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SOME PROBABILITIES ASSOCIATED WITH THE ORDERING 
OF UNKNOWN MULTINOMIAL CELL PROBABILITIES 

by S. Y. Dennis 

Department of Management Information Sciences 
Southern Methodist University, Dallas, Texas, USA 

SillfMARY 

This paper deals with certain probabilities associated with the 

ordering of the components of a vector of unknown multinomial cell 

probabilities. The analysis is based upon the assumption that the random 

multinomial parametric vector is distributed as a Dirichlet distribution. 

Explicit expressions for the ~ priori probability that a given event is 

the most probable or the least probable multinomial event are developed. 

In addition, recursion formulas are developed that permit the determina-

tion of the ~ priori probability associated with an arbitrary ordering 

of the unknown cell probabilities. 

Some key words: Dirichlet distribution, inverted-Dirichlet distribution, 

least probable multinomial event, most probable multinomial event, most 

probable ordering of multinomial events. 



1. INTRODUCTION 

1.1 Purpose of Research 

Many problems concerning the Bayesian analysis of data generating 

processes involve the multinomial distribution. Unfortunately, sparsity 

of data may make it impossible to design an optimal sampling procedure 

for selecting the most or the least probable multinomial event; never­

theless, there is a need to provide some useful information regarding 

these events for the purposes of supporting decision making. One 

obvious and useful piece of information is the probability that a given 

event is the most (least) probable event prior or posterior to sample 

information; however, explicit expressions for these probabilities are 

not to be found in the literature. This paper then deals with the 

development of explicit expressions for these probabilities. In 

addition, we develop a set of recursion formulas useful for constructing 

an explicit expression for the probability associated with an arbitrary 

ordering of the unknown multinomial cell probabilities; recursion 

formulas for this probability are presented in lieu of an explicit 

expression in order to minimize notational complexity. 

1.2 Background and Preliminaries . 

Suppose that Y = (Y1 , ... ,YK+l) is a vector of observations having a 

multinomial distribution with parameter N and random parametric vector 

P = (P1 , ••• ,PK+l), where P1+ ... +PK ~ 1; hence, the kernel of the 

likelihood function of the vector of observations is of the form 



K y. K N-y 
n p . J(l- L p.) o 

j=l J j=l J 

where y 0 = y1+ ...• +YK· By definition a conjugate prior density is a 

normalized likelihood function; hence, a natural conjugate family of 

distributions for observations having a multinomial distribution is the 

Dirichlet family of distributions. Thus, the kernel of the prior density 

of a Dirichlet distribution with parametric vector a= (a1 , ... ,aK+l) is 

of the form 

K 
II P. 

j=l J 

a . -1 
J K °K+C1 

(1 - I p .> 
j=l J 

for any point in the simplex SK = {(p1 , ... ,pK): pj > 0 for j = l, •.. ,K 

and p1+ ••• +pK ~ 1} in RK, and zero elsewhere, where the aj are positive 

real quantities. 

Unfortunately, the evaluation of probability integrals involving 

the Dirichlet distribution are in general very difficult to carry out 

directly; primarily because of the simplex . constraint placed upon the 

components of the vector random variable P = (P1 , ... ,PK+l). This 

difficulty, however, is easily overcome through a transformation of 

random variables suggested by Tiao and Guttman (1965); namely, 

T: 
K -1 

Q. = P.(l- I P.) 
l. l. j=l J 

The inverse transformation of T is 

-1 T : 
K -1 

pi= Q.<l + I Q.> 
l. j=l J 

i=l, ••• ,K 

i=l, ••. ,K 

and the Jacobian J of the transformation is found to be 



K -(K+l) 
J o + I Q.> 

j=1 J 

Upon application of the transformation T it follows that the vector 

random variable Q = (Q1 , ••• ,QK) is distributed as an inverted-Dirichlet 

distribution with density function 

K+1 

1 K 

B(a1, ... ,aK+1) j~1qj 

a.-1 
J 

K - L a. 
. 1 J <1 + I q. > J= 

j=l J 

for 0 < qj < m, j = l, ..• ,K, in RK, and zero elsewhere, and where 

If we now denote P[l] ~ ••. ~ P[K+l] as the ordered set of unknown 

cell probabilities associated with the random parametric vector P = 

(P1 , ••• ,PK+l), then we can define the most (least) probable multinomial 

event as the event with the largest (smallest) cell probability. 

