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ABSTRACT 

Uncertainty presents unique difficulties in optimization problems. Deci

sion Makers (DMs) are faced with risky situations requiring analysis of multi

ple outcomes in each solution. Very few direct choice (interactive) methods 

are capable of addressing problems with probabilistic outcomes. We present a 

general algorithm which will allow for uncertainty. The method is appropriate 

for use in a multiple criteria framework with a discrete number of possible 

outcomes, but is explored and developed in the context of a bicriterion prob

lem using a two stage mathematical programming model. 



1. Introduction 

Determination of an optimal solution to a problem, or selection of a pre

ferred alternative, is a product of model development, model (parameter) mea

surement, and model optimization. Alteration of any of the three tasks can 

lead to a change in the resulting decision. If a problem has multiple cri

teria and the alternatives have uncertain outcomes, the difficulties in model 

development, measurement and optimization are compounded. Interactive methods 

may not be proper under uncertainty because the concept of an efficient fron

tier is lost when referring to expected utility. 

Many papers exist on development of utility models under risk and multi

ple criteria. Techniques for utility construction appear in Keeney and Raiffa 

[1976] and approaches to ease the task of measuring utility functions are dis

cussed in [Klein, et al 1982] and reviewed in [Farquhar 1984]. These utility 

methods appear as the only major methodology under the case of uncertainty in 

multicriteria optimization [Zionts 1979 and Hwang and Masud 1979]. The lack 

of an interactive procedure for the case of uncertainty in multicriteria mod

els excludes the advantages inherent in progressive preference articulation 

methods. The ease of use, speed and solution confidence [Wallenius 1975 and 

Klein, Moskowitz and Ravindran 1985] would be a welcome asset to situations 

where uncertainty is involved. In order to capitalize on the benefits of an 

interactive approach, many researchers have developed effective methodologies 

to locate efficient solutions under certainty. Among the better known methods 

for nonlinear problems are those of Zionts and Wallenius [1976 and 1983], 

Geoffrion, Dyer and Feinberg [1979], and Sadagopan and Ravindran [1982]. 

This paper develops an interactive method for handling a bicriteria prob

lem under uncertainty with two uncertain outcomes. The method combines the 

two previous approaches by Geoffrion, Dyer, and Feinberg (GDF) [1976] and the 



2 

Paired Comparison Method (PCM) of Sadagopan and Ravindran [ 1982]. A general 

problem framework is described, followed by an algorithm and example. 

2. Problem Specification 

Consider the mathematical program with two criteria and two uncertain 

right hand side (RHS) vectors in the constraint set. Denote the problem as 

TSEU: 

MAX fu (X,Z) 

fl2 (Y, Z) 

f21 (X,Z) 

f22 (Y,Z) 

S.T. g1 (X,Z) < b1 ( 1) 

gm (X, Z) < bm(l) 

g1 (Y ,Z) < b1 (2) 

• 
gm (Y ,Z) < bm(2) 

where z represents first-stage variables that require immediate commitment, X 

and Y are second-stage variables that may be determined immediately prior to 

implementation, f(.) is a concave, differentiable objective function, and g1, 

to gm are convex, differentiable constraint functions. 

As can be seen, the incorporation of uncertainty has increased the dimen-

sionality of the problem. The PCM could not solve this problem without the 

necessary extensions to handle four criteria. The GDF Method could solve this 

problem by treating different outcomes of the same objective as separate ob-

jective functions, but the complexity of the problem has increased the dimen-

sionality and the severity of the criteria tradeoff requests of the DM. By 

presenting the different outcomes as separate objectives to the DM when re-

questing tradeoff information, the true state of uncertainty is not properly 
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represented. This may lead to a bias on the part of the DM regarding trade-

offs across outcomes or across probabilities. 

