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Fall Detection: Threshold Analysis of
Wrist-Worn Motion Sensor Signals

Joseph Caguioa1, Andy Nguyen1, Michael J. Wolfe1, and Jacquelyn Cheun1

Master of Science in Data Science, Southern Methodist University, Dallas TX 75275
USA {jcaguioa, andynguyen, mwolfe, & jcheun}@smu.edu

Abstract. In this paper, we present a detection algorithm that accu-
rately differentiates the event of a person falling from normal Activities
of Daily Living (ADL). Our algorithm processes signals recorded from
accelerometers and gyroscopes built into wearable activity monitoring
devices such as smart watches that are worn on an individual’s wrist.
Existing algorithms are accurate but imprecise, and rely too much on
inconveniently-placed sensors. We propose a pipeline that improves pre-
cision without sacrificing accuracy and ease of use. We present the use of
a combination of threshold-based and machine learning-based approaches
to develop a refined fall-detection algorithm that builds upon previous
research. Using various pre-processing techniques such as magnitude and
acceleration change vectors, our model labels the varied activities into
falls and ADLs using k-means clustering. Finally, we test the accuracy of
these labels in a Support Vector Machine (SVM) binary classifier. Our
hope, given the potential danger of injury resulting from a fall, is to cre-
ate an accurate and precise fall detection algorithm that could be the
precursor to an autonomous emergency alert system.

Keywords: fall detection · threshold analysis · Activities of Daily Living
(ADL) · signal processing · Acceleration Vector Change (AVC) · Angular
Velocity Vector Change (WVC) · K-Means Clustering · Support Vector
Machines (SVM) · wrist-worn triaxial motion sensors ·

1 Introduction

The elderly are most prone to the dangers of falling that may significantly impair
their daily lifestyle. Non-fatal falls often result in severe physical injuries such
as broken bones, internal tissue damage, and head trauma. However, these falls
for the elderly population can also result in persisting psychological fears due
to post-traumatic stress and are at the highest risk of a reoccurring incident.
The World Health Organization (WHO) report that fatality rates from falls are
consistent with risk factors of advanced age and other associated predispositions
such as: 1) reduced activity from physical depreciation; 2) chronic underlying
medical conditions, including arthritis, neurological diseases, and cardiac dis-
eases; 3) side effects from increased use of prescription medications, that can
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have compounding effects on the central nervous system; 4) hazardous envi-
ronments; and 5) substance abuse.1 Fall prevention has been investigated as a
proposed solution, taking preemptive measures to reduce the number of falls, but
accidental falls can not always be averted. In 2016, approximately 30,000 adults
aged 65 years and older died as the result of fatal falls in the United States, the
leading cause of injury-related fatalities within this age range.[3] The adjusted-
age death rates for this senior population have increased by 31% from 2007 to
2016, with an estimated 43,000 deaths due to fatal falls in 2030 if these current
rates remain stable.[3] Autonomous fall detection systems have since been devel-
oped with the intention of quickly identifying senior falls to provide immediate
interventions if necessary in an effort to combat these increasing mortality rates.

The critical danger of a fall is being in a “long-lie” condition, in which the
person remains on the ground for an extended period unable to help themselves
up after a fall.[1] This may result in severe loss of self-confidence in fortunate
situations of non-bodily harm, but in more grave cases potentially result in life-
threatening complications such as a Traumatic Brain Injury (TBI) induced by
head trauma from the fall. The Centers for Disease Control and Prevention
(CDC) reported in 2014 that falls were the leading cause for TBI, accounting
for roughly half (48%) of TBI-related emergency department visits.2 Patients
can suffer extended periods of unconsciousness in a critical “long-lie” condition
in urgent cases of traumatic brain injuries, unable to help themselves or request
for immediate assistance.

From a survey obtained on 125 subjects ages 65 and older, half of those who
suffered a “long-lie” state for over an hour died within six months following the
first reported fall.[14] Fall detection systems help address the concerns of “long-
lie” falls by identifying when falls occur and dispatching immediate assistance
in order to minimize the period of time individuals remain helpless. The first
fall detection system proposed was a personal alarm system (PAS), in which a
user-activated device could be worn as a wristband or necklace, but required
the user to be conscious after a fall has occurred to press the button and alert
an emergency help desk operator.[5] The issue with these initial systems is that
they did not consider severe cases in which individuals lose consciousness and are
unable to activate the alarm signal for assistance. Since then, novel autonomous
fall detection systems have been introduced that do not require a user-activated
alert signal; they can be categorized into: camera-based systems, ambient envi-
ronment sensor-based systems, and wearable sensor-based systems.

