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Abstract 
This project explores the different neural network methods to generate 

synthetic handwriting text. The goal is to offer an AI tool that generates 

handwriting, while maintaining an individual’s style, to people suffering with 

Dysgraphia. As part of this project, an application development framework is 

setup on GitHub, in such a way that others can continue to explore and 

improve the AI tool. 

1 Introduction 

Since there is no common handwriting style, it is challenging to develop a tool that 

generates and smooths handwriting. However, the potential future application 

and rewards for helping people with Dysgraphia, on the hand, make this challenge 
worthwhile. Dysgraphia impacts a person’s ability to learn in many ways. One 

example of Dysgraphia’s effect on learning involves issues with fine motor skills. 

When a person develops an idea, or learns a new concept the best memorization 

technique is to repeatedly write the concept or idea on a piece of paper [5]. 

However, due to fine motor deficiency, people with Dysgraphia find writing 
simple text difficult, impeding their ability to memorize information. 

Due to the nonlinear nature of Neural Networks, the possibilities for solving 

complex non linear problems are endless. Radiology can now keep up with image 

processing thanks to Neural Networks. Self driving cars can now map road marks 

to increase safety [4]. This research paper focuses on applying Neural Networks 
to recognize and smooth handwriting in order to assist people with Dysgraphia. 

The application of Neural Networks has many techniques, but for this research 

papers the focus is on Long Short-Term Memory networks. LSTM models are good 

for solving handwriting recognition problems because they have the ability to 

memorize different styles and come up with a probabilistic and standard style of 

handwriting [16]. 

The goal of this project is to inspire and broaden the research on Dysgraphia 

and its effect on handwriting [15]. 

2 Background 

Text recognition and generation has a long history, dating back before Neural 

Networks became a science research field. The telegraph, invented in the early 
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1910s, is regarded as first text recognition application. Since its inception, the 

telegraph has helped the blind to read and has made it possible to deliver short 

messages without expensive telephone calls[22]. Technology is always advancing 
looking for ways to increase accuracy and efficiency. Today, applications like scan 

to digital documents, text to speech audio books, tablet note taking, and smart 

phone language translation are not only widely available, but also relied on in our 

daily life and work[8]. 

In recent years, Neural Network development has fueled the advancement of 

text recognition and generation. There are two main categories of competing 
technologies in this area. The Optical Character Recognition (OCR) is the most 

popular method. It processes the printed or handwritten text as an image file, in 

pixel format, utilizing the neural network’s mega data processing power to train 

the model. This method is referred to as the offline method[7]. The second 

category is the pen stroke position method, where the application collects pen 
stroke positions as time series data. The advantage of the pen stroke position 

method is that its data size is significantly smaller compared to OCR, making it 

easier to work with. This method requires a device to collect pen position as the 

writer creates the text, and it is referred to as the online method. Figure 1 shows 

an example of online and offline text format. 

 

Figure 1: Offline and Online Text Input[13] 

The primary research in the text recognition and generation areas are focused 

on commercially viable applications, such as medical form transcription, library 
archive digitization, enterprise data entry automation, and indexing document for 

search engines. Although just as important but less profitable, areas directed at 

helping the visually or vocally impaired, the autistic, or those suffering with a 
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motor function disability like Dysgraphia are not as widely researched. This 

project focuses on establishing a base line application, to generate legible text with 

a handwriting style preference. 

2.1 Dysgraphia 

Dysgraphia is a bio-neural system disorder that impacts the fine motor skills. 

Since Dysgraphia effects the hand and finger fine motor skills, the handwriting 

and artwork of a person with Dysgraphia may appear illegible or sloppy[1]. The 

severity of Dysgraphia varies from mild to severe. Mild symptoms may emerge as 

a dislike for handwriting due to the difficulties associated with fine motor skills. 
Severe symptoms may show as a visible hand tremor. In mild cases, Dysgraphia is 

often left misdiagnosed or mistaken for laziness or sloppiness. People with 

Dysgraphia often have other bio-neural system disorders like Dyslexia, Attention-

deficit/hyperactivity disorder, or brain trauma[21]. Although there is limited 

medical research on Dysgraphia to date, it is estimated that it affects two to 25 
percent of the population. Dysgraphia was not recognized as a neural disorder 

until 1993 by Hamstra-Bletz Blote as a disturbance or difficulty in the production 

of written language that is related to the mechanics of writing[23]. Prior to then, 

it was viewed as a symptom of Dyslexia. 