The problem is a two outcome generalization of others appearing in the 

literature. Let us begin with the simple two-stage model from Dantzig (1963] 

or Wagner [1969] of one criterion and two right-hand-side vectors of known 

probabilities (b(l) with probability PI, and b(2) with probability pz). The 

problem assumes that several decision variables require a commitment at the 

present time. These variables cannot be changed at a later date, however 

there also exist variables that are flexible. The flexible variables can be 

changed after the true right-hand-side levels are known. The variables re-

quiring an immediate commitment are called the first-stage variables. The 

flexible variables are called the second-stage variables. 

A formulation for the two-stage decision would be 

TS: Max p1f(X,Z) + pzf(Y,Z) 

subject to: 

gl (X,Z) ( bl ( 1) 
• . 

• . 
gm(X,Z) ( bm(l) 

gl (Y ,Z) . ( bl (2) 
• . 
• 

gm(Y,Z) < bm(2) 

where Z is the first stage variable vector, X is the second-stage vector asso-

ciated with the first RHS (b(l)), Y is the second-stage vector associated with 

the second RHS (b(2)), b(i) is the ith RHS vector of length m, f(•) is a con-

cave, differentiable objective function, and gl to gm are convex, differen-

tiabl~ functions. 

Note that the formulation will determine a complete decision vector 

(X,Y,Z). Initially the decision variables in the Z vector would be 
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implemented. The second-stage variables X would be the plan for the first RHS 

and Y for the second RHS. Another feature is the use of expected values in 

the objective function. The Z vector is identical in each functional computa

tion, but the second-stage variables differ, and each has a known probability 

of being implemented. Thus all the information needed to compute expected 

values is available. Because of the use of expected values, the incorporation 

of more than two discrete options is a simple extension. 

The two-stage (TS) model is appropriate in the context of utility theory 

only if the decision maker's utility function is linear, and has known weights 

on each outcome. This means that no transformation of the criterion outcomes 

are made prior to the taking of expectations. If the utility function is . 

known, but not of a simple form, then the model modifications would be to sim

ply change the objective to compute utilities of the function prior to the ex

pected value computations. That is, Max PlU(f(X,Z)) + pzU(f(Y,Z)). This pro

cess would require a tedious utility function measurement as described in 

[Keeney and Raiffa, 1976]. If, however, we assume no knowledge about the 

utility function then the two uncertain outcomes must be separated. The sep

aration of the outcomes suggests the use of one of the interactive methods 

discussed earlier. The formulation for this model (TSU) would appear: 

TSU: Max f1 = f(X,Z) 

f 2 = f(Y ,Z) 

subject to the same constraint set in TS. 

As can be seen, the resulting formulation is similar to a bicriterion 

problem. There is only one criterion, but the level has two possible out

comes. To solve the problem for maximum expected utility is to find X, Y, and 

Z such that the certainty equivalent to the implied lottery is maximized. It 
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would be possible to use the PCM for this problem by setting each outcome as a 

separate criterion and solving as a two-stage problem. The GDF method could 

also handle this problem in a similar fashion. 

A moderate twist to the model in problem TSEU is when the uncertainties 

in a bicriterion model are in the objective function instead of the right hand 

side. Allow only 2 uncertain outcomes but associate them with parameters 

in the objective function. The formulation for the two-stage objective is: 

TSO: l1ax fu(X,Z) 

f12(X,Z) 

f21(X,Z) 

f22(X,Z) 

subject to: 

where b(l) are the certain RHS constants and fij is the function for the ith 

criterion at the jth parameter level (outcome). The GDF method could handle 

this problem in the same fashion as problem TSEU. The existing PCM could 

handle the problem only by utilizing expected values. It is also important to 

note that for this case, the decision variables are now all first-stage _vari-

ables, and the true state of nature need not be determined in order to make 

the decisions. 

In a final variation, Bard [1983] discusses a Bi-level Programming Prob-

lem that is an extension of the two-stage model allowing for the objective 

functions to be different functions rather than different possible occurrences 

of the same function. When two levels of management have conflicting objec-

tive functions the top management objective may be satisfied prior to the low-

er management objective. 
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3. An Interactive Algorithm Under Uncertainty 

The purpose of this section is to develop a method that will solve the 

above problems without increasing the dimensionality of the vector maximiza

tion and reduce the number of criteria requiring tradeoff information. Fea

tures from both the PCM and GDF Method will be used to provide a method which 

presents the DM with the easiest questions possible. 

