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Abstract 

Data Envelopment Analysis (DEA) is an application of linear 

programming which allows a comparison of Decision Making Units 

(DMU) which share the same operating charter but function in 

different environments. DEA allows the identification of a •peer 

group• so that an individual DMU is compared only with DMU's that 

operate in a similar environment. From the •best• in this peer 

group, an efficient frontier can be identified. In this paper, we 

discuss, via mathematical programming, a way of determining 

alternative possible courses of action for the manager of a DMU 

that has been deemed inefficient. 

Keywords: Data envelopment analysis, linear programming, 

quadratic programming, efficiency analysis, 

managerial performance goals. 
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I. Introduction1 

Data Envelopment Analysis (DEA) is a linear programming based 

technique which has gained wide acceptance as a means of measuring 

the efficiency of decision making units (DMU). Using empirical 

data consisting of vectors of the inputs and outputs of a group of 

similar DMUs, the method provides a piece-wise linear estimate of 

an empirical production or cost function. DMUs which are not on 

the estimated production function are deemed to be inefficient. A 

group of other DMUs, called the peer group, or reference set, is 

identified. The peer group forms the nearest facet of the estimated 

production function. A point is then identified which is a 

projection of the vector of inputs and outputs onto that facet. 

This new efficient point is then used as a target for the future 

performance of the DMU. 

Since the original work by Charnes, Cooper and Rhodes [1978], 

several different DEA models have been developed and applied in a 

variety of settings (see Seiford [1989]). DEA has been used 

successfully, for example, to study the efficiency of hospitals 

(Banker, Conrad and Strauss [1982], Morey, Fine and Loree [1990]), 

courts (Lewin, Morey and Cook [1982]) and banks (Parkan [1987]). 

While there have been numerous articles on the extensions of 

the original models and applications, relatively little attention 

has been given to the managerial reaction required when a DMU is 

deemed inefficient. The typical prescription is that a 

1The authors would like to thank Professor Richard Morey for 
his helpful comments and suggestions. 
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proportional contraction of the input vector be made while holding 

the vector of outputs fixed, or alternatively, that a proportional 

expansion of the output vector be made while holding the vector of 

inputs fixed. The result of each analysis is a single performance 

target represented as a vector of inputs and outputs that is 

guaranteed to be efficient. Other than the works described below, 

research has generally not focused on finding alternative efficient 

performance targets that also satisfy the objectives particular to 

a specific DMU. 

Golany [1988] proposes an interactive procedure for finding 

alternative efficient points for an inefficient DMU to use as 

performance targets. The maximum attainable level of each output 

is determined by solving a linear program for each output. This 

information is then used in a series of linear programs to 

construct a set of alternative efficient solutions, each one giving 

priority to a particular output, while the input vector is held 

constant. These solutions are then presented to the DMU for 

evaluation. If a satisfactory solution is found, the procedure 

stops. Otherwise the preferences of the DMU are incorporated into 

a new set of alternatives by resolving a new set of linear programs 

with revised lower bounds on the outputs, and the evaluation 

process is repeated. 

Charnes, et. al. [1992] discussed sensitivity analysis in the 

context of the additive model of DEA (Charnes, et. al. [1985]). 

Linear programming formulations were presented which found a 

•region of stability,• a symmetrical region within which a DMU's 
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current classification of efficient or inefficient will not change. 

Two formulations were suggested, one using the --norm and one using 

the 1-norm, the latter being suggested when one desires to evaluate 

the sensitivity of a DMU's classification relative to a 

perturbation of a subset of the input-output vector. While the 

method does not provide for the explicit construction of 

performance objectives, the •radius of stability• it identifies is 

minimum change required for an inefficient DMU to become virtually 

efficient. 

In this paper we discuss possible courses of action for the 

inefficient DMU. In particular, we use a mathematical programming 

approach to obtain alternative efficient input-output vectors. 

