-th sample in 𝑋. The covariance matrix 𝑄𝑗 ∈

ℝ𝑛×𝑛 is estimated as

𝑄𝑗 =
1

𝑚
∑(𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑗)

𝑇
𝑚

𝑖=1

At inference time, the model randomly picked a

song that fell within radius 𝑟 away from the mean of that
Gaussian in the latent space for recommendation. For our

experiment we chose 𝑟 to be 1 standard deviation of the

Gaussian distribution in order to include characteristic songs

for that distribution. It then proposed the song to the user. If
the user rejected the song, then the model recommended a

new song. Previously recommended songs were not re-

recommended within the same session. If the song was

accepted, the model online-fitted the distribution to include
the newly accepted song.

Given a new observation 𝑥 ∈ ℝ𝑛, the online-fit

updates the running mean 𝜇:

𝑥𝑗 ← 𝑥𝑗 + 𝛼𝜇(𝑥 − 𝑥𝑗)

where the scaling factor 𝛼𝜇 =
1

𝑁
. 𝑁 Is the total number of

observations 𝑥 that the distribution has been fitted to,
including those that were fit with batch fit. The function

updates the running covariance matrix 𝑄𝑗:

𝑄𝑗 ← 𝑄𝑗 + 𝛼𝜎[(𝑥 − 𝑥𝑗) ⊗ (𝑥 − 𝑥𝑗) − 𝑄𝑗]/𝑁

where ⊗ denotes outer product, / denotes element-wise

division and the scaling factor 𝛼𝜎 = 𝛼𝜇(1 − 𝛼𝜇).

When a user accepted a new song the next song

could picked as a “nearby song” within the distribution. This
means that the next song choice could be biased towards an

area in the latent space that was near to the previously

accepted recommendation. We dd this by defining a new

distribution with the mean at the location in the latent space
of the previously accepted song, and the same covariance

matrix as the overall preference distribution. The new

distribution was then scaled down in magnitude by a tunable

parameter that defaults to 10%. The next recommendation

was chosen from the subset of songs that existed in the area

that was within one standard deviation from the mean of the

new distribution and within one standard deviation from the

mean of the overall preference distribution.

Fig. 1: Multi-task recommendation architecture. Output is a sigmoid activation function with 3 output units each corresponding

to the probability of a song existing in a given activity preference. Notice that one song can be recommended for multiple

activities. 𝑊𝑔 denotes the weights of the general branch, 𝑊𝑖 denotes the initial weights for a user branch.

4

SMU Journal of Undergraduate Research, Vol. 8, Iss. 2 [2024], Art. 2

https://scholar.smu.edu/jour/vol8/iss2/2
DOI: https://doi.org/10.25172/jour.8.2.1

In order to avoid over fitting to one area in the

latent space, the next song recommendation was not always

a “nearby song”. Every 𝑏 recommendations, the next song

was randomly sampled from the overall preference

distribution without nearby bias. 𝑏 was a tuneable parameter.

Since the model was actively learning, this parameter

encouraged the mean and covariance of the model to better

represent that of the users true preferences, and mitigated
optimizing to small local areas of the latent space.

The intuition behind choosing a nearby song to the

previously accepted song was to capture the preferences of

the current listening session. Additionally, just because a
user liked listening to two different songs for exercising, that

does not necessarily mean that the user wants to hear them

consecutively. Choosing a “nearby song” can facilitate

smoother transitions between songs in a session. An intuition
behind abandoning closeness after successfully

recommending 𝑏 songs was that the user gets tired of

listening to songs that sound similar and want to hear

something new.

4. EXPERIMENT

 4.1 Generating Artificial Users
Without access to a large user base or test subjects,

we created artificial users in order to efficiently train and test

our models. To create these users, we used genre-based

clustering. Since songs in the same genre have higher

probabilities of sounding similar, we believe this is a

convenient way to create realistic a listening preference. We

initially compiled a list of genres that would be characteristic

genres to listen to for exercising, commuting, and relaxing.