Utilizing the transformational relationship between the Dirichlet 

distribution and its multivariate analog, the inverted-Dirichlet distri-

bution, we can write the probability that P[K+l] = Pk as 

K+l K 
pr[ (1- I p. ~ Pk) n (P. ~ Pk)] 

j=l J j=l J 
j=lk j=lk 

K+l 
m qk 

B(al,.~.,aK+1) { b 

q - L a. k ak-1 K ._1 J K aj-1 
f wk (1+ L w.) J- n wj dwJ.dwk (1) 
0 j=1 J j=l 

j=lk 

Similarly, we can write the probability that P[l) 



K+l K 
pr[(Pk ~ 1- I P.) n (Pk ~ P.)] 

j=l J j=l J 
j#k j#k 

K+l 

1 CD 

= B(al,.~.,aK+l) l ~k 
- L a. 

CD ak-1 K j=l J K aj-1 
J wk (1+ L w.) TI w. dwJ.dwk (2) 
q j=l J j=l J 

k j#k 

In like fashion, the probability associated with an arbitrary ordering 

of the unknown cell probabilities P = (P1 , ... ,PK+l), i.e., P(l) ~ ··· ~ 

P(K+l)' can be written as 

1 q(K) q(K-1) 

= B(a(l)'"~.,a(K+l)) l.l l 
where the subscripts ((l), ..• ,(K+l)) correspond to exactly one of the 

(K+l)! permutations of the integers (l, •.• ,K+l). 



2. THE MOST PROBABLE EVENT 

The results of this section are summarized in the following lemma: 

Lemma 1. If the vector random variable P = (P1 , •.• ,PK+l) has a 

Dirichlet distribution with parametric vector a= (a1 , ... ,~+1 ), where 

the a. are positive integers, then the probability that the kth variate 
J 

is the largest Dirichlet variate is 

+ ... + (-l)m L ~.1 · + ··• + (-l)K nl (k l)(k ) 
i i 1 ••• un • • • - +1 ..• K+l 

1< ••• < m . 

where I denotes the summation over all integers i 1 , ... ,im' 
il< ••• <im 

where (i) 1 < i. _< K+l, j l, .•. ,m (i. I k) and (ii) i 1< ••• <i, and 
- J J m 

where 

nil. •• im = 

a. -1 
l.m 

I 
x. =0 

l.m 

m 

r(ak+ L X •• ) 

j=l l.J (--1--)ak; (--1--)xij 
m m+l j=l m+l 

r (ak) rr x .. ! 
. 1 l.J J= 

To illustrate the application of the above lemma, consider the 

Dirichlet distributed vector variate P = (P1 ,P2 ,P3 ,P4 = l-(P1+P2+P3)) 

having the parametric vector a = (a1 ,a2 ,a3,a4). If the parameters aj 

are positive integers, then the probability that the kth variate, 

where k=3, is the largest Dirichlet variate is given by 

a -1 
2 

I 
X =0 2 



a -1 
1 

+ I 
X =0 

1 

a -1 
1 

I 
X =0 

1 

We will now formally prove Lemma 1, without loss of generality, 

for the case of k=K. The evaluation of probability (1) follows directly 

from successive application of the following formula established by Taio 

and Guttman (1965): 

n-1 1 . ( +") -a n- - a · (l+x) B(a,n) - L ( . )aJ(l+x+t) J B(a+j,n-j) 
j=O J 

(4) 

where n is a positive integer, and <x,a,a> are positive quantities, and 

where B(u,v) = r(u)r(v)/r(u+v). 

For simplicity of notation define 

and 

CX> qK 

Jr .•• K = B(ar,.~.,aK+l) { b 

K+l 
qK K - .L aj 
J (1+ L w.) J=r 
0 j=l J 

K a.-1 
J II w. dw. 

j=r J J 

aik-1 r(aK,k) 
I -~k:---- (continued on next page) 

x.k=o r(aK) II x .. ! 
1 . 1 1] J= 



a -1 K-1 a.-1 
K,k J d 

1 ~j qfK qJK wK ·~rwj wjdwK 
-B-:(_a_r_' -. -.• -,--=a=-K-,-r-,-a-K_+_1-o-) 1 0 ... 0 K ~ l 