These vectors are feasible and consistent with the goals of the 

inefficient DMU, and may be considered for use as managerial 

performance objectives. Our discussion focuses on the DMU' s 

possible courses of action after being scored inefficient by a 

study using the model of Banker, Charnes and Cooper [ 1984] . 

However, the general concepts which follow are equally applicable 

to other DEA models. 

II. The BCC Model 

Banker, Charnes and Cooper (BCC) [1984] extended the original 

model of Charnes, Cooper and Rhodes to include the concept of 

economic returns to scale. The primal formulation of the BCC model 

is 
s 

MAX hk = 1: J.l.rYrk - uk 
r=1 

(1) 
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m 
s.t. l: 'UiXik = 1 (2) 

i=1 
s m 
l: JlrYrj l: 'Uixij - uk ~ 0 j = 1,2, ... n ( 3) 
r=1 i=1 

The term uk was interpreted by Banker, Charnes and Cooper as 

an indicator of returns to scale (uk<O implies increasing returns 

to scale. etc.). The variables 'Ui are weights applied to the sum 

of the inputs xik of DMUk, which are constrained to be unity in (2). 

The Jlr are weights on the outputs Yrj of the other DMU' s in the 

analysis. Thus, (3) can be seen as a linearization of the 

fractional constraint 

s 
L JlrYrj 

--~r~=~l~--------------~ 1 
m 
l: uixij - uk 

i=l 

(4) 

which is the "Engineering ratio• of efficiency discussed in 

Charnes, Cooper and Rhodes [1987] extended to include the scale 

efficiency term. Our interest is in the dual of this linear 

program: 

s m 
MIN hk = ~ - £ (l: S/ + l: si-) 

r=l i=l 
s. t. n 

l: YrjA.j - S/ = Yrk r=1,2, ... s 
j=l 
n 
L XijAj - ~ik + si- = 0 i=1,2, .. m 

j=l 
n 
l: A. . = 1 

• J 
J=l 

A·>O J- j=1,2, ... n 

4 

(5) 

(6) 

(7) 

(8) 

( 9) 



The most significant difference between the above problem {BCC) and 

the earlier CCR formulation is the addition of {8) . The Aj>O are 

the multipliers which allow identification of the peer group. £ is 

a small non-Archimedean constant. By requiring the Aj to sum to 

one, the linear program creates a composite DMU from a convex 

combination of the vectors of inputs and outputs of the DMU's in 

the envelopment. This composite DMU will possess a vector of 

inputs and outputs as good or better than the vector of inputs and 

outputs of DMUk {i.e., fewer inputs and the same or more output). 

Since {6) requires the sum of the outputs Yrj over j=1,2, . . . ,m DMU's 

to be at least equal to Yrk• the level of output r of DMUk, (7) in 

turn provides a multiplier ~ which is a measure of efficiency of 

DMUk relative to its peer group. We can define the peer group for 

DMUk as the set: 

pk = { j (10) 

If DMUk is efficient, then hk = 1, all S/ and si- = 0 with~ = 1. 

If 0<~<1, then DMUk is inefficient and X = ~k - s-• and Y = Yk + 

s•• represent the projection of DMUk on to the efficient frontier. 

Set Pk describes a facet of a piece-wise linear frontier; and 

therefore, the set of DMUj where xj, j £ Pk are the points of 

nondifferentiability on the frontier. 

Proposition 1: 

Suppose DMUk is a member of some DMU's peer group; that is, 

k £ P~ for some t. DMUk must be efficient. 