The approach will utilize tradeoff information as does the GDF, to pro

vide a direction to travel in the feasible region. The method will not re

quire specific tradeoff values of the DM for all criteria across all outcomes, 

but will estimate tradeoffs using paired comparisons within each outcome. 

Thus, the questions asked of the DM will be structured after the soft interac

tions of the PCM. 

3.1 Problem Structuring 

Consider partitioning problem TSEU into two bicriterion mathematical 

programs: 

BMP 1: 

Max fu(X,Z) 

fz 1(X,Z) 

subject to 

g(X,Z) < b(l) 

BMP 2: 

Max f 12 (Y ,z) 

fzz(Y,Z) 

subject to 

g(Y,Z) < b(2) 

BMP 1 represents the problem to be solved when the RHS is b(l). BMP 

the RHS is b(2). Each problem will have an associated payoff vector 

and Vz) such that 

v1 = {Vjf 11 (X,Z), f21 (X, Z) = v for some x,z where g(X,Z) ( b( 1)} 

2 is when 

set (V1 

Vz = {Vjf 1z(Y,Z), fzz(Y,z) = v for some Y,Z where g(Y,Z) ( b(2)}. 
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BMP 1 and BMP 2 now provide an opportunity to examine each outcome inde

pendently. However, feasibility may be lost if BMPl is solved and outcome 2 

is the true state of nature. Thus a link, in the form of minimum achievement 

levels and duplicated constraints must be made between BMPl (Outcome 1) and 

BMP2 (Outcome 2). These levels are denoted a11 and a21 for the minimum 

achievement levels of f11(X,Z) and fzl(X,Z). They will permit the separate 

optimization of the outcomes while maintaining feasibility. The selection of 

the specific levels are discussed during the development of the procedure. 

The resulting problems are conditional bicriterion mathematical programs 

(CBMP) and would appear as: 

CBMP1(a12' az2): CBMP2 (a 11 , a 21 ) 

Max fu(X,Z) Max f 12 (Y,Z) 

f 21 (X,Z) f 22 (Y,z) 

Subject to Subject to 

g(X,Z) < b(l) g(X,Z) < b(l) 

g(Y, Z) < b(2) g(Y,Z) < b(2) 

f12(Y,Z) > a12 fu(X,Z) > au 

f 22 (Y,Z) > a22 f21 (X,Z) > azl 

The aij are determined at each iteration of the algorithm proposed later in 

this section. Each of the above problems will have an associated payoff set 

that is a reduction of the V1 and Vz sets due to the extra constraints in 

CBMPl and CBMP2. These reduced payoff sets will be determined by the tight

ness of the minimum achievement levels. 

Formally, 

v1 = v1(a12 , a 22 ) = {Vjf 11 <x,z), f 21 <x,z) = v 

for some X,Z where g(X,Z) < b(l), g(Y,Z) < b(2), 

fl2(Y,Z) ) a12, and f22(Y,Z) ) a22} 



vz • vz(all' a12) = {VIflz(Y,Z), fzz(Y,Z) = V 

for some Y,Z where g(Y,Z) < b(2) 

g(X,Z) < b(l), f11(X,Z) ) a11' and fzl(X,Z) ) azl}• 
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Note that v1 is contained in V and vz is contained in Vz. Therefore, an 

efficient solution to CBMPl may not be efficient to BMPl but a feasible solu

tion to CBMPl will be feasible for BMPl (figure 1). This point becomes 

important, because it is through the manipulation of the minimum achievement 

levels, and thus the manipulation of CBMPl(alz, azz), CBMP2(all,a21), vl, and 

Vz that the algorithm moves toward a final solution. Since in the process of 

maximizing expected utility the conditional bicriterion formulations will be 

used, we introduce the concepts of efficiency and mutual efficiency. 

