Simplified Assessment of Single and Multi-Attribute Utility Functions

Gary Klein
Southern Methodist University

Herbert Moskowitz
Purdue University

Sathiadev Mahesh
Purdue University

A. Ravindran
University of Oklahoma

Follow this and additional works at: https://scholar.smu.edu/business_workingpapers

Part of the Business Commons

This document is brought to you for free and open access by the Cox School of Business at SMU Scholar. It has been accepted for inclusion in Historical Working Papers by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu.
SIMPLIFIED ASSESSMENT OF SINGLE AND
MULTI-ATTRIBUTE UTILITY FUNCTIONS

Working Paper 85-904*

by

Gary Klein
Herbert Moskowitz
Sathiadev Mahesh
A. Ravindran

Gary Klein
Edwin L. Cox School of Business
Department of Management Information Sciences
Southern Methodist University
Dallas, Texas 75275

Herbert Moskowitz and Sathiadev Mahesh
Krannert Graduate School of Management
Purdue University
West Lafayette, Indiana 47907

A. Ravindran
Department of Industrial Engineering
University of Oklahoma
Norman, Oklahoma 73019

This research has been supported in part by NSF Grant #8007103A1

*This paper represents a draft of work in progress by the authors and
is being sent to you for information and review. Responsibility for
the contents rests solely with the authors. This working paper may
not be reproduced or distributed without the written consent of the
authors. Please address all correspondence to Gary Klein.
Abstract

Although the application of decision analysis in practice has become increasingly popular, a major limitation restricting its use is the difficulty in measuring a decision maker's (DM) single or multi-attribute utility (MAU) function. The assessment process can be complex, tedious, and, in the multi-attribute case, generally involves: (1) identifying relevant independence assumptions, (2) assessing conditional utility functions, (3) assessing scaling constants, and (4) checking for consistency. Some of the complexities encountered include the DM's inability to quantitatively respond in a meaningful and consistent manner to hypothetical gambles, and the analyst's difficulty in selecting an appropriate functional form best describing the assessed conditional utility functions. A simplified procedure that mitigates these difficulties by obtaining conditional utility functions and scaling constants via mathematical programming models is proposed. Using a general function for the conditional utility functions, qualitative and quantitative responses to hypothetical gambles, and a nonlinear programming formulation, parameters of the function are determined which best fit and describe a DM's expressed risk attitudes and preferences for a given attribute. Scaling constants are calculated via linear programming by minimizing inconsistencies in expressed preferences to pairwise consequence vectors, assuming a general multilinear multi-attribute utility functional form. The procedure circumvents performing certain independence tests, simplifies the query process, and eliminates the problem of inconsistent responses by accepting them as input into the model.
INTRODUCTION

The measurement of single and multi-attribute utility functions in practice has been a challenge for the decision analyst. The actual measures are subject to modeling errors in functional form, parameter estimation errors, and also to measurement errors due to faulty communication between the analyst and the decision maker (DM). The process of measurement per se, can be tedious and time consuming [9]. Recently considerable attention has been focused on simplifying the measurement of both single and multi-attribute utility (MAU) and value (MAV) functions [4], [8], [9], [10]. Keeney & Raiffa (ch. 4, [9]), for example, discuss the respective importance of determining certain qualitative and quantitative risk characteristics and restrictions of the DM's utility function prior to selecting a specific functional form. Qualitative characteristics include monotonicity, boundedness, continuity, and risk properties such as risk aversion. Quantitative restrictions are determined by comparing responses to various gambles over the attribute in question. Based upon such responses from the DM, a specific utility function is chosen by the analyst from a collection of functions having such characteristics that represent the DM's expressed risk attitudes. When several functions characterize the DM's expressed risk attitudes, the choice of a functional form is then often determined by the function having the best fit or the one which is most mathematically expedient.

A number of researchers have focused on first measuring a value (ordinal utility) function in multi-attribute problems for subsequent conversion into a cardinal utility function, to simplify the assessment process by minimizing the number of responses to hypothetical gambles.
Kirkwood and Sarin [10], for example, introduce a methodology that yields a precise functional form for the measured value function and minimizes the required interaction between the DM and the analyst when certain preference properties are exhibited by the DM. Keelin [8] develops a general process of value function measurement with implications for utility function properties which are analogous to the risk characteristics and restrictions developed for utility functions.

Combining conditional utility functions on individual attributes into a real-valued multi-attribute utility function can also lead to measurement difficulties. Various approaches exist (e.g., [9], [14], and [16]) for the determination of appropriate scaling constants to achieve this aggregation. An experimental examination of the more commonly used methods for scaling additive utility functions showed that the methodology used in the measurement process affects the values of the scaling constants [15].

Irrespective of the methodology selected in assessing a multi-attributed utility function, there exists the problem of satisfying certain conditions specific to a given MAU function. The querying procedures that reveal the DM's preference or risk properties have been well documented (e.g., [6]) but a general process for determining a specific functional form for the conditional utility functions for each attribute have not been devised. Furthermore, a simpler, more meaningful procedure to obtain the scaling constants may be useful. The work
described in this paper is directed toward these goals by substituting some linear and non-linear programs for several of the current procedural steps in assessing utility functions. The proposed methodology is aimed at reducing the time and effort required by the analyst and DM, while providing a more common framework for utility construction. Using a general summed exponential functional form, or any form preferred by the analyst, the construction of single attribute utility functions is performed with the aid of a nonlinear programming (NLP) formulation. The NLP estimates the parameters of the general utility form by fitting observed response values to gambles subject to the DM's expressed qualitative and quantitative risk characteristics. Once all single attribute utility functions have been determined, a linear program is used to compute the scaling constants for a general multi-linear utility function based on expressed preferences of pairwise consequence vectors.
2.1 The Summed Exponential Utility Function

When a decision analyst is attempting to map a single dimensional utility function of a DM, he should have a set of readily available acceptable forms for the utility function. In general, a collection of various functions exist that adequately represent all reasonable qualitative restrictions on the risk characteristics of the utility function. For example, the logarithmic \(\ln(x^b) \), \(b > 0 \), and other functions, such as \((x+b)^{-c}\) with \(c > 0 \), \(-e^{-ax} + bx\) with \(a, b > 0 \) are some common decreasing risk-averse utility functions on the random variable (attribute) \(x \), for the restrictions on the parameters specified [6, p.173]. Loosely speaking, risk is a measure of the DM's reaction to uncertainty. Risk measures, as risk premium, are used to express a decision maker's risk characteristics. For example, a risk prone DM prefers choosing a gamble rather than settling for a guaranteed outcome equal to the expected value of the gamble in question. A risk averse DM prefers taking the sure outcome of a gamble's value over the gamble.

If a common set of plausible shapes representing most DM's utility functions may be ascertained or assumed prior to the actual measurement of the DM's utility function, it may be possible to define a single general functional form for the single attribute utility function whose parameters can be adjusted to fit the particular qualitative and quantitative risk characteristics of the DM. This suggested form is a requirement for the use of the NLP defined subsequently, and will also be an aid in testing the consistency of the DM's responses.
For convenience, our subsequent discussion will be arbitrarily limited to monotonically decreasing utility functions, although little change in the methods discussed would be required to accommodate increasing utility functions. The most commonly observed classes of single attribute utility functions are:

1) Fully increasing risk averse.
2) Fully decreasing risk averse.
3) Constantly risk averse.
4) Fully increasing risk prone.
5) Fully decreasing risk prone.
6) Constantly risk prone.
7) Risk prone for small attribute values and risk averse for large attribute values.
8) Risk averse for small attribute values and risk prone for large attribute values.