Proof: 
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Consider DMU0 'S evaluation: 
m s 

~: h 0 = Min eo - £ :r, Si- + :r, S/ 
i=1 r=1 

s. t. n 
:r, xijA.j + si- = eoxio i=1,2, ... m 

j=1 

n 
:r, Yrj Aj - S/ = Yro r=1,2, ... s 

j=1 
n 
:r.A. - =1 • J 

J=1 
eo, A.j, St, sr- ~ 0 i=1,2 .... m 

j=1,2, ... n 
r:1 1 2 1 • • • S 

(11) 

(12) 

(13) 

(14) 

(15) 

Suppose DMUk is a member of DMU0 'S peer group (i.e., k £ P0 ) and 

that DMUk is not efficient. DMUk's evaluation is given by: 
m s 

~: hk = Min ~ - £ :r. si- + :r. s/ (16) 
i=1 r=1 

s.t. n 
:r. xij 'Yj + si = ~ik i=1, .. m 

j=1 
n 
:r, Yrj 'Yj- S/ = Yrk r=1, ... s 

j=1 
n 

.:r. 'Yj = 1 
J=1 

~' 'Yj• st, Sr- ~ 0 

Then, h/ < 1 and either ~ .. < 1 or some 

i=1,2, .. m 
j=1,2, .. n 
r:1 1 21 • • S 

(17) 

(18) 

(19) 

(2 0) 

strictly 

positive (or both). Therefore, at optimality, we know from (17) -

(19) that: 

:r. xij 'Yj .. < xik 
jePk 

:r, y ... = 1 
• J 
J£Pk 

i=1,2, .. m (21) 

r:1 1 2 1 • • s (22) 

(23) 
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Also, we know that strict inequality holds for at least one of the 

constraints (21) - (22). Now, consider the optimal solution to~~ 

in which Ax .. is basic. From (12) and (21) we know, 

L xij Aj .. + (L xij'Yj *) 'Yx .. .:S. 
j EP0 jEPx 
j:;t:k 

i=1,2, .. m ( 24) 

and from (13) and ( 22) 1 

L Yrj A·· + ( L Y rj 'Y / ) Ax .. .2:. 
j£P0 

J 
jEPx 

j:;t:k 

L Yrj Aj + YrxAx .. - s ... i =Yro 
j£P0 

r=1,2, .. s ( 25) 

j:;t:k 

and from (14) and (19) : 

:E A·· + (~ A/) Ax .. = 1 
• J 
]EPo ]EPx 

(2 6) 

j:;t:k 

Results (24) - (26) provide a solution to ~ that is feasible, and 

since at least one of (21) - {22) will be a strict inequality, so 

will at least one of (24) - (25). Therefore, we have constructed 

a solution which 1s "better" than the optimal solution to ~-

Therefore, by contradiction DMUx must be efficient. • 

If some DMU, say DMU0 , is inefficient, then the linear program 

used to evaluate it will find a convex combination of the vectors 

of inputs of some group defined by the set Po whose sum is equal to 

e·oxo - s-· with Xo the vector of inputs for DMUO. 
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Proposition 2: 

Suppose DMU0 is inefficient, with peer group { (XjYj) j£P0 }. Any DMU 

constructed as a convex combination of these peer group members 

must be efficient. 

Proof: 

Let DMUc be a convex combination of DMUjl j£P0 1 that is 

Xic = l; WjXij 
j£P0 

Yrc = l; WjYrj 
j£P0 

W· > 0 J-

DMUc 1S evaluation is given by: 
m s 

i=1 12 1 ... m 

r=1~ 2 1 ••• s 

Q: he = Min E>c + £ l: Vi- + l: V/ 

s.t. 
i=1 r=1 

n 
l; Xij"fj + Vi = E)cxic 

j=1 

n 
l: Yrj'Yj - V/ = Yrc 

j=1 

n 
l: 'Yj = 1 

j=1 

i=1 12 1 ... m 

r=1~ 2 I ••• s 

i=1 12 1 ... m 
j=1121 ... n 
r=l~ 2 1 ••• s 

Suppose DMUc is not efficient. Then for "{j *I 

i=1~2 1 ... m 

8 
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{28) 

{29) 

{ 3 0) 

{31) 

{32) 

{33) 

{34) 

{35) 
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r=1, 2, ... s 

where Pc is the index set of peer group members. 