Advancements in wearable sensors and system over the past decade has gen-
erated interest in using wearable technology to support clinical assessments of
patients. Potential applications from these developments have shown promise in
early diagnosis of cardiac diseases such as congestive heart failure, prevention
of chronic conditions such as diabetes, improvement in clinical management of
neuro-degenerative conditions such as Parkinson’s disease, and the ability to
promptly respond to emergency situations such as cardiac arrest or TBI.[2] Cur-

1 https://www.who.int/news-room/fact-sheets/detail/falls
2 https://www.cdc.gov/traumaticbraininjury/get_the_facts.html
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rently, wearable technologies have been commercialized on the market as smart-
watch accessories that include features for activity monitoring, physical fitness
tracking, and global positioning systems (GPS). A 2019 survey conducted by
the Pew Research Center reports that one in every five Americans (21%) are
estimated to wear a smartwatch or fitness tracker regularly, producing massive
amounts of data that can be used for healthcare research.3 Considering how
wide-spread the use of these devices are currently, we believe autonomous fall
detection research primarily focused on sensor placements on the wrist will have
the most potential as a universal real-world application to address concerns re-
garding the mortality rates from falls.

Unfortunately, prior research testing fall detection reliability have found that
false positive rates are high when using a single wrist sensor.[6] Generally, torso,
waist and head based sensors have proven to be more effective in detecting
falls, but in this study, wrist-based sensors were still able to detect faster falls
with some accuracy. While waist placement has the benefit of aligning to the
human anatomy’s center of gravity, sensor placement at the head has produced
superior impact detection sensitivity. Triaxial accelerometer data from both sites
produced efficient fall detection algorithms with a sensitivity around 97% and
specificity of 100%, even with simple threshold-based algorithms.[10] Although
evidence suggests that sensors placed at the head and waist yielded the most
accurate predictions, we only investigate how wrist sensor data can be used
to train an autonomous fall-detection algorithm for its potential application in
smartwatch accessories.

The remainder of this paper is organized into the following sections. Section
two will discuss related studies that have guided our work and analyzed the effi-
cacy of previous implementations of autonomous fall-detection systems. Section
three will discuss methodologies: how the data was collected along with its struc-
tures and processing methods, as well as a high-level overview of the machine
learning concepts applied to develop our solution. Section four will present the
results of our findings accompanied with tables and figures to summarize the
analysis. Section five will wrap up our analysis with ethical considerations and
potential implications of handling personal health data recorded from wearable
wrist devices. Section six will summarize our main conclusions and potential
ideas to refine our proposed solution.

Fall detection is a rich field with considerable depth and breadth. Much work
has been done on all levels, from algorithms to detect falls from certain positions
or heights to simply studying and defining movement in general.

2 Related Works

One of the most prominent studies for our purposes is the Burns study on fall-
related deaths in the elderly.[3] This is the primary impetus for our project:
fall-related deaths are common and preventable with timely intervention.

3 https://www.pewresearch.org/fact-tank/2020/01/09/

about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
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In [9], fall scenarios are categorized for evaluation purposes: namely forward,
backward, and lateral. Fall-like scenarios such as syncope, where a fainted indi-
vidual slips down a wall into a sitting position, are also mentioned. Such cate-
gorizations are later used in many studies for fall events.

Methods that use accelerometers to detect a fall typically analyze data about
a person’s acceleration before, during, and after the event. Terminology varies
between studies, but most describe the segmentation in the following chrono-
logical order: a normal ADL period succeeded by a sudden spike in acceleration
within a short time window, followed by a sudden deceleration on impact, fol-
lowed by an extended period of no acceleration if the person is in a “long-lie”
state. Events with slower falls or multiple impacts may have slightly different
profiles of acceleration over time.[11]

Prior fall detection research suggests processing raw triaxial sensor measure-
ments into magnitude signal vectors to reduce dimensionality. From the accel-
eration magnitude vector, an Acceleration Vector Change (AVC) feature can be
extracted to capture motion intensity. Stronger motions will result in sudden,
drastic changes in the acceleration signal and produce greater AVC values.[6]
Gjoreski’s various studies compared the effectiveness of different fall detection
models trained using this feature at four positional sensors (wrist, head, waist,
and thigh), finding a Random Forest model to perform the best overall with an
accuracy of 80%. However, his research indicated that a Support Vector Machine
(SVM) classifier was more accurate on just wrist sensor data.

