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Abstract. Antimicrobial Resistance (AMR) is a growing concern in the medical 

field. Over-prescription of antibiotics as well as bacterial mutations have caused 

some once lifesaving drugs to become ineffective against bacteria. However, the 

problem of AMR might be addressed using Machine Learning (ML) thanks to 

increased availability of genomic data and large computing resources. The 

Pathosystems Resource Integration Center (PATRIC) has genomic data of 

various bacterial genera with sample isolates that are either resistant or 

susceptible to certain antibiotics. Past research has used this database to use ML 

algorithms to model AMR with successful results, including accuracies over 

80%. To better aid future biologists and healthcare workers who may need a 

predictive model without the benefit of thousands of bacteria samples, this paper 

explores quantifying the empirical quality of some machine learning models—

that is, quantifying how well a model will perform without prior knowledge of 

how the model performed on a training dataset. WeightWatcher is a Python 

package that offers various algorithms to measure model quality. This research 

uses the empirical quality metrics that WeightWatcher introduces for Deep 

Neural Network (DNN) models to evaluate AMR models, even on datasets based 

on small sample sizes of bacterial strains. The use of ML in AMR and 

pharmacogenetic research can help lead to increased efficacy of antibiotic 

treatments by predicting whether a strain of bacteria will be resistant or 

susceptible to an antibiotic. 

1   Introduction  

Using antibiotics to treat diseases caused by bacteria has become an important and 

widespread medical tool since the advent of Penicillin in 1928. Antibiotic medications 

are used in various medical treatments and to prevent infections. However, there are 

also drawbacks related to the use of antibiotics. The rising use of antibiotics has caused 

bacteria to develop the ability to mutate and become resistant to antibiotic use, termed 

antimicrobial resistance or AMR. AMR can occur via an innate resistance in bacteria 

to antibiotics, genetic mutations, or inter-species resistance acquisition [1]. According 

to the U.S. Centers of Disease Control and Prevention (CDC), potentially excessive 

antibiotics are introduced into human environments via medical treatments for humans 
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or animals; crop pesticides; human, animal, and pharmaceutical manufacturing waste; 

and animal feed and drinking water [2]. This pervasive presence of antibiotics has 

accelerated AMR, increasing its threat to the entire globe. In the U.S. alone, over 2.8 

million people face antibiotic-resistant diseases each year, resulting in over 35,000 

deaths [2].  

The CDC describes AMR as a threat to “progress in health care, food production, 

and life expectancy” [2]. While humans and animals are at risk for AMR-related 

infections, hospital patients are often at greater risk. Certain procedures such as joint 

replacements, organ transplants, and cancer therapy have risks of infection that can be 

caused by antimicrobial-resistant bacteria. Without effective antibiotics to combat these 

infections, mortality rates could increase. In addition to hospital settings, bacteria can 

spread easily by multiple methods: close person-to-person contact, airborne 

transmission, contaminated water or surfaces, animals, or sexual contact [2]. 

The CDC offers some instructions for combating AMR on the individual level, 

including washing hands, especially after handling food or animals; getting vaccinated, 

particularly when traveling to other countries where vaccine recommendations may be 

different from those in the U.S.; using antibiotics wisely; and preventing STDs. To 

healthcare providers, the CDC recommends following infection prevention and control 

protocol, such as screening at-risk patients, asking patients if they have been in risky 

locations, administering vaccines, monitoring global outbreaks of infections, and so on. 

Additionally, healthcare providers can take important steps to improving antibiotic 

prescription by following CDC guidelines [2]. 

One bacteria genus that is resistant to multiple drugs is Acinetobacter. A sample of 

Acinetobacter was first discovered in 1911 by Dutch microbiologist Beijerinck, who 

described it under the name Micrococcus calco-aceticus [3]. Throughout the 20th 

century, biologists further researched and refined scientific understanding of the genus. 

Various Acinetobacter species can be found in human skin flora, soil, water, and other 

common bacterial locations. However, the locations of A. baumannii, one of the most 

researched Acinetobacter species, are more troubling: hospital equipment, surfaces, 

food, and staff [4]. These bacteria pose elevated risk for patients in Intensive Care Units 

(ICU), acute care, or long-term care settings [5, 6]. Additionally, Acinetobacter can 

survive on both dry and wet surfaces for long periods of time [6]. 