Dysgraphia symptoms often appear when a child is starting to learn how to 

write and draw. Many schools do not recognize Dysgraphia in children. A child’s 
lack of progress is often confused with not working hard enough, and at times, 

children with Dysgraphia are punished by assigning more home work, detention, 

or parental reports. Such oversights lead to low morale, depression, and 

withdrawal of these children[14]. 

The handwriting of someone with Dysgraphia often appears illegible and 
cacographic. The figure 2 3 4 shows a number of samples: letters appear more 

slanted then usual, are unevenly sized and spaced. 

 

Figure 2: Dysgraphia Handwriting with Inconsistent Amplitude[20] 

No cure for Dysgraphia exists, nor can it be outgrown. Dysgraphia in adults 

presents frustrating challenges every day. In offices, white boarding sessions are 

still a preferred way to collaborate, colleagues with Dysgraphia may struggle 
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Figure 3: Dysgraphia Handwriting with Slant[20] 

 

Figure 4: Dysgraphia Handwriting with unusual spacing[20] 

with these meetings. At home, a calendar is often full of handwritten notes, 

parents with Dysgraphia may ask others to write these notes. 

With advancement in neural network methodology, success has been achieved 

in cursive hand writing recognition and generation[18]. This project’s goal is to 
help children and adults with Dysgraphia by developing an AI tool that allows 

them to write in their preferred style, to empower them, and to encourage 

handwriting. 

2.2 Optical Character Recognition 

The implementation of OCR systems in processing and digitization of paper 

documents is one example of previous work in handwriting recognition [24]. In 
today’s world documents come in many forms: printed, electronic, and written. 

The benefit of modern technology is the ability to create copies of written or 

printed materials, as well as archive these documents in a secure location such as 

the cloud. The limitations of modern technology become apparent when faced 

with handwritten, original, archaic documents. Previous work in handwriting 
recognition experimented with the application of OCR on different forms of 

documents. In the research, they discovered that processing and digitization of 

handwritten documents was problematic [24]. 

With the utilization of neural networks, it is now possible to train with 

different styles of handwriting and build an application that can predict any 

written text. In addition to helping people with Dysgraphia, this work could be 
applied to recognizing old handwritten documents. 
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3 Data 

3.1 Structure 

The input data set is in the form of a set of XML files, each of which reflects the set 

of strokes belonging to a single sample of handwriting. The samples come from 
the IAM Online Database [19]. They were created by volunteers who wrote short 

phrases on an electronic device that captured the position of their pen in real time 

as they wrote. Each point captured has an x and y coordinate as well as a time 

stamp. This project will focus solely on the x,y pairs. Here is a sample of one of the 

XML files: 

<WhiteboardCaptureSession> 
          <WhiteboardDescription> 
            <SensorLocation corner="top_left"/> 
            <DiagonallyOppositeCoords x="6512" y="1376"/> 
            <VerticallyOppositeCoords x="966" y="1376"/> 
            <HorizontallyOppositeCoords x="6512" y="787"/> 
          </WhiteboardDescription> 
          <StrokeSet> 
            <Stroke colour="black" start_time="769.05" end_time="769.64"> 
              <Point x="1073" y="1058" time="769.05"/> 
              <Point x="1072" y="1085" time="769.07"/> 
              ... 
              <Point x="1215" y="1353" time="769.63"/> 
              <Point x="1204" y="1330" time="769.64"/> 
            </Stroke> 
            <Stroke colour="black" start_time="769.70" end_time="769.90"> 
              <Point x="1176" y="1237" time="769.70"/> 
              <Point x="1175" y="1233" time="769.72"/> 
              ... 
              <Point x="1010" y="1239" time="769.88"/> 
              <Point x="1014" y="1243" time="769.90"/> 
            </Stroke> 
            ... 
          </StrokeSet> 
        </WhiteboardCaptureSession> 