In a different study using similar methods, Hussain et al. used a low-pass
Butterworth filter to pre-process their data. A low-pass Butterworth filter is a
common technique in signal processing, used to filter out noise components in
a signal system. In our case, the noise would be gravity itself. If we represented
our problem of discerning acceleration in an activity, ADL or otherwise, from
gravity, we would represent it thusly:

accx = Ax + g

Where acc is the overall acceleration, A represents the activity-based accel-
eration and g represents gravity. A low-pass Butterworth filter would decompose
this equation into A and g, and allow the researcher to determine if A represents
a fall or an ADL. This enables researchers to a subject’s effect on its accelera-
tion in space. After pre-processing, the researchers compared various classifiers
and their efficacy in predicting falls and found SVM to be the most accurate at
99.98%, further verifying the viability of SVM classifiers in detecting falls.[8]

3 Materials and Methods

Our study uses a subset of the UP-Fall Detection dataset to analyze acceler-
ation and angular velocity signals measured on wrist-worn sensors to simulate
smartwatch placement.
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3.1 Data

The UP-Fall Detection dataset is used to analyze and compare the different
methods for detecting falls through wrist sensors. The complete dataset is a
collection of information from five wearable sensors, six infrared sensors, two
cameras, and an electroencephalograph headset. Mart́ınez-Villaseñor et al. pub-
licly presented this multimodal dataset as a comprehensive database resource to
assess the efficacy of novel fall detection methods in camera-based, ambient en-
vironment sensor-based, and wearable sensor-based systems.[12] Our study only
uses a subset of the data to focus on the acceleration and angular velocity sig-
nals measured through the sensor worn at the wrist to simulate a smart watch
placement. The accelerometer is measured in units of g, which is the force per
unit of mass on Earth or 9.81 m/s2. The gyroscope is measured in units of degree
per second (deg/s).

Table 1. Description of Participating Subjects.

Subject ID Age Height (m) Weight (kg) Gender

1 18 1.70 99 Male
2 20 1.70 58 Male
3 19 1.57 54 Female
4 20 1.62 71 Female
5 21 1.71 69 Male
6 22 1.62 68 Male
7 24 1.74 70 Male
8 23 1.75 88 Male
9 23 1.68 70 Female
10 19 1.69 63 Male
11 20 1.65 73 Female
12 19 1.60 53 Female
13 20 1.64 55 Male
14 19 1.70 73 Female
15 21 1.57 56 Female
16 20 1.70 62 Male
17 20 1.66 54 Female

They used a Mbientlab MetaSensor to collect the raw data from a triaxial
accelerometer and gyroscope at a sampling rate of 100 Hz. The data collection
process spanned across four weeks in the summer of 2018 and was conducted on
the third floor of the Faculty of Engineering building at Universidad Panameri-
cana in Mexico City.[12] Their study enlisted 17 healthy young adults to perform
11 different physical activities. The volunteers consisted of nine males and eight
females ranging from 18-24 years old with the average height of 1.66 meters and
the average weight of 66.8 kilograms. The only participant that was left-hand
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dominant was Subject three. Table one provides a description for each subject
that participated in the study.

Each subject performed three trials for every activity. The physical activities
were selected to simulate six typical human activities of daily living and five
common types of falls. The action of picking up an object was specifically tested
since it is an activity that is commonly mistaken for a fall, and was performed
once within a ten second interval per trial. The jumping activity was measured
in 30 seconds intervals, while the other activities of daily living were all measured
in 60 second time frames. The simulated falls were measured within ten second
time frames with only one a single fall executed in each trial. Table two provides
a summary of each activity’s description and duration for each trial.

Table 2. Description of Activities Performed by Each Subject.