These lists of genres did have some overlapping genres. The
listening preference for each activity for each user was

represented by a randomly chosen genre that represented the

activity. In order to create the clusters and populate the

listening preferences, we found the centroid of a given genre
and determine all of the songs which were within a given

radius from that centroid - for our experiments, we chose one

standard of deviation as the radius. By selecting all of these

songs, we are left with songs that sound like a characteristic
song of the genre, even if it was not explicitly labeled as that

genre. Next we introduced randomness which we

implemented in two different ways. The first was to choose

a percentage of the songs within the radius, remove them
from the preferred songs, then randomly sample the same

number of songs from the rest of the latent space and add

them to the preferences. The second method was to define a

second radius in the latent space - 2 standard deviations from
the mean in our experiments - and the new randomly

sampled songs came from the area in the latent space

between the radii. Both methods of introducing randomness

were attempts to more accurately simulate a real user’s

preferences. The second method intuits that the outlier songs

will still be somewhat near the characteristic centroid song,

not on the opposite side of the latent space.

Fig. 2: Online learning environment for Gaussian mixture model. Fitting a Gaussian distribution with full covariance to user

preferences in latent space. Notice that when the previous recommendation was correct, the model may sample from within a

similar scaled-down Gaussian distribution to enforce closeness to the previous song. The actual latent space is 12 dimensional,
yet we are depicting 2 principal components in this figure.

5

Mann: Context Aware Music Recommendation and Playlist Generation

Published by SMU Scholar, 2024

 4.2 Multi-Task Training
We first trained our multi-task model on 3 users

with a centroid radius of 1 and 10% randomness. Then we
trained them on similar users with 20% randomness. These

users did not include an outer radius so the random sampled

were from the entire latent space. As detailed in section 3.3,

we first train a general branch to initialize the weights of the
individual user branch, remove the general branch after

weight initialization, then train the multi-task model to

convergence.

 4.3 Gaussian Fit Training
We trained our Gaussian fit model in an online

learning environment. In our environment, the user initially

gives 𝑛 songs that they prefer for each genre, which we batch
fit our model to. This was the smallest amount of initial

samples required to reliably be able to sample real songs

from the latent space. After a song is recommended, the user

accepts or rejects the song. As detailed in section 3.4, the
model fits to accepted songs, and may enforce the next

recommendation to be close to the previously accepted song.

We trained models on 2 types of users: a user whose

preferences are randomly sampled from the entire latent
space, and on a user with an inner radius of 1 standard

deviation, an outer radius of 2 standard deviations, and 20%

randomness. The completely random user was tested with a

model that does not select nearby recommendations. The
second user was tested with 3 different model

configurations: 1 that does not recommend nearby samples,

1 that can recommend up to 5 consecutive nearby samples,
and 1 that always recommends a nearby sample if the

previous sample was correct. All models were trained with

an initial 4 random samples songs for each activity. After

batch fitting on these samples, we ran our online learning
environment for 3000 episodes, switching between activities

every 10 episodes as a rudimentary way of simulating users

moving between environments.

5. RESULTS
We found that our multi-task model is able to

accurately predict preferences for 3 different users across 3
different listening contexts with the low AUC of 0.86 and

high of 0.96 a across all users and contexts. We also found

that the multi-task nature of our model with individual

branches for each user does allow for a better representation
of individual user preferences. This is evident from our

individual user branch scores being greater than or equal to

the scores of the general branch across all contexts. The AUC

scores for each user across all contexts decrease by about
0.05 when the user’s random preferences are increased from

10% to 20%. The AUC scores for users with 20% random

preferences were still high with the lowest being 0.86 and

highest being 0.89. This shows that our model can generalize
well to users with more sporadic listening preferences.

We also found our best Gaussian fit model

recommends songs in our listening simulation environment

with an average of 92.6% accuracy across all listening
contexts. Averaging over 100 simulations of 1000 episodes

Fig. 3: Left: Representation of different genres in the latent space. Right: Preferences for an artificial user with a radius of 1

standard deviation, an outer radius of 2 standard deviations and randomness of 25%.

6

SMU Journal of Undergraduate Research, Vol. 8, Iss. 2 [2024], Art. 2

https://scholar.smu.edu/jour/vol8/iss2/2
DOI: https://doi.org/10.25172/jour.8.2.1

on different users, the model had an accuracy of 97% for

exercise context, 85.9% for relax context, and 94.9% for

commute context.

Interestingly, the highest performing model is the

one which can recommend unlimited consecutive “nearby
songs”. We expected this model to over-fit to small areas in

the latent space, and therefore be unable to effectively model

the user preference distribution across contexts. The model

which we designed to mitigate over-fitting by only
recommending 5 consecutive “nearby songs” performed

worse than the unlimited model with an average accuracy of

84.6% across all contexts. Our model which does not

recommend “nearby songs” performed the worst with an
average accuracy of 64.4% across all contexts.