After studying the data set and considering the needs of the training process 
(described below), a simple cascading series of one-to-many relationships 

emerges as the apparent data modeling choice. To reflect this structure in the 

application, a series of three objects is used. First, one Dataset object represents 

the entire training data set and can be reused later to represent smoothing 

samples in a consistent way. Each Dataset contains a list of stroke sets (StrokeSet), 
where one stroke set represents the entirety of a single handwriting sample 

written by a volunteer, as shown in Figure 5: 

Each stroke set then contains multiple strokes, stored as a list of Stroke 
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Figure 5: Example of a training data point 

objects. A stroke is the set of points drawn between the time that the pen is set to 
the surface and lifted up again. Finally, each stroke contains a list of points. Each 

point is a fourth class (i.e. Point) in this hierarchy even though, for practical and 

performance reasons, the points are simply stored as x,y tuples in the stroke 

object. The entire conceptual structure of the application is expressed in this UML 

class diagram: 

 

 

Figure 6: UML class diagram for pywritesmooth 

Here is the complete picture of how the data in the input data set corresponds 

to its in-memory representation. 

3.2 Model Training 

The second major functional area is training any models that are used. The 

specifics of training certain types are models are described later on. The 

application will support any number of models, which could be useful to compare 
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the accuracy and performance of various approaches to the handwriting 

generation 

 

Figure 7: Data mapping from XML to application classes 

problem, for example. 

In order to make use of this mechanism, simply implement the 

TrainerInterface class, which requires methods to support training and a loss 
function along with methods to generate and smooth handwriting at a minimum. 

Models can also load themselves from a previously saved Pytorch model file, 

which saves time and computing power. 

Once trained or loaded, the trained, ready-to-use models are available to the 

main program as a simple list of models. They can then be used individually or 
processed collectively using polymorphism. In this application, the only 

implemented model is currently LSTMTrainer. GANTrainer is provided as a 

placeholder for development testing purposes and still requires implementation. 

The HandwritingSynthesisModel is a custom implementation of a Pytorch 

nn.Module model and is used by the LSTMTrainer. 

3.3 Handwriting Generation 

The final functional area of the program is that of handwriting generation. This 

takes two forms. In the first, a text string is provided (with a limit of 80 

characters), and the trained model is then used to generate a sample of 
handwriting. Legibility can be controlled with the bias parameter, where higher 

values (up to 10 or so) will result in greater readability, and low values (to a 

minimum of 0) give greater variety at the expense of legibility. The resulting 

generated writing is saved in SVG format to the file name provided in the options. 

The other function is to smooth handwriting. For this, a sample of handwriting 

needs to be provided using the appropriate option. The sample needs to be in the 
same format as the IAM data set that was used to train the model(s). Bias values 

control the legibility as described, and the generated handwriting is also saved as 
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an SVG file. In addition, a plot of the sample in a variety of biases is saved for 

further study on the effects of bias to the generation. 

 

3.4 Application Workflows 

These three areas are combined below. The data set is read and processed into its 

internal object format. Any defined models are then trained. Finally, handwriting 

generation or smoothing is performed on the trained model(s). 

4 Methods 

Two approaches, generative adversarial network (GAN) and Long Short-Term 

Memory network (LSTM), were explored to generate and smooth handwriting; 

however, Long Short-Term Memory network (LSTM) provided the better 

outcome. 

4.1 GAN 

GAN is a new convolutional neural network used for image processing. It is made 
up of two competing networks, which work together to generate a better model 

for prediction. The first network, the generator, takes an input and generates a 

false input, and then the second network, the discriminator, determines whether 

the input is true or false [11]. The discriminator generates noise as its initial input, 

but as it learns, it generates better input data. This approach deals with processing 

handwritten images. Each image is split into words, then letters, and the final 
image input which is a letter image is used for learning and prediction. To achieve 

this, image extraction technologies such as Textract and OpenCV must be utilized. 