Activity ID Description Duration (s)

1 Falling forward on hands 10
2 Falling forward on knees 10
3 Falling backwards 10
4 Falling sidewards 10
5 Falling from seated position on chair 10
6 Walking 60
7 Standing 60
8 Sitting 60
9 Picking an object up 10
10 Jumping 30
11 Lying 60

Table three shows the magnitudes of Subject one’s acceleration and angular
velocity signals from the wrist sensor for each simulated fall trial (activities one
through five). The original accelerometer and gyroscope wrist sensor data was
provided on along the x, y and z axis. These triaxial measurements were pro-
cessed into a single magnitude vector for acceleration (a) and angular velocity
(w) at each sensor measurement sample as shown in table three. The magni-
tude signals for each simulated fall trial performed by Subject one (activities
one through five) are provided as examples. This processing step was done to
reduce the data dimensions and identify potential sensor threshold values that
can distinguish falls from ADLs through the following representation:

~a =
√
a2x + a2y + a2z

~w =
√

w2
x + w2

y + w2
z

The acceleration and angular velocity magnitude vector signals present as
time series data of each simulated fall trial over the data collection interval. We
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Table 3. Sensor Signal Magnitudes of Simulated Falls for Subject 1

Activity ID Acceleration (g) Angular Velocity (deg/s)

1

2

3

4

5
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use the peak value from these plot as potential threshold values to distinguish a
fall from activities of daily living. However, the peaks occur at different maximum
values for the five different types of simulated falls. The lower acceleration peaks
for activities two and five with values of 3.0 and 3.5 appear to be a result of
smaller distance displacements. The subject falls onto their knees from a standing
position in activity 2 and falls from a seated position in activity five. In these
two cases, the vertical displacement of the wrist sensor are smaller compared to
the other falling simulations in which the subject falls from a standing position
to the ground.

We also define threshold values with vector changes of the acceleration and
angular velocity magnitude signals. Instead of training the sensor to detect when
a certain magnitude is measured, the model learns to detect motion intensity
through magnitude changes. The Acceleration Vector Change (AVC) and Angu-
lar Velocity Vector Change (WVC) features are defined as:

AV C =

n∑
i=1

|~ai − ~ai−1|
Tn − T0

WV C =

n∑
i=1

| ~wi − ~wi−1|
Tn − T0

The absolute value of the summed differences between consecutive magnitude
signals is divided by trial sampling period to produce the vector change value of
a signal, where T0 is the timestamp of the first data sample in a trial and Tn is
the last. When the sensors are not experiencing motion, the vector change for
consecutive measurements will remain be constant. When motion is detected,
the vector change value will measure the intensity of the motion with larger
changes indicative of more forceful activity.

These processing steps resulted in 559 data instances that describe every trial
executed by each of the 17 subjects for the 11 activities; two data points are
missing because subject eight is missing sample signals for trials two and three
in activity eleven. The raw triaxial sensor measurements, maximum magnitude
values per trial, and signal vector changes were tested as candidate threshold
values in our model.

3.2 Methods

We compare the competing preprocessing methods by feeding the different fea-
tures into our classification pipeline. K-means clustering identifies the acceler-
ation and angular velocity threshold values that distinguish falls from other
activities through centroid Euclidean distances. These distances are leveraged
as class labels for falls and ADLs in a binary classification task using Support
Vector Machines (SVM).
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K-Means Clustering Eleven clusters were initially tested to simulate the 11
different experimental activities, but these clusters did not provide clear separa-
tion between the different activities. Since specific values could not be identified
for each activity, generalized threshold values for falls and ADLs were iden-
tified using two cluster centroids in the k-means clustering algorithm. Figure
one presents the results of the clustering analysis with two identified centroids
displaying separation between the simulated falls and ADLs. Since the sensor
experiences more force during the event of a fall, the k-means centroid for falls
(red data points) has larger threshold values for acceleration and angular ve-
locity compared to ADLs (green data points) as expected. The vector change
threshold values from the fall cluster are 6.891 g for acceleration and 897.310
deg/s for angular velocity. The vector change threshold values from the ADL
cluster are 0.955 g for acceleration and 241.720 deg/s for angular velocity.

Fig. 1. : K-Means Fall and ADL Class Centroids for AVC & WVC thresholds

In addition to acceleration and angular velocity changes, the threshold anal-
ysis also tests raw sensor measurements on individual axes and maximum mag-
nitude signals as well. Principal Components Analysis (PCA) is used to reduce
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the triaxial measurements to a smaller feature set representing the signals mea-
sured by the accelerometer and gyroscope in each trial. Alternatively, maximum
magnitude signals from each trial were extracted as another processing technique
to reduce data dimensionality and represent potential thresholds for each of the
two sensors. Table four summarizes the centroid distance extracted from k-means
clustering for each of the competing threshold types. These centroid distances
represent threshold values that are used as input labels for distinguishing falls
from activities of daily living in a SVM classifier.

