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Abstract. – With globalization, the capital markets have exploded in size and 

value, making them exceedingly difficult to predict. These days the public has 

access to real-time data of the market-leading to more participation. As a positive 

step, this might lead to better wealth distribution in the society, and it also adds 

to the random nature of the market, making it more unpredictable. The portfolio 

accounts consisting of stocks and bonds are considered serious investment assets. 

They can make or break a person’s future. It is also a way of shielding one against 

market risk or rising inflation. These accounts, when managed well, will grow in 

value and can keep an individual’s finances healthy. The management of these 

accounts requires good knowledge of markets and periodic adjustment of assets 

in the account.   

1   Introduction 

The reality for most individuals is that investing in the public market exchanges is 

the only one of very few methods to generate wealth. Typically, individuals with 

limited assets are not afforded the same investment guidance level as those with wealth 

managers providing investment advice. There are a growing number of AI/ML 

automated portfolio and investment advisor tools, and the goal of this paper is to 

leverage the success of the AI/ML stock portfolio trade management research to date. 

This paper will focus on use of existing Reinforcement Learning (RL) algorithms (Q-

Learning & Policy Optimization) and extend the RL methods with time-series analytic 

techniques. As the stock market evolves, the time-series analytic techniques are meant 

to ensure the RL environment can effectively improve the probability that the RL agent 

is making useful stock trading decisions [9]. 

Financial trading companies are famously known for referencing in their advertising 

that “prior market results are no guarantee of future performance success.” The strength 

of Reinforcement Learning is RL agents can learn and adjust their behavior while 

interacting with a live environment. It generates its own training data after every 

interaction and either receives a reward or a penalty. It interacts with the environment 

to maximize cumulative rewards. In the portfolio management case, the agent interacts 

with the environment with a buy, sell or hold action for stock or EFT which is part of 

the account. The stock trading environment is an uncertain environment with 

exceptionally large state space. The agent making decisions in such an uncertain 

environment is modeled with Markov Decision process (MDP). MDP provides a 
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mathematical framework for sequential decision making under uncertainty. Given that 

financial markets are stochastic, sample parameters that may influence markets are 

supply, demand, political stability, war, weather, holidays, age/ethnicity/culture of 

population, pandemic, etc. RL effectively utilizes MDP with several policy iterations 

to determine effective strategy to interact in a stochastic environment. The stochastic 

environment consists of the 30 stocks listed in the Dow Jones stock exchange index in 

this paper's case. 

Current work on Reinforcement Learning (RL) investment portfolio management 

focuses on comparing different RL algorithm approaches. Traditional deep learning 

methods using various Policy Optimization RL algorithms were employed in prior 

studies [1,2, 22]. The results of prior studies showed evidence of positive outcomes in 

comparison to respective baseline trading portfolio techniques (e.g., momentum 

trading, cost average trading). Like prior referenced research, PPO, A2C, DDQN are 

samples of RL Deep Q-Learning algorithms that will be studied as part of this paper. 

The list is not exhaustive but is meant to be illustrative of the options for building RL 

models that produce useful comparative stock trading model-free policies [3,4].  

Remaining consistent with objective of optimizing trades for everyday investors, the 

selected Deep Reinforcement Learning algorithms will be optimized for analytical 

comparison of three typical investment options (1) Dow 30 multi-stock trading (2) Dow 

Electronic Trading Fund (ETF) single stock trading (3) Dow 30 portfolio rebalancing 

trading. These three investments are considered “typical” because they are the most 

likely to be found in some form in an individuals’ trading account or 401-K. The 

research will factor in real-world trade costs that identify trading models with lower 

overall trading costs that have evidence of outperforming the baseline model. The 

baseline model will consist of straight Dow stock cost-averaging trades, at regular 

intervals, over the equivalent time period of paper’s study.  

 

2   Related Work  
 

Managing assets in portfolio is challenging and daunting task. The primary job of 

any portfolio manager is to minimize risk while maximizing returns. The portfolio 

optimization is multi-objective optimization problem and one of the most critical issue 

in the finance domain. The methods of managing and optimizing portfolios have been 

evolving and becoming more sophisticated with technology. In last few years, several 

research papers have been published demonstrating diverse ways of optimizing 

portfolio and recently deep learning and reinforcement techniques are becoming 

increasingly popular on the top of traditional methods. The modern portfolio theory 

was proposed by Harry Markowitz (1952), in a paper published in Journal of Finance. 

