
SMU Data Science Review SMU Data Science Review

Volume 3 Number 2 Article 4

2020

Acute Lymphoblastic Leukemia Detection Using Depthwise Acute Lymphoblastic Leukemia Detection Using Depthwise

Separable Convolutional Neural Networks Separable Convolutional Neural Networks

Laurence P. Clinton Jr.
Southern Methodist University, lpclinton@smu.edu

Karen M. Somes
Southern Methodist University, ksomes@smu.edu

Yongjun Chu
Southern Methodist University, ychu@smu.edu

Faizan Javed
Southern Methodist University, fjaved@smu.edu

Follow this and additional works at: https://scholar.smu.edu/datasciencereview

Recommended Citation Recommended Citation
Clinton, Laurence P. Jr.; Somes, Karen M.; Chu, Yongjun; and Javed, Faizan (2020) "Acute Lymphoblastic
Leukemia Detection Using Depthwise Separable Convolutional Neural Networks," SMU Data Science
Review: Vol. 3 : No. 2 , Article 4.
Available at: https://scholar.smu.edu/datasciencereview/vol3/iss2/4

This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU
Data Science Review by an authorized administrator of SMU Scholar. For more information, please visit
http://digitalrepository.smu.edu.

https://scholar.smu.edu/datasciencereview
https://scholar.smu.edu/datasciencereview/vol3
https://scholar.smu.edu/datasciencereview/vol3/iss2
https://scholar.smu.edu/datasciencereview/vol3/iss2/4
https://scholar.smu.edu/datasciencereview?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol3%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/datasciencereview/vol3/iss2/4?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol3%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

Acute Lymphoblastic Leukemia Detection Using
Depthwise Separable Convolutional Neural

Networks

Yongjun Chu1, Laurence Clinton1, Karen Somes1, and Faizan Javed1

Master of Science in Data Science, Southern Methodist University, Dallas TX 75275
ychu,lpclinton,ksomes,fjaved@smu.edu

Abstract. In this paper, we present a neural network with depthwise
separable convolutions (Xception) for the identification of leukemic B-
lymphoblast cells, commonly known as Acute Lymphocytic Leukemia
(ALL). Earliest possible detection of these cancerous cells is required to
minimize the physical toll on the patient and the treatment challenges
presented by the disease. Through a transfer learning approach, we tested
various convolutional neural network algorithms on our augmented mi-
croscopic blood smear image dataset to assess the best performing ar-
chitecture for classifying leukemic cells, resulting in the Xception archi-
tecture. We obtained 99% and 91% accuracy on the training and testing
sets, respectively. Furthermore, we achieved a recall rate as high as 98%
showing good discrimination power against false negatives.

Keywords: Acute Lymphocytic Leukemia · ALL · Artificial Neural Net-
works · Convolutional Neural Networks.

1 Introduction

Leukemia is a common cancer worldwide with more than 250,000-300,000 new
cases each year. In 2019, it was expected that 61,780 people were expected to be
diagnosed with leukemia in the US alone. There are an estimated 399,967 peo-
ple currently living with or in remission from leukemia in the US [2]. Leukemia
is a cancer of blood or bone marrow where blood cells are produced and is
characterized by the proliferation of abnormal white blood cells (WBCs) in the
bone marrow, resulting in an increase of immature WBCs in the bone marrow.
One of the most significant symptoms of leukemia is the presence of an excess
number of blast cells in peripheral blood. Therefore, blood smears are routinely
examined under a microscope for proper identification and classification of blast
cells by hematologists[9]. Leukemia can be pathologically classified into two cat-
egories on a broader sense: (1) Acute leukemia (progresses quickly); and (2)
chronic leukemia (progresses slowly). In this paper, we study the presence of
Acute Lymphoblastic Leukemia (ALL) only.

1

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

Although ALL is not as commonly occurring as other types of cancers, the
death rate for ALL is quite high. The American Cancer Society’s estimates for
ALL in the United States for 2020 (including both children and adults) are about
6,150 new cases (3,470 in males and 2,680 in females) and about 1,520 deaths
(860 in males and 660 in females). The risk for developing ALL is highest in
children younger than 5 years of age. The risk then declines slowly until the
mid-20s, and begins to rise again slowly after age 50. Overall, about 4 of every
10 cases of ALL are in adults[4].

Early diagnosis of the ALL is essential. Due to its rapid spread into the blood-
stream and other vital organs, ALL is fatal if left untreated. The current most
important diagnostic methodology for initial ALL screening is microscopic ex-
amination of a blood smear. However, the task of identifying immature leukemic
blasts from normal cells under the microscope is challenging because morpho-
logically the images of the two cells appear similar. Thus, manual examination
of the slides is often accompanied by inconsistent and subjective reports. In ad-
dition, diagnostic confusion may occur due to the appearance of similar signs
by other disorders. Thus, we need a cost-effective and robust automated image
processing system for ALL screening which can greatly help pathologists to have
more accurate diagnosis by improving the clarity of features in images.

In this study, we attempt to develop new approaches for accurate and precise
ALL diagnosis from microscopic blood images. We have obtained a large image
data set from Cancer Imaging Archive, which were collected from 118 individuals
(ALL and healthy) with a total of 12,528 images. We will also apply different
image augmentation techniques to further increase the number of samples in
our study in order to alleviate the outfitting effect which is often associated
with deep learning. Additionally, we will compare our approach to reported ML
algorithms and evaluate their performance side by side.

A common model for image classification is a Support Vector Machine (SVM).
SVM requires feature extractions from images to feed as input variables into the
model, where these features summarize characteristics of the image. For exam-
ple, this model includes color features, geometric features, texture features, and
statistical features, which are high-level mathematical summaries of the pixel lo-
cations/channels. However, the performance of the model depends highly on the
feature extraction and selection techniques to calculate the decision boundary
between classes.

A Convolutional Neural Network (CNN) model uses convolutions of the im-
age as “features” instead of summary features like SVM, as input. It contains
multiple convolution and max pooling layers, as well as several dense artificial
neural network layers, to learn patterns and representations characteristic to
the classes. Over the last 7-8 years, neural network models from the early days,
like AlexNet, to the latest ones, such as NASNet, have dominated the classifi-
cation space over traditional methods, such as SVM, as techniques around deep

2

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

learning have matured and more researchers are finding success[11]. Due to this,
we expect our CNN model to outperform SVM for our single-cell classification
objective.

Herein, we first performed classification using SVM on our data set, following
the steps outlined in research by Patel et al. for feature extraction. We also
carried out an AlexNet based CNN classification. AlexNet has been used by
others on ALL classification and higher than 90 percent accuracy was reported
[17]. To our disappointment, however, the classification accuracy for both SVM
and AlexNet was sub par, just over 67 percent in accuracy, dramatically lower
than what has been reported so far. Further optimizations on parameters did
not improve the accuracy. This demonstrates that our single-cell image data is
highly challenging for classification.

We then turned our attention to latest deep CNN models and applied a
transfer learning approach in classification. In this approach, parameters of a
deep CNN model are directly imported, only replacing the top neural network
(NN) layer with another one that fit our data structure, a binary classification
problem. We further fine tuned the imported parameters to achieve higher ac-
curacy. We explored three of some of the latest models, InceptionV3, Xception
and NASNet. All three models performed significantly better than AlexNet and
SVM, with each one achieving an accuracy of over 90 percent within just 10
epochs. The great increase in accuracy suggests that finding and tuning a data-
fit neural network architecture is the key to achieving a premier classification
accuracy on problems as challenging as this.