Table 4. Summary of Magnitude Threshold Values to be Tested in Classifier

Threshold Type Acc. Threshold (g) Ang. Velocity Threshold (deg/s)

Triaxial Measurements (PCA)
2.530 (Fall)
1.554 (ADL)

648.035 (Fall)
259.401 (ADL)

Maximum Magnitude
3.502 (Fall)
2.331 (ADL)

694.076 (Fall)
292.689 (ADL)

AVC & WVC
6.891 (Fall)
0.955 (ADL)

897.310 (Fall)
241.720 (ADL)

Support Vector Machine Classification Support Vector Machines is a su-
pervised machine learning technique that projects labeled training data onto a
higher dimensional space. A decision boundary is then defined to linearly sepa-
rate categorical class labels by maximizing its orthogonal distances from support
vectors. In two dimensions the decision boundary can be defined as a line, but in
n-dimensions it is best defined as a hyperplane with (n-1)-dimensions. Support
vectors are the data instances closest to the defined closest to the boundary line
on each side of the class labels.

With non-linearly separable data, transformation kernel tricks are employed
to map the data into a different dimensionality space so that the SVM algorithm
can better identify a hyperplane capable of linearly separating classes. A variety
of kernels (i.e., linear, sigmoid, polynomial, Gaussian) are tested on the k-means
feature space to evaluate the best parameters for the binary classification of
falls from activities of daily living. Accuracy, recall, precision, and F1 score are
used as comparative metrics to quantify the performance of competing models.
In order to leverage the k-means labeling of fall and ADL threshold values, the
centroid distance vectors from the different data processing methods were fed
into a Support Vector Classifier (SVC) as input criteria.

10
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4 Results

The raw triaxial measurements provided two distance vectors per axis for a total
of six vectors. PCA was applied to the six feature vectors to reduce the data
dimensionality of the binary classification task to two components. These prin-
cipal component values were then used to compute 2 k-means centroid distances
for fall and ADL class labels in an SVM classifier tested with different kernels.
The results are represented in the 3D scatterplot shown in Figure two.

Fig. 2. : 3D PCA Decision Boundary of Triaxial Distance Components

Many of the predictions are clustered around a single point in space and
are not easily separated linearly by projecting to a higher dimensional plane.
This is reflected in the low accuracy around 50 percent regardless of the kernel
selected for SVM classification. Given this low performance and lack of response
to parameter tuning, maximum magnitude signals from each trial were instead
used as a processing step to extract threshold values for classification.

Linear, sigmoid, polynomial, and Gaussian kernels were again tested on the
maximum magnitude signals. These values provided higher accuracy than the
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PCA components of raw triaxial sensor measurements with the linear kernel
yielding the most significant performance in comparison to the other kernels at
67%. The linear kernel yielded the most significant performance improvement
in comparison to the other kernels and the raw triaxial sensor measurements.
Figure three shows the hyperplane decision boundary from the SVM classifier
on maximum magnitude signal thresholds using a linear kernel.

Fig. 3. : Linear SVM Classifier of Maximum Magnitude Thresholds

Many of the data points appear to be clustered in an elbow shape around
the origin, with most representing the majority class. This likely accounts for
the improvement in accuracy, but does not significantly increase the precision.
To account for some of these issues, we shifted our threshold analysis to vector
change features from the accelerometer and gyroscope sensors to better mea-
sure motion intensity. Acceleration Vector Change (AVC) and Angular Velocity
Vector Change (WVC) values per trial were pushed through the classification
pipeline to identify class labels through k-means and predict fall instances from
ADLs in a binary SVM classifier.
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Figure four shows that the k-means centroid classification task using vector
change features produces a much narrower hyperplane, along with the same el-
bow shape seen in the previous classifier. The vectors are much more closely
clustered around the hyperplane as well. Unlike the previous classifier, the linear
separation is more clear between the ADL vectors and the fall vectors. This will
yield higher accuracy, and more importantly, higher precision on the classifica-
tion task. The outliers are still present but are on the correct side of the decision
boundary. One concern with the narrowness of the hyperplane is the possibility
of misclassification in the case of vectors that are slightly further away from the
support vectors. We will want to examine recall to ensure this is not a potential
weakness.