 5.1 Multi-Task Model
For our AUC scores and ROC curves [30], true

positives are when the model predicts a greater than 50%

chance that a song belongs to a given activity and that song
is indeed a preference for the given user. A false positive is

when the model predicts a greater than 50% chance that a

song belongs to a given activity, and it is not a preference for

the user.

We found that the AUC scores for the individual

user branches exceeded those of the general model for relax

and commute, but were the same for exercise (see Figure 5).

The individual users also had slightly varying scores. We

expected the user branches to have better results than the
general branches since they were designed to optimize to

their respective users. We believe inconsistencies between

the individual models could be due to some preferences

being more difficult to learn than others. Since the genres
which represent activities are chosen at random, activities

with lower AUC scores could have fewer examples to learn

from.

We found that when predicting users with 20%
randomness instead of 10% randomness, that while our

model scores did decrease by about 0.05 on average, the

AUC scores were still high (see Figure 6). This shows that

the model can generalize well to users with less consistent
preferences.

 5.2 Gaussian Fit Model
Accuracy is defined by the total number of

accepted recommendations divided by the total number of

recommendations made during the simulation.
We validated our model by conducting four

different experiments. The first was to test the Gaussian fit

model on completely random data. As expected accuracy

was low, this establishes a baseline to compare models on
no-random users. This experiment also shows that the

Gaussian bias of our model does not allow it to over-fit to

random noise.

Next we generated a user, and tested a model that
does not make nearby recommendations. This model fits an

individual Gaussian distribution to each listening context.

While the performance of this model was still able to

adequately make 66-69% correct predictions depending on
the context, this model performed the worst out of the models

fit to non-random users.

Our next model used a nearby recommendation

method where if the previously recommended song was
accepted, it would choose a “nearby song”. However, after 5

consecutive nearby songs, the model again sampled from the

overall preference distribution. We believed that this would

be the best method as it would be more likely to focus on
areas of the latent space where preferences have been found,

but would not over-fit to that area. This model outperformed

Model User Exercise Relax Commute

General Branch 10% Random 0.90 0.88 0.90

Individual Branches 10% Random

 User 1 0.93 0.96 0.94

 User 2 0.94 0.91 0.94

 User 3 0.93 0.92 0.90

Individual Branches 20% Random

 User 1 0.89 0.88 0.86

 User 2 0.88 0.88 0.87

 User 3 0.87 0.88 0.89

Table 2: AUC scores for each branch with a 10% random user, and AUC scores for individual branches with a 20% random

user.

Fig. 4: ROC curve for the general branch of the multi-

task model. AUC scores: exercise = 0.90, relax = 0.88,

commute = 0.90

7

Mann: Context Aware Music Recommendation and Playlist Generation

Published by SMU Scholar, 2024

the random model drastically and it outperformed the model

without nearby recommendations by about 20% across all

contexts. However this model did not outperform the model
without a limit to nearby preferences.

The final model will always pick a “nearby song”

if the previous recommendation was accepted. Despite our

worries about over-fitting, this model performed the best,
exceeding the accuracy of the model that limits nearby

recommendations to 5 by about 10% across all listening

contexts.

We tested each model on 100 different users with
20% randomness, an inner radius of 1 standard deviation and

an outer radius of 2 standard deviations to obtain average

accuracy for each configuration. Interestingly, the models

trained on non-random users performed about 10% worse on
average for the relax context than they did for the other

contexts. While we expected slight variation between

contexts, we did not expect to see this significant of a

variation averaged over 100 different users. This could be
because the centroids of the genres in the relax context tend

to be in a sparser area of the latent space.

In Figures 7-9 we generated a single user and

visualized how each of our 3 models updated their means

during a simulation of 1000 episodes.
In Figure 7, we see the means of the model which

does not recommend any “nearby songs” to a previously

accepted recommendation. In this example the mean only

appears for the exercise context. It is likely that this is
because the model is making more correct recommendations,

allowing it to more accurately fit to the distribution of the

data.

Even though the initial and final means for the
commute context were nearby the true mean, the component

still had low accuracy. The relax component had comparable

accuracy to the commute component even though the initial

and final means in the relax component were far from the
true mean.