2 Related Works

Previous research supports that a machine learning (ML) algorithm will help to
identify the blood cells with ALL from healthy cells. Several ML algorithms have
been developed in the past to classify and recognize leukemia disease from micro-
scopic images. For instance, Paswan et al. used support vector machine (SVM)
and k-nearest neighbor (k-NN) to classify AML leukemia subtype, obtaining an
accuracy of 83 percent. Patel et al. applied SVM for classifying ALL leukemia
subtype and achieved 93 percent accuracy[15]. Recently, several research groups
have tested the CNN approach (with architectures such as AlexNet) and even
achieved over 90 percent accuracy on ALL detection in a few cases[13, 14, 20, 21].
CNN has also been successfully used in other type of cancer detection, including
skin, prostate and gastric cancer predicting[12, 18, 22, 24]. Although the predic-
tion accuracy on ALL for some of reported models appears to be impressive,
performance metrics highly depend on the nature of the testing and training
sets, particularly if the classes are unbalanced. Therefore it is important that we
assess these methods on our data.

3

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

3 Data

The data set is downloadable from the cancerimagingarchive.net and is avail-
able for commercial, scientific and educational purposes and licensed under the
Creative Commons Attribution 3.0 Unported License[8].

The data is comprised of images of both normal and acute lymphoblastic
leukemia cells and is segmented into training and test data sets. The training
data set contains 10,661 cell images, 7,272 cancerous, and 3,389 normal. Training
cell images were taken from 73 subjects, 47 of which had cancer, and 26 normal
subjects. The test set is comprised of 1,867 total cell images, 1,219 cancerous,
and 648 normal. Test cell images were taken from 28 subjects, 13 of which had
cancer, and 15 normal subjects.

The data was processed into our CNN model containing convolution layers,
pooling layers, Artificial Neural Network hidden layers, and an output layer
which classifies the image as a binary output of 1 or 0, cancerous or benign. The
model also uses image augmentation which generates more images by rotating
them at different angles and zoom levels.

4 Explanation of ANNs and CNNs

Convolutional Neural Networks (CNN) are machine learning algorithms com-
monly used to classify imagery. CNNs are composed of multiple layers such as
the convolution layer, pooling layer, and fully connected Artificial Neural Net-
work (ANN) layer. The architecture of a classic CNN model, AlexNet is presented
in Figure 1. The first layer is the convolution layer, where important features
in the images are feature mapped. One of the distinct differences between the
convolution layer and the fully connected artificial neural network layer is that
the ANN learns global patterns, such as patterns of all pixels of the input im-
ages. The convolution layer, on the other hand, learns local patterns[7]. A key
mechanism in this process is through the use of a 2D sliding window of inputs,
such as a 3x3 window grid that slides over the input imagery at a certain stride,
mapping distinct features. The images are broken into local patterns that can be
discerned, such as edges and textures (see Figure 2). This allows for important
features to be mapped as well as dimensionality to be reduced on the input im-
ages. Images are transformed or operated on in the convolution layer via tensors
such as 3D tensors. Tensors have dimensions of height, width, and depth which
represent the value of color channel. For gray scale images the depth value is 1,
whereas with RGB images (Red Green Blue) the typical channel depth is three.
The red, green, blue channels represent frequency ranges in the electromagnetic
spectrum in the form of pixel values.

4

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

Fig. 1. AlexNet, a Convolutional Neural Network composed of convolution lay-
ers,pooling layers, and a fully connected layer[18]

Fig. 2. Convolution layer mapping local patterns

5

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

The convolution operation extracts grids of pixels from the input image via
a sliding window and applies a learned linear transformation to all extracted
grids, resulting in an output feature map[7]. The resulting 3D tensor contains
the encoding of feature rich aspects of the input data.

A key advantage of CNNs are that they are considered to be translation in-
variant, meaning patterns learned from one local area do not have to be relearned
on other areas of the image[7]. For example, a pattern learned on the upper right
corner of a picture can be recognized in other areas such as another corner. The
fully connected layer, on the other hand, would have to relearn the pattern since
the locale changed. This advantage allows CNNs to be efficient when processing
images, and thus less training is needed to learn features. CNNs can be designed
and constructed to follow a certain learning pattern. The first convolution layer
learns patterns such as edges. This is followed by a second convolution layer that
will focus on larger and more complex patterns made of the features of the first
layer. This learning pattern continues with each additional convolution layer,
thus allowing CNNs to learn increasingly complex patterns[7].

After the convolution layer maps important features, data is transferred to
the next layer in the CNN, the pooling layer. Different types of pooling layers
exist such as average pooling and max pooling, however, the end goal is the same,
in that the pooling layer reduces image dimensions while preserving important
features. In the case of max pooling, the maximum value of each color channel
is extracted by using a sliding window of some size, such as a 2x2 grid of pixels,
that maps the maximum pixel value found in the sliding window grid[7]. This
culminates with a reduced feature map by a factor of two. Average pooling uses
the same mechanism of the sliding window to reduce dimensionality, but instead
takes the average value of the color channels as opposed to the maximum value.

From the max pooling layer, the data is flattened to a vector for input into
the fully connected Artificial Neural Network layer that could potentially be
comprised of several thousands of neurons. The goal of the fully connected layer
is to classify the input images to binary or multiple classes.

The basic component of the fully connected layer is the perceptron, or the
composition of a single neuron within one layer of the ANN (see Figure 3).
The perceptron consists of input layers, an activation function, and an output
that gets passed to another layer within the ANN or the final output layer.
The flattened layer serves as inputs into perceptrons of the fully connected layer
within the overall CNN architecture. An arbitrary set of weights is initially
assigned to inputs denoting importance. The activation function within each
neuron or perceptron transforms the weighted sum of inputs from a node into
the activation of the node, serving as the input to other nodes of deeper layers
within the ANN. Several types of activation functions exist such as Sigmoid,
Tanh, Rectified Linear Unit (ReLU), and Leaky ReLU that perform different
calculations on the input depending upon intended purposes. The purpose of the

6

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

Fig. 3. Single layer perceptron consisting of input layers, activation function, and out-
put value[3]

activation function is to map values of the input into resulting values ranging
between 0 to 1, or -1 to 1, depending upon the function used. In our case, we used
ReLU as our activation function for the hidden layers within the fully connected
layer of the ANN.

The ReLU activation function is a linear activation function that outputs
positive values and sets negative values to zero (see Figure 4). Of the various
activation functions, ReLu is commonly selected for ANNs due to its ease of use
in training and its overall good performance. The pattern of the sum of weighted
values passed through activation functions, calculated from one perceptron to
another within each layer of the ANN, continues until it reaches the output layer.
This final neuron uses the Sigmoid activation function for binary classification
(see Figure 5).

σ(x) =
1

1 + e−x
(1)

This final output layer in our model classifies images into a binary outcome of 1
or 0, or in this case, cancerous or benign.

Once the output layer makes the prediction ŷ, the estimate is evaluated
against the true value. A cost function is then computed. The end goal of the
cost function is to take the error between the predicted value and actual value
and calculate a loss. The cost has the form:

C =
1

2n
Σy(x) − aL(x)

2
(2)

Where n corresponds to the number of training samples; x is the individual
training sample; the desired output is denoted by y=y(x); L indicates the number
of layers in the network; and aL = aL(x) is the vector of activations[3].

7

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

Fig. 4. Rectified linear activation function outputs positive values and sets negative
values to zero (max(0,x))[3]

Fig. 5. Sigmoid function for binary classification where the sigmoid function is calcu-
lated as 1 divided by 1 plus Euler’s number to the negative power of x (weighted value
for that node)[3]

8

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

Once the cost function is calculated, the neurons’ weights are adjusted through
a process called back-propagation as the ANN trains epoch to epoch. The tar-
get of back-propagation is the calculation of the partial derivative of the cost
function with respect to any weight w and bias b. Back-propagation utilizes
a stochastic process whereby values are randomly chosen and then the partial
derivatives of the cost function are computed, thus allowing the loss function to
achieve a global minimum[16].