The metrics used for measuring the recognition accuracy are Precision and 

Recall. To be able to apply any of these performance metrics, the measure of the 

correctness of each detection needs to be established. For any given detection, a 
bounding box or a circle is placed on the object. The metric that measures the 

correctness of a given bounding box or circle is called the Intersection over Union 

(IoU). This is the ratio between the intersection and the union of the predicted box 

or circle and the grounding truth box [10]. Grounding truth box or circle is the 

correct box representation that would cover each letter. Twenty labeled image 
files from the data sample were used to measure the performance of each of the 

detection applications used, and then the mean precision and mean recall were 

recorded. Both the textract and openCV application had a mean precision of 0.9 

and 0.8 respectively and a mean recall of 0.8 and 0.76 respectively. Textract 

performed better when compared with OpenCV because it is specifically designed 
to extract text and letters. Even though textract is able to recognize letters, there 

are instances where textract recognizes two letters as one and this poses a 

significant challenge. 
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4.1.1 Training the Network 

The training mechanism was done outside of the main program of the application. 
In image processing, the individual pixels of an image are the data sample set, 

meaning a 28x28 black and white image would have 784 features. The input 

image was normalized from [0,255] to [0 to 1] before input into the neural 

network for training. Implementation of simple GAN and DCGAN (Deep 

Convolutional GAN) were types of GAN model used. The data sets used are 
EMNIST, MNIST, and UCI since they meet the requirements of individual printed 

numbers and letters in black and white. The models were configured to use 50 

epochs and 100 batches. Both model struggled to generate a good results. This 

struggle could be that simple GAN and DCGAN are not complex enough to generate 

a better image. 

4.1.2 Computational Considerations 

The models utilized the CUDA properties of pytorch which uses GPU. Using GPU 

helped speed up the training of the models. 
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4.1.3 Visualizing the Training 

In the implementation of the training process, tensorboard which is a tensorflow’s 
visualization toolkit was used to capture the image as model trained. This is 

crucial since GANs do not have a measurement metrics to measure the models 

performance. Capturing the images as it trained and comparing both the real 

images and the fake images shows how well the models are training. The goal is 

for the real image to be identical to the fake image so that they are 
indistinguishable by the human eye. The learning process for both models is 

illustrated in the figures 8 and 9 below. 

 

 

Figure 8: Learning Progression for simple GAN 

 

Figure 9: Learning Progression for DCGAN 

4.2 LSTM 

The work here is based largely on a paper by Alex Graves [9]. The reader should 
consider studying that paper first to maximize understanding of both LSTMs and 

handwriting generation before proceeding. In addition, portions of the 

implementation were adapted from another application of Graves’ work [6] and 

duly noted in the source code. 
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4.2.1 Training the Network 

In the main program, each model’s train() method is invoked. The train() method 
needs to take a Dataset object as its input and uses that data to train an 

appropriate model. 

In the first application, this model is a LSTM network, which is implemented 

by the LSTMTrainer class. LSTM is a type of neural network, so train() instantiates 

a new Pytorch model (in this case, HandwritingSynthesisModel) and calls train 

network() to do the the majority of the training for that model. 

There, training is broken into a series of epochs, which is then further broken 

into a series of batches. Each batch represents a randomly selected subset of the 

entire training data set, and each epoch is one full training of all of its batches 

exactly once. The number of epochs can be controlled with the –epoch option. 

More epochs will result in better training but at the cost of more training time and 
computation. For this example, 50 epochs were used for the training. 

The training algorithm uses an Adam optimizer with a learning rate of 0.005. 

The gradients are clipped inside [-gradient threshold, gradient threshold] to avoid 

exploding gradients. 

The model is saved after each epoch. This not only makes the model available 

later without the need to retrain; it also guards against unexpected interruption 
of the training process. 