Not only is the prevalence of Acinetobacter a cause for concern, but also its 

resistance to antibiotics is rapidly growing. In its first report on Antibiotic Resistance 

Threats in 2013, the CDC listed multidrug-resistant Acinetobacter as a serious threat. 

The CDC increased the threat level in 2019, and this updated report focused on 

Carbapenem-resistant Acinetobacter as an urgent concern due to the lack of antibiotics 

that are either currently efficacious or in development for future use [2]. This research 

will use create a model to predict antibiotic resistance in samples of Acinetobacter, 

publicly available on the Pathosystems Resource Integration Center (PATRIC), 

discussed further in Section 3.1. 

One method for solving the problem of AMR is by utilizing modern machine 

learning algorithms to predict whether a strain of bacteria will be resistant or susceptible 

to an antibiotic. There is much published research surrounding modeling AMR using 

highly accurate Machine Learning (ML) models [7, 8, 9, 10, 11, 12, 13, 14]. Generally, 

these research articles will take bacterial genomic data—that is, strands of bacterial 
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deoxyribonucleic acid (DNA) in the form of reads—and model the processed data using 

models such as AdaBoost, Random Forest (RF), or Support Vector Machine (SVM). 

Section 2.1 of this paper presents previous work in the field of machine learning for 

AMR.  

However, the results of these previous ML models, while very promising, are 

dependent on the data used to test the models. This paper will present a method of 

evaluating AMR prediction models independent of test data. This paper presents a Deep 

Neural Network (DNN) to model AMR and then analyzes the weight layer matrices of 

the DNN using the Python package WeightWatcher [15, 16, 17, 18, 19, 20, 21]. This 

package presents methods for determining the empirical quality of models. Section 2.2 

presents an overview how WeightWatcher works. Section 3.4 dives deeper into the 

mathematical basis of WeightWatcher. Section 4.2 discusses the results of 

WeightWatcher applied to a DNN trained on Acinetobacter genomic data. 

The best cure for AMR—prevention of bacterial diseases and reduction of the 

unnecessary prescription of antibiotics—is not always possible, so identifying the 

genotypes in bacterial DNA that are resistant to various drugs is critical in developing 

new techniques for fighting AMR. This paper discusses this past research in Section 2 

and implements models of its own in Section 3. However, the goal of this research is 

not to create a new model for predicting AMR, but rather to introduce a method by 

which biologists, healthcare professionals, and biostatisticians can evaluate the 

performance of a pre-trained AMR model with limited amount of genomic data samples 

and evaluate the model for performance using WeightWatcher. 

2   Literature Review 

2.1   Machine Learning and Antimicrobial Resistance 

Machine Learning methods have been used to create models that can predict with high 

accuracy whether a strain of bacteria will be resistant or susceptible to a specific 

antibiotic. The section summarizes past research with various models, bacterial genera, 

and methods of simplifying or extending the problems that occur with this undertaking. 

When applying ML to AMR, Santerre et al. discusses different models of four 

different strains of bacteria [12]. The models showed that performance increased as the 

length of k-mers increased for some modeling techniques (AdaBoost), but not others 

(Random Forest, Lasso). Additionally, the authors presented three potential objectives 

for continued application of machine learning to the problem of AMR: maximize 

classification accuracy, maximize generalization accuracy, and aggregate feature 

selection.  

Davis et al. considered the results of the AdaBoost algorithm on 31-mers of different 

samples from Acinetobacter, Staphylococcus, and Streptococcus strains, achieving 

accuracies from 88% to 99% [7]. Mycobacterium tuberculosis was also modeled with 
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an accuracy of 71% to 88%. AdaBoost was chosen for simplicity, and later research 

has improved on these results using other machine learning algorithms. 

Lingle and Santerre used various ML algorithms—Random Forest, Naïve Bayes, 

and Support Vector Machine—on Neisseria gonorrhea to achieve accuracy above 90% 

with 10-mers. This high accuracy was particularly notable due to the model features 

containing smaller k-mers than those used by the AdaBoost algorithm in previous work, 

showing that highly accurate models could be obtained with smaller values of k [8]. 

Jha et al. present Deep Learning (DL) models based on genomic k-mers of bacteria 

from the National Center for Biotechnology Information (NCBI) to predict AMR [22]. 

They tie each k-mer to the gene in which is appears most frequently. They built their 

model in Java and RapidMiner, and trained the data using cross-validation (CV). 