The rationale behind back-propagation is to re-weight neurons, bolstering
those that performed well and penalizing those that under-performed. This is
the essence of learning for ANNs. New weights for the neurons are calculated by
way of taking the old weight minus the calculated derivative times the learning
rate given from the model. A positive derivative rate signifies the new weight
should be reduced. A negative derivative translates into an increase in weight,
leading to an increase in error, and thus a larger new weight. However, if the
derivative is zero, then a stable minimum has been reached and there should be
no revision on the weight.

The process of computing the loss function, back-propagation, and re-weighting
continues based on the number of epochs specified for the CNN. With each iter-
ation the ultimate goal is to minimize the cost function and get ŷ, the predicted
value, equal to the true y value, thus achieving 100 percent accuracy. Recent
improvements have been made to the already performant CNN. Google created
an Inception family of networks where the input is processed by multiple parallel
convolutional branches, culminating in outputs merging back into a tensor[19].

In recent years, more advances in the CNN architecture have been made. The
team at Microsoft discovered that as deeper networks start converging, accuracy
becomes saturated and then starts degrading. This was found to be not due to
over-training, which is common to many learning models. However, when the
back-propagation algorithm propagates a loss signal from the output to earlier
layers in the network, the feedback signal must pass through a deep stack of
layers, and as a result may be lost. The team then added residual connections to
the CNN model to address the vanishing gradient problem. Residual connections
create a skip connection that adds an output tensor to a deeper layer in the
network, thus avoiding the problem of the vanishing gradient (see Figure 6)[10].
Skip functions work by skipping one or more layers via performing an identity
mapping, where the outputs are added to the outputs of the stacked layers[10].
The theory under evaluation by Microsoft is that if the layers are constructed
as identity mappings, models with deeper layers should have training errors
equivalent to shallower networks.

Another approach to improve performance and accuracy of the CNN model
was taken by the team at Google, called Inception[19]. The team noted that
the typical method of improving performance of deep neural networks was to
increase the depth and width of layers. However, this approach tends towards a

9

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

Fig. 6. Skip function in residual block

large number of parameters which can lead to a decrease in model generalization
(over-fitting). Moreover, the computation resource requirements also increase.
Layers chained within the convolutional neural network have a uniform increase
in filter results, resulting in a quadratic increase in computation. This can be
considered inefficient and wasteful, especially if the weights are updated to nearly
zero. To resolve this, the team at Google proposed moving from a fully connected
to sparsely connected architecture, even within the convolutions.

Inception seeks to approximate a sparse architecture and aggregates using
1x1 convolutions before the more computationally expensive 3x3 and 5x5 con-
volutions. Furthermore, max-pooling layers of stride two are used to reduce the
grid resolution (see Figure 7). The Inception module proved itself to be accu-
rate by winning the ImageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRC 2014)[19]. More recently, a lighter CNN model that contains fewer
weight parameters and more optimal floating-point operations resulted in overall
higher accuracy than Inception. This new model developed by Francois Chollet,
founder of the Keras deep learning library, is called Depthwise separable convo-
lution network[1]. The depthwise separable convolution model is invoked by the
SeparableConv2D object from the Keras library. This layer performs a spatial
convolution on each channel of its input separately and then mixes the output
channels via a point-wise convolution. The advantage of depthwise convolutions
is that it is much less computationally intensive.

10

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

Fig. 7. Inception module shown with dimension reduction[19]

With CNNs, typically RGB images have 3 channels. When a convolution is
done such as a 5x5 convolution, a 5x5x3 multiplication occurs when the ker-
nel moves. Depthwise convolutions only do one channel at at time, resulting
in 5x5x1. Furthermore, a separate operation is performed using 1x1x3 kernel.
The depthwise separable convolution architecture forms the basis of the Xcep-
tion architecture, which was shown to be more accurate than ResNet, while still
incorporating the skip function introduced by ResNet. The Xception architec-
ture furthermore builds upon the Inception model but replaces the Inception
modules with depthwise separable convolutions. The basic theory of the Xcep-
tion module is that cross-channel correlations and spatial correlations in the
feature maps of convolutional neural networks can be decoupled, through the
use of depthwise separable convolutions[6]. Newer yet is a Neural Architecture
Search (NAS) framework developed by Google brain which combines reinforce-
ment learning with a Recurrent Neural Network. This latest neural network,
called NASNet, achieved the top accuracy score on ImageNET over previous
top performers Inception and Xception (see Table 1).

NASNet is constructed such that a controller recurrent neural network (RNN)
samples a series of its child neural networks that contain different architectures.
The child networks are trained and tested against a validation test set. The accu-
racy measurements obtained from the child networks then update the controller
RNN such that the controller generates new and better performing architectures
over a number iterations, given a set of two initial hidden states (see Figure 9).
Rather than relying solely on architecture engineering, this structure allows for
model learning directly on blocks of the dataset that can then be transferred to
the overall set[23].

11

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

Fig. 8. Xception architechure

Table 1. NASNet accuracy compared to other models such as Xception and Inception.

Model Image Size Parameters Mult-Adds Top 1 Acc. Top 5 Acc.

Inception V2 224x224 11.2 M 1.95 B 74.8% 92.2%
NASNet-A (5 @ 1538) 299x299 10.9 M 2.35 B 78.6% 94.2%

Inception V3 299x299 23.8 M 5.72 B 78.8% 94.4%
Xception 299x299 22.8 M 8.38 B 79.0% 94.5%

Inception ResNet V2 299x299 55.8 M 13.2 B 80.1% 95.1%
NASNet-A (7 @ 1920) 299x299 22.6 M 4.93 B 80.8% 95.3%

ResNeXt-101 (64 x 4d) 320x320 83.6 M 31.5 B 80.9% 95.6%
PolyNet 331x331 92 M 34.7 B 81.3% 95.8%
DPN-131 320x320 79.5 M 32.0 B 81.5% 95.8%
SENet 320x320 145.8 M 42.3 B 82.7% 96.2%

NASNet-A (6 @ 4032) 331x331 88.9 M 23.8 B 82.7% 96.2%

12

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

Fig. 9. NASNet controller RNN constructing new convolution block

5 Methodology

Several models with varying key characteristics were tested to identify the best
performing method for classifying leukemic cells. The best performing method
was then further developed to optimize efficiency and performance.

5.1 Feature extraction in SVM

SVM is a traditional classification method that requires pre-determined input
features for modeling. Additionally, successful prediction hinges on comprehen-
sive feature extraction from the images in the dataset. To ensure thoroughness
in this process, we extracted features in accordance to the research completed
by Patel et. al, including: color features (mean color values); geometric fea-
tures (perimeter, radius, area, rectangularity, compactness, convexity, concavity,
symmetry, elongation, eccentricity, solidity); texture features (entropy, energy,
homogeneity, correlation); statistical features (skewness, mean, variance)[15]. A
multi-dimension hyperplane decision boundary, the result of the SVM, then de-
termined the categorization of the cell image into a class: cancerous or benign.
The performance of this methodology is used as a point of reference to under-
stand the gains from our tuned neural network. See Appendix E for implemen-
tation details.