We can write the solution to ~ as a function of peer group 

members in P0 and DMUc as follows: 

by letting 

g = Min 
j 

then Bj = A, .* 
J -

= I'.(Bj + g Wj) (XjYj) 
jEPo 

A,." 
-J- for Wj:#O. 
wj 

E.wj 

(It can be shown that E.< 1.) Also, 

E. + I'. Bj = E.+I'. A./ - B. I'. (wj) =.I'. A./ = 1. 
jEP0 jEP0 JEP0 JEP0 

Hence from (36) and (12) 

i=1,2, ... m 

Also, from {37) and {13) 

I'. Yrj Bj + E. I'. Yrc 'Yj * - S/* .2:. 
jEP0 jEP0 

r=1, 2, .. s 

( 3 7) 

(38) 

(3 9) 

( 40) 

( 41) 

{42) 

Results (40) - (42) provide a solution ~ that is feasible and 

since at least one of (36) - (37) is a strict inequality so will at 
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least one of (41) - (42). Therefore, we have constructed a 

solution •better• than the optimal solution to ~- Therefore, by 

contradiction, DMUc must be efficient. • 

Propositions 1 and 2 will be useful in the discussion of 

managerial reaction to inefficiency. In particular, these 

propositions suggest that in addition to the radial contraction 

prescribed by the BCC model, peer group members and convex 

combinations of these members might also be worthy operational 

targets for consideration. 

III. Reaction to Inefficiency 

Consider the manager of a DMU that has been scored inefficient 

in a study using the BCC model as previously described in (11) -

(15) . The solution yields 90 * < 1 which indicates the fraction of 

the current level of inputs to which the manager should be able to 

reduce and still maintain current output levels. Reducing each 

input by the fraction (1-90 *) maintains the current mix of inputs 

as prescribed in microeconomic theory. Operationally, of course, 

the flexibility in the manager's real environment might be greater 

or less than that allowed by radial contraction. Indeed, many 

inputs might be more easily controlled for one manager than another 

so that the concept of separating controllable and non-controllable 

inputs on a system-wide basis proposed by Banker and Morey [1986], 

might be applicable to a particular DMU. If the manager is being 

evaluated using the DEA techniques, then his or her goal must be to 

10 



become efficient as easily and cost effectively as possible within 

that DMU's operational constraints. 

If input prices are available to the manager, reaching the 

frontier in the most cost effective manner might be the goal. 

There is no reason why the most cost effective achievable efficient 

point should correspond to the point obtained by radial 

contraction. One could argue that if input prices are available, 

allocative DEA (see Morey, Fine and Loree [1990]) should be used, 

but it is certainly possible that the BCC model was used because of 

inconsistences in prices or price availability over all DMU's 1n 

the system. 

Mathematically, one approach would be to find the closest (in 

a cost sense) achievable efficient point from those efficient 

points described by Propositions 1 and 2. If these costs or prices 

are not available, another approach would perhaps be to find the 

closest efficient point in the sense of Euclidean distance, 

minimizing the total amount of change in inputs required. The idea 

is shown graphically in Figure 1. If point E meets the output 

requirements, it might serve as a better target for DMU than point 

D. For both scenarios, the objective is to find the •best" peer 

group member or convex combination of peer group members relative 

to the DMU's goal which is within the operational constraints of 

DMU0 • Furthermore, since the BCC model is based on the premise 

that maintaining output levels is desirable, it is prudent to 

assume that this newly constructed target should also maintain the 

previous output levels. In general, the mathematical program to be 
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used to prescribe the optimal course of action for inefficient DMU0 

can be written 

Max or Min f (xi,Yr) 
s.t. 

. I: 'l'j xij = xi 
JEP0 

, I: 'l'j Y rj = Y r 
JEP0 

Yr .2:. Yro 

i=1,2, ... m 

r=1, 2, .. s 

i=1,2, .. m 

r=1, 2, ... s 

i=1,2, ... m 
j=1,2, .. n 
r=1, 2, ... s. 