Definition: A solution X0 , yO, Z0 E Sis efficient if fk(X,Y,Z) > 

fk(X0 , yO, ZO) for some X, Y, Z E S implies that fj(Z,Y,Z) < fj(X 0 , Y0 , Z0 ) 

for at lease one other index j. Consider the set of efficient solutions to 

CBMPl (alz, azz) and the set of efficient solutions to CBMP2(all,a21)• x*, 

y*, z* is mutually efficient to CBMPl (alz, azz) and CBMP2 (all' azl) if and 

only if x*, y*, z* belongs to both sets of efficient solutions. 

Mutual effeciency (ME), like efficiency, is a property to ensure that a 

solution under consideration is non-dominated, and thus a candidate for the 

most satisfactory solution. This implies three properties, the latter two of 

which will be subsequently proven. The first property is that, by definition 

of ME and efficiency, a non-dominated solution is present for each problem 

CBMPl and CBMP2. This indicates that when a DM is presented a ME solution to 

CBMPl and CBMP2 he is assured that no attribute improvements can be made with

in any outcome without detrimenting another attribute within the same outcome 

or at least one attribute in the remaining outcome. 
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A second property is that a ME solution to CBMPl and CBMP2 is an effi-

cient solution to the general problem TSEU. This implies that a simple method 

which utilizes the partitioning of TSEU into CBMPl and CBMP2 will have an 

efficient point in TSEU. Thus finding a ME solution to CBMPl and CBMP2 yields 

an efficient solution to TSEU. 

Theorem 1: x*, Y*, z* is efficient to TSEU iff a decision variable 

vector x*, y*, z* is ME to CBMPl and CBMP2. 

Requirements of Feasibility. Denote the feasible region for TSEU as S 

and the feasible regions for CBMPl and ~MP2 and S1 and S2• Any (X,Y,Z) £ S1 

or S2 is also an element of S since Sl and S2 are subsets of S. Thus any 

(X,Y,Z) feasible to CBMPl and CBMP2 is feasible to TSEU. To reverse the con-

sideration, any point (X,Y,Z) £ Swill yield values for fll(X,Z), f21(X,Z), 

f12(Y,Z), and f22(Y,Z). Let these values be all• a21• al2• and a22 respec-

tively and (X,Y,Z) becomes £ S1 and S2 by definition. 

Proof: Sufficieny. Let (X*,y*,z*) be ME to CBMPl and CBMP2. If 

(X*,y*,z*) is not efficient to TSEU, then there exists a point (X0 , Y0 , Z0 ) 

such that fij(X0 , Z0 ) > fij(X*,z*) for a11(i,j) and at least one of the fol-

lowing: 

fll(Xo,zo) > ( * * f11 X ,Z ) all• 

f2l(Xo,zo) > * *) f21(X ,Z a21• 

fl2(Yo,zo) > f 12 <Y*,z*> = al2• or 

f22(Yo,zo) > f 22 <Y*,z*> = a22• 

This however, means that (X*, y*, z*) is not efficient to either CBMPl 

(a12,a22> or CBMP2 (all•a21)• Thus ME is contradicted. 

Necessity: Let (x*,y*,z*) be efficient to TSEU. For CBMPl to not be 

efficient would imply an (X0 ,Y0 ,Z0 ) such that f11(X 0 ,Z0 ) > f11<x*,z*) or 
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f 21 (x0 ,Z0 )) f2 1<x*,z*). This contradicts efficiency of TSEU, thus (X*,Y*,z*) 

is efficient to CBMPl. A similar argument holds for CBMP2. Since CBMPl a 

CBMP2 are both efficient at (X*,Y*,z*) and feasible, (X*,y*,z*) is mutually 

efficient to CBMPl and CBMP2. 

A final property is that when the constraints on the objective functions 

within the conditional bicriterion mathematical programs are tight and an ef-

ficient solution to CBMPl-is found for an efficient payoff in CBMP2 is known, 

a ME solution is also found. This permits verification of the ME property 

within an algorithm. 