5.2 Transfer learning from CNN models

Training convolutional neural networks can potentially take several days or
weeks on large datasets to effectively learn. Transfer learning leverages previ-
ously solved problems for related tasks to reduce the time needed to build a
model from the ground up. In practice, most deep learning models are built for

13

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

specific datasets and domains, but transfer learning seeks to utilize knowledge
gained on previous tasks to refine new models[17]. We explored four neural net-
work architectures, AlexNet, InceptionV3, Xception, and NASNetLarge, that
had been primed for solving other problems and assessed their success on our
data. We then selected the model with the best performance (Xception) for fur-
ther optimization. Xception was trained on ImageNet with over 14 million images
and 20,000 categories, as well as on Google’s internal JFT image dataset, which
contains over 350 million images and 17,000 classes[6]. We leveraged the weights
from the pre-trained Xception architecture and utilized it as the starting point to
train on our ALL dataset, thus allowing us to reduce training time and harness
the knowledge gained from having previously been trained on image reposito-
ries such as ImageNet. Additionally, we added to the top of the architecture a
global average pooling layer and Dense layer for classification for our dataset.
See Appendix A-C for implementation details.

5.3 Light weight network

The transferred Xception model performs well on this dataset without adjust-
ments to the architecture. Having determined the best framework for classify-
ing ALL, we also evaluated if a lighter weight model could be developed based
on the Xception architecture. Through experimentation, a lighter weight model
was generated that contained only 1,248,060 parameters and 13 layers (includ-
ing pooling layers) and was trained on our ALL dataset (see Appendix D). The
model incorporated data augmentation and a skip function, that was first in-
troduced with ResNET. Depthwise Separable Convolutional layers were used in
conjunction with Batch Normalization layers, which normalize and scale the lay-
ers. In our model optimizer, Stochastic Gradient Descent with Nestorov achieved
higher accuracy scores compared to Adam, AdamMax, RMSPro. Furthermore,
a learning rate of 0.02 and momentum 0.4 was utilized. See Appendix D for
implementation details.

6 Results

6.1 SVM results

The SVM resulted in an accuracy of 76%, precision of 69%, recall of 50%, and
AUC of 69% with corresponding ROC curve as shown in Figure 10. This confirms
our initial hypothesis that a well-tuned neural network will outperform SVM on
this complex image set.

14

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

Fig. 10. ROC curve of SVM predictions

6.2 Deep NN results

We used the training dataset for model training and validation dataset for predic-
tion. Figure 11 shows the prediction accuracy for each of four models we tested:
AlexNet, InceptionV3, Xception and NASNetLarge. AlexNet gave us the lowest
prediction accuracy at 68% among the 4 models. For the other three models, the
accuracy on both the training and validation datasets were significantly higher,
reaching 99% and 90%, respectively.

When examining the trends of accuracy changing with the increase of epoch
numbers, we noticed that these three models display different patterns. The ac-
curacy on validation dataset using Xception increased quickly to 85-90% and
stabilized in that range throughout the 30 epochs tested. Although InceptionV3
model yields a similar accuracy on the validation dataset, the variation of accu-
racy within 30 epochs is clearly greater than that from Xception. Interestingly,
the NASNetLarge model yielded a significantly lower accuracy at the early stage
of training and then increased to 90% accuracy after 20 epochs. This may sug-
gests that we had overfitting with the NASNetLarge model since it has the
largest numbers parameters and most complicated architecture among all mod-
els tested. NASNetLarge also displayed noticeable variations even after it reaches
a 90% accuracy on validation dataset. Additionally, the lightweight model based
on Xception framework was run for 10 iterations. It achieved training accuracy of

15

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

91.07% and validation accuracy of 82.53%. The lighter weight model was not as
accurate as the other robust models, but shows potential. Overall, these results
suggest that Xception NN fits our data the best.

In the medical domain, false negatives are considered a severe result. In our
study, we attempt to address early detection with ALL. A false negative in this
domain is equivalent to a patient having been tested and told they were negative,
but in fact ALL was present. An important measure for False Negatives is the
recall rate. To this end, we plotted out the recall rates on the validation dataset
for all the models along with precision and AUC values in Figure 12. Similar
to what has been observed from accuracy plotting in Figure 11, the trend with
recall, precision and AUC progression demonstrates again that InceptionV3,
Xception and NASNetLarge perform significantly better than AlexNet. Xception
model was the best among all four model as it quickly reaches to the best values
and is able to maintain its high performance. Critically, Xception model was
able to achieve an impressive a 98% recall rate, suggesting an exciting prospect
of it being used in clinical applications.

To investigate why some models performed better than others, we obtained
the numbers of trainable parameters and layers for each model (Table 2). The pa-
rameter numbers partially suggest the model complexity. More parameter num-
bers will generally require longer computation time for training. The number
of layers in a model is an indicator of model depth and complexity as well. As
shown in Figure 13, AlexNet has more parameters than both InceptionV3 and
Xception, but with significantly smaller number of layers. The fact that AlexNet
is the least efficient model among all suggests that the model depth is a much
more valuable factor to consider than merely the number of parameters when
we construct a model. On the other hand, NASNetLarge has the most param-
eters and layers, yet it is not the best model in our testing. Considering its
outstanding performance on training data, but not as high performance on the
validation data as shown in Figure 11 and Figure 12, we suggest that a model
with too many parameters and layers is more likely to over-fit the training data
and thus deteriorate its performance on testing or real data. As was discussed
in “Explanation of ANNs and CNNs”, the likely reasons that Xception outper-
formed InceptionV3 are that the former uses a depthwise scalable convolution
and also incorporates some key features (residual connecting) from ResNet. In
short, based on our testing results, to efficiently classify cell images as challeng-
ing as ours, we need a model that not only has considerable model depth, but
also addresses issues that arise with more complex models (i.e., vanishing gra-
dient) through the implementation of depthwise scalable convolutions and long
range residual connection functionality.

16

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

Fig. 11. Prediction accuracy from different deep Neural Networks

Table 2. The numbers of trainable parameters and layers for five tested models.

Model Trainable parameters (millions) Layers

AlexNet 62 16
InceptionV3 22 312
Xception 21 133
NASNetLarge 86 1040
LightWeightXception 1.2 9

17

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

Fig. 12. The AUC, precision and recall values from different deep Neural Networks on
testing dataset.

18

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

7 Ethics

The implementation of our model in practice hinges on the primary ethical ques-
tion, whether society can trust an algorithm enough in order to relinquish any
portion of decision making from a human when human life is in consideration.
As presented by Carter et al., even if the tested model performance appears
completely accurate and works in concert with a pathologist, inevitably a frac-
tion of diagnosis responsibility would shift to a machine, blurring the explicable
with the inexplicable. Also, the medical community requires rigorous testing and
validation prior to implementation, and a deep learning model is no exception to
these processes. If the model is accepted by the medical community and corre-
sponding regulators, then ethical questions must be considered as well, including
internal and external privacy controls on personal identifiable information (PII)
when data is collected, analyzed, and stored[5].

The issue of confidence in an automated diagnosis method can be assuaged
through thorough testing, both computationally and in line with medical prac-
tices, and direct comparison to current day practices[5]. If a machine can make
equal or better determinations, the question of ethics changes. The reasons for
not adopting these models must be concerning enough ethically to trump im-
proved performance.

As mentioned previously, one cannot assess a neural network’s decision mak-
ing; we can only assess the results and the logic behind implementation and
function. Carter et al. also presents that this is unlike most medical practices
today, where doctors and practitioners can explain diagnostics to their patients.
The doctor, who is ultimately issuing the diagnosis, is now forced to be account-
able for automated results without the ability to explain how the results are
generated. In an extreme worst case, a model could return a false negative, a
professional could then quickly inspect and accept the results as accurate, and
the patient could unknowingly progress with life threatening Leukemia. If the
patient seeks legal action, the doctor would be legally accountable for not only
their decision but technology he or she cannot explain. To control for this, there
must be some regulatory policy imposed on machine learning models to release
medical professionals from accountability for the output.

