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INVENTORY UNDER CONSIGNMENT 

By 
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Abstract. This paper addresses the inventory problem facing an individual warehouser who is 
part of a large scale distribution system that works on a consignment basis. The particular case 
investigated here is one that is already being used in practice. In this system, the manufacturer 
bears the holding and ordering costs of the consigned goods. However, to ensure that the 
warehouser carries sufficient stock to meet regional service needs, the manufacturer pays a sales 
commission that is split into two parts: the first part is a sales fee (approximately 2/3 of the total 
commission), and the second part is a warehousing fee (the remaining 113 of the commission). If 
the warehouser sells an item that is not in stock, then only the sales fee is received, and the 
warehousing fee is paid to another warehouser in the system who ships the item to the customer. 
Therefore, unsatisfied demand is not backlogged, and the warehousing fee becomes the cost of a 
"lost sale." To complicate matters, deliveries of replenishment stock involve item-specific time 
lags. We incorporate both of these features into a multi-item periodic review model with an 
order-up-to- S; replenishment policy for each item i. Within this framework, it is shown that the 

warehouser's average expected loss due to stockouts is a separable convex function of S;. 
Consequently, optimal replenishment levels can be readily determined using the classical methods 
of separable convex programming. Our consignment model is quite general in that only the cost 
of a lost sale is required. We illustrate our approach using real data supplied by a warehouser 
who is currently participating in this type of consignment system. 

Keywords: Inventory; Replenishment Models; Consignment; Separable Convex Programming; 
Linear programming 
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Introduction 

Inventory held on a consignment basis has received considerable attention of late as a device for 

backing up the seller's costs onto the manufacturer. While this may often be the case, other 

manufacturers are considering consignment arrangements to reduce their involvement in the 

distribution process and to encourage their retailers to take a more active role in product 

marketing. This type of system is particularly attractive to manufacturers who wish to expand 

costly product lines (Culgin, 1996) or maintain ownership of their inventory for legal reasons 

(Fagel, 1996). Although still regarded as an experimental model in most circles, a number of 

large organizations have recently developed and implemented their own consignment systems. 

One such system was brought to the authors' attention by a warehouser who had just finalized a 

consignment agreement with a billion-dollar manufacturer of large-scale industrial electric 

equipment. The multi-item inventory problem facing this warehouser is the topic of the current 

paper. 

Perhaps the most notable feature of this consignment system is its simplicity. On the front 

end, the manufacturer agrees to bear the incremental costs associated with holding, shipping and 

ordering of the consigned goods. On the back end, the customer pays for the shipping and 

handling costs following purchase from the warehouser. The warehouser's responsibility is thus 

limited to warehousing the goods and distributing them to the buyer. A sales commission is paid 

by the manufacturer for every item sold, but the total amount of the commission depends on 

whether or not the item is currently held in stock by the warehouser. The commission is thus split 

into two parts: one part is a sales fee which is given regardless of whether the warehouser has the 

item in stock; the other part is a warehousing fee which is paid if the warehouser has the unit in 



stock. This fee structure deters the warehouser from minimizing his local service obligations and 

focusing solely on his role as a regional agent (or broker) for the manufacturer. If a unit is not in 

stock, then another warehouse in the distribution system supplies the item and receives the 

warehousing fee. 

This arrangement has a number of characteristics that make it interesting for practitioners 

and modelers alike. First, the warehouser's inventory problem does not suffer from the normal 

difficulties associated with estimating costs. Under this consignment system, the warehouser's 

primary cost is the shortage cost, which is given by a clearly defined penalty applied to the 

warehouser's commission. Consequently, we will assume throughout this paper that the 

warehouser's objective is to minimize the cost of shortages (lost warehousing fees) . From a 

modeler's perspective, this problem can be shown to possess surprisingly good structure for 

analysis and subsequent computations. Indeed, one of the significant contributions of this paper is 

its novel method of generating a separable convex program. 

Apart from the absence of an incremental holding <;ost, our periodic review consignment 

model incorporates five features which, collectively, distinguish it from other periodic review 

models: 

I. Multiple products constrained by resources 
II. No backlogging of unsatisfied demand (i.e., the lost sales case) 
III. Lags in delivery 
IV. No specific distributional assumptions about demand (including independence) 
V. An efficient, reliable, and easily implemented solution procedure 

Properties I-IV are driven by our case; property Vis needed to ensure that our model contributes 

to inventory management in practice. In reviewing the literature, we were unable to find any 

periodic review model which included all five of the features listed above, let alone one which 
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addressed the specialized case of consignment. Distantly related models that include multiple 

products are proposed by Veinott (1965) and Evans (1967). Veinott considers lost sales and 

delivery lags separately but explicitly avoids their occurrence together because of complexity 

issues. Evans assumes lost sales but does not consider delivery lags. Both works avoid special 

distributional assumptions, but neither offers a computational procedure. 

Periodic review models that address both lost sales and delivery lags simultaneously have 

been presented in Arrow, Karlin and Scarf (1958), Gaver (1959), Bartmann and Beckmann 

(1992), and Vendemia, Patuwo and Hung (1995). The models discussed in these works assume a 

single product and independence of demand over time. The last two works offer sketches of 

some computational procedures, but the lack of closed form expressions for the various cost 

functions makes them too complex for adaptation to the multi-product case with resource 

constraints. 

As noted by Ehrhardt (1985), methods for calculating optimal (s, S) policies generally 

require that the demand distribution be completely specified. Moreover, a prohibitive amount of 

work is typically needed for even the single item case. Freeland and Porteus ( 1980) and Porteus 

(1985) have developed some very efficient heuristics that estimate optimal (s, S) parameters in 

periodic review models with delivery lags. However, these methods were developed for the case 

of a single item with full backlogging and independent demands. Like the numerical procedures 

cited earlier, these approaches do not seem to generalize (in an easy way) to our multi-product 

consignment problem with resource constraints. 

The remainder of our paper is divided into five sections. Section 2 introduces a simple 

model to address the consignment problem when lead times are negligible. The analysis presented 
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is straightforward, but it serves to highlight the important details of the consignment problem 

before launching into the more realistic situation (and the one encountered in our own application) 

where deliveries are lagged. Multi-period versions of the model that incorporate these lag times 

are presented in sections 3 and 4. The model is illustrated in section 5 using portions of real data 

supplied by our warehouser. The final section summarizes our results and points to a potentially 

extensive area of new inventory research. 

§2 Replenishment Models for Inventory under Consignment: Negligible Lead Times 

The warehouser's consignment problem when lead times are negligible requires a minimal amount 

of notation which is presented in table 1 and described next. The total storage capacity ( C) 

available to the warehouser may be treated as a parameter if the warehouser does not view 

expansion as an option, or as a decision variable with an appropriate cost otherwise. In either 

case, space imposes a constraint on the warehouser. Much of the storage capacity is in the form 

of heavy industrial shelving, but this type of storage is no~ suitable for all items. For example, 

large 300 hp electric motors weighing approximately 1.5 tons can only be stored on the floor, and 

other moderately sized motors can only be shelved in limited quantities per shelf. This means that 

categories of space (k=1, 2, .... , K) are needed to account for items with specific weight and 

storage requirements. The total amount of category k space available is denoted _by c<k>. Motors 

come in one of ten standard sizes, thus the amount of category k space used by item i ( c;<k>) is 

easily measured. 