Theorem 2. x*,y*,z* is ME to CBMPl and CBMP2 if (a12' a22> is an 

efficient payoff in CBMP2, x*,y*,z* is efficient to CBMPl (a12' a22), 

f 12(Y*,z*) = a12' and f22<Y*,z*) K a22• 

Proof: Since (a12,a22> is an efficient payoff vector in CBMP2 there is 

no feasible Y in CBMP2 such that {f12(Y,Z*) > a12 and f22(Y,z*) ) a22} or 

* * * Thus by definition X ,Y ,Z is effi-

cient to CBMP2 and by construction to CBMPl and is therefore ME to CBMPl and 

CBMP2. The argument must be repeated for the reversal of CBMPl and CBMP2 in 

order to be complete. 

3.2 A Stepwise Technique 

Using the efficiency concepts, the development of an algorithm that main-

tains mutual efficiency at each iteration is desired. In order to accomplish 

this task a method will be developed that utilizes the above properties. The 

method will start by finding a mutually efficient solution using existing MCDM 

techniques. Once a starting point is determined, the algorithm will use 

tradeoffs to estimate utility functions for the decision maker. With esti-

mates of the utility functions, the method will explore the feasible region of 

one outcome while relaxing the criterion levels in the second. 
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Theorem 1 will be implied in the exploration to retain feasibility and to 

insure an efficient solution is secured to TSEU when an ME solution to CBMPl 

and CBMP2 is secured. The exploration is conducted to insure that the condi-

tions implying ME in Theorem 2 are preserved. Thus, a new efficient solution 

to TSEU is found that is used as a starting point for the next iteration. The 

steps are as follows: 

Step 0: Initialize the Iterations: 

Solve CBMPl (minimum achievements) using the PCM. This is denoted as 

outcome 1 (Ql), with solution (X,Y,Z). Set all = f11(X,Z) and a21(X,Z). 

Solve CBMP2 (a11,a21) using the PCM. Denote this as outcome 2 (Q2), with new 

solution (X0 ,t',z0). Set a12 = f12(Y 0 ,Z0 ) and a22 = f22(Y0 ,Z0 ). The starting 

points would be as shown in Figure 1. 

Figure 1 

In initializing the method, the PCM is recommended to determine starting 

values. This is to insure accurate estimations of the linear utility in Step 

1. In addition, by starting at the preferred solution in each outcome, the 

method may start closer to the preferred solution across all outcomes. Mutual 

efficiency will exist at this point in the algorithm because no better solu-

tion exists for Ql from a utility viewpoint, and Q2 from CBMP2(all,a21) is de

fined by the efficient vector (X*,y*,z*). 

Step 1: Generate Local Tradeoffs: 

Approximate the slope for a linear utility function for each outcome. 

Ask the DM how much increase does he expect in criterion 2 in Ql for a unit 

decrease in criterion 1. Let the response be X11• Set X12 = 1. Ask the same 

question in Q2, let the response be X21• Set X22 = 1. 
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The tradeoff questions are similar to those asked when measuring value 

functions (Kenney and Raiffa 1976). If the wish is to eliminate questions of 

the DM at this step, the tradeoffs may be approximated in a fashion requiring 

no interaction. Within each outcome solve the problem 

P).: MAX f1j 

subject to: g(X,Z) ( b(1) 

g(Y, Z) ( b( 2) 

flj(X,Y,Z) ) a1j 

f2j(X,Y,Z) ) a2j - 1, 

where the last constraint permits a unit drop in the level of the second cri-

terion and the solution is (XA,yA,zA). This will provide an adjacent effi-

cient point that can be used to determine the values by setting A1j s 

flj(XA,yA,zA) - f 1j(XO,y0,z0 ). Since the DM selected the solution (X 0 ,Y0 ,Z 0 ) 

by using the PCM, the line estimated will be close to that provided by a di-
c 

rect tradeoff value given a consistent DM. The tradeoffs derived are in terms 

of the criteria, not the decision variables, as shown in Figure 2. 

Figure 2 

Step 2: Determine Direction to Travel: 

The directional problem may be derived from CBMP2. Let the vector 

(a11,a21) be the incumbent outcome Q1 generated in either Step 0 or Step 3. 