(43) 

(44) 

(45) 

( 46) 

(47) 

(48) 

( 49) 

In addition, it may be necessary to append constraints of the form 

(x,y) E .{l (:()) 

where n describes the restrictions and limitations of the operating 

environment unique to DMU0 • 

By Propositions 1 and 2 any DMU constructed by (43) - (48) 

will be efficient. Also, by Proposition 2, even if (46) and (47) 

are not imposed; that is, even if we relax the assumption of fewer 

or the same levels of inputs and maintaining levels of output, an 

efficient DMU will result. 

If the objective is minimizing the Euclidean distance to the 

peer group facet, (43) is replaced with 

12 



Min ( 5 1 ) 

This objective is equivalent to minimizing the sum of squares; that 

is, we can ignore the square root. If the operational constraints 

are linear, we have an easily solved quadratic program. Any linear 

cost minimizing or profit maximizing objective with linear 

operational constraints leads to an easily solved linear program. 

Finally, note that the operational constraints appended to the 

mathematical program ( 43) - ( 49) may render the program infeasible. 

Since the solution to~ is feasible to (43) - (49), an infeasible 

program indicates that even the constructed DMU from the BCC model 

is not achievable when the DMU's real operational constraints are 

considered. 

IV. An Example 

Bessent, et. al. [1983] used DEA to study the efficiency of 

occupational-technical programs in a comprehensive community 

college. Each DMU had •an administrative head responsible for 

supervising the teaching staff, curriculum, and expenditures" 

(p.88). It is worth noting that since the study was done in 1983, 

the BCC formulation was not available and the original CCR 

formulation was used. The four inputs used in the analysis were: 

1. Student contact hours generated by each program (lecture 
and laboratory hours for one course per week times the number 
of students times the number of weeks of instruction) . 

2. Number of full-time equivalent instructors in each program. 

13 



3. Facilities allocated as determined by square feet assigned 
to each program for classroom, office and laboratory use. 

4. Direct instructional expenditures in each program. 

The three outputs were: 

1. Revenue earned by contact hours through state funding 
formulas. 

2. The number of students completing the program who are 
employed directly in their field of training. 

3. Employer satisfaction with occupational training of 
students employed using a 25-point scale. 

The data from their analysis and the BCC efficiency scores are 

listed in Table 1. 

<< Table 1 about here >> 

DMU 1 was an occupational training program in advertising art. 

With an efficiency score of 9 = 0.6694 and with slacks S2• = 0.504, 

s1- = 0.368, and S3 - = 1.260, the DMU shows both technical and scale 

inefficiency. The radial contraction suggested by Banker, Charnes 

and Cooper [1984] requires that all four inputs be reduced to 

slightly less than 67% of their current level, and that student 

contact hours and facility allocation be reduced by the additional 

amount of the slack variables, while simultaneously increasing the 

number of students employed by the amount of the surplus variable. 

A thoughtful examination of the potential difficulties DMU 1 will 

face in making this adjustment suggests that alternative courses of 

action may be more desirable. For example, reducing the number of 

FTE staff may be difficult if some or all of the staff are tenured 

faculty. Similarly, a reduction in facilities allocation may be 

dependent upon the availability of alternative space. Partitioning 
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off a fraction of the existing space may reduce the amount of 

allocated space, but it is not a sensible approach to the problem. 

Both of the inputs mentioned are examples of inputs that, while not 

strictly uncontrollable, may be more difficult to reduce than 

others. 