K-1 .~ aj+aK,k+aK+l 
{1+ I w.+(k+l)wK}J-r 

j=r J 

(5) 

where i 1 , •.. ,ik is an arbitrary sequence of positive integers of length 

k, 1 ~ k ~ r-1, such that 1 ~ i 1< ••• <ik ~ r-1, and where aK,k = 

aK +xil+. • .+xik • 

For a1 , ••• ,aK positive integers, successive application of integra­

tion formula (4) in probability integral (1) yields the following 

result: 

where 

J . 
1. .. K 

i < •.. <i 
1 m 

+ ... + 

(6) 

denotes the summation over all integers i 1 , .•. ,im where 

(i) 1 < i. < K+l for j = l, ... ,K-l,K+l and (ii) i 1< ... <im. 
- J-

From definitional formula (5) we have that 

= 

aK k-l 
r (rv ) ~ q ' dqK 

""K,k [ 1 
k --B"7( a_K_..::;k_' a_K:_+_l __ ) f K a +a 

f(aK) IT x .. ! , 1 {l+(l+k)qK} K,k K+l 
j=l l.J 

(7) 

It is well known, see for example Olkin and Sobel (1965), that for any 

real r>O and positive integer s 

1- r 8(r,s) 

(8) 
where 



s-1 
Ie(r,s) = er L r(r+x)(l-e)x 

x=O r(r)x! 

Thus, using equations (8) and (9) we can write equation (7), upon 

rearranging, as 

il ... ik 

JK = nil .•• ik- nil ••. ik(K+l) 

for 1 ~ k ~ K-1, where 

7Til ••• ik = 

and where 

nil. •• ik(K+l) = 

Substituting equation (10) into equation (6) yields, upon 

rearranging, the desired result, i.e., 

+ K 
+ (-l) nl .•. (K-l)(K+l) 

(9) 

(10) 



3. THE LEAST PROBABLE EVENT 

The results of this section are summarized in the following lemma: 

Lemma 2. If the vector random variable P = (P1 , ... ,PK+l) has a 

Dirichlet distribution with parametric vector a= (a1 , .•. ,aK+l), where 

the a . are positive integers, then the probability that the kth variate 
J 

is the smallest Dirichlet variate is 

a -1 
1 

r 
X =0 

1 

To demonstrate the application of the above lemma, consider once 

If the parameters a. are 
J 

positive integers, then we can write the probability that the kth event, 

where k=3, is the smallest Dirichlet variate as 

a -1 
1 

r 
X =0 

1 

a -1 
2 

I 
X =0 

2 

We will now formally prove Lemma 2, without loss of generality for 

the case of k=K. The evaluation of probability (2) follows directly 

from successive application of the following variation of formula (4): 

00 

}(1+x+t)-(a+n)tn-1 
a 

= n-1 1 . ( +.) L (n~ )aJ(1+x+a)- a J B(a+j,n-j) 
j =O J 

(11) 



where n is a positive integer, and <x,a,a> are positive quantities and 

where B(u,v) = f(u)f(v)/f(u-1-'V). 

For simplicity of notation define 

L 1. •• k = 
k+l. •• K 

a -1 
k r(aK k) L , 

=0 k 
~ r (aK) II x. ! 

j=l J 

1 1 ~ ~ 

aK k-1 
w ' 

K 

K-1 a.-1 
J II w. dwjdwK 

j=k+l J ( - )J"J ... J 
B ak+l, ••• ,aK,k'aK+l 0 qK K-l aK k+aK+l 

qK {1+ L w.+(k+l)wK} ' 
j=k+l J 

For a-1 , ••. ,aK positive integers, successive application of 

integration formula (11) in probability integral (2) yields the 

following result: 

L = Ll ... K-1 
1. .• K K 

where 

Ll. •• K-1 = 
K 

a -1 a -1 a 
1 K-1 f(aK,K-1) 1 aK,K-1 1 Kf z K,K-ldz } 
L ··· L K-1 (K) {B(a ,a ) a +a 

x1=0 ~-l=O f(aK) II x.! K,K-1 K+l O(l+z) K,K-1 K+l 
. j=l J 

(12) 