In Figure 8 we see the means of the model that can

recommend 5 consecutive “nearby songs”. In this example,

we see that final means are far from the true means in all
three contexts, and they do not seem to move far from their

initial positions in the latent space. Since the models have

decent accuracy scores, we know that correct

Fig. 5: ROC curve for the user branches of the multi-task model with 10% randomness. User 1 AUC scores: exercise = 0.93,

relax = 0.96, commute = 0.94. User 2 AUC scores: exercise = 0.94, relax = 0.91, commute = 0.94. User 3 AUC scores: exercise
= 0.93, relax = 0.92, commute = 0.90.

Fig. 6: ROC curve for the user branches of the multi-task model with 20% randomness. User 0 AUC scores: exercise = 0.89,

relax = 0.88, commute = 0.86. User 1 AUC scores: exercise = 0.88, relax = 0.88, commute = 0.87. User 2 AUC scores: exercise

= 0.87, relax = 0.88, commute = 0.89.

8

SMU Journal of Undergraduate Research, Vol. 8, Iss. 2 [2024], Art. 2

https://scholar.smu.edu/jour/vol8/iss2/2
DOI: https://doi.org/10.25172/jour.8.2.1

recommendations are being made. This may indicate that the
model is over-fitting to its initial area in the latent space.

It could be argued that this is because the initial

mean is already nearby the true mean in the exercise and

commute components; however, we can see in the relax
component that the initial and final means are far from the

true mean.

However the means of the exercise and commute

contexts are nearby the true mean, so they may be adequately
representing the data.

These plots show that the correlation between

proximity to true mean and accuracy is complex and not easy

to interpret from the plots. This may be a result of the 2
dimensional PCA plot being unable adequately represent the

true nature of the 12 dimensional space.

In Figure 9 we see the means of the model that can

recommend unlimited consecutive “nearby songs”. In these
plots, we have the highest accuracy out of all of our models.

However we don’t see a clear trend of predicted means

approaching the true mean. Perhaps the model is over fitting

to a certain area of the latent space and there are enough
positive examples in that area to yield a high score. The final

means do seem to travel farther from the initial means in this

example as well.

We see similar trends with Figure 8 where the
predicted means of the relax component biases towards a

specific area in the latent space which is far from the true

mean. We also see that proximity of predicted means to the

true mean does not necessarily correlate to higher accuracy.

6. CONCLUSIONS
In this work, we have demonstrated performant

methods of modeling user song preferences across different

user listening contexts. We have created methods for a

supervised learning setting using a multi-task neural

network, and in an online learning setting with our Gaussian

fit model. Both models use a song embedding created by a

VAE.

Our multi-task neural network has less bias and is
more generalizeable than our Gaussian fit model, but must

be trained on a larger set of user listening history. With

enough data, this model can be used to predict user song

preferences with high AUC scores of up to .96. This model
classifies whether or not a song would be preferred by a user

in a given context, and could be used to assign songs to the

appropriate playlists for different activities.

Since our Gaussian fit model has more bias, it is
better suited to recommend songs when the listening history

is limited. This Gaussian bias is well suited recommend

songs based on distances in an embedding space created by

our VAE because the VAE enforces a smoothness and

regularization in latent space. This model recommends songs
and updates parameters based on whether or not a song is

accepted for a given listening context. A different Gaussian

distribution with full covariance is fit to each listening

context.
We also found that the Gaussian fit model makes

better recommendations when it biases subsequent

recommendations to areas nearby a previously accepted

recommendation in the latent space. This model can
recommend songs with an average accuracy of up to 97%.

If used in tandem, the Gaussian fit model could be

used to recommend songs and create a listening history.

When the listening history is large enough, the multitask
neural network can be used to create personalized playlists

for different listening contexts.

It is important to address the limitations involved

in this experiment regarding the use of artificially generated
users. The methods used to train and test our models are only

constructive if our artificial users can accurately model a true

user. We designed the artificial users and constructed a

model that is optimized to solve it. However, we do believe
our methods were stringent and our artificially generated

users do represent a useful representation of user’s listening

habits for different contexts.

Model Exercise Relax Commute

Random User No Nearby 3.2% 2.7% 2.8%

No Nearby 68.1% 58.9% 66.1%

5 Nearby 89.7% 77.9% 86.3%

All Nearby 97.0% 85.9% 94.9%

Table 3: Average accuracy over 100 users for each activity. Each activity runs for 1000 episodes. The first row is a model

fit on users with completely random preferences. The other rows are models fit on a users with 20% random preferences

with different nearby recommendation limits.