Fig. 4. : Linear SVM Classifier of AVC and WVC

Despite the presence of outliers, this vector change model performed the best
with an overall accuracy of 78.4%. The linear decision plot appears similar to
the magnitude model, but predict ADL labels further away from the decision
boundary. This aligns with what is seen in the cluster plot, and could explain
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the increase in accuracy from the previous model. A final comparison of the
performance metrics from our top-competing models is shown in table five.

Table 5. SVM Classifier Accuracy for AVC Distance By Kernel

Pre-Processing Kernel Type Accuracy Precision Recall F1 Score

AVC Linear Kernel 78.400% 74.200% 82.800% 78.300%
Magnitude Threshold Linear Kernel 67.000% 63.800% 69.00% 66.300%
Magnitude Threshold Gaussian Kernel 58.900% 58.500% 43.700% 50.000%

The linear kernel SVM classification on k-means centroid distances of vector
change features showed significant improvement across all metrics from previous
models. This model appears to address some of the precision issues in current
fall detection algorithms on solely wrist sensor data with a competitive measure
of 74.2% indicating low false positive rates. Precision weighs the costs of false
positive predictions (i.e., predicting an activity of daily living to be a fall). Recall
weighs the costs of false negative predictions (i.e., predicting a fall to be an
activity of daily living). At 82.8% recall, our model performs even better in
regards to actually identifying relevant instances as falls and not mislabelling
them as an ADL. The F1 score metric is the harmonic mean of precision and
recall, meaning it weighs model performance with false positive and false negative
costs over true negative predictions. The F1 Score of 78.3% is comparable to
the overall classification accuracy of 78.4%, indicating a balanced model that is
accurate, precise, and generalizable.

5 Discussion

As mentioned in the results, our final 3-phased threshold analysis model ap-
proach (AVC to K-Means to SVM) had an accuracy of about 78 percent. Al-
though there is sparse research on the efficacy of existing fall detection systems
outside laboratory settings, owing to manufacturers being reticent to releasing
that information, many consumer studies report similar accuracy to our result.
However, unlike these products our model is much more precise, at 74 percent.

As mentioned in the results, our final model (AVC to K-Means to SVM)
had an accuracy of about 78 percent. Although there is sparse research on the
efficacy of existing fall detection systems outside laboratory settings, owing to
manufacturers being reticent to releasing that information, many consumer stud-
ies report similar accuracy to our result.[?] However, unlike these products our
model is much more precise, at 74 percent.

A potential concern was noted when plotting the decision boundary - the
possibility of misclassification due to narrowness in the hyperplane. Although
the data on which we trained the model produced a good recall score (over
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Fig. 5. : 3-Phased Model Approach

82%) it is worth exploring some possible strategies to make the model more
adaptable and resilient. Outliers were observed in the formed AVC and WVC
k-means centroid clusters. These data points with larger vector change values for
acceleration and angular velocity were identified to be from trials of activity ten
as shown in figure five. Activity ten from the data iss jumping, which consists of
continuous acceleration changes over the trial period. Given the nature in which
vector changes were calculated over the entire trial period, a jumping activity
would generate large a vector change value due to continuous motion over a 30
second window and manifest as outliers in the data.

In order to address this issue, an optimal window for vector change thresh-
olds needs to be defined so that motion intensity can be better measured in
small time frames. In this way, threshold values can better capture large, sudden
changes in acceleration and angular velocity vectors that are more characteristic
of fall events. This is an important distinction as the stimulated falls (activities
one through five) are sampled in 10 second trial periods compared to the the
majority of stimulated ADLs (activities six through eleven) are mostly sampled
in 30 or 60 second trial periods. An optimal sampling window for vector change
thresholds would improve signal processing by ensuring that sudden, large vec-
tor changes measured by the sensor can be attributed to intense motions rather
than continuous motion.

Prior research investigated the use of Butterworth filters to remove noise such
as gravitational acceleration from the raw triaxial sensor signals as an effective
signal processing technique.[8] With noise effectively filtered from these signals,
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an acceleration component characteristic of just the detected motion can be
isolated and provide vector change thresholds that are more representative of
pure human motion.