One barrier to efficient AMR models is the large feature space associated with the 

models. As this paper discusses more in depth in Section 3.1, k-merization of DNA 

contigs can result in tens of thousands of k-mers, each a feature in a model. A method 

of lossless string compression to reduce the size of k-mers, thus reducing the feature 

space, was presented by Partee, et al [10]. ML algorithms performed on this compressed 

representation were able to produce similarly high accuracies to Lingle and Santerre 

[8]. 

A promising solution to the problem of maximizing the generalization of AMR 

models was presented by Jacob Durrant and colleagues at the University of Pittsburgh, 

Pennsylvania [9]. In this article, Marchant reports on the use of Artificial Intelligence 

(AI) in fighting AMR. The goal of the approach is to create new antibiotics that will be 

effective against multiple bacteria. Durrant and colleagues used a neural network model 

to predict how the antibiotic will behave, rather than focusing on the structures of the 

molecules. 

Machine Learning has been applied to gene-related research outside the scope of 

bacteria and AMR. Sealfon et al. look at kidney transcriptomics, proteomics, 

metabolomics, genome sequencing, and medical data can be used with ML in order to 

perform genotype-phenotype analysis [13]. The data used in this research shares 

similarities to the data this paper uses: the data is high-dimensional but could have the 

number of features reduced due to correlation among features.  

Onate et al. used k-mer analysis for studying the quality control of microbiota 

metagenomics [23]. The authors used k-mer method for serial dilutions of gut 

microbiota metagenomic datasets and demonstrate that the k-mer analysis can identify 

metagenomes of low quality. The k-mer distribution analysis also predicted low gene 

mapping efficiency. Their method was to collect fecal samples from 30 human donors, 

process the samples, extract genomic DNA, and then construct a metagenomic library. 

Finally, they analyzed the k-merized data by using an in-house developed C++ 

software.  

2.2   WeightWatcher 

In a very short time, Deep Learning has become one of the hottest topics in the machine 

learning field. DL is a technique that is widely useful in solving and automating 

problems in various areas such as biology, healthcare, robotics, and countless others 
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[24, 25, 26, 27]. A Deep Neural Network, part of the DL domain, is defined as “an 

Artificial Neural Network (ANN) with multiple layers between the input and output 

layers” and is built upon hypotheses and models to mimic human brains in order to 

solve complex machine learning tasks [24, 28].  

Martin introduced a package used extensively in this research called WeightWatcher 

(WW) [17]. It is a tool that supports PyTorch, Keras, and Hugging Face models for 

computing empirical quality metrics in ML models. One way in which this package has 

been used has been in improving the quality of Natural Language Processing (NLP) 

models in fake test studies. NLP is defined as “an interdisciplinary area of research 

aimed at making machines understand and process human languages,” combining 

“perceptual, behavioral, and communicational techniques” [29, 30]. Martin also 

suggested the WW tool can also be used to compare models trained using Auto-ML or 

give insights in choosing the best clusters in unsupervised clustering machine learning 

models. This research uses WW to evaluate if the sample data is sufficient or more data 

is needed for a model or sequence of models in AMR research. 

The idea proposed by Martin that this paper intends to adapt to the problem of AMR 

is, in Martin’s words, “to predict the generalization accuracy of a DNN solely by 

looking at the trained weight matrices, without looking at the test data” [16]. In many 

cases, researchers cannot test problems to get results for evaluation. For instance, in the 

medical field, physicians or biologists cannot use some experimental treatment on 

patients to evaluate its effectiveness due to safety and ethical reasons. The mathematical 

background behind the WW package, focusing on Random Matrix Theory (RMT), is 

discussed further in Section 3.3 of this paper and in past literature [15, 16, 17, 19, 20, 

21, 31, 32, 33]. In one such work, Martin, Peng, and Mahoney found that Power Law 

(PL) based metrics—implemented in WeightWatcher—can distinguish between not 

only between good and bad models, but also between good and better or best models 

[20]. In the following sections, their research is applied to the problem of AMR.  

3   Methods  

This research created multiple models on antibiotic-resistant Acinetobacter and then 

analyzed the empirical quality of the DNN model using WeightWatcher. However, 

before discussing the results of that analysis, this section first presents the data, 

processes, and tools used to achieve the results, which are presented in Section 4. 