As the training proceeds, information of interest is saved, such as the loss for 

epochs and batches. This information is then plotted at the end of the training. In 

addition, heat maps similar to those in the paper are plotted every 100 batches. 

When forward() is applied, the custom LSTM model yields the information 

needed to calculate the Gaussian mixture probabilities. Once computed, that 
probability is then fed into the loss function. These 3 steps are repeated for every 

batch/epoch. 

4.2.2 Computational Considerations 

To help with the computational costs, the program is written to automatically take 

advantage of CUDA GPUs, if they are available. In this example, CUDA training 
times were around 15-20% of their times without it (i.e. using only the CPU), 

which is about an 85% speedup on average. 

4.2.3 Visualizing the Training 

The training process also has a number of ”hooks” that allow a visual 

representation. Each one is controlled by options (described in detail above). 

The first hook (not shown) shows and/or saves the training sample as it is 

encountered. This will generate a lot of output since the entire training set will 

ultimately be output multiplied by the number of epochs. 
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 (a) Start (b) 10 epochs 

 

 (c) 20 epochs (d) 30 epochs 

 

 (e) 40 epochs (f) 50 epochs 

Figure 10: Stroke generation as training progresses 

The second hook will save heat map plots of the training progress every 100 
batches. These heat maps are illustrated in Figure 11 and represent the training 

φs (more below) and soft attention windows at that point in the training. They are 

useful for understanding the math behind the training, for making sure training is 

proceeding as expected, and for selectively including in other publications like 

papers or reports. 

The third hook, shown in figure 10, generates a sample handwriting sequence 
every 500 batches. This is useful to see how the training is progressing and to 

understand what the model is doing at certain points in its execution. 

Then, a fourth hook will trigger at the end of the training operation if the –test-

model flag is set. This will generate a final set of handwriting images in SVG format 

to validate the state of the trained model, as demonstrated in figure 12. 
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 (a) Start (b) 17 epochs (c) 34 epochs (d) 50 epochs 

Figure 11: Weight heat maps as training progresses 

 

Figure 12: Generated text: ”Hello” 

5 Results 

The training data set contained 12,195 handwriting samples. Training took place 

on a university mainframe computer with GPU support. Each epoch saw an 

improvement in the loss, with the largest (exponential) improvements recorded 

in the first 3 epochs. After 50 epochs, the loss reached its minimum of -348. 

Handwriting generation resulted in the most realistic output as can be seen in 

Figure 10f on page 11 and Figure 12 on page 12. 

Smoothing results were less satisfactory than generation, as can be seen in 

Figure 14. In fact, results degraded as the bias values increased. High biases were 

unrecognizable as handwriting, while lower biases were appeared worse than the 
original smoothing sample, which can be seen in Figure 5 on page 6. 

Several approaches were tried to mitigate this effect, since Graves [9] 

indicated that ”priming” the network should adjust the legibility via the biases 

while still retaining the handwriting style of the priming sample. The one-hot 

vector was padded with spaces the length of the sample text, the original text was 
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Figure 13: Epoch Loss 

duplicated, and φ was pre-calculated from the sample sequence before feeding it 

into the trained network. All approaches were unsuccessful, although (shown in 

Figure 14) copying the original sample’s sequence into the Pytorch tensor as the 

priming value before generating the smoothed sequence proved the most 
promising. 
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Figure 14: Smoothed handwriting sample with bias weights 

6 Analysis 

An analysis of this project discusses how the LSTM network produces the 

handwriting results observed along with the role of statistical prediction and the 
structure of the loss function. 