In most consignment models, the warehouser would be restricted by how much 

merchandise ( B , in dollars) he could hold. In our case, this bound is inessential because the 
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manufacturer wanted to invest a substantial amount in regional inventory to establish their market 

presence. In most other situations, however, it is likely the manufacturer would restrict the value 

of the consigned merchandise. The precise amount might become part of future negotiations, and 

in this case our model could measure how this bound impacts losses due to stockouts. 

The manufacturer schedules shipments through an outside freight company and pays for 

the cost of shipping. Because they have the opportunity to control shipping costs and regional 

inventory levels, the warehouser cannot expect to receive a continuous supply of "small" 

shipments to replenish his stock. A periodic review model is appropriate for this situation. 

Moreover, while the warehouser could expect a new shipment on a regular basis (in our case, 

weekly), each item involves a delivery lead-time. Most high volume products are replenished in 

one week, but many of the larger and less frequently purchased items take 3 or 4 weeks. Some of 

the biggest items take even longer. Nevertheless, for completeness we begin with the case where 

delivery lead times are negligible. This assumption means that the warehouser can make 

adjustments in his order up until the shipment is sent, a condition that commonly occurs when 

orders are handled using electronic communications (see Nahmias and Smith 1994). This 

assumption simplifies the analysis considerably over the case where time lags are present (sections 

3 and 4). 

Since the warehouser's only significant incremental cost is the loss incurred when he sells 

an item that must be supplied from another warehouse's stock, his primary concern is to avoid 

losing the warehousing fee ( WF;) that could be collected from the anticipated (historical) demand 

for item i. Consequently, the warehouser seeks stock levels for each item that would - given his 

space and budget restrictions- minimize his expected loss associated with stockouts. Moreover, 
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it is assumed throughout this paper that these inventory levels are managed using simple order-up-

to- S; control policies, a standard approach in cases where ordering costs are insignificant (see 

Love, 1979). 

VARIABLE 

c 

B 

f(x) 

n 

SF; 

WF; 

TABLE 1. Notation for Section 2 

MEANING 

Total warehouse capacity available (may be a decision variable or a fixed 
parameter). 

Amount of category k space available. 

Amount of category k space required by item i (i= l, ... ,n) 

Upper bound on dollar amount of consigned goods 

Probability density function describing demand over the replenishment 
period (continuous case) 

Replenishment level for item i (i=l, ... ,n) 

Expected single period loss for item i using replenishment level S; 

Number of items the warehouser is contracted to sell 

Probability that demand is for j units of item i over the replenishment 
period (i=l, ... ,n,j=1,2, ....... ) 

Sales fee for selling item i (i=l, ... ,n) 

The value of item i (i= l, ... ,n) 

Warehousing fee for item i (i= l, ... ,n) 

Given a known period of time between shipments - henceforth termed the replenis~ment period 

- it is possible to estimate the expected loss due to stockouts. To make our presentation 
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sufficiently clear, consider the case of a single item with warehousing fee WF > 0. Let 

P0 , PI> P2 , •••• , Pi, .... denote the probabilities of receiving demand for 0, 1, 2, .... , j, ... units over 

the replenishment period, and let S denote the replenishment level. In this case, the discrete 

expected loss function for a single period takes on the form 

~ 

L(S) = WFL (j- S)Pi . (L) 
j=S 

This loss function has a number of desirable properties, the most important of which is that the 

incremental expected loss is a monotone nonincreasing function of the stock level. 

Proposition 1. Let S, S+ 1, S+2 be three consecutive nonnegative integers. Then the discrete 

expected loss function is monotone nonincreasing and satisfies 

L( S) - L( S + 1) ~ L( S + 1) - L( S + 2) . 

This proposition follows immediately from a direct calculation: 

~ ~ 

L(S)- L(S + 1) = WFL(j- S)Pi- WF LCi- (S + l))P; 
j =S j=S+I 

~ 

=WFLPi 
j=S+I 

Similarly, 
~ ~ 

L(S + 1)- L(S + 2) = WF L pj :5 WF L pj = L(S)- L(S + 1) ' 
j=S+2 j=S+I 

which verifies the proposition. 

Proposition 1 reveals that the discrete expected loss function is a convex piecewise linear 

function of S as shown in figure 1. Convexity is an essential feature for a separable programming 

problem to be considered numerically tractable. Even though the loss function is only meaningful 

at integer values, we shall say it is convex if its piecewise linear interpolating form is convex. 
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L(S) 

L(S+l) 

L(S+2) 

Figure 1. The Expected Loss 

. 
···--·········· 

. 

S+l S+2 S+3 

The expected loss function pictured above does not have a unique minimum. This is in 

contrast to the classical order-up-to S cost function 

s ~ 

G(S) =I h(S- x)f(x)dx + I p(x- S)f(x)dx 
0 s 

analyzed by Arrow, Karlin and Scarf (Ch. 9, 1958) for the static one period model with no 

ordering cost and zero lead time. Here, the first integral is the expected holding cost associated 

with replenishment level S, and the second integral is the expected shortage cost (both using 

demand density f(x) ). The authors consider various conditions on the holding costs h(S- x) 

and shortage costs (also termed penalty costs) p(x- S) that ensure G(S) is convex and satisfies 

G(S) -7 oo asS -7 oo. The latter conditions guarantee the existence of a unique minimum cost 

solution. The case h(S- x) = 0 is ruled out, possibly because G(S) does not attain its infrmum 

in many cases. Therefore, in a consignment system, the incentive to stock unlimited amounts of 
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inventory must be counterbalanced by other pressures such as the warehouser's storage capacity 

or the manufacturer's willingness to subsidize holding costs. 

In the case of n items with independent demands, the expected single period loss for 

stocking levels SI'S2 , .... ,Sn is the sum of individual losses, i.e., 

n 

L(Sl'S2, .... ,Sn)= LL;(S;)• 
i=l 

It is the warehouser's objective to minimize his expected loss, but we note that in a consignment 

system with this type of commission structure, minimizing the expected loss is equivalent to 

maximizing the expected profit. This is generally regarded as a desirable property in an inventory 

model and can be shown to hold in certain special instances (most notably the newsboy problem; 

see Peterson and Silver (1979) for a proof). In our case of consignment, it is not difficult to show 

that the expected profit, P(SpS2 , .... ,Sn), is given by 

n 

P(SpS2 , .... ,SJ = L(SF; + WF;)fl;- L(S1 ,S2 , .... ,Sn)- F 
i=l 

where f..l; is the expected demand for item i and F is the fixed charge associated with maintaining 

the warehouse over the replenishment period. Keeping this equivalence in mind, the optimal 

replenishment levels for a single period can be obtained from the inventory under consignment 

formulation 

Min L(S1 ,S2 , .... ,Sn) (IC) 
sl.s2, .. .. ,sn 

i=l 

i=l 

9 



where C; is the amount of storage capacity needed for item i, and V; is its value. We have 

assumed a single category of storage space to eliminate the superscripts for expositional clarity. 