Through appropriate parameterization, a summed exponential function can represent all of the above characteristic types of utility functions. It also allows easy mathematical manipulation relative to other functional forms in terms of model development and optimization.

The summed exponential utility function for an attribute \(i \) is represented as

\[
u_i(x) = a_i - b_i \exp(c_i x) - d_i \exp(e_i x).
\]

The summed exponential satisfies the above eight utility classes for various values of the parameters. Using the risk aversion function \(r(x) \),

\[
r(x) = \frac{-u''(x)}{u'(x)} \tag{2}
\]
It can be verified that for \(a = 5, b = 1, c = 1.8, d = 9.7, \) and \(e = 4.3, \) the risk function is negative at \(x = 0.01 \) and positive at \(x = .99. \) Hence, these parameters yield the 7th utility class listed earlier. Parameters are obtainable for the other seven classes.

Several recent studies have investigated various functional representations of single and mult-attribute utility functions. Moskowitz, Ravindran, Klein, and Eswaran [13] in a quality control environment addressed the problem of using differing single- and bi-attribute functions. They conclude that functional form had little impact on the final quality acceptance plan selected, and less impact than does the selection of scaling constants. A more general study conducted by Keefer and Pollock [7], outlines a procedure to aid in the construction of a MAU function. Included are the testing of preferential, utility, and probabilistic independence, parameter estimation for a common one dimensional utility function, selection of the MAU form, and determination of the scaling constants. Sensitivity analysis is performed on a bicriterion model. Optimal solutions were found to be sensitive to scaling constant selection, parameter estimation of the single attribute utility functions, and the form selected for the multiple attribute utility function. Demonstrations of solution differences through extreme point changes are provided, with the conclusion being, in contrast to [13], that selecting the proper form of utility function is as important as obtaining accurate probability and utility data. Therefore a general functional form that satisfies the proper qualitative characteristics of the DM's risk attitudes is as
important as the fitting of the observed data to the selected function. The ability of the summed exponential to represent a wide spectrum of risk attitudes thus makes it a desirable function for mapping utility functions.

2.2 Construction of the Single Attribute Utility Functions

2.2.1 Risk Considerations. The functional form of a one dimensional utility function should be a construct consistent with the risk characteristics expressed and/or exhibited by the DM. Risk aversion \(r(x) \) and the rate of change of risk aversion are often the measures used as the characteristic constraints when selecting the utility form that will be fit to the observed certainty equivalents to gambles expressed by the DM. Von Neumann and Morganstern [17] provide the basis for the questions to ask, and Keeney and Raiffa [9] discuss the appropriate parametric families of utility functions derived from the constraints on the risk characteristics. The measures used to determine the risk properties are the risk premiums at various levels of a given attribute. The risk premium is the difference between the certainty equivalent of a given lottery and the expected (actuarial) value of the same lottery.

In describing our methodology, the lotteries we shall consider will be two outcome gambles, with a 50% chance of each occurring. A lottery will be denoted \(A_1 < x, y > \), meaning that attribute \(i \) has a 50% chance of realizing a value of \(x \), and a 50% chance of realizing a value of \(y \). The certainty equivalent of a lottery is a sure amount of an attribute such that the DM is indifferent between choosing the
sure amount and the lottery. The risk premium, which is the certainty equivalent less the expected value of the gamble is denoted as \(P(x,h) \) for the lottery \(A \{ x - h, x + h \} \). Two results in [9] are as follows:

Theorem 1. For decreasing utility functions, the following are equivalent.

A) A DM is risk averse (prone, neutral).

B) The risk premium for all nondegenerate lotteries is positive (negative, zero).

C) The risk aversion function \(r(x) \) is positive (negative, zero).

D) The utility function \(U(x) \) is concave (convex, linear).

Theorem 2. The risk aversion function \(r(x) \) for a utility function \(U(x) \) is increasing (constant, decreasing) IFF the risk premium \(P(x,h) \) is an increasing (constant, decreasing) function of \(x \) for all \(h \).

Given these two results, quantitative restrictions on the DM's utility function are determined by obtaining his/her certainty equivalent for a series of lotteries \(\{ x - h, x + h \} \) while varying \(x \) (the level of the attribute) and maintaining a constant \(h \). If the risk premiums at the various levels are observed to increase, then the observations can be extrapolated to include all possible \(\{ x - h, x + h \} \) lotteries. With the extrapolation, Theorem 2 may be used to decide on which one of the eight types of utility functions is appropriate.

The specification and curve fitting procedure involves three basic steps: Step 1) Elicit qualitative information on risk properties,
including such characteristics as monotonicity, boundedness, and continuity.

Step 2) Select an admissible utility function satisfying these properties.

Step 3) Use the quantitative (certainty equivalent) responses to gambles as observations in fitting the selected utility function.

Step 1) involves considerable questioning of the DM in order to assure proper application of Theorem 2. Step 2 requires the availability of appropriate utility functional forms that are consistent with the known or determinable risk properties of the DM. Step 3 requires solving a system of linear or nonlinear equations to obtain the parameters of the utility function that fit the observations.

2.2.2 A Nonlinear Programming Model. We propose to reduce the process of determining a proper utility function to two steps, by combining function selection (Step 2) with the curve fitting process. Moreover, our procedure essentially eliminates the analyst's task of selecting an admissible and/or 'best' admissible functional form by using a general utility function having a rich variety of risk properties. This may be accomplished with the use of a general summed exponential utility function and a nonlinear programming model formulation. The process does not reduce the curve fitting effort, but aids in reducing the number of responses required of the DM. Consider the following NLP to be solved for each attribute:
MINIMIZE:
\[\sum_{j=1}^{k} [U(x_j) - \xi(x_j)]^2 \]
(3.A)

SUBJECT TO:
\[r(x_m) \leq \sigma \geq r(x_{m+1}) \text{ for } m = 1, \ldots, q-1 \]
(3.B)
\[u''(x_m) < \sigma > \text{ZERO for } m = 1, \ldots, q \]
(3.C)
\[\text{MAX } u'(x) \leq \text{ZERO}, \]
(3.D)

WHERE:
\[x_j = \text{The observations (certainty equivalents)}, \]
\[n = \text{The number of observations } (x_j) \text{ determined by the von Neumann-Morgenster Method}, \]
\[x_m = \text{The certainty equivalent responses used to determine risk properties}, \]
\[q = \text{The number of certainty equivalent responses used to determine the qualitative characteristics of the utility function}, \]
\[r(x_m) = \text{The risk function in (2) evaluated at the } m \text{th value of the attribute (i) under consideration}, \]
\[u''(x_m) = \text{The second derivative of the utility } u \text{ evaluated at } x_m, \text{ and} \]
\[\xi(x_j) = \text{The observed utility value at } x_j. \]

It should be noted that the parameters of the utility form selected are the decision variables for this NLP. For the summed exponential, \(a, b, c, d, \) and \(e \) would be the decision variables. Also, the objective function minimizes the sum of the squared differences between the predicted and observed ability forms. Hence, only the 'n' certainty equivalent (CE) responses for which the utility of the attribute at
the CE value is known, is used in the objective. The 'q' CE responses are for small lotteries at various attribute levels and the utilities at these levels are not determined.