6.1 Structure of the LSTM 

LSTM is short for Long Short-Term Memory, meaning that the network has a built-

in ”memory”. This is important for handwriting generation because future points 

along a stroke depend not just on the immediate predecessor to the stroke but 

also on several predecessors. For instance, to draw an S, requires a series of points 
along the curve of the S. It must differentiate between the curve of an S as opposed 

to another character like a C or even as opposed to a random sequence of points 

that makes no letter at all. 
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LSTM is a specialized form of an RNN or Recurrent Neural Network [2]. As such, 

any considerations for RNN will also apply to LSTM. RNNs in particular suffer from 

a phenomenon known as the vanishing gradient problem, and LSTMs address this. 
Gradients are those from mathematics, and they can ”vanish” in a regular RNN 

because the network performs a multiplication at each iteration of training. Those 

stacked multiplications are the same, mathematically, as exponentiation, and 

exponentiation is an inherently unstable operation. Therefore, with each new 

multiplication the exponent grows. As the exponent grows very large, an operand 
less than one will grow very small and approach zero... thus, it ”vanishes” over 

time. LSTMs solve this by replacing the multiplication with addition. 

Though the original Graves paper [9] is recommended reading for full 

understanding of LSTMs, here is a brief summary. 

The architecture of a regular RNN network looks like the figure below. 

 

 

Figure 15: Traditional recurrent neural network (RNN) 

As with any neural network, the design consists of an input layer, an output 

layer, and a series of hidden layers in between. The x terms represent the location 

at points in time. Those pass through the hidden layers to the output layer. The 

output of a layer, which is a probability distribution of the next point, becomes the 
input to the next network iteration. So the output of xn−1 becomes the input of xn. 
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The hidden layer activations are calculated according to equations 1 (for the 
first hidden layer) and 2 (for the nth hidden layer) of the paper. The W terms are 

weight matrices. In fact, most of the calculations will be done using linear algebra 

vectors and matrices for simplicity and performance. The output is computed 

according to equation 3 and 4. 

 

At each iteration, a loss function is needed in order to determine how well the 

iteration did and to make adjustments. The loss function is given by equation 5, 

which calculates partial derivatives and applies them via back-propagation to the 

network for use by the next iteration. 

 

For an LSTM, a special cell is used for the hidden layer activation function, 

shown in Figure 16. The cell is a group of equations that interact with each other 

to compute the final value of the hidden layer ht. Then, that becomes ht−1 when the 

cell is computed the next time through the network. Note that i, f, o, and c 

correspond to each one of a function below, and h, also a function below, is 
computed from the others. These functions represent equations 6 - 10. 

 
Using the longer (additive) memory in an LSTM instead of the shorter 

(multiplicative) memory of an RNN, has eliminated the vanishing gradient 

problem. However exploding gradients emerge, which is the opposite problem as 
before. Because of the unstable nature of exponentiation (the effect that comes 
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into play over many iterations of the network training algorithm), the gradients 

(derivatives) computed at each iteration might expand to an exponentially large 

value. The solution is to ”clip” the gradients so that they never exceed a certain 
value; in this project, they were clipped between -10 and 10. 

To aid in understanding, Figure 17 is another diagram of the same thing. 

The same functions are noted in the earlier memory cell diagram and in the 

equations above: i, f, o, and c along with the hidden output h. Code implemented 

from this will compute each piece using the inputs as shown on 

 

Figure 16: LSTM memory cell 

the diagrams/formulas. Then, those computed results will be used in subsequent 

computations as the calculation executes across the cell/layers. Outputs from one 

iteration become inputs to the next, and the process repeats for all of the inputs 
in the current batch, then across all the batches in the epoch, then for each of the 

epoch in the training. 

6.2 Mixture Densities 

This is a key part of handwriting generation. The network computes a statistical 

probability function that represents the odds that the next point in the stroke will 

be at a certain position. The distribution is normalized, which makes it easy to 
differentiate. For example, in drawing an S, the current point is at the end of the 
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series of connected points along the x/y axis. It is expected that the next likely 

point will be somewhere in an oval space around the current point. Because it is 

an S, the distribution would be skewed a bit to the next part of the S stroke 
(because the network was trained, it knows how to draw an S). Figure 18 shows a 

visual diagram of what is going on here (minus the S strokes). 