The left hand sides of the constraints reflect peak on-hand inventory conditions. These levels will 

be experienced when lead times are negligible since the on-hand inventory for item i will equal its 

replenishment level S; immediately after a new shipment is received and shelved. 

As noted earlier, in many applications (including ours) the total storage capacity is divided 

into different categories. In this case the single storage constraint used above would be replaced 

by a set of constraints 

n 

Ic?)YJk)::; c<k) fork= l, ... ,K 
i=I 

where k=l, .... ,K indexes the different storage categories, c<kJ is the amount of type k storage 

available, and c?J represents the amount of type k space required by item i if it can be shelved 

there. The variable S; has been disaggregated into allocation variables Y;<kJ ;;::: 0 to denote the 

total amount of category k space used by item i. This requires adding another linear constraint of 

the form S; -I Y;<kJ = 0, where it is understood that Y?J is only included in the sum if item i 
k 

can be stored in type k storage. Note that items with less restrictive storage requirements are 

allowed to compete for space with items having more restrictive storage requirements. For 

example, light 1 Ohp motors can certainly edge out heavier 300hp motors for floor space if this 

turns out to be a cost effective strategy. 

Since (IC) and its variants as outlined above are all instances of separable convex 

programming (Charnes and Lemke, 1954), each item's loss function in the objective function of a 

minimization program can be replaced by its piecewise linear approximation 
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M; 

L; (S;) = L; (0) + L (L; (j)- Li (j -l))Sij ' 
j=l 

M 

where S; = L sij ' 0::::; sij ::::; 1. 
j=l 

The constant M; is used here to designate a "suitably large number" since the sums are open 

ended. In other words, one cannot be sure how many terms are involved (a priori) even though 

the number is clearly finite. In practice, a value for M; will be determined through our 

estimation procedure because the loss function will eventually reach zero. The resulting linear 

programming formulation of (IC) is 

Min t.[ L,(O) + ~(L,(j)- L,(j -l))s,] (IC-LP) 

s.t. 

i=l j=l 

i=l j=l 

Again for expositional clarity, the model IC-LP does not incorporate different storage types. It 

also does not include the most important feature of our study: time lags in delivery. We begin 

with the simplest case, that of a one period lag. 

§3 Replenishment Models for Inventory under Consignment: One Period Lag 

Although shipments are received on a weekly basis in our application, lead times are item-specific 

and vary from one to four weeks. An item's lead-time is primarily influenced by its sales volume. 

In this section we will focus specifically on the case of items with a one period time lag (i.e., the 

higher volume items). As in section 2, we will continue to insist that unsatisfied demand is lost. 
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In the case of lagged delivery, we will show that the average expected loss due to 

stockouts is once again a separable convex function of the replenishment level S. Unlike the case 

for immediate deliveries, the term average is essential here since the function describing losses for 

a single period of the horizon is not typically convex. A multi-period model is needed to capture 

the effect of lagged deliveries, but the situation can be simplified somewhat by assuming a 

common order-delivery mechanism for multi-period order-up:-to-S replenishment models without 

backlogging (see Gaver (1959), Arrow, Karlin and Scarf (1958)). Under this assumption, an 

order is placed at the beginning of each period which is sufficient to bring the existing on-hand 

inventory up to the replenishment level S. This order is received at the end of the time period and 

is combined with the period ending inventory (if any) to constitute the beginning on-hand 

inventory for the next time period. Such a mechanism is easily implemented in practice: simply 

place a new order immediately after the previous order is received and shelved. 

It has been shown by various authors (e.g., Gaver 1959, Arrow Karlin and Scarf 1958) 

that when demand is not backlogged because customers are impatient' the single period expected 

loss due to shortages can be represented in the form 

00 

f (y- S)j(S, y)dy 
s 

where f(S,y) is the density for the period ending "deficit below base-stock level" distribution. 

Here, y- S represents unsatisfied demand (which is considered lost). Unlike the case where lead 

times are negligible or the case where unfilled demands are backlogged, the density f(S, y) 

depends on the replenishment level S. The computation of this density is a difficult exercise; for 

1Customer impatience normally means unsatisfied demand is lost. In our consignment system, unsatisfied demand 
is never lost in the sense that shortages are covered by other warehouses in the system. However, customer 
impatience refers to .demand which is not backordered and satisfied by the warehouser's future inventory. This is 
representative of the current consignment system. 
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even assuming that the period demands are i.i.d. random variables with a known distribution, 

f(S, y) involves calculating the steady state distribution of period-beginning inventory levels 

followed by an integral convolution. Various authors have noted the difficulty of determining an 

optimal replenishment level S in the presence of even a single period time lag. A few special cases 

have been successfully analyzed (e.g., when period demands are i.i.d. exponential, see Gaver 

1959, Arrow, Karlin and Scarf 1958). 

We will propose a much simpler and more practical approach for our consignment model, 

which, for the sake of clarity, is described in terms of a single item with finite demand governed 

by a discrete probability distribution P0 , P1 , •••• , PN . The following notation will be helpful. 

A,5 = Actual (on-hand) inventory at the beginning of period t 
assuming a replenishment level S. 

D1 = Demand during period t 

S = Replenishment level. 

T = Number of time periods (the planning horizon) 

In terms of this notation, the on hand inventory at the start of period t can be expressed as 

where (S- A1~ 1 ) is the order that arrives at the beginning of period t and Max{ A1~ 1 - D1_ 1, 0} 

is the carryover. Let d = (dpd 2 , ..... ,dr) represent a single realization of the random demand 

vector D=(DpD2 , ..... ,Dr) over periods t =1,2, .... ,T. Let us assume that Af =S, i.e., the 

system begins with stock amounts at their replenishment levels. This assumption is not critical to 
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our subsequent analysis but provides a convenient basis for comparing different replenishment 

policies. The average conditional loss for replenishment level S given demand D = d is defined as 

LrCSID =d)= WF. Total Shortage over Periods l, 2, .... , T . 
T 

Here, the term total shortage refers to the total number of items that were sold by the warehouse 

but were not supplied by the warehouse using replenishment levelS and demand vector d. Note 

that the subscript on the loss function now stands for the length of the planning horizon instead of 

the item index. We will show that LrCSID =d) is a convex function of S, the proof of which is 

broken into three parts: Lemma 3.1, Theorem 3.2 and Theorem 3.3. These three results provide 

insight into the relationship between the loss function and the replenishment level and additionally 

suggest a direct computational procedure. The first lemma is rather intuitive but is included for 

completeness. 