3.1   Data and K-merization 

The data used in this research comes from the Pathosystems Resource Integration 

Center or PATRIC. PATRIC is the Bacterial Bioinformatics Resource Center funded 

by the National Institute of Allergy and Infectious Diseases (NIAID). PATRIC contains 

genomic data, including annotations created by Rapid Annotation using Subsystems 

Technology (RAST), for a variety of bacteria, including those on the NIAID priority 

watch list [1].  
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A variety of data, analysis tools, and studies on genetic determinants of AMR can 

be found at the online1. AMR phenotype data are collected from published studies and 

PATRIC collaborators using antimicrobial susceptibility testing methods (AST) and 

predicted AMR phenotypes also provided by PATRIC using ML classifiers [1]. 

This section of PATRIC contains FASTA files with DNA isolates of 12 different 

bacteria genera. The DNA is represented as contigs. Contigs are assembled, non-

overlapping DNA sequences. Each isolate is labeled either “Resistant” or “Susceptible” 

to a certain antibiotic for that bacteria. 

The bacteria genus this research uses to model AMR is Acinetobacter. This 

bacterium had a sufficient and balanced number of samples of Susceptible and Resistant 

strains. The genomic data then underwent a k-merization into a Python NumPy array 

to be used as features for classifying the genetic strain either as susceptible or resistant 

using DNN models and WeightWatcher to analyze the models. 

In order to use the genomic information as features for a ML model, the DNA is 

transformed into k-mers, which are substrings of the contigs of length k. The features 

of the potential models will consist of all unique k-mers for antibiotic-resistant and 

susceptible isolates for the bacteria of interest and the number of times each k-mer 

appeared in the isolate. These k-mers are overlapping and can have length k as large as 

50. However, as k increases, the total number of unique k-mers increases, leading to 

prohibitively large datasets [12]. This analysis focuses on k-mers of length k=10, also 

called 10-mers, examples of which can be found in Table 1. 

Table 1.  Examples of k-mers of length k=10 from sample DNA sequence 

CCAGCTCATTATTCTA.  

Example k-mer bolded in sequence k-mer (10-mer) 

First unique k-mer TCAGCTCATTATTCTA TCAGCTCATT 

Second unique k-mer TCAGCTCATTATTCTA CAGCTCATTA 

Third unique k-mer TCAGCTCATTATTCTA AGCTCATTAT 

 

Table 2.  Example stages of overall volume reduction  

 

The antibiotic of Acinetobacter used in this research was Imipenem, which has 640 

strains of susceptible and 724 strains of resistant bacteria for a baseline. When k-

merized, the samples have over 1 million possible 10-mers, thus the feature space of 

this model will have over 1 million features. A PyTorch DNN model will be used to 

 
1 ftp://ftp.patricbrc.org/AMR_genome_sets/ 

Stage Reduction Susceptible Samples Resistant Samples 

0 0% 640 724 

1 20% 512 579 

2 40% 384 434 

3 60% 256 289 

4 80% 128 144 
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evaluate and baseline the model's accuracy and weights. To test the quality of the 

model, the sample sizes are gradually reduced and then re-evaluated on the same model, 

as shown in Table 2. After every stage of reduction, WeightWatcher is used to measure 

and report on the model accuracy and the loss parameter values.  

3.2   ManeFrame II 

Due to the large size of the genomic data, all computations were run on ManeFrame II 

(M2), located at Southern Methodist University (SMU). M2 is a computational cluster 

used by faculty and researchers at SMU for high-performance computing (HPC). M2 

offers various resources depending on job size and computational requirements. 

Running on M2, the k-mers generation process used 36 cores and 1024 GB memory. 

This code used the ray package to multithread the process of k-merization. The k-mer 

process generated a NumPy array of approximately 1.4 GB when exported to a pickle 

file. The same process was followed to generate other k-mer files for all antibiotics for 

Acinetobacter contained in the PATRIC database.  

3.3   WeightWatcher Methodology 

As discussed in Section 2, WeightWatcher is a Python package used to evaluate models 

based on metrics that do not rely solely on a traditional training or test set. This 

package’s utility as a method for measuring the empirical quality of models are at the 

core of this research. This section presents a brief overview of the mathematical basis 

of how WeightWatcher analyzes DNNs and evaluates quality and performance. 

Following that discussion, Section 4 will present these metrics for the DNN modeled 

on Acinetobacter genomic data. 

3.3.1 Self-Regularization 

A typical DNN with L layers and with activation functions ℎ𝑙() can be written in the 

form of equation (1) where 𝑊𝐿  and 𝑏𝐿  are layer weight matrices and biases 

respectively. 