9

Mann: Context Aware Music Recommendation and Playlist Generation

Published by SMU Scholar, 2024

Fig. 7: Principal components plot with the means of a model
that does not recommend “nearby songs”. The cyan triangle

depicts the true mean of the activity preferences, the yellow

circle depicts the mean of the preference before adding

noise, the black square depicts the initial mean of the model
after batch fitting, the red ’X’ depicts the final mean of the

Gaussian, and the orange dots represent the path that the

mean of the Gaussian fit takes as it travels from first to last

mean. Blue dots are ground truth user preferences.

Fig. 8: Principal components of the means of a model that
recommends up to 5 consecutive “nearby songs”. The cyan

triangle depicts the true mean of the activity preferences, the

yellow circle depicts the mean of the preference before

adding noise, the black square depicts the initial mean of the
model after batch fitting, the red ’X’ depicts the final mean

of the Gaussian, and the orange dots represent the path that

the mean of the Gaussian fit takes as it travels from first to

last mean. Blue dots are ground truth user preferences.

10

SMU Journal of Undergraduate Research, Vol. 8, Iss. 2 [2024], Art. 2

https://scholar.smu.edu/jour/vol8/iss2/2
DOI: https://doi.org/10.25172/jour.8.2.1

Fig. 9: Principal components of the means of the model can

recommend unlimited consecutive “nearby songs”. The cyan

triangle depicts the true mean of the activity preferences, the
yellow circle depicts the mean of the preference before

adding noise, the black square depicts the initial mean of the

model after batch fitting, the red ’X’ depicts the final mean

of the Gaussian, and the orange dots represent the path that
the mean of the Gaussian fit takes as it travels from first to

last mean. Blue dots are ground truth user preferences.

7. FUTURE WORK
To expand on this work, we could improve on our

song embedding by experimenting with different types of
encoders. We use a simple VAE with mean squared error as

reconstruction loss because our data contained more
continuous than categorical variables. However using a

method like Gaussian Bernoulli Variational Auto Encoder

(GB-VAE) [31], we could compute a binary cross entropy

reconstruction loss for one-hot encoded categorical
variables, and mean squared error reconstruction loss for

continuous variables. Other encoding methods like an

Adversarial Auto-Encoder (AAE) [32] or Adversarial Latent

Auto-Encoder (ALAE) [33] would be able to better enforce
a desired distribution on the song embedding.

We could improve our artificial users by

representing each activity preference as a random mixture of

n genres pertaining to the activity. This could result in a
better representation of actual user preferences and be left

with more irregularly distributed preferences.

We may also improve our Gaussian fit model by

representing the overall preference distributions for each

context as Gaussian mixture. By using Variational Bayesian

Gaussian Mixture Model [34] we could learn the number of

Gaussian components instead of setting the number as a

fixed parameter.
We believe that recommending music to listeners

based on their current activities and listening contexts can

enhance the user’s listening experience [1]. We envision our

models recommending music customized to tasks like
exercising, studying, relaxing or commuting. As activity

tracking technology becomes more accessible and

unobtrusive, our methods can lay the groundwork for the

next leap in music recommendation.

8. ACKNOWLEDGEMENTS
I would like to express my gratitude to Dr. Michael

Hahsler, for his guidance and support throughout this

research project. His insightful feedback and expertise have

been instrumental in shaping the direction and focus of this
work.

I would also like the thank Dr. Eric Larson for his

guidance and instruction in his advanced deep learning

course through which he allowed me to explore multi-task
learning for this research

9. REFERENCES
[1] Lonsdale, A.J., North, A.C.: Why do we listen to

music? a uses and gratifications analysis. British

Journal of Psychology 102(1), 108–134 (2011)

https://doi.org/ 10.1348/000712610x506831

[2] Chen, C.-W., Lamere, P., Schedl, M., Zamani, H.:

Recsys challenge 2018: Automatic music playlist

continuation. Proceedings of the 12th ACM

Conference on Recommender Systems (2018)

https://doi.org/10.1145/3240323.3240342

[3] Jacobson, K., Murali, V., Newett, E., Whitman, B.,

Yon, R.: Music personalization at spotify. RecSys ’16.