Proof The proof proceeds by induction on the number of time periods. It is trivially true for t= 1. 

Suppose that it is true for time period T-1, i.e., A;_ 1 ~A;~~ ~ A;_1 + 1: For time period T 

~ =(S-~_1 )+Max{~-1 -dr_ 1 , 0}, A;+t =(S+1-~~:)+Max{~~:-dr_1 , 0}. 

There are two cases to consider. Case (i) A;~: - dr_1 > 0. Then by the induction hypothesis we 

Case (ii) A;~: - dr_1 ~ 0. Then also A;_1 - dr_1 ~ 0 by the induction hypothesis, thus 
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Ai = (S- Ai_1 ) and Ai+1 = (S + 1- A;~:) . The induction hypothesis and the latter two 

equations require Ai ~ Ai+l ~ Ai + 1 and the lemma is proved. 

Observe that the initial condition A; = A1s+l = Y (where Y > 0 is the initial inventory level 

for both replenishment levels) could have been used with only slight modifications to the proof. 

Theorem 3.2. Let d=(dl'd2 , .... ,dT),A1s =S, and T'?:.2. Then for the single period lag 

problem 

(i) If Ai+1 = Ai + 1, then stockouts were not reduced in period T-1 by using 
replenishment level S+ 1 instead of S. 

(ii) If Ai+1 = Ai , then stockouts were reduced by one unit in time period T-1 using 
replenishment level S+ 1 instead of S. 

Proof For period T we consider three mutually exclusive and collectively exhaustive scenarios: 

there is positive carryover for replenishment levelS+ 1, i.e., Ai~: - dT-l > 0 (scenario 1); there is 

nonpositive carryover for replenishment level S+ 1 and the previous period's initial inventory levels 

using Sand S+1 are equal, i.e., Ai~: - dT-l ~ 0 and Ai~: = Ai_1 (scenario 2); there is nonpositive 

carryover for replenishment level S+1, and the previous period's inventory levels using Sand S+1 

are unequal, i.e., Ai~: - dT-l ~ 0 and Ai~: = Ai_1 + 1 (scenario 3). The first two scenarios are 

shown to constitute part (i) of the theorem, the last scenario is shown to constitute part (ii). 

For Ai~: - dT-l > 0 (scenario 1), we observe that Ai_1 - dT-l '?:. 0 (Lemma 3.1). In this 

case no shortages are experienced in period T-1, and we therefore have Ai+l = S + 1- dr_1 and 

Ai = S- dr_1 • Thus Ai+l = Ai + 1 and shortages are not reduced in period T-1. Scenario 1 

relates to part (i) of the theorem. 
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For A;~: - dr_1 ~ 0 and A;~: = A;_1 (scenario 2), we must have A;+t = A; + 1 since 

there is no carryover for either replenishment level, but the equal on-hand inventory in the 

previous period means that one additional unit is contained in the order ( S + 1- Ai~11 ) placed 

under the S+ 1 replenishment policy. The condition A;~: = A;_1 also ensures that shortages in the 

previous period are not improved by the S+1 replenishment policy. Scenario 2 also relates to part 

( i) of the theorem. 

For A;~: - dr-t ~ 0 and Ai~: = Ai_1 + 1 (scenario 3), observe that these initial conditions 

immediately imply that shortages in period T-1 are reduced by exactly 1 unit under the S+ 1 policy. 

Moreover, under this scenario A;+t =A;. This follows from the fact that there is no carryover 

under either the S+ 1 or S policy, and the orders placed in period T-1 are of equal size, i.e., 

S + 1- Ai~: = S- A:_1 • 

To summarize, scenario 3 is the only one where Ai+1 = Ai, and shortages are reduced as 

described in part (i) of the theorem. Scenarios 1 and 2 result in Ai+1 = Ai + 1, and shortages are 

not reduced as described in part (ii) of the theorem. This completes the proof. 

Remark: Theorem 3.2 is true if the initial conditions are replaced by A! = A1
5+1 = Y (for any 

Y>O). 

We are now in a position to prove convexity of the loss function as a function of S. A 

wealth of convexity results appear in the inventory literature, but most of these involve convexity 

of cost as a function of either the period beginning inventory position or the amount ordered (e.g., 

Arrow, Karlin and Scarf 1958, Vendemia, Patuwo and Hung 1995). For general (s, S) reorder­

point/order-up-to systems arising in renewal theory, Sahin (1990) has shown that the cost rate 
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function is convex in the variable s provided the difference f':l. = S - s ~ 0 is held constant and 

there is full backlogging of unsatisfied demand. In the (r,q) reorder-point/order-quantity system 

(where r is the reorder point and q is the fixed order quantity), Zipkin (1986) has shown that the 

average number of stockouts per unit time is a convex function of (r,q) provided the demand 

density satisfies certain distributional assumptions. We could not find any results regarding 

convexity of the shortage function for general order-up-to S inventory systems with lost sales and 

delivery lags. 

Theore~ 3.3. Let d = (d1 ,d2 , •••• ,dT) and A1
5 = S. Then the average conditional loss function 

LT(SjD=d)= WF· TotalShortageoverPeriods 1,2, .... ,T 
T 

for a consigned item with one period lag is a monotone decreasing convex function of the 

replenishment level S. 

Proof Monotonicity follows directly from Lemma 3.1. Convexity will be shown using induction 

on the number of time periods. We may assume WF = 1 without loss of generality; in this case 

the terms "loss" and "shortage" become synonymous. For t=1, it is easily seen that L1 (SjD =d) 

has the graph (shown in bold) in Figure 2 below. 

Figure 2. Expected loss L1 (SiD= d) as a function of S. 

d ·WF I 

17 



Assume the result is true for all t=1,2, .... ,T-l. Another way of stating the induction hypothesis is 

that the total shortage (the total number of items demanded which were not in stock) satisfies 

t · {LrCSjD =d)- L,(S + ~D =d)} ~ t · {L,(S + ljD =d)- L,(S + 2ID =d)} (1) 

for t=1,2, ..... T-1. 