It is well known that for any real r>O and positive integer s 

1 6 Ur-ldu 6 r S-l f(r+x) 1 X 

B(r,s) b (l+u)r+s = 16/{l+S)(r,s) = (1+6) x~O f(r)x!(l+S) (13) 

Hence, using relationship (13) in equation (12) yields the desired 

result 





4. THE MOST PROBABLE ORDERING OF EVENTS 

In this section we derive a set of recursion formulas useful for 

the development of an explicit expression for the probability associated 

with an arbitrary ordering of the components of a vector random variable 

having a Dirichlet distribution; specifically the probability implied by 

equation (3). The derivation of the recursion formulas underlying the 

evaluation of probability integral (3) follows directly from repeated 

integration using relationship (4); we once again assume that the com-

ponents of the parametric vector a are positive integers. For clarity 

of presentation we drop the parenthesis in subscripts of probability 

(3) and pr~ceed without loss of generality to evaluate the probability 

that P1~ ••• <PK+l. 

For simplicity of notation define 

1 qK qK-1 qs+l 
M 

s ... K J J J ... J 
0 0 0 0 

K+l 
- I a. K ._1 J K a.-1 

(1+ I w.>J- < rr w. J dwj> 
j=s J j=s J 

K+l 

, s=l, ... ,K 

1 qK qK-1 kqs+l 

K -<.I aj+xs-1) a +x -1 K a.-1 
(1+ I w.) J=l w s s-l ( IT w.J dw.)dw 

j=s J s j=s+l J J s 
J J J 
0 0 0 

J 
0 B(as+xs-l'as+l'····aK+l) 

for s = 2, ••• ,K-l and 2 ~ k ~ s, 

1T 
r .•. s 

f(a.+1+x.) l a.+l . X. 
J J (-) J (.J_) J}, s=l, .•• ,K-1, 

r(aj+l)xj! j+l j+l 
r<s 

(14) 

and 



a -1 
s r(a +l+x ) 1 a +l+x I s s <-) s s 

X =0 f(as+l)xS! 2 
s=l, ... ,K-1 (15) 

s 

For a 1 , ••. ,aK+l positive integers, successive application of formula 

(4) in equation (3) yields the following recursion formulas: 

(i) M = M - n Mz 
s ••• K s+l ..• K s s+l ... K 

(ii) n ~ = M 
s-(k+l) .•. s-1 s ... K ns-k+l ... s-1 s+l •.. K 

_ n Mk+2 
s-k+l ..• s s+l ..• K' 

where 

and 

using relationship (9). 

s=l, .•. ,K-1 (16) 

s=Z, •.• ,K-1 (17) 
2 < k < s 

(18) 

(19) 

To illustrate the constructive application of equations (14) and 

having a Dirichlet distribution with parametric vector a= (a1 ,a2 ,a3 ,a4). 

If the parameters a. are positive integers ~e can write, using recur­
J 

sion formulas (16)-(17), the probability that P1~P2~P~P4 as 

follows: 

(20) 



Using relationships (14)-(15) and (18)-(19) in probability (20) we have, 

upon rearranging, the result 

(21) 

The application of the recursion formulas in the above calculation 

of the probability M123 can be visualized with the help of the following 

tree diagram: 

where in equation (20), the root of the tree is set equal to the sum of 

its terminal branches. The tree is easily extended to yield explicit 

expressions for any of the probabilities defined by equation (3). For 

instance, if the root of the tree is M1234 then it is easily verified 

using equations (16) and (17) that the probability that P1~P2<P~P4~P5 , 

where P5 = 1 - (P1+P2+P3+P4), is given by 



(22) 

An explicit expression for probability (22) can then be easily obtained 

using relationships (14)-(15) and (18)-(19) in equation (22). 



5. CONCLUSION 

We have presented several useful expressions for calculating 

certain probabilities associated with the ordering of the components of 

a vector of unknown multinomial cell probabilities. These expressions 

provide important information in support of the selection of the most 

(least) probable event or the most probable ordering of multinomial 

events within a decision framework characterized by a high degree of 

subjective information and sparsity of data. Admittedly, problems 

of this ilk occur all too frequently in decision making situations; to 

this end it is hoped that this study will be of some practical value. 

The author thanks Ronald Randles and William Schucany for 

inspiration and helpful suggestions, respectively, and Lynette Faulkner 

for her valued and skilled assistance in preparing the manuscript. 
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