Alternative efficient points were found using (43)-(49), with 

the following objective function: 

m s 
Min f(x,y) = L (Xi - Xi0 ) 2 + L (Yr- Yr0 ) 2 (52) 

i=l r=l 

which is the squared 1· 12 for the input-output vector. In other 

words, we seek to find the shortest Euclidean distance (ignoring 

the square root) to the efficient frontier. Since the objective of 

this research is to provide a method for generating alternative 

performance targets for an inefficient DMU, the determination of a 

•best• or optimal alternative is a subjective one to be made by the 

DMU. Therefore, minimizing I · 12 is only one of many possible 

objectives for which plausible arguments can be made. The 

minimization of I · 11 or the maximization of 1· 1. are some 

alternatives. The 1· 12 is appealing because, if the constraints 

are linear, the model is easily solved. 

Four different scenarios were used to explore four 

alternatives. The results are summarized in Table 2. The first 

alternative is the result of solving (51) and (44)-(49). Notice 

that for three of the four inputs, smaller reductions in the input 

vector are required. However, in order to enjoy this benefit, all 

three outputs must be increased. Notice that f*, the squared norm 
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for this alternative, is substantially less than that produced by 

the radial contraction. Perhaps the most attractive feature of 

this alternative might be that the DMU is allowed to retain a 

substantially higher level of expenditures. 

<< Table 2 about here >> 

Now suppose that a reduction of FTE staff below three is 

highly undesirable because of the problem of reassigning tenured 

faculty. Operational constraints of the form: 

~ = {x2 ~ 3. 0 } 

are appended the problem and the model is resolved. 

(52) 

The new 

alternative maintains the FTE staff at the minimum level of three, 

while other levels of inputs and outputs are adjusted, most notably 

that a higher level of revenue generated is now required. Again 

the squared norm of f* = 25.0739 is less than that suggested by the 

radial contraction. 

We take the analysis a step further by supposing that any 

staff reduction is highly undesirable. The first set of 

operational constraints is replaced with: 

(53) 

and the model is again resolved. The new alternative preserves the 

staffing level, but at a great cost. While the DMU is allowed to 

keep its staff and expenditure level, this must be bought by more 

than more than doubling both the number of students employed and 

the level of customer satisfaction. Thus the DMU can explore trade 

offs among alternatives. Here the suggestion is that the current 
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staffing level is too high and that it may not be maintained 

without dramatic increases in productivity. 

A final alternative to be explored was the case where the DMU 

might be relucta~t to alter or relocate from the current 

facilities. The operational constraints: 

~ = { x 3 ~ 4 • 0 2 } (54} 

replaced~ and the model was found to be infeasible. Thus the DMU 

finds that there is no efficient point on the facet defined by its 

peer group which will allow it to keep its facilities in their 

current form. This suggests that the advertising art occupational 

educational-training program under evaluation may have to find 

alternative facilities, or that the use of facility allocation as 

an input may not capture the peculiar space and equipment 

requirements of the individual programs. 

We have illustrated the flexibility of our approach by 

proposing several different plausible scenarios in the context of 

a real problem. Other approaches could be used to generate an even 

wider variety of alternative efficient points. For example, one 

could apply the model with a linear objective of minimizing the 

weighted sums of inputs required (or a combination of them with 

changes in outputs required} and apply parametric programming to 

the objective function to yield a variety of solutions. The 

solutions would show courses of action as the relative importance 

of inputs varies. 
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v. Conclusion 

The DEA literature contains very little discussion of how a 

DMU that has been found to be inefficient can take corrective 

action using information obtained from the DEA study. The various 

DEA models prescribe one course of action via the constructed DMU 

used for comparison. Our point is that DMU's need not limit the 

action to that prescribed by the particular model used. A 

particular DMU might have more or less control over certain inputs 

and outputs than the evaluation study assumes. Indeed, it might 

even be the case that certain inputs really are completely 

controllable (or not) for a particular DMU, when, because of the 

consensus of the majority of the DMU's, it was declared 

uncontrollable for the evaluation study. 

We have described a set of valid targets for one particular 

DEA model. Propositions 1 and 2 provide the information needed for 

a mathematical programming approach to the inefficient DEA' s 

problem of achieving efficiency. Through a mathematical program 

which restricts the feasible set to a particular facet (any peer 

group), any other restrictions, relaxations, or goals of that 

particular DMU can be incorporated to determine a course of action. 