In further regards to policy, introducing AI as common practice would re-
quire expansion of current regulatory bodies[5]. After the model is developed
and adequately tested, it must be maintained and routinely assessed. Without
proper governance, an external authority, and established timelines, such main-
tenance could be ignored or deprioritized since it requires time and resources
aside from day to day medical operations. Not only would new policies be de-
veloped, but also these regulators would have to expand their scope to include
technical oversight.

19

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

Model compliance is one issue, and data compliance is another. Carter et.
al also opines on data storage, retention, and confidentiality as some common
issues in the field of data science when human data is involved. Our Neural
Network depends on human blood sample specimens, which must be collected
and stored according to existing guidelines. Additionally, consent must be given
by the patient for future use in retraining the model, in consonance with most
modeling and privacy agreements today. The image data should also not be
traceable to a patient when stored for modeling purposes; it should be treated
to the same level of confidentiality as the patient’s medical record. The model
developer or maintainer does not need to know the identity of the person from
which the image came[5]. Access and identification should be strictly controlled
on a need to know basis.

8 Conclusion

We have shown that identifying ALL at the cellular level can be achieved with
the proper engineering and adequate data and computing resources. Our experi-
mentation has revealed that high performing models tend to rely on architectures
with greater depth rather than a greater number of parameters. We also exhib-
ited that utilizing models trained for solving different tasks through transfer
learning proved to be an effective method for cancer detection. The computa-
tional and time cost is less relative to building a complex model from scratch
with large volumes of domain data. In particular, the Xception model was shown
to be a strong performing ALL classifier when applied through transfer learning,
achieving accuracy of 99% on training and 91% on the validation set. Addi-
tionally, the light weight model trained solely on the cell images reflected the
performance efficiencies obtained through the use of depthwise separable convo-
lutional layers and other characteristics of the Xception model.

The potential is promising for a less complex and unique architecture to
meet Xception’s ability to classify leukemic cells. Our developed model requires
more rounds of training and a larger collection of cell images to be more com-
petitive. Additionally, the incorporation of reinforcement learning could boost
performance, particularly in this setting, where the image set is relatively small.
Cell images can be collected over time to incrementally build up the dataset.
Reinforcement learning then provides the framework to train networks on these
smaller batches of data to later combine to the main model.

Overall, the ability of the Xception model to generalize well is the most
encouraging. It was trained on millions of images that are not related to blood
cells, yet it is still able to achieve performance comparable to other models in
the ALL domain. This has further implications for applying transfer learning
to other cancer detection problems. Xception can be used as a starting point
for other diagnostic neural networks, shrinking the time and development cost

20

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

hurdles and establishing a high performing benchmark for further optimization.
Convolutional Neural Networks can be a powerful medical tool not only for Acute
Lymphoblastic Leukemia, but other cancers as well.

References

1. Applications, https://keras.io/applications
2. Key statistics for acute lymphocytic leukemia (all),

https://www.cancer.org/cancer/acute-lymphocytic-leukemia/about/key-
statistics.html

3. Nielsen, m.a.: Neural networks and deep learning,
http://neuralnetworksanddeeplearning.com/

4. Ahmed, N., et al.: Identification of leukemia subtypes from microscopic images
using convolutional neural network. Diagnostics 9.3(12) (2019)

5. Carter, S., Rogers, W., Than Win, K., Frazer, H., Richards, B., Houssami, N.:
The ethical, legal and social implications of using artificial intelligence systems in
breast cancer care. The Breast 49, 25–32 (2020)

6. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. Web
(2017)

7. Chollet, F.: Deep Learning with Python. No. 1, Manning Publishing, Shelter Island,
NY (2018)

8. Gupta, A., et al.: All challenge dataset of isbi 2019 (2019),
https://doi.org/10.7937/tcia.2019.dc64i46r”

9. Haworth, C., Heppleston, A.D., Jones, P.H.M., Campbell, R.H., Evans, D.I.,
Palmer, M.K.: Routine bone marrow examination in the management of acute
lymphoblastic leukemia of childhood. Royal Manchester Children’s Hospital 34,
483–485 (1981)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
Open Access 34, 483–485 (2015)

11. Jeeva, M.: The scuffle between two algorithms - neural network vs. support vec-
tor machine (September 2018), https://medium.com/analytics-vidhya/the-scuffle-
between-two-algorithms-neural-network-vs-support-vector-machine-16abe0eb4181

12. Jha, K.K., Dutta, H.S.: Mutual information based hybrid model and deep learn-
ing for acute lymphocytic leukemia detection in single cell blood smear images.
Computer Methods and Programs in Biomedicine 179 (2019)

13. Maron, R., et al.: Systematic outperformance of 112 dermatologists in multiclass
skin cancer image classification by convolutional neural networks. European Jour-
nal of Cancer 119, 57–65 (2019)

14. Paswan, S., Rathore, Y.K.: Detection and classification of blood cancer from mi-
croscopic cell images using svm knn and nn classifier. International Journal of
Advanced Research, Ideas and Innovations in Technology 3 (2017)

15. Patel, N., Misha, A.: Automated leukemia detection using microscopic images.
Procedia Computer Science 58, 635–642 (2015)

16. Raiko, T., Valpola, H., LeCunn, Y.: Deep learning made easier by linear transfor-
mations in perceptrons. vol. 22, pp. 924–932. Proceedings of the Fifteenth Inter-
national Conference on Artificial Intelligence and Statistics (2012)

17. Sarkar, D.: A comprehensive hands-on guide to transfer learning with real-world
applications in deep learning (November 2018)

21

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

18. Shafique, S., Tehsin, S.: Acute lymphoblastic leukemia detection and classification
of its subtypes using pretrained deep convolutional neural networks. Technology
in Cancer Research and Treatment 17 (2018)

19. Szegedy, C., et al.: Going deeper with convolutions. vol. 10, pp. 1–9. 2015 IEEE
Conference on Computer Vision and Pattern Recognition (2015)

20. Thanh, T., et al.: Leukemia blood cell image classification using convolutional
neural network. International Journal of Computer Theory and Engineering 10(2)
(2018)

21. Yoo, S., Gujrathi, I., Haider, M., Khalvati, F.: Prostate cancer detection using deep
convolutional neural networks. Scientific Reports 9 (2019)

22. Zhang, N., et al.: Skin cancer diagnosis based on optimized convolutional neural
network. Artificial Intelligence in Medicine 102 (2020)

23. Zhoph, B., et al.: Learning transferable architectures for scalable image recognition.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)

24. Zhu, Y., et al.: Application of convolutional neural network in the diagnosis of the
invasion depth of gastric cancer based on conventional endoscopy. Gastrointestinal
Endoscopy 89(4) (2019)

9 Appendix A

InceptionV3 transfer code

import matplotlib.pyplot as plt

from numpy.random import seed

seed(1)

import os

import tensorflow

from tensorflow.keras import applications

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras import optimizers

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dropout, Flatten, Dense,

GlobalAveragePooling2D

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

class DetectCancer:

def _init_(self,image_dir,model_name,train_set,epoch,image_size,batch):

self.image_dir = image_dir

self.model_name = model_name

self.train_set = train_set

self.epochs = epoch

self.image_size = image_size

self.batch = batch

def createModel(image_dir,model_name,train_set,epoch,image_size,batch):

22

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

base_model = applications.InceptionV3(weights=’imagenet’, include_top

=False, input_shape=(image_size, image_size, 3))

model_top = Sequential()

model_top.add(GlobalAveragePooling2D(input_shape=base_model.