 

𝐸𝐷𝑁𝑁 = ℎ𝐿(𝑊𝐿 × ℎ𝐿−1(𝑊𝐿−1 × ℎ𝐿−2(… ) + 𝑏𝐿−1) + 𝑏𝐿) (1) 

 

There are different activation function types that can be considered in the models 

such as linear activation function, sigmoid function, tanh function, and ReLU. ReLU, 

or Rectified Linear Unit, is one of the most widely used activated functions, especially 

in hidden layers of NNs because it is faster to train than sigmoid and tanh functions 

[36]. 

The overview of this approach is to train the model on labeled data {𝑑𝑖 , 𝑦𝑖} ∈ 𝒟, 

using the backpropagation approach, a widely used algorithm in training NNs for 
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supervised learning efficiently and by minimizing loss ℒ, as shown in equation (2) 

[37]. 

 

𝑚𝑖𝑛
𝑊𝑙,𝑏𝑙

ℒ (∑ 𝐸𝐷𝑁𝑁(𝑑𝑖)𝑖 − 𝑦𝑖)  (2) 

 

Per Martin and Mahoney, the energy landscape (𝐸𝐷𝑁𝑁) changes at each epoch [19]. 

Some models with large numbers of weight layers can have multitudes of local minima 

or the possibility of overfitting. However, the solution WeightWatcher presents is 

adding more capacity and letting the model self-regularize. In other words, over-

parameterization applied to avoid overtraining [38]. 

One approach is to modify (2) by adding an explicit regularization control parameter 

α in the following formula (3) 

 

𝑚𝑖𝑛
𝑊𝑙,𝑏𝑙

ℒ (∑ 𝐸𝐷𝑁𝑁(𝑑𝑖)𝑖 − 𝑦𝑖) + α ∑ ||𝑊𝑙||𝑙   (3) 

 

where ||. || is some norm. There are different norm types for regularization problem 

depending on objective situations leaving different empirical signatures on the layer 

weight matrices WL. In Ridge Regression or Tikhonov-Phillips regularization, the 

familiar optimization problem in L2-norm is as follows 

 

𝑚𝑖𝑛
𝑊𝑖𝑗

||𝑊̂𝑥 − 𝑦||
2

2

+ α || 𝑊̂||
2

2

   (4) 

 

for 𝑊̂𝑥 = 𝑦 [39, 40]. Remark that it can be rewritten as  

 

𝑥 = (𝑋̂ + α𝐼)
−1

𝑊 ̂𝑇𝑦    (5) 

 

where 𝑋̂ = 𝑊̂𝑇𝑊̂. 

3.3.2 Empirical Spectral Density 

The empirical spectral density (ESD) describes the distribution of eigenvalues of the 

correlation matrix 𝑋 = 𝑊𝑇𝑊  of a weight layer matrix W [19]. In general, less 

sophisticated models have weight layers with ESDs described by the Marchenko-Pastur 

(MP) distribution associated with Random Matrix Theory (RMT). However, 

considering that the goal of this research is to present a robust solution to predicting 

AMR with few to test samples, a more sophisticated DNN may exhibit heavy-tailed 

behavior in the ESDs. Heavy-tailed behavior occurs in both weight layers and the 

correlation matrices of those weight layers when the weight layers are elementwise 

highly correlated. This heavy-tailed distribution is described by the Pareto or Power 

Law (PL). Two different forms of the PL equation are shown in equations (6) and (7). 

 

𝜌(𝜆) = 𝜆−𝛼  (6) 

𝜌(𝜆) = 𝜆−(
1

2
𝜇+1)

 (7) 
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The equation (6), the distribution of eigenvalues 𝜆 of X, is given in a generic form. 

For this paper’s purposes, the parameter 𝛼 of this equation is an important indicator 

of model behavior. In general, well-trained DNNs have 2 < 𝛼 < 6 [17]. Similarly, 

when PL is written as equation (7) if 0 < 𝜇 < 2, then the distribution is very heavy-

tailed; if 2 < 𝜇 < 4, then the distribution is moderately heavy-tailed; and if 𝜇 > 4, 

then the distribution is weakly heavy-tailed [19]. A more in-depth explanation of this 

behavior is presented in Table 3. 

Table 3.  Summary of MP, Spiked-Covariance, and heavy-tailed distributions. 

 

A more heavy-tailed distribution may indicate a more sophisticated model. 