Let r range from 0 to 2n radians with 0 as arbitrary due north. Any change of 

distance = 1 in the criteria levels may thus be represented: 

Ql = 
au + cos( r) 
azl + sin(r). 
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Since we are looking for the direction of maximal expected utility increase, 

we are solving the general objective function: Max p[U(Ql) - U(Ql)] + 

(l-p)[(Q2)- U(Q2)], where 01 is the outcome i from the direction search step 

of the current iteration, U(Q2) is a constant, and U(Ql)- U(Ql) reduces to 

U(cos(r),sin(r)) due to linearity assumptions, and U(Q2) is determined by the 

CBMP2(all,a21) objective function. Thus the directional problem becomes: 

DIR: Max p[Allcos(r) + 

Subject to: 

0 < r < 21T 

g(X,Z) < b(l) 

g(Y,Z) < b(2) 

f11(X,Z) ) a11 + cos(r) 

fzl(X,Z) ) a21 + sin(r) 

where Aij represent linear utility weights on the criteria. 

Using the A's determined in Step 1 as linear utility weights on the cri-

teria, solve problem DIR. Figure 3 shows the workings of problem DIR. As r 

varies direction with constant radius of length= 1, in Ql, the estimated lin-

ear utility function in Q2 will shift outward (or inward) to its best value. 

Since r is a variable, the maximum increase in expected estimated utility is 

found by DIR for a unit change in the criteria. The utility will increase for 

any positive value of the objective to problem DIR, so global optimality to 

problem DIR may not be necessary. 

Figure 3 



Step 3: Find the Distance of Travel 

Solve CBMP2 (au+ a(cos(r)), a21 + a(sin(r))) at several values of a 

from 0 to a maximum distance. Denote the solutions as (Xd, yd, zd). The 

optimization could be accomplished by using the PCM for each distance on Q2 

(this would be tedious) or by using the linear approximations (Aij's) from 

Step 1 to solve: 

subject to: 

f11(X,Y,Z) ) a11 + acos(r) 

f21(X,Y,Z) ) a21 + asin(r) 

for each a selected. 

For each solution present a lottery to the DM. Each lottery would be 
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<fll(xd,yd,zd), f 21 (xd,yd,zd)> as Ql with probability p, and <fl2(xd,yd,zd), 

f 22 (xd,yd,zd)> as Q2 with probability (1-p). If a= 0 is the preferred dis

tance then stop. Else set aij = fij (Xd,yd,zd) of the preferred lottery for 

all i and j, and return to Step 1. The distance determination would progress 

as shown in Figure 4. 

It may also be appropriate to verify mutual efficiency by making certain 

the constraints in CBMP2 that generated the chosen lottery are tight. If not, 

correct by adding the slack values to the minimum achievement levels associ-

ated with Ql before presenting the outcomes to the DM. It is also possible to 

correct by solving CBMP2(fl2(Y,Z), f22(Y,Z)) with the PCM where Y and Z are 

the solutions from the CBMP2 that generated the preferred lottery. 

Figure 4 
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3.3 More Than Two Criteria, Outcomes 

As the number of criteria increases, the number of conditional problems 

remain the same. The changes would involve adding objectives and constraints 

to each conditional problem. As outcomes are added, the number of conditional 

problems increases. The major stumbling block for larger problems would be 

the amount of information provided to the DM at each iteration. In addition 

to more than two criteria, the DM may be faced with viewing lotteries with 

many outcomes. Also, the simplistic direction and distance finding problems 

would have to be replaced by methods that handle more complexity. 

4. Applications 

Two Problems Illustrate the Use of the Method. 

4.1 Uncertainty in the Right Hand Sides: Example 

A common occurence, is the uncertainty of the RHS in a specific mathemat

ical program. In a production mix framework, resource suppliers are not al

ways dependable, machines break down, or cash flow may be strained. This 

leads to differing feasible regions and differing production plans. This cor

responds to problem TSEU. 