output_shape[1:],data_format=None)), model_top.add(Dense(256,

activation=’relu’))

model_top.add(Dropout(0.5))

model_top.add(Dense(1, activation=’sigmoid’))

We now put the new top onto the network

model = Model(inputs=base_model.input, outputs=model_top(base_model.

output))

model.summary()

model.compile(optimizer=Adam(lr=0.0001, beta_1=0.9, beta_2=0.999,

epsilon=1e-08,decay=0.0), loss=’binary_crossentropy’, metrics=[’

accuracy’])

DetectCancer.augmentImages(image_dir,model_name, train_set, model,

epoch,image_size,batch)

def augmentImages(image_dir,model_name,train_set,model,epoch,image_size

,batch):

train_datagen = ImageDataGenerator(rescale = 1./255, #scaled to zero

and one values

shear_range = 0.2,

zoom_range = 0.2,

rotation_range = 40,

height_shift_range = 0.2,

width_shift_range = 0.2,

horizontal_flip = True,

fill_mode=’nearest’,

validation_split=0.10)

training_set = train_datagen.flow_from_directory(train_set,

target_size = (image_size

, image_size),

subset = ’training’,

batch_size = batch,

class_mode = ’binary’)

testing_set = train_datagen.flow_from_directory(train_set,target_size

= (image_size, image_size),

subset=’validation’,

batch_size = batch,

class_mode = ’binary’)

23

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

history = model.fit_generator(training_set,steps_per_epoch =

training_set.samples/10,validation_data = testing_set,

validation_steps=testing_set.samples/10,epochs=epoch)

print(history.history.keys())

DetectCancer.saveModel(image_dir,model_name,model)

def saveModel(image_dir,model_name,lk_model):

lk_model.save(image_dir + os.sep + model_name)

if __name__ == "__main__":

image_dir = ’/work/greencenter/ychu/Capstone_project/CNN_models/

InceptionV3’

os.chdir

model_name = ’InceptionV3.h5’

train_set = ’/work/greencenter/ychu/Capston_project/C-NMC_combined’

epoch = 30

image_size = 299

batch = 10

DetectCancer.createModel(image_dir,model_name,train_set,epoch,

image_size,batch)

10 Appendix B

Xception transfer code

from numpy.random import seed

seed(1)

#import libraries

import matplotlib.pyplot as plt

import os

import tensorflow

from tensorflow.keras import applications

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras import optimizers

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dropout, Flatten, Dense,

GlobalAveragePooling2D

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

class DetectCancer:

24

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

def _init_(self,image_dir,model_name,train_set,epoch,image_size,batch):

self.image_dir = image_dir

self.model_name = model_name

self.train_set = train_set

#self.train_size = train_size

self.epochs = epoch

self.image_size = image_size

self.batch = batch

def createModel(image_dir,model_name,train_set,epoch,image_size,batch):

base_model = applications.Xception(weights=’imagenet’, include_top=

False, input_shape=(image_size, image_size, 3))

model_top = Sequential()

model_top.add(GlobalAveragePooling2D(input_shape=base_model.

output_shape[1:], data_format=None)),

model_top.add(Dense(256, activation=’relu’))

model_top.add(Dropout(0.5))

model_top.add(Dense(1, activation=’sigmoid’))

We now put the new top onto the network

model = Model(inputs=base_model.input, outputs=model_top(base_model.

output))

model.summary()

model.compile(optimizer=Adam(lr=0.0001, beta_1=0.9, beta_2=0.999,

epsilon=1e-08,decay=0.0), loss=’binary_crossentropy’, metrics=[’

accuracy’])

DetectCancer.augmentImages(image_dir,model_name, train_set, model,

epoch,image_size,batch)

def augmentImages(image_dir,model_name,train_set,model,epoch,image_size

,batch):

train_datagen = ImageDataGenerator(rescale = 1./255, #scaled to zero

and one values

shear_range = 0.2,

zoom_range = 0.2,

rotation_range = 40,

height_shift_range = 0.2,

width_shift_range = 0.2,

horizontal_flip = True,

fill_mode=’nearest’,

validation_split=0.10)

25

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

training_set = train_datagen.flow_from_directory(train_set,

target_size = (image_size

, image_size),

subset = ’training’,

batch_size = batch,

class_mode = ’binary’)

testing_set = train_datagen.flow_from_directory(train_set,target_size

= (image_size, image_size),

subset=’validation’,

batch_size = batch,

class_mode = ’binary’)

history = model.fit_generator(training_set,steps_per_epoch =

training_set.samples/10,validation_data = testing_set,

validation_steps=testing_set.samples/10,epochs=epoch)

print(history.history.keys())

DetectCancer.saveModel(image_dir,model_name,model)

def saveModel(image_dir,model_name,lk_model):

lk_model.save(image_dir + os.sep + model_name)

if __name__ == "__main__":

image_dir = ’/work/greencenter/ychu/Capstone_project/CNN_models/

Xception’

os.chdir(image_dir)

model_name = ’Xception.h5’

train_set = ’/work/greencenter/ychu/Capstone_project/C-NMC_combined’

epoch = 30

image_size = 299

batch = 10

DetectCancer.createModel(image_dir,model_name,train_set,epoch,

image_size,batch)

11 Appendix C

NASNetLarge transfer code

from numpy.random import seed

seed(1)

#import libraries

26

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

import matplotlib.pyplot as plt

import os

import tensorflow

from tensorflow.keras import applications

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras import optimizers

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dropout, Flatten, Dense,

GlobalAveragePooling2D

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

class DetectCancer:

def _init_(self,image_dir,model_name,train_set,epoch,image_size,batch):

self.image_dir = image_dir

self.model_name = model_name

self.train_set = train_set

self.epochs = epoch

self.image_size = image_size

self.batch = batch

def createModel(image_dir,model_name,train_set,epoch,image_size,batch):

base_model = applications.NASNetLarge(weights=’imagenet’, include_top

=False, input_shape=(image_size, image_size, 3))

model_top.add(GlobalAveragePooling2D(input_shape=base_model.

output_shape[1:], data_format=None)),

model_top.add(Dense(256, activation=’relu’))

model_top.add(Dropout(0.5))

model_top.add(Dense(1, activation=’sigmoid’))

We now put the new top onto the network

model = Model(inputs=base_model.input, outputs=model_top(base_model.

output))

model.summary()

model.compile(optimizer=Adam(lr=0.0001, beta_1=0.9, beta_2=0.999,

epsilon=1e-08,decay=0.0), loss=’binary_crossentropy’, metrics=[’

accuracy’])

DetectCancer.augmentImages(image_dir,model_name, train_set, model,

epoch,image_size,batch)

def augmentImages(image_dir,model_name,train_set,model,epoch,image_size

,batch):

27

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

train_datagen = ImageDataGenerator(rescale = 1./255, #scaled to zero

and one values

shear_range = 0.2,

zoom_range = 0.2,

rotation_range = 40,

height_shift_range = 0.2,

width_shift_range = 0.2,

horizontal_flip = True,

fill_mode=’nearest’,

validation_split=0.10)

training_set = train_datagen.flow_from_directory(train_set,

target_size = (image_size

, image_size),

subset = ’training’,

batch_size = batch,

class_mode = ’binary’)

testing_set = train_datagen.flow_from_directory(train_set,target_size

= (image_size, image_size),

subset=’validation’,

batch_size = batch,

class_mode = ’binary’)

history = model.fit_generator(training_set,steps_per_epoch =

training_set.samples,10,validation_data = testing_set,

validation_steps=testing_set.samples/10,epochs=epoch)

print(history.history.keys())