Equation 3A represents a least squares curve fitting criterion. This may be changed as desired. Equation 3B represents the decreasing (or increasing) nature of the risk function. This set of equations is generated by the type of questions required in Step 1 of the standard approach. Fewer responses may be required, however, because any number of responses may be incorporated into the constraint set. Inconsistent responses to risk premium questions will indicate a form other than the classes provided by the functional form selected. Thus, inconsistent responses will not yield a feasible region for fitting responses and provide automatic consistency checks. However, irregularities or disturbances in the risk function are permitted during the curve fitting step in the attribute values between responses. This feature may or may not be desirable depending upon the certainty of the analyst about the prior estimates of possible utility forms of the DM. Technically, only three responses are necessary to define any of the eight utility function classifications that were listed earlier. If the analyst wishes to validate his prior assumptions regarding the utility function or test the consistency of the DM, more responses are required. As long as a feasible region can be found, the analyst's assumptions are valid and the DM is consistent, but only within the responses provided.
Equation 3C defines whether the DM is risk prone or risk averse at certain levels of the attribute. 3D enforces the monotonically decreasing nature of the utility function. The constraint forms an optimization problem itself, and as such requires special attention. Bracken [1] had discussed the nature of model formulations having optimization problems embedded in the constraint set. When using the summed exponential utility function, the following shortcut procedure can be taken. The maximum of the function in 3C must occur at either an extreme point or an interior point where the second derivative is equal to zero. Since we are dealing only with a single-attribute utility function, one can enumerate all possible maxima, and include a constraint for each. With the summed exponential, this amounts to

\[u(x) = 0 \] for \(x \) at the lowest attribute value, \(x \) at the highest attribute value, and for two interior points where

\[u''(x) = b c^2 \exp(c x) + d e^2 \exp(e x) = 0. \] (4)

The solutions for (4) are

\[x = \ln\left(-\frac{bc^2}{de^2}\right) \] and \(x = \ln\left(-\frac{de^2}{bc^2}\right) \). (c-e)

Further constraints in the model may be added to represent upper and lower bounds on the utility, (e.g., \(u_i(x_{i \text{ max}}) = 1 \)). The proposed method and formulation is simple from the viewpoint of the analyst and the DM, given satisfactory computing support. Even though the formulation is not complex, the NLP may be difficult to solve for a global optimum. Care must therefore be given to the optimization algorithm
selected. Our testing was performed using the COMPLEX search method of Box [2], because of its ability to overcome some local minimum difficulties. This search procedure does not guarantee a global optimum, but a near optimal. A probable optimal fit may be achieved by varying the starting points and comparing the final solutions obtained. Other difficulties involve the starting feasible region. A phase one (preliminary) approach was used to find a starting feasible point, but this was not guaranteed. Another difficulty is the possible nonconvexity of the feasible region. This difficulty was mitigated by using different starting points for each optimization problem. This allows an algorithm to search small segments of the entire feasible region, increasing the chance of finding global optimality, rather than local optimality.

2.2.3 Illustration of the NLP Approach. In order to demonstrate the differences between existing approaches and our proposed nonlinear programming methodology for determining a DM's utility function, let us consider the multi-attribute problem of selecting a new car. For simplicity, we shall limit the attributes of price, operating costs, size, and styling. For price, let us derive the single attribute utility function by the NLP approach.

The first step will require that several questions regarding the DM's qualitative risk characteristics be asked. A minimum of three is sufficient to employ the procedure. Keeney and Raiffa [9] recommend a minimum of ten lottery responses for the standard procedure. We
will assume the TABLE 1 responses for our example. Our lotteries use hypothetical values for the attributes. When reassuring a specific utility function, choices of actual and hypothetical values should all be on the same curve that approximates the actual utility. In some applications when actual lotteries are used to adjust for "wealth effects," this may be easy when the attribute is money income, but it may be difficult for other applications. This is a problem with some other methods of fitting multi-attribute utility functions.

Lotteries 1, 2, and 3 are directed at finding the risk properties, and lotteries 4, 5, and 6 are used to generate three utility value observations using the vonNeumann-Morgenstern method. Also included are the extreme values of the attributes, which are assigned utilities of 0 and 1 as utility observations. These observed utility values give us the following least squares objective function, using price in thousands of dollars:

$$
\text{MIN } \{ u \{4\} - 1 \}^2 + u \{(7.8) - .75\}^2 + u \{(10) - .5 \}^2 \\
+ \{ u \{(12.8) - .25 \}^2 + u \{(14) - 0 \}^2 \\
$$

The selected certainty equivalent responses for lotteries 1, 2, and 3 in TABLE 1 yield the following constraints by using expected values from the lotteries (since risk premium is measured as a deviation from expected value).
<table>
<thead>
<tr>
<th>Lottery #</th>
<th>Lottery</th>
<th>Certain Equivalent</th>
<th>Risk Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5000, 6000</td>
<td>5675</td>
<td>175</td>
</tr>
<tr>
<td>2</td>
<td>8000, 9000</td>
<td>8600</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>11,000, 12,000</td>
<td>11,530</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>4000, 14,000</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4000, 10,000</td>
<td>7,800</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10,000, 14,000</td>
<td>12,800</td>
<td></td>
</tr>
</tbody>
</table>
Set 3A represents decreasing risk aversion; thus $r(5.5) < r(8.5)$ and $r(8.5) < r(11.5)$. For the summed exponential, the first constraint in set 3A, for example would thus be:

$$-b c^2 \exp (5.5c) - d e^2 \exp (5.5e) < -b c^2 \exp (8.5c) - d e^2 \exp (8.5e)$$

Set 3B, which is used to represent risk aversion, the constraints are:

$$u''(5.5) < 0,$$

$$u''(8.5) < 0,$$

$$u''(11.5) < 0.$$

For the summed exponential, the first constraint in set 3B would be:

$$-b c^2 \exp (5.5c) - d e^2 \exp (5.5e) < 0.$$

Set 3C would be identical regardless of the DM's responses, since it enforces the decreasing nature of the utility function. Using the summed exponential function, the first constraint of set 3C (see also eqn. 4) would be:

$$-b c \exp (4c) - d e \exp (4e) < 0.$$

The locally optimal solution to this NLP is

$$u(x) = 2.51 - 1.002 \exp (.0089x) - 0.328 \exp (.105x).$$
2.2.4 Applications. The methodology outlined above employing a general summed exponential utility function and NLP formulation was applied in both a laboratory and field setting. The experimental setting involved a bicriterion quality control model developed in [11], where the utility functions of 73 subjects were measured on each of the two attributes of the model, yielding 146 summed exponential utility functions. With the attributes scaled between zero and one, and fitting five observations in a least squares framework, the average least squares error was 0.0075, with a range from 0.0000 to 0.19735. In this case consistency checks were performed prior to the final curve fitting, and the subjects were requested to revise their responses accordingly.