No first-stage variables appear in this example problem, not being impor~ 

tant in the demonstration of the algorithm. Consider a raw material intensive 

production problem. Assume that resource requests are being filled, and that 

the three raw materials will have a constraint vector of (in thousands of 

units): 

RM 1 = 30 with .5 = 25 

2 = 15 probability, = 20 

3 = 40 or = 45 

with .5 

probability. 
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Only two prqducts are made from these raw materials, desks (xi) and chairs 

(xz). Two objectives exist at the corporate level, increased market share and 

increased profit. The BMPI associated with this problem is: 

fi = profit (p) • xi + 3xz 

Max 

fz = market share (MS) = xi + xz 

Subject to: 

xi ( RMI 

xz ( RM2 

XI + 2x2 < RM3 

xi, xz) 0 and in thousands of units. 

In addition to these constraints, the company has placed a limit on the flexi

bility of the variables. The flexibility limits may be expressed by the 

addition of the following constraints using: 

I xi - Ytl "" Bt 

lxz - Y21 • Bz 

lx1 + 2x2 - YI - 2yzl ... e3 

ei + Bz + e3 < s. 

Bi represents the absolute deviation in resource usage for raw material 

i. Total deviations are restricted to be less than 5000 units in this exam

ple. These represent estimates of the purchasing department regarding the 

ability to secure differing resources in a limited time frame. 

At any iteration of this algorithm, a variation on CMBPI(alz, azz) is 

used in the direction finding and distance steps. The BMPA using Geoffrion's 

method for this problem would appear: 

BMPA Max AI(I + 3xz) + Az(xi + xz) 



Subject to: 

x1 " 25 

xz ( 20 

x1 + 2x2 " 45 

Yl ( 30 

Y2 " 15 

Yl + 2Y2 ( 40 

lx1 - YII - sl 

lx2 - Y21 = s2 

lx2 - 2x2 - Yl - 2Y21 

sl + S2 + S3 " 5 

Yl + 3y2 ) 12 

Y1 + Y2 ) 22 
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= s3 

With the specific production problem outlined above, let us apply our al

gorithm. Assume the decision makers true utility is: U = (MS/40) + (p/60) -

(MS/40)2 -(p/60)2. Using a quadratic mathematical program, the optimal utili

ty occurs at MS = 35, ~ =55 for v1, and MS = 42.5, p = 47.5 for v2• The op

timal plan under the first RHS vector occurs at x1 = 25, xz = 7.5. The opti

mal plan under the second RHS vector is Yl = 25, Y2 = 10. The beta constraint 

is tight. 

Step 0: Utilize the PCM on CBMP2(0,0). The solution out is p = 46 and 

MX = 34. Denote this as Q2. Set a12 = 46 and a22 • 34 and use BMPA to get an 

efficient solution to define Ql. This may occur at p • 57 and MS = 27. 

Step 1: At this step we request local tradeoff information. Using the 

decision maker's true utility, we find an increase in MS of .54 will compen

sate for a unit decrease in for outcome 2 (Q2). The tradeoff for 01 is 1.86. 



Step 2: Construct problem DIR using the tradeoff information to 

approximate the utility with a linear function. (Scale As to sum to 1.) 

DIR: 

MAX .5[.65cos(r) + .35sin(r)] + .5[.35f1(x) + .65f2(x)] 
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Subject to the same constraint set as in the previous example plus 

X1 + 3x2) 46 + cos(r), and 

X1 + X2 ) 34 + sin(r). 

The best direction is found at 4.975 radians. 

Step 3: Using the direction indicated, the distance lotteries are gEmer

ated for several distances. The distance problem is: 

MAX .35f1(x) + .65f2(x) 

subject to the same constraint set as the direction problem in Step 2, but set 

r • 4.975 and multiply the trigonometric functions by the distance. The 

lotteries generated are in Table 1. 