Association for Computing Machinery, New York,

NY, USA (2016).

https://doi.org/10.1145/2959100.2959120

11

Mann: Context Aware Music Recommendation and Playlist Generation

Published by SMU Scholar, 2024

https://doi.org/10.1348/000712610x506831
https://doi.org/10.1348/000712610x506831

[4] Kingma, D.P., Welling, M.: Auto-Encoding

Variational Bayes (2022).

https:// doi.org/10.48550/arXiv.1312.6114

[5] Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum

likelihood from incomplete data via the em - algorithm

plus discussions on the paper. (1977)

https://www.ece.iastate.edu/~namrata/EE527_Spring

08/Dempster77.pdf

[6] Ricci, F., Rokach, L., Shapira, B.: Introduction to

recommender systems handbook. Springer (1970).

https://link.springer.com/chapter/10.1007/ 978-0-387-

85820-3 1

[7] Basilico, J., Hofmann, T.: Unifying collaborative and

content-based filtering. In: Proceedings of the Twenty-

First International Conference on Machine Learning.

ICML ’04, p. 9. Association for Computing

Machinery, New York, NY, USA (2004).

https://doi.org/10.1145/1015330.1015394

[8] Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using

collaborative filtering to weave an information

tapestry. Commun. ACM 35(12), 61–70 (1992)

https://doi.org/10.1145/138859.138867

[9] Su, X., Khoshgoftaar, T.M.: A survey of collaborative

filtering techniques. Advances in artificial intelligence

2009 (2009)

https://doi.org/10.1155/2009/421425

[10] Shakirova, E.: Collaborative filtering for music

recommender system. In: 2017 IEEE Conference of

Russian Young Researchers in Electrical and

Electronic Engineering (EIConRus), pp. 548–550

(2017).

https://doi.org/10.1109/EIConRus. 2017.7910613

[11] Deldjoo, Y., Schedl, M., Knees, P.: Content-driven

music recommendation: Evolution, state of the art, and

challenges. CoRR abs/2107.11803 (2021) 2107.11803

[12] Van Meteren, R., Van Someren, M.: Using content-

based filtering for recommendation. In: Proceedings of

the Machine Learning in the New Information Age:

MLnet/ECML2000 Workshop, vol. 30, pp. 47–56

(2000). Barcelona

[13] Adomavicius, G., Tuzhilin, A.: Toward the next

generation of recommender systems: a survey of the

state-of-the-art and possible extensions. IEEE

Transactions on Knowledge and Data Engineering

17(6), 734–749 (2005)

https://doi.org/10. 1109/TKDE.2005.99

[14] Zheng, Y.: Context-aware collaborative filtering using

context similarity: An empirical comparison.

Multidisciplinary Digital Publishing Institute (2022).

https://doi.org/10.3390/info13010042

[15] Lye, G.X., Cheng, W.K., Tan, T.B., Hung, C.W.,

Chen, Y.-L.: Creating personalized recommendations

in a smart community by performing user trajectory

analysis through social internet of things deployment.

Multidisciplinary Digital Publishing Institute (2020).

https://doi.org/10.3390%2Fs20072098

[16] Bellman, R.E.: Adaptive Control Processes: A guided

tour. Princeton University Press (2015)

[17] Hinton, G.E., Salakhutdinov, R.R.: Reducing the

dimensionality of data with neural networks. Science

(New York, N.Y.) 313, 504–7 (2006) https://doi.org/

10.1126/science.1127647

[18] Pennington, J., Socher, R., Manning, C.: GloVe:

Global vectors for word representation. In:

Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP),

pp. 1532–1543. Association for Computational

Linguistics, Doha, Qatar (2014).

https://doi.org/10.3115/v1/D14-1162 .

https://aclanthology.org/D14-1162

[19] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.,

Dean, J.: Distributed representations of words and

phrases and their compositionality. CoRR

abs/1310.4546 (2013) 1310.4546

[20] Yu, R.: A Tutorial on VAEs: From Bayes’ rule to

lossless compression (2020).

https://arxiv.org/abs/2006.10273

[21] Caruana, R.: Multitask learning - machine learning.