The second application was in a field study [3] of the utility functions (on profit) of fourteen auditors in several "big 8" accounting firms. Again, the proposed method using the summed exponential yielded excellent fits consistent with the risk characteristics of the auditors. Several auditors displayed Friedman-Savage (F-S) type utility functions [5]. In these cases, although the fits were good using a single set of parameters, a two piece approximation using different parameters for the convex and concave regions yielded significantly better results, and is therefore recommended for individuals exhibiting F-S type utility functions. This two piece approximation can still use the NLP presented by approximating the attribute level where the utility shifts risk properties by using several lotteries, then fitting the proper shape on the attribute from its minimum level to shift level, then also from its shift level to maximum level.
A simulation study was also performed to compare the sum of squares fit of the summed exponential solutions to solutions obtained with some other functional forms (i.e., cubic and quadratic) over a variety of conditions. No major differences in fit were noted, although the cubic exhibited a slightly better fit, on the average, under the conditions tested.
Constructing a multi-attribute utility function from a set of single-attribute conditional utility functions involves choosing a proper multi-attribute functional form which should be based on certain independence conditions. Often a common heuristic employed is to determine attribute weights that are then combined additively with the single-attribute functions into a multi-attribute utility function.

There are a variety of methods used to obtain the scaling constants of MAU function. Many of these are described and compared in [15] for additive MAU functions. For example, Keeney and Raiffa [9] propose obtaining a set of k independent equations with k unknown scaling constants, which are generated from responses to tradeoffs (certainty considerations) or gambles (uncertainty considerations). This procedure has several potential drawbacks. First, the DM's responses are to tradeoffs or gambles at their best or worst levels. Responding to such extreme conditions is cognitively complex, and ignores any information provided by the DM's previously measured single-attribute utility functions. Our procedure, utilizing and extending the LINMAP concepts of Srinivasan and Shocker [16], simplifies the process of obtaining the scaling constants by requiring only pairwise preferences to consequence vectors in the relevant ranges of interest, and reducing the need for independence testing to determine an appropriate MAU function.
3.1 Forms of the Multiple Attribute Utility Function

A reasonable general multi-attribute utility function is the multilinear form, i.e.,

\[
U(X) = \sum_{i=1}^{m} k_i u_i(x_i) + \sum_{i=1}^{m} \sum_{j \neq i} k_{ij} u_i(x_i) u_j(x_j) + \sum_{i=1}^{m} \sum_{j > i} \sum_{k > j} k_{ijk} u_i(x_i) u_j(x_j) u_k(x_k) + \ldots + k_{1,2,3,\ldots,m} u_1(x_1) u_2(x_2) \ldots u_m(x_m)
\]

where \(m \) is the number of attributes,

\(X \) is the attribute vector, and

\(x_i \) is the value of the \(i \)th attribute.

given the set of attributes \(X = \{x_1, \ldots, x_m\} \) with \(m > 2 \), the independence conditions for the multilinear utility function are that each attribute \(x_j \) be utility independent of its complement \(\bar{x}_j \).

That is, \(\bar{x}_j = X \) with \(x_j \) EXCLUDED).

Utility independence implies that the values of all remaining attributes at any given value is independent of the level of the values of all remaining attributes. Operationally, utility independence (UI) of an attribute from all others indicates that the DM can define a utility function on a single attribute independent (without any knowledge) of the values of the remaining attributes.
The multilinear utility function is a generalization of both the multiplicative and additive utility functions. The independence conditions for these special cases are more stringent than for the more general multilinear form. The multiplicative form is similar to the multilinear form, but the conditions that each attribute x_1, \ldots, x_m must be mutually utility independent (MUI) implies the form:

$$
U(X) = \sum_{i=1}^{m} k_i u_i(x_i) + \sum_{i=1}^{m} k_i k_j u_i(x_i) u_j(x_j)
$$

$$+ \sum_{i=1}^{m} k_i k_j k_{ij} u_i(x_i) u_j(x_j) u_{ij}(x_i)$$

$$+ \cdots + k^{n-1} k_1 k_2 \cdots k_n u_1(x_1) u_2(x_2) \cdots u_m(x_m).$$

If the multiplicative form is appropriate, fewer scaling constants are required. The constraints insuring consistency in the scaling constants, however, are no longer linear. Testing for the utility independence conditions for the multiplicative function involves more questions than those required by the multilinear form.

A further simplification of the multilinear form is the additive form, i.e.,

$$
U(X) = \sum_{i=1}^{m} k_i u_i(x_i),
$$

with all $0 \leq k_i \leq 1$.

The additive form has only one constraint on the scaling constants. The sum of the scaling constants is set equal to one so that $U(X)$ is between
zero and one, as is each $u_i(x_i)$. The additive utility function requires additive independence (AI) among all attributes for UI to hold. Additive independence holds if preferences over lotteries on attributes x_1, \ldots, x_m depend only on their marginal probability distributions and not on their joint probability distribution. This property permits the elimination of the interaction terms needed in the other utility forms to accurately represent the utility when taking expectations of the utility function. Scaling constants for an additive utility function are simpler to determine, and also provide much latitude in consistency testing. Unfortunately, additive independence involves more testing than utility independence.

3.2 Proposed Linear Programming Formulation.

The proposed method begins with the use of the general multilinear form and stated pairwise preferences by the DM similar to those proposed in [16]. From this, scaling constant determination can be formulated into a simple linear program. The framework is to present the DM with a series of pairwise alternate decision vectors and obtain preference responses. Each preference indicated by the DM provides a strong statement about the $U(X)$. That is, $U(X_1)$ is greater than $U(X_2)$ if the consequence vector X_1 is preferred to consequence vector X_2. A series of these statements provides a set of linear inequalities. Let each inequality be expressed as $U(X_1) - U(X_2) + E^+ - E^- = 0$. The E^+ and E^- terms represent differences between the utility of the two consequences. When X_1 is preferred to X_2, the variable E^+ should be ≥ 0, but when the stated preference is violated
by the structure of the utility function, E^- will become 0. Hence, to obtain the most consistent scaling constants for the DM, the sum of the E^- terms for all preference statements is to be minimized.

Construct a formal LP by letting X_{1j} denote the preferred consequence of the pair (X_{1j}, X_{2j}). Thus:

$$\text{MINIMIZE } Z = \sum_{i=1}^{p} E^-_i$$

Subject to:

$$U(X_{1j}) - U(X_{2j}) + E^-_j \geq 0; \quad j = 1,...,p$$

$$k_i \leq 1 \text{ for } i = 1,\ldots,m$$

$$k_{ij} = d_{ij} - k_i \text{ for } i = 1,\ldots,m; \quad j = i+1,\ldots,m$$

$$k_{ijl} = d_{ijl} - d_{ij} - d_{i\ell} - k_{i\ell} - k_j - k_\ell \text{ for } i = 1,\ldots,m; \quad j = i+1,\ldots,m; \quad \ell = j+1,\ldots,m$$

$$k_{1234...m} = 1 - \sum \text{ of all other } k \text{ variables,}$$

All d_i, d_{ij}, d_{ijl} are between 0 and 1,

$$d_{ij} \geq k_i,$$

$$d_{ij} \geq k_j,$$

$$d_{1234...m} \geq \text{all } k \text{ variables,}$$

where the k variables are the scaling constants for the multi-linear MAU function and the d variables represent the utility of all included attributes at their maximum values, and all omitted attributes at their minimum values [6], and the E^- variables take the form of slack variables.
Constraints set 5B is used to establish the direction of the preference responses as stated by the DM. Set 5C constrains the scaling of the MAU function between 0 and 1.