The oval represents the possible points, but notice that the oval is composed 

of two (i.e. the ”bi” in bi-variate) histograms, which are just the probabilities of x 

and of y. The Gaussian mixture is expressed by equations 23 - 25 in the Graves 

paper [9]. 

 

Figure 17: LSTM architecture [12] 
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The paper [9] also goes through the derivation of the loss function, which is in 

turn used to update the weights of the network in back-propagation, as usual. The 

most likely point is then chosen from the distribution and used as the starting 
point of the next iteration. The end point, which is the point at which the pen is 

lifted, is also computed, and this is how the network knows when to end one 

stroke and begin the next. 

6.3 Handwriting Synthesis Model 

The key method of the model implementation is forward(), which will be called 

repeatedly by the trainer. This method represents the forward propagation. It 
takes x and c as inputs. 

 

Figure 18: Bi-variate example [17] 

x is a batch of stroke coordinates of sequences. Its dimensions are [sequence 

size, batch size, 3]. The 3 corresponds to x and y offset of a stroke and eos [which 

equals 1 when reaching an end of stroke (when the pen is raised)]. 

c, a batch of one-hot encoded sentences corresponding to the stroke sequence 

is of dimensions [n batch, U items, len(alphabet)]. Note that the forward function 

is also used to generate random sequences. 
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The first step is to compute LSTM1. This is straightforward in PyTorch. Since 

the LSTM cells use Pytorch, we need a for loop over the whole stroke sequence. 

 
After LSTM1, the code computes the attention mechanism given by equations 

14 - 19. After that, the network computes LSTM2 and LSTM3. Then it is just a 
matter of computing equations 20 - 24 using a dense layer. 

 

The algorithm will continue until it reaches the stopping condition. Since 
strokes will nearly always take a variable number of points to construct, it is not 

a simple matter of enumerating through a for loop. Instead, the algorithm must 

compare the computed φ to the collection of previous φs. When the computed φ 

becomes greater than any prior value, then the algorithm has reached the end of 

the sequence and can stop. 

6.4 Loss Function 

First, the same configuration is used as in the Graves paper [9]. The input layer is 

size 3, and there are 3 hidden layers with 400 cells in each one. The output layer 

has 20 bi-variate Gaussian mixture components. The loss function uses stochastic 

gradient descent. Once trained, the same configuration is used to generate or 
smooth handwriting. 

Going back to the implementation of LSTMTrainer, the train network() method 

first calls the forward() method of the HandwritingSynthesisModel, which is a 
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standard method implemented as specified by Pytorch. This method 

automatically computes the gradient weight updates to the network. 

The forward() gives the values needed in order to compute the Gaussian 
mixture (eqs. 11 - 13), namely y, π, µ1, µ2, σ1, σ2 and ρ. These become the input to 

the gaussian mixture() method, which returns the computed probability of the 

next x given y. 

Finally, the algorithm compares the predicted value to the actual value from 

the training data using the loss fn(). The result is used to propagate backward 

through the network and update the weights. The gradients are also clipped as 

described above at this point. After every epoch, the state of the model is saved so 
it can be reloaded later to save time. 

6.5 Generating Handwriting 

The next step is to generate sequences of stroke points that will form the 

generated sample. In order to generate a handwriting sample, a slight 

modification is made to the network architecture that is shown in Figure ??, to 

add a character c input. The character c is specified prior to the input layer. This 

character is then inserted in between the hidden layers as a one-hot-encoded 
vector. The computation of the network then proceeds as normal. As described 

previously, the window weights φ are examined to determine the stopping 

condition: φ(t,U + 1) > φ(t,u) ∀ 1 ≤ u ≤ U 

The resulting style is consistent within itself but distinct from other sequences. 

A generated sequence will have the same handwriting style for the entire 

sequence. However, generating the sequence again, with the same or different 
character input, will result in a different handwriting style. 

In the code, the method as handwriting() is used to generate the handwriting 

sequence and to optionally display/save it according to the options that have been 

set. 