Unlike other methods, our approach allows for the simultaneous 

adjustment of both inputs and outputs. This allows for greater 

flexibility in choosing alternatives, as well as providing some 

insight into the trade offs in the input-output vector along the 

efficient frontier. Not only is this more useful, but it also 

provides a more realistic environment for the decision maker. 
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Table 1 
Data from Bessent, et. al. [1983] 

DMU BCC Peer Revenue Students Employer Contact Number of Facility bped.Stur•• 
C$10.0001 

Efticienc:y Group Generated Employed s.u.ract1oa Hours FTE Staff Allocation 

($10,000) (10,000) (1 , 000 ft2 ) 

1 0.6694 4,9,13,19 12.5 15 2.85 6.65 4.0 4.02 11.02 
2 1. 0000 -- 100.6 180 34.20 48.88 32.0 9.52 70.07 
3 0.9856 4,9,14,22 28.2 52 10.56 10.28 13.5 4.02 19.13 
4 1. 0000 -- 158.5 114 23.26 25.93 25.0 4.44 93.36 
5 0.9350 4,9,13,18,19 10.1 16 3.52 3.62 3.1 1. 75 7.30 
6 0.6600 4,11 32.4 28 5 . 82 14.06 11.0 8.31 27.62 
7 0.8307 4,9,11,22 30.1 40 8.80 12.21 8.1 8.40 22.23 
8 1.0000 -- 5.2 11 1. 90 2.03 2.5 0. 56 4.44 
9 1. 0000 -- 4.3 35 8 . 75 3.51 3.0 0.15 6.00 

10 0.8378 4,11,22 26.2 29 6.38 15.76 10.1 3.44 17.55 
11 1. 0000 -- 6.0 12 2.64 3.83 2.5 0.13 2.50 
12 1. 0000 -- 1.1 3 0.45 0.64 3.0 0. 31 2.27 
13 1. 0000 -- 4.1 12 2.64 1. 99 1.1 1.65 4.63 
14 1.0000 -- 39 . 5 89 20.11 25.52 16.5 0.43 25.67 
15 1. 0000 -- 2.5 8 1. 68 1. 07 2.0 1.12 4.82 
16 1. 0000 -- 72.7 71 12.71 23.55 4.5 12.19 82.44 
17 1. 0000 -- 13.6 51 12.75 11.99 7.2 0.77 18.28 
18 1. 0000 -- 4.5 0 0.00 1.31 3.0 0.77 2.48 
19 1.0000 -- 2.6 7 0.91 2.66 1.1 1.25 1. 07 
20 0.6436 4,8,13,18,19 5.2 3 0.54 2.81 4.0 1.25 6.06 
21 1. 0000 -- 6.3 22 3.75 2.49 2.5 9.60 9. 08 
22 1.0000 -- 7.2 27 5.40 5.18 4.0 0.10 3.65 



Table 2 
Alternative Performance Targets for DMU 1 

I II Radial I I · l2 I I · l2 I I · l2 I I · l2 I Inputs .. Contraction . ~ ~ ~ 

1 4.083 4.010 4.453 4.965 ---
2 2.678 2.732 3.000 4.000 
3 1.431 1.610 1 . 528 0.935 
4 7.378 8.637 8.671 11 . 02 

I Outputs 

1 12.500 13.776 15.058 15.970 ---
2 15.504 16.083 15.987 30.094 
3 2.850 3.051 2.850 6.767 

I Weights I 
'1'4 0.062 0.068 0.079 0 . 080 ---
"'9 0.050 0.000 0.005 0.519 

"'13 
0.094 0.356 0.077 0.000 

'1'19 0.794 0.576 0.839 0.401 

I f* II 28.310 I 22.908 I 25.0739 I 267.571 I Inf. I 
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