3.3 Example

Let us now return to the new car selection example. Using the new general summed exponential and the earlier proposed procedure, assume that all the single-attribute utility functions have been determined and are as follows:

\[
\begin{align*}
 u_1 (\text{Price } = P) &= 2.51 - 1.002 \exp(0.0089P) - 0.328\exp(0.150P) \\
 u_2 (\text{Operating Cost } = C) &= 2.06 - \exp(-0.045C) - 0.087\exp(0.275C) \\
 u_3 (\text{Room } = R) &= 2.16 - \exp(-0.049R) - 0.18\exp(0.33R) \\
 u_4 (\text{Style } = S) &= 3.35 - \exp(0.034S) + 1.464\exp(0.3S)
\end{align*}
\]

Where \(P \) is price in thousands of dollars, \(C \) is operating costs in $ per mile, \(R \) is roominess (expressed as 6 minus the number of passengers), and \(S \) is a subjective rating in the range 1 to 10. The utility \(U(X) \) would be represented in multilinear form as:

\[
U(\text{Price, Operating Cost, Room, Style}) = U(P,C,R,S) = k_1 u_1 (P) + k_2 u_2 (C) + k_3 u_3 (R) + k_4 u_4 (S) + k_{12} u_1 (P) u_2 (C) + k_{13} u_1 (P) u_3 (R) + k_{14} u_1 (P) u_4 (S) + k_{23} u_2 (C) u_3 (R) + k_{24} u_2 (C) u_4 (S) + k_{34} u_3 (R) u_4 (S) + k_{123} u_1 (P) u_2 (C) u_3 (R) + k_{124} u_1 (P) u_2 (C) u_4 (S) + k_{134} u_1 (P) u_3 (R) u_4 (S) + k_{234} u_2 (C) u_3 (R) u_4 (S) + k_{1234} u_1 (P) u_2 (C) u_3 (R) u_4 (S).
\]
Next the DM is asked to compare the pairs of alternatives and state his preferences as shown in Table 2. It probably makes sense to generate the alternatives randomly from among undominate solutions, and insuring a wide spectrum of consequence pairs. The consequences are then used to determine the single attribute utility values leaving only the scaling constants \((k\text{ values})\) and error term \((E^-\text{ values})\) as decision variables in the linear program. For the example the LP is:

\[
\begin{align*}
\text{MIN} & = \sum_{j=1}^{8} E_j^- \\
\text{Subject to:} & \quad U(7,8,6.5,2.5,3.25) - U(10,2.5,2.5,3.25) + E_1^- - E_1^- \geq 0 \\
& \quad \vdots \\
& \quad U(7.8,5,2.5,6) - U(8,5,2.5,1) + E_8^- - E_8^- \geq 0 \\
\end{align*}
\]

and the constraints of set 5.0 for the multilinear form.

The first constraint, for example, would appear as:

\[
.265k_1 - .2340k_2 + .0817k_{12} + .1624k_{13} + .1609k_{14} - .1410k_{23} \\
- .1397k_{24} + .05k_{123} + .0496k_{124} + .098k_{134} - .855k_{234} + .030k_{1234} \\
+ E_1^- \geq 0
\]

Since \(k\) variables range between -1 and +1, variable substitution is made to allow negative values in the LP and then the problem is solved. The result yields \(k_1 = .365\), \(k_2 = .294\), \(k_3 = .047\), \(k_4 = .052\), \(k_{13} = .022\), \(k_{24} = .219\) and all other scaling constants equal to zero.

--

Insert Table 2 about here
TABLE 2

PAIRWISE PREFERENCE COMPARISONS

<table>
<thead>
<tr>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>Preference Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7.8, 6.5, 2.5, 3.25)</td>
<td>(10, 2.5, 2.5, 3.25)</td>
<td>1</td>
</tr>
<tr>
<td>(10, 2, 3.5, 10)</td>
<td>(10, 2, 4.0, 3.5)</td>
<td>1</td>
</tr>
<tr>
<td>(10, 7.5, 4.5, 2)</td>
<td>(12.3, 7.5, 2.5, 2.0)</td>
<td>2</td>
</tr>
<tr>
<td>(10, 3.5, 2.5, 6)</td>
<td>(10, 5, 2.5, 3.25)</td>
<td>2</td>
</tr>
<tr>
<td>(14, 5, 1.0, 2)</td>
<td>(10, 5, 4.5, 2)</td>
<td>1</td>
</tr>
<tr>
<td>(4, 5, 3.5, 6)</td>
<td>(6.5, 5, 3.5, 1)</td>
<td>2</td>
</tr>
<tr>
<td>(7.8, 2, 3.5, 10)</td>
<td>(7.8, 6.0, 3.5, 1.5)</td>
<td>2</td>
</tr>
<tr>
<td>(7.8, 5, 2.5, 6)</td>
<td>(8, 5, 2.5, 1.0)</td>
<td>2</td>
</tr>
</tbody>
</table>
Modifications to the procedure presented may include the incorporation of weights into the objective function based upon strength of preferences between alternatives. The strength of preference weights would place large costs on certain preferences and small costs on vague preferences. This would entail obtaining strength-of-preference information from the DM, which would probably reduce the number of pairwise comparisons to be made to achieve a given level of accuracy. For example, if the DM rates his preferences on a scale of 1 to 10 and gives a rating of 10 to preference #1 (Table 2) and a rating of 1 to all other preferences, then the objective function is

$$\text{MIN } Z = 10E_1 - E_2 + E_3 - \ldots + E_8.$$

The model can be changed to include terms that encourage, but do not enforce, the additive form of the utility function. This can be accomplished by bringing the scaling constants associated with the interactive terms into the objective and multiplying by a penalty cost. The objective is then

$$\text{MIN } Z = \sum_{i=1}^{8} E_i - P(k_{12} + k_{13} + k_{14} + \ldots k_{1234})$$

where P is a positive constant.

There exist several advantages to the linear programming method just described. Response to extreme attribute values are avoided. The information obtained in measuring the single-attribute utility functions is incorporated directly into the construction of the MAU function. The cognitive burden on the DM is reduced to pairwise preferences and elimination of the need for testing the DM for AI or MUI. Another advantage of the model formulation is that inconsistencies are accepted with the value of the objective function (Z) providing a measure of inconsistency; i.e.,

$$c = \frac{Z}{1+Z} \quad [16].$$
SUMMARY

Two mathematical programs to aid in the measurement of single and multi-attributed utility functions have been presented. Each formulation may be used independently or conjointly to help reduce the cognitive burden and interaction between the analyst and the DM. The NLP formulation in conjunction with a general summed exponential function is used to describe and fit a DM's single attribute utility function. The richness of the risk properties of the summed exponential alleviates the analyst's burden of choosing an admissible utility functional form, while providing easy mathematical manipulation in formal decision models. The LP formulation, based on [16], and assuming (but not necessarily restricted to) a multilinear MAU form, permits easy cognitive and mathematical determination of the scaling constants of the MAU function as well as special cases of the multilinear form without stringent testing of the associated independence conditions.
REFERENCES

The following papers are currently available in the Edwin L. Cox School of Business Working Paper Series.