DetectCancer.saveModel(image_dir,model_name,model)

def saveModel(image_dir,model_name,lk_model):

lk_model.save(image_dir + os.sep + model_name)

if __name__ == "__main__":

image_dir = ’/work/greencenter/ychu/Capstone_project/CNN_models/

NASNetLarge’

os.chdir(image_dir)

model_name = ’NASNetLarge.h5’

train_set = ’/work/greencenter/ychu/Capstone_project/C-NMC_combined’

epoch = 30

image_size = 331

batch = 10

28

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

DetectCancer.createModel(image_dir,model_name,train_set,epoch,

image_size,batch)

12 Appendix D

#https://keras.io/examples/vision

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import preprocessing

from tensorflow.keras import layers

from tensorflow.keras.preprocessing.image import ImageDataGenerator

import numpy as np

import matplotlib.pyplot as plt

import os

from google.colab import drive

drive.mount(’/gdrive’)

image_dir = ’/gdrive/My Drive/Colab Notebooks/data’

os.chdir(image_dir)

class LightWeightXception:

def _init_(self,image_size,size,batch_size,train_set,train_datagen,

train_ds,val_ds):

}

self.image_size = image_size

self.size = size

self.batch_size = batch_size

self.train_set = train_set

self.train_datagen = train_datagen

self.train_ds = train_ds

self.val_ds = val_ds

}

def genmodel(input_shape, num_classes):

inputs = keras.Input(shape=input_shape)

x = inputs

x = layers.SeparableConv2D(32, 3, strides=2, padding="same")(x)

x = layers.BatchNormalization()(x)

29

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

x = layers.Activation("relu")(x)

x = layers.SeparableConv2D(64, 3, padding="same")(x)

x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)

initialize residual

resid_block = x

}

for size in [128, 256, 512]:

x = layers.Activation("relu")(x)

x = layers.SeparableConv2D(size, 3, padding="same")(x)

x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)

x = layers.SeparableConv2D(size, 3, padding="same")(x)

x = layers.BatchNormalization()(x)

x = layers.MaxPooling2D(3, strides=2, padding="same")(x)

Project residual

residual = layers.Conv2D(size, 1, strides=2, padding="same")(

resid_block)

x = layers.add([x, residual])

resid_block = x

}

x = layers.SeparableConv2D(1024, 3, padding="same")(x)

x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)

x = layers.GlobalAveragePooling2D()(x)

x = layers.Dropout(0.2)(x)

outputs = layers.Dense(1, activation=’sigmoid’)(x)

return keras.Model(inputs, outputs)

def set_params(image_size,size,batch_size,train_set,train_datagen,

train_ds,val_ds,epoch):

image_size =

model = LightWeightXception.gen_model(input_shape=image_size + (3,),

num_classes=2)

keras.utils.plot_model(model, show_shapes=True)

model.summary()

epochs = epoch

callbacks = [keras.callbacks.ModelCheckpoint("save_at_{epoch}.h5")]

30

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

opt = keras.optimizers.SGD(learning_rate=0.02, momentum=0.4, nesterov

=True, name=’SGD’)

model.compile(optimizer=opt,loss="binary_crossentropy", metrics=["

accuracy"])

keras.utils.plot_model(model, show_shapes=True)

history = model.fit(train_ds, epochs=epochs, callbacks=callbacks,

validation_data=val_ds,)

LightWeightXception.plotAcc(history)

def plotAcc(history):

acc = history.history[’accuracy’]

val_acc = history.history[’val_accuracy’]

loss = history.history[’loss’]

val_loss = history.history[’val_loss’]

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, ’bo’, label=’Training acc’)

plt.plot(epochs, val_acc, ’b’, label=’Validation acc’)

plt.title(’Training and validation accuracy’)

plt.legend()

plt.figure()

plt.plot(epochs, loss, ’bo’, label=’Training loss’)

plt.plot(epochs, val_loss, ’b’, label=’Validation loss’)

plt.title(’Training and validation loss’)

plt.legend()

plt.show()

}

image_size = (450, 450)

size = 450

batch_size = 32

epoch = 10

train_set = ’/gdrive/My Drive/Colab Notebooks/data/comb_training’

train_datagen = ImageDataGenerator(rescale = 1./size,

shear_range = 0.2,

zoom_range = 0.2,

rotation_range = 30,

height_shift_range = 0.2,

width_shift_range = 0.2,

horizontal_flip = False,

fill_mode=’nearest’,

validation_split=0.15)

31

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

train_ds = train_datagen.flow_from_directory(train_set,

target_size = image_size,

subset = ’training’,

batch_size = batch_size,

seed = 49,

class_mode = ’binary’)

val_ds = train_datagen.flow_from_directory(train_set,target_size =

image_size,

subset=’validation’,

batch_size = batch_size,

seed = 49,

class_mode = ’binary’)

LightWeightXception.set_params(image_size,size,batch_size,train_set,

train_datagen,train_ds,val_ds,epoch)

13 Appendix E

test_datagen = ImageDataGenerator(rescale = 1./128)

image_size = 128

batch = 10661

Tree 2

train_datagen = ImageDataGenerator(rescale = 1./128, #scaled to zero and

one values

shear_range = 0.2,

zoom_range = 0.2,

rotation_range = 40,

height_shift_range = 0.2,

width_shift_range = 0.2,

horizontal_flip = True,

fill_mode=’nearest’)

validation_split=0.15)

training_set = train_datagen.flow_from_directory(train_set,

target_size = (image_size

, image_size),

class_mode = ’binary’,

batch_size=batch)

testing_set = test_datagen.flow_from_directory(test_set,target_size = (

image_size, image_size), class_mode = ’binary’, batch_size=1867)

X_train, y_train = training_set.next()

X_test, y_test= testing_set.next()

X_both=np.concatenate([X_test,X_train],axis=0)

32

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

y_both=np.concatenate([y_test,y_train],axis=0)

from sklearn.model_selection import train_test_split

f_train,f_test,l_train,l_test=train_test_split(X_both, y_both, test_size

=0.15, random_state=121)

#color features i.e. mean color values of image

avg_pic=np.zeros(10648)

apt=np.zeros(1880)

for i in range(0, 10648):

im=f_train[i]

get shape

w,h,d=im.shape

change shape

im.shape = (w*h, d)

get average

avgrgb=tuple(im.mean(axis=0))

avg_pic[i]=((avgrgb[0]+avgrgb[1]+avgrgb[2])/3)

for i in range(0, 1880):

im=f_test[i]

get shape

w,h,d=im.shape

change shape

im.shape = (w*h, d)

get average

avgrgb=tuple(im.mean(axis=0))

apt[i]=((avgrgb[0]+avgrgb[1]+avgrgb[2])/3)

#perimeter, radius, area, rectangularity, compactness, convexity,

concavity, symmetry

from scipy import ndimage

from skimage import measure

rad=np.zeros(10648)

perims=np.zeros(10648)

area=np.zeros(10648)

rect=np.zeros(10648)

comp=np.zeros(10648)

convex=np.zeros(10648)

concav=np.zeros(10648)

elong=np.zeros(10648)

eccen=np.zeros(10648)

solidity=np.zeros(10648)

radt=np.zeros(1880)

perimst=np.zeros(1880)

areat=np.zeros(1880)

rectt=np.zeros(1880)

compt=np.zeros(1880)

convext=np.zeros(1880)

concavt=np.zeros(1880)

elongt=np.zeros(1880)

eccent=np.zeros(1880)

solidityt=np.zeros(1880)