In words, ( 1) means that the incremental change in the total shortage over t time periods is a 

monotone nonincreasing function of S. Note that the vector d is truncated in (1) as needed, i.e., 

To prove the theorem, it suffices to show that 

T·{4CSjD=d)-4(S+1ID=d)} ~T·{4CS+ljD=d)-4(S+2ID=d)} (2) 

where d=(d1 ,d2, .... ,dr) 

To prove that (2) is true given (1), we first break the problem into four mutually exclusive and 

collectively exhaustive cases as summarized below: 

Case I Case III 

AS+t _As 
T - T 

AS+t =As+ 1 
T T 

and and 
AS+2- AS+l 

T - T 
AS+2- AS+l 

T - T 

Case II Case IV 

AS+t =As 
T T A;+• = Ai + 1 

and and 
Ai+2 = Ai+t + 1 Ai+2 = Ai+t + 1 
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Observe that for any value of S, T· Lr<SID=d)can be expressed as the total shortage in periods 

1,2, ... ,T-l plus any additional shortages incurred in period T: 

T · Lr<SID =d)= (T -1) · Lr_1 (SID= d)+ Shortage in Period T. (3) 

In a similar fashion, T · Lr (SID= d) can be expressed as the sum of the total shortages in periods 

1,2, .... T-2 plus any additional shortages incurred over the last two periods: 

T · Lr<SID =d)= (T- 2) · Lr_2 (SID= d)+ Shortages in periods T-1, T. (4) 

Case I Ai+2 = Ai+l = Ai, thus the shortages incurred in period T are the same for stocking 

policies S, S+ 1, and S+2. Applying (3) with S, S+ 1, S+2 and taking successive differences yields 

T· {4<SID =d)- 4(S +liD= d)}= (T -1) · {4-1(SID =d)- 4_1(S +liD= d)} (5) 

and 

T· {4(S +liD= d)- 4(S +2ID =d)} = (T-1) · {4-1(S +liD= d)- 4_1(S +2ID =d)} . 

(6) 
It follows from (5), (6) and the induction hypothesis that 

which proves Case I. 

Case II Ai+I = Ai and Ai+2 = Ai+ 1 + 1. By Theorem 3.2, Ai+l = Ai implies that shortages are 

reduced in period T-1 by one unit using policy S+ 1 instead of policy S. Shortages in period T are 

unchanged. Applying (4) with S, S+l and taking successive differences yields 
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Also by Theorem 3.2, Ai+2 = Ai+1 + 1 implies that shortages are not reduced in period T-1 using 

S+2 instead of S+ 1. Shortages in the final period may be reduced by at most one unit in using an 

S+2level instead of S+l. Applying (4) with S+l, S+2 and taking differences 

T · {CLr(S +liD= d)- Lr(S + 2ID =d)} = (T- 2){Lr_2 (S + ljD =d)- Lr_2 (S + 2ID= d)} +0 ·1 

(8) 

where 0 = 1 if there are shortages in period T that are improved using an S+2 replenishment level 

instead of S+ 1, and 0 = 0 otherwise. In either case ( 0 = 0 or 1 ), it is clear from (7), (8) and the 

induction hypothesis for t=T-2 that 

which proves Case II. 

Case III Ai+1 = Ai + 1 and Ai+2 = Ai+1 • The condition Ai+2 = Ai+1 requires 

T·{4CS +liD= d)- 4CS +2jD =d)} = (T-1) · {4-1(S+ liD= d)- 4_1(S +2ID =d)} 

(9) 

The condition Ai+1 = Ai + 1 requires 

T· {4CSID =d)- 4CS +liD= d)} ~ (T-1) · {4-1CSID =d)- 4_1(S +liD= d)} (10) 

Equations (9), (10) and the induction hypothesis for t=T-1 imply 

which proves Case ill. 

Case IV Ai+1 = Ai + 1 and Ai+2 = Ai+1 + 1. Applying (3) with S, S+ 1 and taking successive 

differences yields 
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where 8 = t if there is a period T shortage that is improved using an S+ t replenishment level 

instead of S, 8 = 0 otherwise. In a similar fashion, 

T· {4CS +tiD= d)- 4CS +2ID =d)} = (T-t) · {4-1(S +tiD= d)- 4_1{S +2ID =d)} +y 

(12) 
where y = t if there is a shortage in period T that is improved using S+2 instead of S+t, y =0 

otherwise. But observe that y = t implies 8 = 1. Equations (It), (t2) and the induction 

hypothesis once again require 

which completes the proof of Case IV and Theorem 3.3. 

It is helpful to illustrate these results with a numerical example. We selected a t2-period 

horizon and tested replenishment levels S = 0, t, 2, .. ... , 10. The observed demands d1 

(t= t ,2, ... , t2) listed at the top of Table 2 are for a 10hp electric motor. The inventory level refers 

to the period-beginning inventory level, assuming the replenishment level S and the initial 

condition A1
5 = S. It is worth repeating that the shortage incurred in a single period of the 

horizon is not usually a convex function of S, as can be verified by the example in Table 2 

(shortages in periods 2, 3, 4, 6, 8, 9, 10, 11, and t2 are nonconvex). Theorem 3.t only 

guarantees that the sum (or average) of these shortages over any horizon (t,2, .... ,t) is a convex 

function of S. 

TABLE 2. Shortages as a Function of S; : One Period Lag 

Demands -+ 4 2 10 1 3 1 2 5 6 4 4 3 

Replenishment Total 
Level (S;) J. Shortage J. 

0 Inventory Level-+ 0 0 0 0 0 0 0 0 0 0 0 0 

Stockouts -+ 4 2 10 1 3 1 2 5 6 4 4 3 45 

1 Inventory Level -+ 1 0 1 0 1 0 1 0 1 0 1 0 

Stockouts -+ 3 2 9 1 2 1 1 5 5 4 3 3 39 
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2 Inventory Level-? 2 0 2 0 2 0 2 0 2 0 2 0 

Stockouts --7 2 2 8 1 1 1 0 5 4 4 2 3 33 

3 Inventory Level --7 3 0 3 0 3 0 3 1 2 1 2 1 

Stockouts --7 1 2 7 1 0 1 0 4 4 3 2 2 27 

4 Inventory Level --7 4 0 4 0 4 1 3 2 2 2 2 2 

Stockouts --7 0 2 6 1 0 0 0 3 4 2 2 1 21 

5 Inventory Level --7 5 1 4 1 4 2 4 3 2 3 2 3 

Stockouts --7 0 1 6 0 0 0 0 2 4 1 2 0 16 

6 Inventory Level-? 6 2 4 2 5 3 5 4 2 4 2 4 

Stockouts --7 0 0 6 0 0 0 0 1 4 0 2 0 13 

7 lnv~ntory Level --7 7 3 5 2 6 4 6 5 2 5 3 4 

Stockouts --7 0 0 5 0 0 0 0 0 4 0 1 0 10 

8 Inventory Level --7 8 4 6 2 7 5 7 6 3 5 4 4 

Stockouts --7 0 0 4 0 0 0 0 0 3 0 0 0 7 

9 Inventory Level --7 9 5 7 2 8 6 8 7 4 5 5 5 

Stockouts --7 0 0 3 0 0 0 0 0 2 0 0 0 5 

10 Inventory Level --7 10 6 8 2 9 7 9 8 5 5 6 6 

Stockouts --7 0 0 2 0 0 0 0 0 1 0 0 0 3 

It is a simple matter to extend 4<SID =d) to a function for the T-period expected 

average loss: 