79-100 "Microdata File Merging Through Large-Scale Network Technology," by Richard S. Barr and J. Scott Turner

79-101 "Perceived Environmental Uncertainty: An Individual or Environmental Attribute," by Peter Lorenzi, Henry P. Sims, Jr., and John W. Slocum, Jr.

80-100 "Implementing the Portfolio (SBU) Concept," by Richard A. Bettis and William K. Hall

80-101 "Assessing Organizational Change Approaches: Towards a Comparative Typology," by Don Hellriegel and John W. Slocum, Jr.

80-102 "Constructing a Theory of Accounting—An Axiomatic Approach," by Marvin L. Carlson and James W. Lamb

80-103 "Mentors & Managers," by Michael E. McGill

80-104 "Budgeting Capital for R&D: An Application of Option Pricing," by John W. Kensinger

80-200 "Financial Terms of Sale and Control of Marketing Channel Conflict," by Michael Levy and Dwight Grant

80-301 "Controlling the Performance of People in Organizations," by Steven Kerr and John W. Slocum, Jr.

80-400 "The Effects of Racial Composition on Neighborhood Succession," by Kerry D. Vandell

80-801 "Comparison of the EEOCC Four-Fifths Rule and A One, Two or Three σ Binomial Criterion," by Marion Gross Sobol and Paul Ellard

80-900 "Bank Portfolio Management: The Role of Financial Futures," by Dwight M. Grant and George Hempel
80-021 "Hedging Uncertain Foreign Exchange Positions," by Mark R. Eaker and Dwight M. Grant

80-111 "Sources of Performance Differences in Related and Unrelated Diversified Firms," by Richard A. Bettis

80-112 "The Information Needs of Business With Special Application to Managerial Decision Making," by Paul Gray

80-113 "Diversification Strategy, Accounting Determined Risk, and Accounting Determined Return," by Richard A. Bettis and William K. Hall

80-114 "Toward Analytically Precise Definitions of Market Value and Highest and Best Use," by Kerry D. Vandell

80-115 "Person-Situation Interaction: An Exploration of Competing Models of Fit," by William F. Joyce, John W. Slocum, Jr., and Mary Ann Von Glinow

80-116 "Correlates of Climate Discrepancy," by William F. Joyce and John Slocum

80-117 "Alternative Perspectives on Neighborhood Decline," by Arthur P. Solomon and Kerry D. Vandell

80-121 "Project Abandonment as a Put Option: Dealing with the Capital Investment Decision and Operating Risk Using Option Pricing Theory," by John W. Kensinger

80-122 "The Interrelationships Between Banking Returns and Risks," by George H. Hempel

80-123 "The Environment For Funds Management Decisions In Coming Years," by George H. Hempel

81-100 "A Test of Gouldner's Norm of Reciprocity in a Commercial Marketing Research Setting," by Roger Kerin, Thomas Barry, and Alan Dubinsky

81-200 "Solution Strategies and Algorithm Behavior in Large-Scale Network Codes," by Richard S. Barr

81-201 "The SMU Decision Room Project," by Paul Gray, Julius Aronofsky, Nancy W. Berry, Olaf Helmer, Gerald R. Kane, and Thomas E. Perkins

81-300 "Cash Discounts to Retail Customers: An Alternative to Credit Card Performance," by Michael Levy and Charles Ingene

81-400 "Merchandising Decisions: A New View of Planning and Measuring Performance," by Michael Levy and Charles A. Ingene

<table>
<thead>
<tr>
<th>Issue</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>81-501</td>
<td>"Job Redesign: Improving the Quality of Working Life,"</td>
<td>by John W. Slocum, Jr.</td>
</tr>
<tr>
<td>81-600</td>
<td>"Managerial Uncertainty and Performance,"</td>
<td>by H. Kirk Downey and John W. Slocum, Jr.</td>
</tr>
<tr>
<td>81-601</td>
<td>"Compensating Balance, Rationality, and Optimality,"</td>
<td>by Chun H. Lam and Kenneth J. Boudreaux</td>
</tr>
<tr>
<td>81-800</td>
<td>"The Chinese-U.S. Symposium On Systems Analysis,"</td>
<td>by Paul Gray and Burton V. Dean</td>
</tr>
<tr>
<td>81-900</td>
<td>"Forecasting Industrial Bond Rating Changes: A Multivariate Model,"</td>
<td>by John W. Peavy, III</td>
</tr>
<tr>
<td>81-110</td>
<td>"Improving Gap Management as a Technique for Reducing Interest Rate Risk,"</td>
<td>by Donald G. Simonson and George H. Hempel</td>
</tr>
<tr>
<td>81-112</td>
<td>"The Significance of Price-Earnings Ratios on Portfolio Returns,"</td>
<td>by John W. Peavy, III and David A. Goodman</td>
</tr>
<tr>
<td>81-113</td>
<td>"Further Evaluation of Financing Costs for Multinational Subsidiaries,"</td>
<td>by Catherine J. Bruno and Mark R. Eaker</td>
</tr>
<tr>
<td>81-114</td>
<td>"Seven Key Rules for Successful Stock Market Speculation,"</td>
<td>by David Goodman</td>
</tr>
<tr>
<td>81-115</td>
<td>"The Price-Earnings Relative as an Indicator of Investment Returns,"</td>
<td>by David Goodman and John W. Peavy, III</td>
</tr>
<tr>
<td>81-117</td>
<td>"Sequential Information Dissemination and Relative Market Efficiency,"</td>
<td>by Christopher B. Barry and Robert H. Jennings</td>
</tr>
<tr>
<td>81-118</td>
<td>"Modeling Earnings Behavior,"</td>
<td>by Michael F. van Breda</td>
</tr>
<tr>
<td>81-120</td>
<td>"The Price-Earnings Relatives - A New Twist to the Low-Multiple Strategy,"</td>
<td>by David A. Goodman and John W. Peavy, III</td>
</tr>
<tr>
<td>82-100</td>
<td>"Risk Considerations in Modeling Corporate Strategy,"</td>
<td>by Richard A. Bettis</td>
</tr>
</tbody>
</table>

82-103 "A Typology of Small Businesses: Hypothesis and Preliminary Study," by Neil C. Churchill and Virginia L. Lewis

82-104 "Imperfect Information, Uncertainty, and Credit Rationing: A Comment and Extension," by Kerry D. Vandell

82-200 "Equilibrium in a Futures Market," by Jerome Baesel and Dwight Grant

82-201 "A Market Index Futures Contract and Portfolio Selection," by Dwight Grant