Generally, Martin has found that 𝛼 is correlated with test accuracy when tuning a 

model or changing the number of layers [41]. Martin explains the reason for why the 

PL is a good model for the weight matrices of DNNs by likening it to complex systems 

in physics that have been known to display PLs. 

3.3.3 Kolmogorov-Smirnov Distance 

The Kolmogorov-Smirnov (KS) test is a nonparametric test used to compare one-

dimensional probability distributions, generally a theoretical or reference cumulative 

distribution function (CDF) with an empirical cumulative distribution function [42]. 

The KS statistic quantifies the distance between the reference CDF and the empirical 

CDF. 

WeightWatcher provides the KS statistic (or KS distance) to show the goodness of 

fit for the PL fit of the ESD to a given weight layer correlation matrix 𝑋̂ = 𝑊̂𝑇𝑊̂. in a 

DNN. In general, a small KS distance indicates a good fit [17]. 

Distribution 
Finite N global 

shape of ρ𝑁(λ) 

Bulk edges 

behavior 

Maximum 

eigenvalue 

behavior λ ≈ λ𝑚𝑎𝑥 

Basic MP (Gaussian) MP 
Tracy Widom 

Law 
No tail 

Spiked-Covariance 

(Gaussian with low-

rank perturbations) 

MP with Gaussian 

spikes 

Tracy Widom 

Law 
Gaussian 

Weakly heavy-tailed MP with PL tail Heavy-tailed Heavy-tailed 

Moderately heavy-

tailed 
PL∼ λ−(𝑎μ+𝑏)

 

 
No edge Fréchet 

Very heavy-tailed PL∼ λ−(
1

2
𝜇+1)

 

 
No edge Fréchet 
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4   Results 

4.1   Model Performance 

To model resistance of Acinetobacter exposed to Imipenem, this researched created 

PyTorch DNNs from 2 to 10 hidden layers. However, this paper will focus on the better-

performing 2-layer and 3-layer NN models that were created. Each of the hidden layers 

of the two models used the ReLU activation function. Because the goal result was 

binary classification, the output layers for the two models used the sigmoid activation 

function. Various other hyperparameters were used for both models, as shown in Table 

4. The models were run using the method described in Section 3.1 and for a total of 50-

runs each. The results of each model were then averaged across these 50 runs to smooth 

out the effects of randomization. 

Table 4.  Model hyperparameters used for the DNN.  

Hyperparameter Value 

Number of hidden layers 2 

Batch size 100 

Number of epochs 150 

Learning rate 0.0001 

Train/test split 80%/20% 

 

This research used Acinetobacter samples at greater amounts of reduction in sample 

size. The summary of the model performance at these levels of reduction can be found 

in Table 5 and in Figure 1. Figure 1 shows that the 2-layer NN consistently 

outperformed the 3-layer NN. For this 2-layer NN, accuracy is maintained near 79-80% 

up to a sample size reduction of 40%.  

So far, this section has presented traditional, accuracy-focused results of DNNs. 

Section 4.2 discusses the implications of the sample reductions on model performance 

without referencing traditional metrics. Instead, it uses WeightWatcher to give a 

training-agnostic view of model quality and performance at increasing levels of 

reduction. 
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Table 5.  Accuracy results from the 2-layer NN, averaged across the 50 training runs.  

 

 

 

 

Figure 1. Accuracy of the 2-layer and 3-layer NNs averaged across the 50 training 

runs are shown for each reduction amount. 

4.2   WeightWatcher Analysis 

The WeightWatcher package provides graphics that help interpret the quality of DNNs. 

WeightWatcher analyzes the eigenvalues of the layers of the NNs. Based on those 

eigenvalues, Martin has derived empirical quality measurements of the model [17]. 

This research used NNs with 2- and 3-layers. For each NN, the analysis in this section 

shows example WeightWatcher graphs for the first inner layer for one model of the 50 

training runs.  
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The empirical spectral densities of the first inner weight layer eigenvalues from two 

example models (2-layer and 3-layer) are shown in Figures 2a and 2b. Figure 2a, from 

the 2-layer NN, shows that the weight layer has an alpha α=3.463 and displays some 

distinguishing characteristics of a moderately heavy-tailed distribution. The 

distribution has a convex shape, but the “bulk” of eigenvalues end near 1. The max 

eigenvalue 𝜆𝑚𝑎𝑥  is a clear outlier beyond 7.  