4(S) = WFL 4<SID =d)· P(D =d). (13) 
d 

Observe that 4(S) does not assume independence of the random variables D, (t=l,2, .... ,1). The 

T-period expected average loss is a finite nonnegative combination of convex functions and 

therefore convex. Thus order-up-to S replenishment models with a one period time lag have 

certain desirable theoretical properties that complement their ease of implementation in practice. 
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The loss function can be further extended to include multiple products. In this case we 

define the conditional loss for item i with replenishment level Si given demand vectors 

S ID = d D = d D = d ) = Total Shortage of Item i over Periods 1, 2, .... , T 
Li,T ( i I I' 2 2' • • · ·' n n T ' 

the calculations in Lemma 3.1, Theorem 3.2, and Theorem 3.3, only the single demand vector 

di = ( di,l, di,2 , •••• , di.T) is needed in connection with item i. However, all possible demand 

vectors are needed when forming the expected average loss over all n items and T time periods: 

n 

LT(Sp·····•Sn)= L :LWF; ·Li,T(SiiD1 =dl' ..... ,Dn =dn)·P(D1 =dl' ..... ,Dn =dn). (14) 
dl ,d2 , ..... ,d. i=l 

Even if demands are dependent across time periods or products, the expected average loss is a 

nonnegative combination of convex functions and therefore convex. Unfortunately, the 

evaluation of 4CS) given in each of the extensions (13) and (14) presents a formidable 

combinatorial challenge for even relatively short horizons and low product demands. 

A more satisfactory approach is obtained by determining optimal replenishment levels 

using forecasts of future demands. In this case the observed demands d, in Theorem 3.3 are 

replaced by forecasts f, for future periods. Historical demand sequences can be substituted for 

the f, to build an empirical (convex!) estimate of the true expected loss function. Optimal 

replenishment levels ( si•) computed using this empirical loss function can be thought of as 

sample estimates which directly incorporate any special features of the time series (e.g. 

autocorrelation, product demand dependencies) without recourse to assumed parametric 
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structures. This approach will be discussed in detail after completing the general analysis for 

multiple period delivery lags. 

§4 The Case fork-Period Lags 

The situation where orders placed in period t do not arrive until period t+k in an order-up-to-S 

replenishment model without backlogging can be handled in a manner similar to that presented in 

section 3. We shall refer to this problem as simply the k-lag consignment problem. All proofs are 

provided in the appendix. 

A new variable is needed to handle the outstanding orders: 

0,5 = The number of units ordered at the start of period t to arrive for use at the 
start of period t+k. 

With this additional variable we can prove the following analog to Lemma 3.1. The assumption 

A1
5 = S with no outstanding orders is for ease of exposition only. It can be replaced throughout 

this section with the joint assumptions (i) A1
5 = A1

5+1 = Y for all policies S and (ii) outstanding 

orders satisfy OJ = Of+1 for j = -k + 2, ..... ,0 and all policies S. 

Lemma 4.1. Suppose d=(dl'd2 , .... ,dr) and A~ =S with no outstanding orders. Then 

The next theorem generalizes the result of Theorem 3.2. 

Theorem 4.2. Let d = (d1 ,d2 , •••• ,dT), and T;::: 2. Then for the k-period (k;::: 2) lag problem 

(i) If A;+t =A; + 1, then total stockouts over the preceding k time periods were not 
reduced using replenishment level S+ 1 instead of S. 

(ii) If A;+t = A; , then total stockouts over the preceding k time periods were reduced by 
one unit using replenishment level S+ 1 instead of S. 

24 



The next theorem is the analog to Theorem 3.2. This is an important result for consignment 

problems where the review period is quite short (say 1 week) relative to the delivery lead-time 

(say 3 or 4 weeks). 

Theorem 4.3. Let d = (d1 ,d2 , • ••• ,dT), A1s = S with no outstanding orders. Then the average 

conditional loss function 

Lr (SID= d)= WF. Total Shortage over Periods 1,2, .... , T 
T 

for a consigned item with k-period lag is a monotone decreasing convex function of the 

replenishment level S. 

§5 An Illustration 

In this section we illustrate the technique proposed in the last three sections using ten items (i=1, 

2, ... , 10) extracted from the full data set supplied by our warehouser for years 1995-1996. These 

items were among the top twenty best selling motors. An analysis of the full problem 

(approximately 360 different motors) is underway and will be detailed in a later report. 

There are three types of storage space available: floor space; 11 foot sections of adjustable 

shelving ("long" shelves); and 8 ft. sections of adjustable shelving ("short" shelves). Because the 

analysis presented here is for illustrative purposes only, we will consider only two types of 

storage, floor space (k=1) and long shelving (k=2). 

The ten standardized package sizes noted earlier are determined by the motor's frame 

dimensions. Those from the five smallest frame sizes are packaged in heavy duty cardboard boxes 

that can be stacked up to three high. Those from the five largest frame sizes are bolted to 

individual pallets and cannot be stacked. Four of the five box sizes and one of the five palletized 
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sizes are represented in our sample. The sole palletized model in the sample (weighing 1000 lbs) 

must be stored on the floor. The remaining nine models in the sample come in boxes and can be 

kept on the shelves or on the floor. For efficient packing and subsequent location/retrieval, the 

warehouser stores motors together according to frame size. Once it is determined how deep the 

motors can be shelved (either two or three deep per shelf), it is easy to determine an item's 

storage requirement C?l in terms of linear shelf space. The motor's width or length (whichever 

gives the best shelving orientation) is divided by 6 or 9 depending on whether it can be stacked 

two deep by three high or three deep by three high. These storage requirements are summarized 

in Table 3 below. 

TABLE 3. Storage Requirements, Cikl (in inches). 

Item -7 1 2 3 4 5 6 7 8 9 10 
Floor 34 4.7 4.7 4.7 2.4 2.4 2.1 2.1 1.4 1.4 
Long Shelving NA 4.7 4.7 4.7 2.4 2.4 2.1 2.1 1.4 1.4 
Retail Value $2059 $433 $482 $349 $227 $189 $147 $129 $108 $258 

The first 26 weeks of sales from 1996 (T=26) are used to build our empirical estimate of the 

average expected loss function for each of the ten motors selected. These figures include drop 

shipments made to customers when an item was not in stock (hence resulting in a lost 

warehousing fee). Although these numbers are clearly surrogates for true demand, the 

warehouser agreed that subsequent record keeping would include more accurate demand 

information. We assumed a one week (one period) delivery lag for the boxed motors (items 2 

through 10) and a two week lag for the palletized motor (item 1). The sales patterns are shown in 

Table 4 below. 
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TABLE 4. 26 Weeks of Sales 