33

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

for i in range(0, 10648):

img=f_train[i]

gray = img[:,:,0]

blobs=gray>0

perims[i]=measure.perimeter(gray)

labels, nlabels = ndimage.label(blobs)

properties = measure.regionprops(labels)

for p in properties:

min_row, min_col, max_row, max_col = p.bbox

area[i]=p.area

rad[i]=max(max_row - min_row, max_col - min_col)

rect[i]=p.area/p.bbox_area

comp[i]=p.area/(np.power(perims[i],2))

convex[i]=measure.perimeter(p.convex_image)/perims[i]

elong[i]=1-((max_row-min_row)/(max_col-min_col))

eccen[i]=(max_col-min_col)/(max_row-min_row)

solidity[i]=p.area/p.convex_area

for i in range(0, 1880):

img=f_test[i]

gray = img[:,:,0]

blobs=gray>0

perimst[i]=measure.perimeter(gray)

labels, nlabels = ndimage.label(blobs)

properties = measure.regionprops(labels)

for p in properties:

min_row, min_col, max_row, max_col = p.bbox

areat[i]=p.area

radt[i]=max(max_row - min_row, max_col - min_col)

rectt[i]=p.area/p.bbox_area

compt[i]=p.area/(np.power(perimst[i],2))

convext[i]=measure.perimeter(p.convex_image)/perimst[i]

elongt[i]=1-((max_row-min_row)/(max_col-min_col))

eccent[i]=(max_col-min_col)/(max_row-min_row)

solidityt[i]=p.area/p.convex_area

#Texture features

from skimage.feature import greycomatrix, greycoprops

from skimage.filters.rank import entropy

from skimage.morphology import disk

entrop=np.zeros(10648)

contr=np.zeros(10648)

homogen=np.zeros(10648)

energy=np.zeros(10648)

corr=np.zeros(10648)

for i in range(0, 10648):

img=f_train[i]

gray = img[:,:,0]

gray=gray.astype(int)

entrop[i]=entropy(gray, disk(5)).mean()

g = greycomatrix(gray, [1], [2], levels=4,normed=True, symmetric=True)

34

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

contr[i] = greycoprops(g, ’contrast’)[0][0]

homogen[i] = greycoprops(g, ’homogeneity’)[0][0]

energy[i] = greycoprops(g, ’energy’)[0][0]

corr[i]= greycoprops(g, ’correlation’)[0][0]

entropt=np.zeros(1880)

contrt=np.zeros(1880)

homogent=np.zeros(1880)

energyt=np.zeros(1880)

corrt=np.zeros(1880)

for i in range(0, 1880):

img=f_test[i]

gray = img[:,:,0]

gray=gray.astype(int)

entropt[i]=entropy(gray, disk(5)).mean()

g = greycomatrix(gray, [1], [2], levels=4,normed=True, symmetric=True)

contrt[i] = greycoprops(g, ’contrast’)[0][0]

homogent[i] = greycoprops(g, ’homogeneity’)[0][0]

energyt[i] = greycoprops(g, ’energy’)[0][0]

corrt[i]= greycoprops(g, ’correlation’)[0][0]

import cv2

from scipy import ndimage

statistical features: skewness, mean, variance, gradient matrix

vx=np.zeros(10648)

vy=np.zeros(10648)

skx=np.zeros(10648)

sky=np.zeros(10648)

med=np.zeros(10648)

for i in range(0, 10648):

img=f_train[i]

gray = img[:,:,0]

h,w = np.shape(gray)

x = range(w)

y = range(h)

#calculate projections along the x and y axes

yp = np.sum(gray,axis=1)

xp = np.sum(gray,axis=0)

#centroid

cx = np.sum(x*xp)/np.sum(xp)

cy = np.sum(y*yp)/np.sum(yp)

x2 = (range(w) - cx)**2

y2 = (range(h) - cy)**2

sx = np.sqrt(np.sum(x2*xp)/np.sum(xp))

sy = np.sqrt(np.sum(y2*yp)/np.sum(yp))

X2,Y2 = np.meshgrid(x2,y2)

#Find the variance

vx[i] = np.sum(gray*X2)/np.sum(gray)

vy[i] = np.sum(gray*Y2)/np.sum(gray)

#skewness

x3 = (x-cx)**3

35

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

y3 = (y-cy)**3

skx[i] = np.sum(xp*x3)/(np.sum(xp) * sx**3)

sky[i] = np.sum(yp*y3)/(np.sum(yp) * sy**3)

med_filt=ndimage.median_filter(gray, size=(16,16), output=np.float64,

mode="reflect")

med[i]=np.mean(med_filt[:][:])

vxt=np.zeros(1880)

vyt=np.zeros(1880)

skxt=np.zeros(1880)

skyt=np.zeros(1880)

medt=np.zeros(1880)

for i in range(0, 1880):

img=f_test[i]

gray = img[:,:,0]

h,w = np.shape(gray)

x = range(w)

y = range(h)

#calculate projections along the x and y axes

yp = np.sum(gray,axis=1)

xp = np.sum(gray,axis=0)

#centroid

cx = np.sum(x*xp)/np.sum(xp)

cy = np.sum(y*yp)/np.sum(yp)

x2 = (range(w) - cx)**2

y2 = (range(h) - cy)**2

sx = np.sqrt(np.sum(x2*xp)/np.sum(xp))

sy = np.sqrt(np.sum(y2*yp)/np.sum(yp))

X2,Y2 = np.meshgrid(x2,y2)

Find the variance

vxt[i] = np.sum(gray*X2)/np.sum(gray)

vyt[i] = np.sum(gray*Y2)/np.sum(gray)

skewness

x3 = (x-cx)**3

y3 = (y-cy)**3

skxt[i] = np.sum(xp*x3)/(np.sum(xp) * sx**3)

skyt[i] = np.sum(yp*y3)/(np.sum(yp) * sy**3)

med_filt=ndimage.median_filter(gray, size=(16,16), output=np.float64,

mode="reflect")

medt[i]=np.mean(med_filt[:][:])

from sklearn.preprocessing import MinMaxScaler

from sklearn import svm, metrics

x_train = np.column_stack((rad, area,rect,comp,convex,concav,elong,eccen,

solidity,entrop,contr,homogen,energy,

corr,vx,vy,skx,sky,med,avg_pic))

x_test = np.column_stack((radt, areat,rectt,compt,convext,concavt,elongt,

eccent,solidityt,entropt,contrt,homogent,energyt,

corrt,vxt,vyt,skxt,skyt,medt,apt))

36

SMU Data Science Review, Vol. 3 [2020], No. 2, Art. 4

https://scholar.smu.edu/datasciencereview/vol3/iss2/4

scaler = MinMaxScaler(feature_range=(0, 1))

#Normalize The feature vectors

x_train=np.where

x_train=np.where(np.isnan(x_train),0,x_train)

x_test=np.where(np.isinf(x_test),0,x_test)

x_test=np.where(np.isnan(x_test),0,x_test)

scaled_train= scaler.fit_transform(x_train)

scaled_test=scaler.fit_transform(x_test)

l_test=l_test.astype(int)

classifier = svm.SVC()

classifier.fit(scaled_train, l_train)

Now predict the value of the digit on the second half:

predicted = classifier.predict(scaled_test)

print(metrics.classification_report(l_test,predicted))

print(metrics.confusion_matrix(l_test,predicted))

37

Clinton et al.: Acute Lymphoblastic Leukemia Detection Using Depthwise Separable

Published by SMU Scholar, 2020

	Acute Lymphoblastic Leukemia Detection Using Depthwise Separable Convolutional Neural Networks
	Recommended Citation

	tmp.1597633768.pdf._KNtz