82-202 "Selecting Optimal Portfolios with a Futures Market in a Stock Index," by Dwight Grant

82-203 "Market Index Futures Contracts: Some Thoughts on Delivery Dates," by Dwight Grant

82-204 "Optimal Sequential Futures Trading," by Jerome Baesel and Dwight Grant

82-300 "The Hypothesized Effects of Ability in the Turnover Process," by Ellen F. Jackofsky and Lawrence H. Peters

82-301 "Teaching a Financial Planning Language as the Principal Computer Language for MBA's," by Thomas E. Perkins and Paul Gray

82-302 "Put Budgeting Back Into Capital Budgeting," by Michael F. van Breda

82-400 "Information Dissemination and Portfolio Choice," by Robert H. Jennings and Christopher B. Barry

82-401 "Reality Shock: The Link Between Socialization and Organizational Commitment," by Roger A. Dean

82-402 "Reporting on the Annual Report," by Gail E. Farrelly and Gail B. Wright

82-403 "A Linguistic Analysis of Accounting," by Gail E. Farrelly

82-601 "Optimal Land Use Planning," by Richard B. Peiser

82-602 "Variances and Indices," by Michael F. van Breda

82-603 "The Pricing of Small Business Loans," by Jonathan A. Scott

82-604 "Collateral Requirements and Small Business Loans," by Jonathan A. Scott

82-605 "Validation Strategies for Multiple Regression Analysis: A Tutorial," by Marion G. Sobol
"Credit Rationing and the Small Business Community," by Jonathan A. Scott

"Bank Structure and Small Business Loan Markets," by William C. Dunkelberg and Jonathan A. Scott

"Transportation Evaluation in Community Design: An Extension with Equilibrium Route Assignment," by Richard B. Peiser

"An Expanded Commercial Paper Rating Scale: Classification of Industrial Issuers," by John W. Peavy, III and S. Michael Edgar

"Inflation, Risk, and Corporate Profitability: Effects on Common Stock Returns," by David A. Goodman and John W. Peavy, III

"Turnover and Job Performance: An Integrated Process Model," by Ellen F. Jackofsky

"Analytical Review Developments in Practice: Misconceptions, Potential Applications, and Field Experience," by Wanda Wallace

"Using Financial Planning Languages for Simulation," by Paul Gray

"A Look at How Managers' Minds Work," by John W. Slocum, Jr. and Don Hellriegel

"The Impact of Price Earnings Ratios on Portfolio Returns," by John W. Peavy, III and David A. Goodman

"Replicating Electric Utility Short-Term Credit Ratings," by John W. Peavy, III and S. Michael Edgar

"Job Turnover Versus Company Turnover: Reassessment of the March and Simon Participation Model," by Ellen F. Jackofsky and Lawrence H. Peters

"Investment Management by Multiple Managers: An Agency-Theoretic Explanation," by Christopher B. Barry and Laura T. Starks

"The Senior Marketing Officer - An Academic Perspective," by James T. Rothe

"The Impact of Cable Television on Subscriber and Nonsubscriber Behavior," by James T. Rothe, Michael G. Harvey, and George C. Michael

"Integrating Financial Portfolio Analysis with Product Portfolio Models," by Vijay Mahajan and Jerry Wind
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>82-112</td>
<td>"A Non-Uniform Influence Innovation Diffusion Model of New Product Acceptance,"</td>
<td>Christopher J. Easingwood, Vijay Mahajan, and Eitan Muller</td>
</tr>
<tr>
<td>82-113</td>
<td>"The Acceptability of Regression Analysis as Evidence in a Courtroom - Implications for the Auditor,"</td>
<td>Wanda A. Wallace</td>
</tr>
<tr>
<td>82-114</td>
<td>"A Further Inquiry Into the Market Value and Earnings' Yield Anomalies,"</td>
<td>John W. Peavy, III and David A. Goodman</td>
</tr>
<tr>
<td>82-120</td>
<td>"Compensating Balances, Deficiency Fees and Lines of Credit: An Operation Model,"</td>
<td>Chun H. Lam and Kenneth J. Boudreaux</td>
</tr>
<tr>
<td>82-121</td>
<td>"Toward a Formal Model of Optimal Seller Behavior in the Real Estate Transactions Process,"</td>
<td>Kerry Vandell</td>
</tr>
<tr>
<td>82-123</td>
<td>"Compensating Balances, Deficiency Fees and Lines of Credit,"</td>
<td>Chun H. Lam and Kenneth J. Boudreaux</td>
</tr>
<tr>
<td>83-100</td>
<td>"Teaching Software System Design: An Experiential Approach,"</td>
<td>Thomas E. Perkins</td>
</tr>
<tr>
<td>83-102</td>
<td>"An Interactive Approach to Pension Fund Asset Management,"</td>
<td>David A. Goodman and John W. Peavy, III</td>
</tr>
<tr>
<td>83-105</td>
<td>"Robust Regression: Method and Applications,"</td>
<td>Vijay Mahajan, Subhash Sharma, and Jerry Wind</td>
</tr>
<tr>
<td>83-106</td>
<td>"An Approach to Repeat-Purchase Diffusion Analysis,"</td>
<td>Vijay Mahajan, Subhash Sharma, and Jerry Wind</td>
</tr>
<tr>
<td>83-200</td>
<td>"A Life Stage Analysis of Small Business Strategies and Performance,"</td>
<td>Rajeswararao Chaganti, Radharao Chaganti, and Vijay Mahajan</td>
</tr>
<tr>
<td>83-201</td>
<td>"Reality Shock: When A New Employee's Expectations Don't Match Reality,"</td>
<td>Roger A. Dean and John P. Wanous</td>
</tr>
<tr>
<td>83-202</td>
<td>"The Effects of Realistic Job Previews on Hiring Bank Tellers,"</td>
<td>Roger A. Dean and John P. Wanous</td>
</tr>
<tr>
<td>83-204</td>
<td>"Differential Information and the Small Firm Effect,"</td>
<td>Christopher B. Barry and Stephen J. Brown</td>
</tr>
</tbody>
</table>
83-300 "Constrained Classification: The Use of a Priori Information in Cluster Analysis," by Wayne S. DeSarbo and Vijay Mahajan

83-400 "Small Businesses, the Economy, and High Interest Rates: Impacts and Actions Taken in Response," by Neil C. Churchill and Virginia L. Lewis

83-500 "A Closer Look at Stock-For-Debt Swaps," by John W. Peavy III and Jonathan A. Scott

83-501 "Small Business Evaluates its Relationship with Commercial Banks," by William C. Dunkelberg and Jonathan A. Scott

83-503 "Differential Information and the Small Firm Effect," by Christopher B. Barry and Stephen J. Brown

83-504 "Accounting Paradigms and Short-Term Decisions: A Preliminary Study," by Michael van Breda

83-506 "Initial Observations from the Decision Room Project," by Paul Gray

"Multiple Key Informants' Perceptions of Business Environments," by William L. Cron and John W. Slocum, Jr.