Kluwer Academic Publishers (1997).

https://link.springer.com/article/10.1023/A:10073796

06734

[22] Schein, A.I., Popescul, A., Ungar, L.H., Pennock,

D.M.: Methods and metrics for cold-start

recommendations. In: Proceedings of the 25th Annual

International ACM SIGIR Conference on Research

and Development in Information Retrieval. SIGIR ’02,

pp. 253–260. Association for Computing Machinery,

New York, NY, USA (2002).

https://doi.org/10.1145/564376.564421

[23] Hoi, S.C.H., Sahoo, D., Lu, J., Zhao, P.: Online

learning: A comprehensive survey.

CoRR abs/1802.02871 (2018) 1802.02871

[24] Shalev-Shwartz, S.: Online Learning and Online

Convex Optimization, (2012).

https://doi.org/10.1561/2200000018

12

SMU Journal of Undergraduate Research, Vol. 8, Iss. 2 [2024], Art. 2

https://scholar.smu.edu/jour/vol8/iss2/2
DOI: https://doi.org/10.25172/jour.8.2.1

https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://link.springer.com/chapter/10.1007/978-0-387-85820-3_1
https://link.springer.com/chapter/10.1007/978-0-387-85820-3_1
https://link.springer.com/chapter/10.1007/978-0-387-85820-3_1
https://link.springer.com/chapter/10.1007/978-0-387-85820-3_1
https://doi.org/10.1145/138859.138867
https://doi.org/10.1145/138859.138867
https://doi.org/10.1109/EIConRus.2017.7910613
https://doi.org/10.1109/EIConRus.2017.7910613
https://arxiv.org/abs/2107.11803
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.3390/info13010042
https://doi.org/10.3390%2Fs20072098
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/2006.10273
https://doi.org/10.1145/564376.564421
https://arxiv.org/abs/1802.02871
https://doi.org/10.1561/2200000018

[25] Kocur, J., Brady, S., Moseley, B., Shaffer, K., Langolf,

L., Hanenberg, S., Lavengood, M.: Pitch and pitch

class. Pressbooks (2021). https://viva.pressbooks.pub/

openmusictheory/chapter/pitch-and-pitch-class/

[26] Web API Documentation. Spotify AB (2023).

https://developer.spotify.com/ documentation/web-api

[27] Agarap, A.F.: Deep learning using rectified linear units

(relu). arXiv preprint arXiv:1803.08375 (2018)

[28] Rumelhart, D., Hinton, G., Williams, R.: Learning

representations by backpropagating errors. Nature

(1986). https://doi.org/10.1038/323533a0

[29] Werbos, P., John, P.: Beyond regression : new tools for

prediction and analysis in the behavioral sciences /.

Harvard University (1974)

[30] Bradley, A.P.: The use of the area under the roc curve

in the evaluation of machine learning algorithms.

Pattern Recognit. 30, 1145–1159 (1997)

[31] Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M.,

Jozefowicz, R., Bengio, S.: Generating sentences from

a continuous space (2016). https://doi.org/10.48550/

arXiv.1511.06349

[32] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.,

Frey, B.: Adversarial autoencoders (2016).

https://doi.org/10.48550/arXiv.1511.05644

[33] Pidhorskyi, S., Adjeroh, D., Doretto, G.: Adversarial

latent autoencoders (2020).

https://doi.org/10.48550/arXiv.2004.04467

[34] Nasios, N., Bors, A.G.: Variational learning for

gaussian mixture models. IEEE Transactions on

Systems, Man and Cybernetics, Part B (Cybernetics)

36(4), 849–862 (2006)

https://doi.org/10.1109/tsmcb.2006.872273

13

Mann: Context Aware Music Recommendation and Playlist Generation

Published by SMU Scholar, 2024

https://viva.pressbooks.pub/openmusictheory/chapter/pitch-and-pitch-class/
https://viva.pressbooks.pub/openmusictheory/chapter/pitch-and-pitch-class/
https://viva.pressbooks.pub/openmusictheory/chapter/pitch-and-pitch-class/
https://developer.spotify.com/documentation/web-api
https://developer.spotify.com/documentation/web-api
https://doi.org/10.1038/323533a0
https://doi.org/10.48550/arXiv.1511.06349
https://doi.org/10.48550/arXiv.1511.06349
https://doi.org/10.48550/arXiv.1511.06349
https://doi.org/10.48550/arXiv.1511.05644

	Context Aware Music Recommendation and Playlist Generation
	Recommended Citation

	Context Aware Music Recommendation and Playlist Generation
	Cover Page Footnote

	Context Aware Music Recommendation and Playlist Generation