Figure 2b, from the 3-layer NN, shows α=4.604 displays more weakly-heavy tailed 

behavior. There is more “bleeding out” of the eigenvalues from the bulk near 0, and the 

oultier at near 2 is less extreme than the outlier of the 2-layer NN weight layer. 

Because the 2-layer NN in general shows weight layer eigenvalues with a heavier-

tailed distribution than the 3-layer NN, the 2-layer NN is considered the better model. 

 

 

Figure 2a. The empirical spectral density (ESD) for the first inner layer of one 

iteration of the 2-layer NN model training on the full data sample. 
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Figure 2b. The ESD for the first inner layer of one iteration of the 3-layer model 

training on the full data sample. 

 

Figures 3a and 3b show the PL fits for the same inner weight layers as were discussed 

for Figures 2a and 2b. The figures show the log-log plot of the PL probability density 

function (blue) and complementary cumulative distribution function (red). The dashed 

lines are the actual data, while the solid lines are the fits. Good-fitting models are 

indicated by nearly overlapping dashed and solid lines for both red and blue. The 2-

layer NN PL fit overlaps better than the 3-layer NN PL fit. 

Additionally, these figures report the KS distance for each inner weight layer. Figure 

3a shows a KS distance of 0.086, which indicates that the 2-layer NN is a well-fit model. 

Figure 3b shows a KS distance of over 0.1, which indicates that the 3-layer NN is not 

as well-fit. 

Figure 4 shows the boxplots of the α for the 2-layer and 3-layer NNs run at each 

stage of sample size reduction. The 2-layer NN maintains a good α up until 60% of the 

original sample size, or 40% reduction, at which point the median α increases and the 

spread of possible values increases as well. The 3-layer NN does not show as good of 

results at any stage of sample size reduction, showing again that the 2-layer NN is a 

better model than the 3-layer NN. 
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Figure 3a. Log-log plot of the PL probability density function (blue) and 

complementary cumulative distribution function (red) for the first inner layer of one 

iteration of the 2-layer NN model training on the full data sample. The dashed lines 

are the actual data while the solid lines are the fits. 

 

Figure 3b. Log-log plot of the PL probability density function (blue) and 

complementary cumulative distribution function (red) for the first inner layer of one 

iteration of the 3-layer NN model training on the full data sample. The dashed lines 

are the actual data while the solid lines are the fits. 
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Figure 4. Box plots of the distribution of α for the 50-run training for the 2-layer 

and 3-layer NNs.  

 

 

5   Discussion 

 

While the explanation behind Deep Learning and Neural Networks can seem abstruse, 

DNNs continue to be one of the best performing ML algorithms available. Additionally, 

researchers Charles Martin and Michael Mahoney have found evidence of implicit self-

regularization in DNNs. Martin and Mahoney moved beyond VC theory, which was 

unable to sufficiently describe NNs. Their research shows that there are mathematical 

explanations of the quality of pre-trained DNNs [19, 21]. 

From their research, this paper used the generalization metric α, the PL exponent of 

a heavy-tailed distribution. This metric has been shown to correlate well with test 

accuracies from various pre-trained DNNs. In one example using WeightWatcher, 

Martin showed that the mean α, averaged over all weight layers of a DNN, correlated 

with the test accuracy even while changing the hyperparameters such as batch size, 

learning rate, and momentum. Additionally, WeightWatcher can be used to compare 

and evaluate multiple DNNs without looking at the training data [21]. 
This paper used WeightWatcher to compare DNNs created to model AMR while 

reducing the number of genomic samples available to train the DNNs. Hence, this paper 

was able to provide insight into the quality of the DNNs using WeightWatcher metrics 

in addition to showing how well those models performed with smaller and smaller 

sample sizes. With further research into WeightWatcher’s applications to AMR, DL 
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models can be created that are empirically excellent—weight layer matrices whose 

eigenvalue distributions are strongly heavy-tailed. These models can then be applied 

on new data samples, and because these models have been empirically evaluated to be 

excellent, the new test data need not be restricted by scarcity of samples or inability to 

gather or generate new samples. These empirically evaluated models can benefit future 

biomedical researchers allowing them to predict whether a strain of bacteria will be 

resistant to an antibiotic with minimal samples of that bacterial strain.  