"Predicting Salesforce Reactions to New Territory Design According to Equity Theory Propositions," by William L. Cron

"Business Synergy and Profitability," by Vijay Mahajan and Yoram Wind

"Advertising, Pricing and Stability in Oligopolistic Markets for New Products," by Chaim Fershtman, Vijay Mahajan, and Eitan Muller

"How Have The Professional Standards Influenced Practice?," by Wanda A. Wallace

"What Attributes of an Internal Auditing Department Significantly Increase the Probability of External Auditors Relying on the Internal Audit Department?," by Wanda A. Wallace

"Building Bridges in Rotary," by Michael F. van Breda

"A New Approach to Variance Analysis," by Michael F. van Breda

"Taxes, Insurance, and Corporate Pension Policy," by Andrew H. Chen

"Networks with Side Constraints: An LU Factorization Update," by Richard S. Barr, Keyvan Farhangian, and Jeff L. Kennington

"Diversification Strategies and Managerial Rewards: An Empirical Study," by Jeffrey L. Kerr

"Network Generating Models for Equipment Replacement," by Jay E. Aronson and Julius S. Aronofsky

"Differential Information and Security Market Equilibrium," by Christopher B. Barry and Stephen J. Brown

"Optimization Methods in Oil and Gas Development," by Julius S. Aronofsky

"Benefits and Costs of Disclosing Capital Investment Plans in Corporate Annual Reports," by Gail E. Farrelly and Marion G. Sobol.
83-907 "Security Price Reactions Around Corporate Spin-Off Announcements," by Gailen L. Hite and James E. Owers

83-110 "Microcomputers in the Banking Industry," by Chun H. Lam and George H. Hempel

83-111 "Current and Potential Application of Microcomputers in Banking -- Survey Results," by Chun H. Lam and George H. Hempel

83-114 "The Effect of Stock-for-Debt on Security Prices," by John W. Peavy, III and Jonathan A. Scott

83-115 "Risk/Return Performance of Diversified Firms," by Richard A. Bettis and Vijay Mahajan

83-120 "Conglomerate Merger, Wealth Redistribution and Debt," by Chun H. Lam and Kenneth J. Boudreaux

83-121 "Differences Between Futures and Forward Prices: An Empirical Investigation of the Marking-To-Market Effects," by Hun Y. Park and Andrew H. Chen

83-122 "The Effect of Stock-for-Debt Swaps on Bank Holding Companies," by Jonathan A. Scott, George H. Hempel, and John W. Peavy, III

84-100 "The Low Price Effect: Relationship with Other Stock Market Anomalies," by David A. Goodman and John W. Peavy, III

84-101 "The Risk Universal Nature of the Price-Earnings Anomaly," by David A. Goodman and John W. Peavy, III

"Bank Performance as the Economy Rebounds," by Jonathan A. Scott and George H. Hempel

"The Optimality of Multiple Investment Managers: Numerical Examples," by Christopher B. Barry and Laura T. Starks

"Microcomputers in Loan Management," by Chun H. Lam and George H. Hempel

"Use of Financial Planning Languages for the Optimization of Generated Networks for Equipment Replacement," by Jay E. Aronson and Julius S. Aronofsky

"Real Estate Investment Funds: Performance and Portfolio Considerations," by W. B. Brueggeman, A. H. Chen, and T. G. Thibodeau

"A New Wrinkle in Corporate Finance: Leveraged Preferred Financing," by Andrew H. Chen and John W. Kensinger

"Reaching the Changing Woman Consumer: An Experiment in Advertising," by Thomas E. Barry, Mary C. Gilly and Lindley E. Doran

"Forecasting, Reporting, and Coping with Systematic Risk," by Marion G. Sobol and Gail E. Farrelly

"Managerial Incentives in Portfolio Management: A New Motive for the Use of Multiple Managers," by Christopher B. Barry and Laura T. Starks

"Small Business Bank Lending: Both Sides are Winners," by Neil C. Churchill and Virginia L. Lewis

"Assessing the Impact of Market Interventions on Firm's Performance," by Richard A. Bettis, Andrew Chen and Vijay Mahajan

"On the Assessment of Default Risk in Commercial Mortgage Lending," by Kerry D. Vandell

"Density and Urban Sprawl," by Richard B. Peiser

"Analyzing the Language of Finance: The Case of Assessing Risk," by Gail E. Farrelly and Michael F. van Breda

"Joint Effects of Interest Rate Deregulation and Capital Requirement on Optimal Bank Portfolio Adjustments," by Chun H. Lam and Andrew H. Chen
84-803 "Job Attitudes and Performance During Three Career Stages," by John W. Slocum, Jr. and William L. Cron

84-900 "Rating a New Industry and Its Effect on Bond Returns: The Case of the A T & T Divestiture," by John W. Peavy, III and Jonathan A. Scott

84-901 "Advertising Pulsing Policies for Generating Awareness for New Products," by Vijay Mahajan and Eitan Muller

84-110 "SLOP: A Strategic Multiple Store Location Model for a Dynamic Environment," by Dale D. Achabal, Vijay Mahajan, and David A. Schilling

84-111 "Standards Overload and Differential Reporting," by N. C. Churchill and M. F. van Breda

84-112 "Innovation Diffusion: Models and Applications," by Vijay Mahajan and Robert A. Peterson

84-113 "Mergers and Acquisitions in Retailing: A Review and Critical Analysis," by Roger A. Kerin and Nikhil Varaiya

84-115 "Mentoring Alternatives: The Role of Peer Relationships in Career Development," by Kathy E. Kram and Lynn E. Isabella

84-120 "Participation in Marketing Channel Functions and Economic Performance," by William L. Cron and Michael Levy

85-200 "A Multi-Attribute Diffusion Model for Forecasting the Adoption of Investment Alternatives for Consumers," by Rajendra K. Srivastava, Vijay Mahajan, Sridhar N. Ramaswami, and Joseph Cherian

85-202 "A Formal Interactive Decision Aid for Choosing Software or Hardware," by Gary Klein and Philip O. Beck

85-203 "Linking Reward Systems and Organizational Cultures," by Jeffrey Kerr and John W. Slocum, Jr.

85-204 "Financing Innovations: Tax-Deductible Equity," by Andrew Chen and John W. Kensinger.
"The Effect of the WPPSS Crisis on the Tax-Exempt Bond Market" by John W. Peavy, III, George H. Hempel and Jonathan A. Scott

"Classifying Control Variables," by Michael F. van Breda

"Measuring the Financial Impact of Strategic Interaction: The Case of Instant Photography," by Richard A. Bettis and David Weeks

"Efficient Data Handling and Inefficient Market Structures," by Marion G. Sobol and Albert Kagan

"Organizational Symbols: A Study of Their Meanings and Influences on Perceived Psychological Climate," by Suzyn Ornstein

"Downward Movement and Career Development," by Douglas T. Hall and Lynn Isabella

"Organization Structure and Financial Market Performance: A Preliminary Test," by Richard A. Bettis and Andrew Chen

"Financial Institutions and Markets and the Economic Development of Four Asian Countries," by Christopher B. Barry

"Innovation Diffusion Models of New Product Acceptance: A Reexamination," by Vijay Mahajan and Yoram Wind

"Simplified Assessment of Single and Multi-Attribute Utility Functions," by Gary Klein, Herbert Moskowitz, Sathiadev Mahesh, and A. Ravindran