ITEM 

1 0 0 0 0 0 0 3 0 0 0 10 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 
2 2 0 0 0 0 0 1 0 0 0 5 12 0 0 11 4 0 1 0 0 0 0 0 0 12 0 
3 0 0 2 0 0 0 0 0 40 0 40 2 0 0 0 0 0 16 2 0 4 0 0 0 0 0 
4 0 0 4 0 2 7 1 0 0 1 0 14 0 0 1 1 0 1 0 0 0 2 7 1 2 1 
5 0 4 10 1 0 6 0 2 3 1 3 6 0 3 3 3 0 5 1 1 0 2 0 3 5 0 
6 0 1 4 2 20 2 1 3 1 3 1 4 1 2 2 1 3 0 2 0 1 3 7 3 5 2 
7 6 4 4 0 10 4 0 9 5 2 3 6 6 7 8 2 6 1 6 11 3 4 2 6 4 4 
8 25 4 0 0 1 13 0 29 0 1 0 20 0 1 1 0 13 0 0 0 2 7 1 0 4 0 
9 0 0 4 2 0 0 0 16 0 2 1 2 4 1 0 0 4 0 0 0 1 2 0 5 0 0 
10 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 2 0 4 9 0 0 0 0 0 0 2 

We selected the total amount of storage available in each category to suit the abbreviated list of 

items used in our illustration: c<1> = 120 (equivalent to one section of floor space under a long 

shelf), and C(2) = 240 (two sections of long shelves). The historical demands listed above are 

used in Theorem 4.3 to calculate empirical estimates of the incremental losses. The linear 

programming problem addressing our stocking problem becomes 

Min t,[ I,(O) + ~CL,U>- L,U -l))s, J 
s.t. 

10 

L c?>Y?) ~co> (floor space) 
i=l 

10 

Lc?>Y?) s; c<2> (shelfspace) 
i=2 

Ml 

~ s .. = y 0 > i = 1 L... I} I 

j=l 

M; 

~ s .. = y~l) + y~2 ) i- 2 3 10 L.,. I} I I - ' '••••' 

j=l 

os;sijs;1, y~ 1>,y?>~o. 
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The optimal stocking levels si• (i=1, ... ,10), complete with their allocations to the different storage 

types ( y?>* k=1,2), are summarized in Table 5 below. 

TABLE 5 Stocking Results, Si* 

Item~ 1 2 3 4 5 6 7 8 9 10 

Floor (I)* 
Yi 0 0 19.27 0 0 0 0 14 0 0 

Long Shelving (2)* 
Yi NA 12 13.25 9 8 8 14 0 6 2 

Repl. Level si• 0 12 32.52 9 8 8 14 14 6 2 

With the exception of the palletized motor, all models are stocked. This is consistent with 

practical advice given to the warehouser from other consignees in the motor distribution business. 

The warehousing fees accumulated using these replenishment levels total $2913.58, which 

represents a little over 60% of the warehousing fees potentially available ($4814.35) for the items 

and periods analyzed. Not surprisingly, the dual multipliers for the two types of storage are both 

$4.51 per inch. We note that two issues involving implementation of our illustrative solution, that 

of fractional units and shelf packing, do not pose much of a problem in practice. With only 6 

different motor sizes to be shelved, at most 6 "transitional" sections would contain items of 

different dimensions. Finally, observe that 95 motors are stocked at full capacity, and peak 

storage is achieved at the start of period 8 when 92 of these are in stock. 

§6 Conclusions 

We have presented a model that addresses the situation of inventory under consignment when 

there are multiple items, lost sales, delivery lags, and uncertain demand distributions. Using 

simple order-up-to- Si control policies for each item, we have demonstrated that the loss function 
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due to shortages is a separable convex function of the S; . A numerically tractable solution 

procedure based on an empirical estimate of this loss function has been presented. 

A somewhat lengthy list of new issues remain to be explored. Foremost among these is 

the accuracy of our empirical loss function relative to the true expected loss function. Some 

convergence results for large T or some other type of sensitivity analysis would be beneficial. 

Other possible topics include: using the model in conjunction with forecasts of future demands; 

using the model to calculate appropriate storage capacities (i.e., warehouse selection); devising 

more sophisticated computing informatics for large scale consignment systems; investigating the 

model under specialized distributional assumptions. These are currently being pursued by the 

authors. 
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Appendix 
Proofs of Lemma 4.1, Theorem 4.2 and Theorem 4.3 

PROOF OF LEMMA 4.1. The proof is once again by induction on T. The case for T=l is 
straightforward and therefore omitted. Assume the truth of the proposition for all 
t !5; T -1 (T;:::: 2). Before proceeding with the general induction step, observe that for general t 

(AI) 

and 

O,s = S- [A,s + 0,~ 1 +·· ·· + O,~k+l] , (A2) 

where we define O,~k = 0 if t- k !5; 0. Taking successive differences between S+ 1 and Sin (A2) 

yields 

OS+l os 1 (As AS+l) (OS oS+l) (OS oS+l ) t - t = + t - t + t-l - 1-l + . ... + t-k+l - t-k+l . (A3) 

Applying (A3) in the particular instance t=T-k results in 

OS+l os 1 (As AS+l ) cos oS+l ) cos oS+l ) T-k - T-k = + T-k - T-k + T-k-1 - T-k-1 + .... + T-2k+l - T-2k+l · (A4) 

The proof is divided into two cases, one of which has two subcases. 

Case 1. o:~! = o;_k + 1. By the induction hypothesis, A;_k !5; A:~! !5; A;_k + 1 and 

o,s !5; o,s+l !5; o,s + 1 for all t !5; T- 1 . This ensures that each term enclosed by parentheses in 

(A4) is nonpositive. Consequently, o;~! = o;_k + 1 can occur if and only if the following system 

of equalities hold in (A4): 

As AS+l os oS+I os oS+l 
T-k - T-k ' T-k-l - T-k-l' ''' '''' T-2k+l - T-2k+l ' 

The recursion (Al) and equation (A5) then imply the following sequence of beginning period 
inventory levels: 

A s AS+t As AS+l 
T-k+l = T-k+l' '''''' · ' T-1 = T-1 ' 

Consequently, A:+• = o:~! + Max{A:~:- dr_., 0 }= Ai + 1. 

(A5) 

(A6) 

We now show that o; =o:+'as well. Consider (A3) for t=T-l,T-2, .... ,T-k+l. 
The induction hypothesis ensures that each of the terms on the right hand side of equation (A3) is 
nonpositive. Moreover, (Oi-k- o:~!) = -1 by the assumption for Case 1, and this term appears 

on the right hand side of (A3) for each t = T -1, T- 2, .... , T- k + 1. This, combined with the 
conditions in (A6), forces the right hand side of (A3) to be less than or equal to zero. It cannot be 



negative since o,S :::; o,S+I :::; o,s + 1 for all t:::; T- 1 by the induction hypothesis, so the following 

equalities must occur 

OS oS+I QS QS+I OS oS+I 
T-1 = T-1' T-2 = T-2'"" ""' T-k+l = T-k+l" 

Finally, 

Case 2. Oi~! = Oi-k. Then it follows immediately from the induction hypothesis and (AI) that 

Ai :::; Ai+1 :::; Ai + 1. It remains to show that Oi :::; Oi+1 :::; Oi + 1. The latter is done by dividing 

Case 2 into two subcases: (Subcase I) Oi~! = Oi-k and Oi~: = o;_1 ; (Subcase II) Oi~! = Oi-k 

and Oi~11 = o:_1 + I . 