6.6 Smoothing Handwriting 

Smoothing is very similar to generation; however, instead of relying on a text 

string, the generator takes a sample of existing handwriting. The sample is input 

to the generation sequence to prime the sequence. This gives the LSTM network a 

history of data points from which it will predict the next set of points. That lets it 
maintain the same style as the source handwriting. 

To improve the handwriting, a bias term a bias term b is added to the Gaussian 

mixture equations, as shown in equations 25 - 26. This reduces the variation in 

point prediction and maintains the style. 
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Lower biases have less effect on the stylistic improvement, whereas higher 

biases result in cleaner handwriting at a cost of reduced stylistic distinctness. 
Values closer to 0 had the least effect and closer to 10 had the greatest effect. 

In the code, the method smooth handwriting() is used to smooth the supplied 

handwriting sequence and to optionally display/save it according to the options 

that have been set. The sequence is provided in a data file of the same format 

online format as the training data set. Internally, the sample is simply an 

instantiation of the Dataset class described previously. 

7 Discussion 

Compared to other learning disabilities, the symptoms of Dysgraphia may appear 

mild; however, it poses a significant life-long challenge [14]. This project 

establishes an application with an extendable frame work, published on GitHub. 

The application plots handwriting on a Cartesian grid, and then smooths the 

writing into a legible style similar to the original. 

The application can be integrated into any device that is capable of running 

Python scripts. Potential field applications include: note taking for school and 

home, auto-filling forms with the person’s writing style, and Dysgraphia 

diagnostic tools. Diagnostic tools could help to identify early childhood neural 

disorder and provide help during preschool years[1]. 

Determining which neural networks method are best suited for handwriting 
smoothing was difficult. The initial thought was focusing on image (offline) 

processing based methods like GAN and Style Transfer[3], this is the area where 

the majority of previous work was completed,including the transcription of old 

cursive historian records. A significant amount of time was spent on various image 

processing models. Dysgraphia handwriting posed a higher level of difficulty due 
to the significant slants, as well as uneven spacing and amplitude. Image 

processing relies on fairly reasonable spacing to recognize the end of a word and 

on comparable amplitude for pixel by pixel processing. The results were mixed 

and inconsistent for image based model.The pen stroke position (online) based 

LSTM model resulted in useful and the most promising models. 
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8 Future Work 

In the course of exploring techniques for this project, a lot of information was 

gathered about GANs, or Generative Adversarial Networks. It would be interesting 

to explore using GANs to replicate the generative and smoothing work presented 

here. Such a network could be utilized to convert handwriting from an image into 

the online x, y format needed for smoothing. It would also be interesting to find a 
way to minimize stylistic variance when using the bias adjustment technique 

while still improving the legibility. 

An obvious next step would be to iron out the difficulties this project faced 

with priming the handwriting sequence in order to smooth out handwriting. In 

fact, that would likely yield positive results quickly since the original paper [9] 
was able to get it to work. Thus, it would simply be a matter of replicating that 

success in the Python framework. 

9 Ethical Implications 

Overall, the ethical implications of handwriting recognition and smoothing are 

positive. The techniques shown in this paper could be applied in helping children 

and adults with Dysgraphia, as well as other disorders that affect handwriting like 

Parkinson’s disease or arthritis. This work could also be used in the recreation of 

important archaic documents or transcripts that, with time, have become illegible. 

Although the negative ethical implications are few, there is the potential for 

forgery which could lead to theft, misrepresentation, or mischief. With any new 

technology, security measures could be implemented to prevent such cases. 

10 Conclusion 

Dysgraphia is a disorder that affects the fine motor skills of both children and 

adults. This project explored possible ways of using neural networks to help 

people suffering from this disorder smooth out their hand writing to help them to 
better communicate. The end product of this project is an application that takes 

handwriting data, in the form of a sequential stroke data, as an input and 

generates a set of stroke data that would represent new smooth handwriting. The 

application can also take in training data sets that can be used to train a new 

model. This application will not only help people with Dysgraphia, but could 
promote additional research in many other areas of handwriting or hand drawing 

applications. 
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