5.1   Ethical Implications 

As stated by the CDC, AMR is “one of the greatest global public health challenges” 

today [2]. Because the goal of this research is to improve upon predictive models for 

AMR by providing a framework for empirically evaluating those models, this research 

has an ethical imperative to ensure that that framework is trustworthy. Additionally, 

this research is concerned with a divisive topic among biologists and healthcare 

providers, which is the ethical administration of antibiotics. This section presents 

ethical concerns that may arise from this research and its continuance. 

While Machine Learning, Deep Learning, and Artificial Intelligence (AI) can 

advance biology and healthcare, they are not always considered trustworthy tools for 

diagnoses or treatment. Surveys have shown that patients and providers alike think that 

AI can produce life-threatening errors in medical treatment. Vayena et al. present three 

categories of ethical and regulatory concerns for Machine Learning in medicine 

(MLm): data sourcing, product development, and clinical deployment [43]. These are 

categories that this research must address. 

The genomic data used in this research, originating from PATRIC, contains no 

personally identifiable information (PII) that could trace the data to any specific person. 

These data are publicly available. PATRIC is a project through the University of 

Chicago, funded by the National Institutes of Health/National Institute of Allergy and 

Infectious Diseases (NIH/NIAID), and subcontracted to the Biocomplexity Institute 

and Initiative of the University of Virginia [44]. 

Vayena et al. discuss two specific obstacles to ethical MLm product development: 

biased training data and post-deployment maintenance [43]. The discussion of whether 

antibiotic strains unequally affect certain demographics is beyond the scope of this 

paper. The training data used in this research used the entirety of available data for 

Acinetobacter for the antibiotic Imipenem available in PATRIC. One of the goals of 

this research was to present a model that performed well regardless of training data. 

However, training the model on data from other sources would broaden the purview of 

the model’s results. The issue of post-deployment maintenance asks the question: How 

can healthcare providers ensure that the model maintains safety, efficacy, and 

performance as updates to the model are required? As WeightWatcher is a Python 

package and thus is being continually updated to newer versions, this poses real 

problems. As this research is continued in the future, adjustments will be made for 

updated versions of WeightWatcher. 

According to Vayena et al., the issue of clinical deployment manifests as potential 

lack of transparency and interpretability of MLm [43]. ML algorithms can appear as 
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“black-box” models to healthcare providers and patients, leading to a lack of trust and 

understanding of the purpose of MLm. This research attempts to fully explain the 

underlying mathematics of WeightWatcher tools in Section 3.3. Further explanation 

may be required were this methodology to be adopted in the future. 

Finally, one important consideration for any use of ML for the issue of AMR is the 

ethical administration by healthcare providers of antibiotics as treatments. One concern 

is the use of empirical antibiotics, which are antibiotics used to treat a patient’s 

infectious disease without knowing which specific bacterial strain or strains is causing 

the disease. While this prophylactic use of antibiotics may help the immediate patient, 

it can cause harm to future generations of patients by contributing to that bacterial 

strain’s resistance to antibiotics [45, 46]. As this research is geared toward assisting 

healthcare providers and biologists in making decisions about which antibiotics to 

prescribe for certain bacterial diseases, the authors of this research have an ethical 

responsibility to ensure that they do not unintentionally promote AMR. Further 

discussion of this topic can be found in the research of Parsonage et al., in which they 

discuss the many responsible parties in the ethical use of antibiotics and how those 

parties can help prevent AMR [46]. 

7   Conclusion 

This research paper modeled resistance of the bacterial strain Acinetobacter to the 

antibiotic Imipenem using multiple ML models, including RF and DNNs. It analyzed 

the DNN using WeightWatcher, which provides measures of empirical quality of the 

DNN without looking at the training or test data. This paper provided a brief overview 

of how WeightWatcher works in Section 3.4 and how the DNN performed in Section 

4. Comparing the results from the accuracy of the 2-layer NN presented in Section 4.1 

and from the WeightWatcher metrics presented in Section 4.2, there is evidence of 

Martin’s assertions that WeightWatcher results correlate well with accuracy [17]. For 

the 2-layer NN, both the mean accuracy and the median α maintained good values at 

up to 40% reduction of sample sizes. 

This research can be used as a springboard for exploring the empirical quality of 

AMR models beyond Acinetobacter. Additionally, it presented evidence that large 

numbers of genomic samples may not be necessary to produce an empirically good 

model of AMR. In the future, further research into modeling AMR can be paired with 

WeightWatcher to investigate other bacterial strains and antibiotics. WeightWatcher 

will allow such research to assess the quality of DNNs without regard to the training 

data. 
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