Fig. 6. : AVC & WVC highlighted by activity

A knowledge-based multiphase fall model approach has been researched to
address many of the technical challenges of an autonomous fall detection system
and yielded overall performances of 99.79% sensitivity, 98.74% specificity, 99.05%
precision, and 99.33% accuracy.[7] The multiphase approach introduces free fall,
impact and rest phases to characterize a fall. These three phases characterize a
window of a drastic increase in acceleration, succeeded by a rapid decrease in
acceleration, and ends with an extended period of constant acceleration. In the
free-fall phase, the acceleration vector change signal should mimic gravitational
acceleration and could be extracted using Butterworth filters as previously dis-
cussed. The impact phase can be characterized as a large, negative vector change
within a small time window. The rest phase should be attributed with a vec-
tor change value of 0 over a few seconds. Applying vector change features and
machine learning based approaches to this multiphase model potentially offers
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a potentially viable solution to an autonomous fall detection system developed
from threshold analysis of wrist sensor data.

As a real-world application, our model can be integrated into modern-day
wearable technologies such as smartwatches to leverage their built-in Global
Positioning System (GPS). In the event a fall results in incapacitation, the au-
tonomous fall detection system can dispatch emergency medical services to the
pinpoint location of the device. The imprecision of existing systems is a barrier
for such a development, and we believe introducing a more precise model such
as ours will ensure broader adoption by rectifying this issue.

5.1 Ethics

One major ethical consideration, both within this analysis and others on fall
detection, is bias within the data. Pre-existing publicly available datasets often
contain data sourced from healthy adults who predominantly skew younger and
male.[4] Studies that generate their own data frequently recruit people of similar
demographics because of the health and safety concerns posed by attempting to
source data from the elderly.[6] Any data that is generated by older adults is
often limited to ADLs as opposed to falls. Although volunteers are often coached
to simulate fall behavior in a similar fashion to the elderly, factors like predefined
movements, test environments that do not well approximate where the elderly
are most likely to fall, and the presence of safety precautions like mattresses
could all result in simulated fall data that does not actually match the reality.[4]
Kangas et al. demonstrate that the profiles for a small number of real-life falls
look similar to those of simulated ones.[10] However, we caution against assuming
this extends to other simulated data and recommend more investigation into the
possible influence of demographic bias and safety measures.

Another potential ethical consideration is privacy. In a similar fashion to how
personalized medicine tailors to individual patients, a user-centric model that
trains on the wearer’s baseline ADL movements has been suggested to perform
better than a generalized one.[13] Manufacturers of wrist wearables could allow
users to opt-in to providing their real-life ADL data to refine the generalized
model that the user-centric model works with. However, this introduces realistic
concerns over whether user information is properly removed or anonymized in
the event of data breaches.

6 Conclusion

Our study uses a subset of the UP-Fall Detection dataset to analyze acceler-
ation and angular velocity signals measured on wrist-worn sensors to simulate
smartwatch placement. We designed a threshold-based model on a binary clas-
sification task to distinguish falls from activities of daily living. We found that
vector change features capturing the collective sum of differences between consec-
utive signals in time provided the most accurate model. The Acceleration Vector
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Change (AVC) and Angular Velocity Vector Change (WVC) features were in-
putted into a K-Means Clustering algorithm to identify two k-means centroids:
one for falls and one for activities of daily living (ADL). The centroid distances
represent the threshold values that AVCs and WVCs must reach to classify a
fall. The two centroids with AVC and WVC distances were fed into a Support
Vector Machine (SVM) classifier with a linear kernel and yielded an accuracy of
78.4%.

Due to the use of the trial period as the processing time window for vector
change features, activities consisting of continuous motions created outliers in the
data. Activity 10, jumping, from the dataset was the example previous discussed.
Thus, the processing time window should be lowered to an optimal period that
better capture sudden, large changes in the acceleration and angular velocity
magnitude vectors. Smaller time windows will provide a better representation of
vector changes for individual motions rather than continuous.

Previous research on fall detection systems lend insight into techniques that
can further refine our proposed model. Signal processing techniques such as
Butterworth filters have been used to remove background noise from the triax-
ial accelerometer and angular velocity sensors to extract a signal that is more
characteristic of pure human motion. A knowledge-based multiphase model char-
acterizing distinct free fall, impact, and rest states for fall detection systems has
provided extremely accurate results across performance metrics.

The objective of our proposed solution for novel autonomous fall detection
systems is to provide a model that can be applied to wrist-wearable technologies
with accelerometer and gyroscope sensors. We must caution extrapolating this
model to the senior population as it was only trained on a sample population
of young, healthy adults aged 18-24 years old. Many current commercialized
smartwatch devices also have built-in GPS that our application can further take
advantage of by dispatching local paramedics to an exact location if a fall is
detected in order to minimize the dangers of a “long-lie” condition.
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