Subcase I. Apply (A3) for period t=T-1 to obtain 

OS+I os 1 (As AS+I) (OS oS+I) (OS oS+I) T-1 - T-1 = + T-1 - T-1 + T-2 - T-2 + ... . + T-k - T-k " (A7) 

Since Oi~11 = Oi_1 , (A 7) is equal to 0, which creates one of two possibilities: (a) Ai~11 = Ai_1 + 1 

and Oi-i = o;~; for j=2, ... , k; or (b) Ai~11 = Ai_1 and Oi~; = Oi~i ( 2:::; j:::; T- k) except for 

one fixed index m (2:::; m:::; T- k + 1) where Oi~,~~ = Oi~m + 1 . For possibility (a) we have 

0 s+l _ 0 s = 1 +(As _ A S+l) +cos _ 0 s+l) + .... +cos _ 0 s+l ) 
T T T T T-1 T-1 T-k+l T-k+l 

= 1 + ( Ai - Ai+l ) . 

For possibility (b), Ai~11 = Ai~1 implies Ai+1 = Ai since Oi~! = Oi-k by the assumption for Case 

2. Then 
oS+I - os = 1 + (As - A S+l) +(OS - oS+I) + .... +(OS -OS +I ) T T T T T-1 T-1 T-k+l T-k+l 

S S+l 
= 1 + (OT-m- OT-m) = 1-1 = 0. 

This completes the proof of Subcase I. 

Subcase II. By the assumptions of this case, Oi~! = Oi-k and Oi~11 = Oi_1 + 1. In this case the 

left hand side of equation (A7) is equal to 1, which forces all of the (nonpositive) terms in 

parentheses on the right hand side to be 0. As in Subcase I, Ai~: = Ai_1 implies Ai+1 = Ai from 

the assumption Oi~! = Oi-k of Case 2, and it_ follows that 

oS+I -as = 1 +(As -A S+l) +cos - oS+I) + .... +(OS - oS+I ) T T T T T-1 T-1 T-k+l T-k+l 
= 1 + c o;_1 - o;~:) = 1- 1 = o. 
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This completes the proof of Subcase II, Case 2, and Lemma 4.1. 

PROOF OF THEOREM 4.2. In period T-k, the following two equations must hold: 

Ai-k + o;_k + o;_k-1 + · · · · +Oi-2k+1 = s (A8) 

A S+1 + 0 s+1 + 0 s+1 + .... +os+1 = s + 1 T-k T-k T-k-1 T-2k+1 (A9) 

These equations simply state that the on-hand inventory plus all outstanding orders (including the 
one made at the start of a period) must sum up to the replenishment level. 

To prove part (i), observe that Ai+1 = Ai + 1 can occur in one of two ways: (Case 1) the 

period ending inventory levels at time T-1 are equal and Oi~! = o;_k + 1 ; or (Case 2) the period 

ending inventory levels at time period T-1 are unequal and Oi~! = o;_k. 

Case 1. The total amount of on-hand inventory available over periods T-k, T-k+ 1 , .... . , T-1 under 
the order up to S policy is 

Ai-k + o;_k-1 + · · · · +Oi-2k+1 = s- o;_k . (AIO) 

Under the S+l policy, the total amount of on-hand inventory available over periods T-k, T­
k+ 1, ..... , T-1 is 

AS+1 oS+1 OS+1 S l QS+1 T-k + T-k-1 + . . .. + T-2k+1 = + - T-k • (All) 

The amounts expressed in (AlO) and (All) are identical since Oi~! = o;_k + 1. Because the 
period ending inventory levels are the same under both policies, equal amounts of inventory were 
moved over the periods T-k, T-k+ 1 , .. ... , T-1. This ensures that stockouts were not improved by 
the S+ 1 policy over the k periods preceding period T. 

Case 2. A comparison of equations (AIO) and (All) reveals that the total on-hand inventory 
available over periods T-k, T-k+ 1, ..... , T-1 is one unit greater under the S+l policy. However, the 
additional unit is unused since the period ending inventory levels for period T-1 are assumed to be 
unequal (i.e., the S+ 1 policy has an additional unit which it carries over to period T). This ensures 
that stockouts were not improved by the S+ 1 policy over the k periods preceding period T. This 
completes the proof of part (i) of the theorem. 

To prove part (ii), observe that the condition Ai+1 = Ai can occur in precisely one way: 

the period ending inventory levels are the same under both replenishment policies and 
Oi~! = o;_k . Equations (AIO) and (All) still apply, and the amount expressed in (AIO) is one 

unit less than that expressed in (All). The equal period ending inventories for period T-1 means 
that one additional unit was moved during periods T-k, T-k+ 1 , .... . , T-1 under the S+ 1 policy. 
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Consequently, stockouts were improved by precisely one unit over the k periods immediately 
preceding period T. 

PROOF OF THEOREM 4.3. The proof is by induction on T and parallels that of Theorem 3.3. The 
assumption WF = 1 is used as before without loss of generality. 

The case T=l is again trivial, and we assume the truth of the theorem for t=l, ..... ,T-1. The 
problem is divided into the same four cases used in the proof of Theorem 3.3. However, the 
proofs of Case I, Case III and Case IV do not need to be repeated since they depend solely on an 
analysis of period ending inventory levels. Consequently, only Case II, which involves results on 
lagged delivery times, needs to be redone. 

Case II. A;+• = A; and A;+2 = A;+• + 1. By Theorem 4.2, A;+• = A; implies that shortages are 

reduced in the preceding k time periods by one unit using policy S+ 1 instead of policy S. 
Shortages in period T are unchanged. The difference in total shortages over T periods can be 
expressed as 

T · {CLrCSID =d)- Lr(S +liD =d)} = (T- k -l){Lr-k-l (SID =d)- LT-k-l (S +liD= d)} + 1 

Also by Theorem 4.2, A;+2 = A;+• + 1 implies that shortages are not reduced in the preceding k 
periods using S+2 instead of S+ 1. Shortages in the final period can be reduced by at most one 
unit using an S+2 replenishment level instead of S+l. Consequently, 

T · {CLr(S + liD=d)- Lr(S + 2ID =d)} = 

= (T- k -l){LT-k-l (S +liD= d)- LT-k-1 (S + 2ID =d)}+ 0 ·1 

where o = 1 if there are shortages in period T that are improved using an S+2 replenishment level 
instead of S+ 1, and o = 0 otherwise. In either case ( o = 0 or 1 ), it is clear from the induction 
hypothesis for t=T-k-1 that 

which proves Case II and Theorem 4.3. 
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