TABLE 1 

Distance Lotteries for the Production Example 

Distance Lottery p : .5, (1-p) : .5 

('IT, MS) 

1 <(33,47); (34.5,53.5)> 

2 

3 

5 

<(32 ,48); 

<(31,49); 

<(30,50); 

(35,55)> 

(35,55)> 

(35,55)> 

The decision maker would prefer the lottery at the distance of 2. How

ever, the slack variable for the market share criterion in v1 has become posi

tive. Using the remedy of solving CBMP1(f12(Y,Z), f22(Y,Z)) by the PCM, where 
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Y and Z are from the solution to the BMP of the preferred lottery, optimality 

is achieved. Optimality would not be confirmed until Step 2 of the next 

iteration. In this example, where all the conditions for the algorithm are 

met, the exact optimal is reached. Three PCMs were performed, two tradeoff 

conditions were evaluated, and one series of lotteries was presented to the 

decision maker. 

4.2 Uncertainty in the Objective Function 

In order to examine the methods ability to handle a variety of problem 

structures, an integer acceptance sampling model for quality control was used 

as a test problem. Two criteria in quality control settings are Average Out

going Quality (AOQ) and Average Lot Inspection Cost (ALIC). The constraint 

set is composed only of items natural to the problem: 1) sample size is be

tween 0 and lot size, and 2) acceptance level is between 0 and sample size. 

These features will not change under uncertainty. The feature that may readi

ly change is the true lot fraction defective. A different value for lot frac

tion defective will yield a different AOQ and ALIC. Thus when prior percent 

defective becomes a distribution rather than a point estimate, difficulties 

arise. The model is described in detail in [Moskowitz, Ravindran, Klein, and 

Eswaren 1982]. 

One method of handling the uncertainty aspect would be to take expected 

AOQ and ALIC values. These expected values may be optimized by the PCM or 

preference assessment methods [Moskowitz, et al, 1982]. A second, more appro

priate approach is to consider the risk by utilizing a utility measure. Maxi

mum expected utility would be the objective and would correspond to problem 

TS. The RHS values are deterministic, but the parameters in the objective 

function are uncertain, so that the function f11(X,Z) may not necessarily be 
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equivalent to f 12(X,Z). All variables in this problem are first-stage vari-

ables since the true state of nature is not determined except under complete 

sampling. 

Let us use the specific problem: 

f1 = AOQ • (N-n)PAPo/N 

f2 = ALIC - nCr + (N-n)(1-PA)Cr 

when n = sample size, 

PA = Probability of Acceptance = 

f(hypogeometric distribution, n, 

acceptance level, Pd) 

N = lot size = 100, 

c1 = Cost of inspection per unit • $12, 

Pd Percent defective = 10% with p = .25 

15% with (1-p) = .75 

Assume the decision maker's true utility function is U • 2 - .3(ALIC/1200)2 

- AOQ2. In order to permit comparison, the maximum expected utility as 

determined by complete enumeration occurs at: 

AOQ (10%) = .09437 
ALIC (10%) = 67.57 
AOQ (15%) = .1392 
ALIC (15%) - 86.40 

n = 5 
c = 2 

It should be noted that this Quality Control Model does not fit the convexity 

condition required for global optimality, but the algorithm will hopefully 

prove to be robust. Optimization was performed using an integer modification 

to Box's complex search [Box 1965). 

The methodology terminated after two iterations with a final solution 

of: 
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AOQ (10%) = .09498 
ALIC (10%) 60.29 
AOQ (15%) .14227 
ALIC (15%) 61.8 

n 5 
c = 3, 

or, not far from the optimal. 

5. Conclusion 

The methodology for an interactive procedure under uncertainty is devel-

oped. The process relies heavily on the theory and methodology of the Paired 

Comparison Method and the Geoffrion, Dyer and Feinberg method. The general 

development handles uncertainty in either the objective or the RHS. In order 

to implement the procedure, a concept of mutual efficiency is defined, and 

theory determining the existence of mutual efficiency is developed. A limit-

ing factor is the ability of a Decision Maker to handle lotteries involving 

multiple outcomes and multiple criteria. These limits suggest research into 

ways to decompose the questions, into proper questioning methodologies, and 

possible decision aids to help the DM better visualize the outcomes. 
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