This work later earned author a Nobel prize. The model proposed by Markowitz is also 

known as Mean-Variance model. The model is primarily used to make decision buy, 

sell, or hold. However, as far as portfolio optimization is concerned it does not meet 

expectations of today’s financial world.       
The most recent paper published by Hieu, L. T. et al. (2020) has experimented with 

stock portfolio optimization by applying continuous action space reinforcement 

learning techniques. It presented minimum variance theory for stock subset selection 
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and wavelet transform was used to extract multi-frequency data pattern. The model 

takes transaction and risk factor into account and RL agent was trained using Deep 

Reinforcement Learning Algorithms such as Deep Deterministic Policy Gradient 

(DDPG), Generalized Deterministic Policy Gradient (GDPG) and Proximal Policy 

Optimization (PPO) [7]. By just utilizing close price, high price and close price after 

wavelet transform and experimental result has shown DDPG performed better than 

others.                                                                                                                           
Soleymani & Paquet (2020) have presented another unique portfolio optimization 

approach that combines automatic feature selection and policy learning [16]. It employs 

online and offline learning. The concept is called DeepBreath [16]. The stock 

transactions sometimes take time to finalize in real-time and it is called settlement risk. 

The paper has shown the way to tackle settlement risk by using blockchains. As 

described in the paper restricted stacked autoencoders are used for dimensionality 

reduction and feature selection and convolutional neural network was used to learn and 

enforce policy. Input to autoencoder is stock prices and technical indicators derived 

from prices. Autoencoders' strength is that they can learn non-linear patterns in the data, 

perform dimensionality reduction, and eliminate correlations. It is an encoder/decoder 

architecture where encoder reduces dimensions and decoder reconstructs input data 

from the hidden layers. It is called restricted because decoder partially reconstructs 

input vector from the hidden layers and shown with experiments that this approach 

proven to be effective. The features learned by autoencoder are passed to CNN which 

learns and implement policies using deep reinforcement learning framework. 

Soleymani & Paquet (2020) has shown that CNN learns only from historical data with 

SARSA (state-action-reward-state-action) which is called offline learning and for 

online learning online stochastic batching technique was used. 

In another research, Aboussalah & Lee (2020) used Stacked Deep Dynamic 

Recurrent Reinforcement Learning (SDDRRL) for building optimal portfolio and 

model built using this approach found to performed superior to Mean-variance 

optimization, risk-parity model and uniform buy-and-hold (UBAH) index [17]. Typical 

Recurrent Network has limitation to react to new market conditions. To handle this the 

paper has introduced concept called Time Recurrent Decomposition. 

In one of the papers by Wu, X. et al. (2020) have proposed idea of using quantitative 

trading approach by using Deep Reinforcement Learning over intuitional approach. The 

intuitional approach is a typical gut-feeling-based approach of trading and prone to 

major losses caused by investors' irrational behavior. It proposes mining historical stock 

data to maximize profits volatile market conditions. It has demonstrated using Gated 

Recurrent Unit, it is possible to extract a pattern that is responsible for the movement 

of the index, which can be effectively used along with Deep Reinforcement Learning 

to maximize profits [9]. It has proposed two adaptive trading strategies GDQN (Gated 

Deep Q-learning trading strategy) and GDPG (Gated Deterministic Policy Gradient 

trading strategy) and both strategies have been tested in volatile stock markets and 

compared with Turtle trading strategy and results shows both RL strategies outperforms 

Turtle strategy and out of two RL strategies GDPG found to be more stable [9]. 
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In another interesting paper by Wang et al. (2020) employed mixed method using 

Long short-term memory networks (LSTM) for stock prediction and Mean-Variance 

model for portfolio optimization [10]. The paper shows experiment was carried out and 

results were compared between LSTM, Support Vector Machine (SVM), random 

forest, Deep Neural Networks and Auto regressive Integrated Moving average model 

(ARIMA) in first stage and Mean-Variance Portfolio model was applied in second stage 

to optimize portfolio. It concluded that mixed method outperforms others in terms of 

cumulative returns per year while minimizing risks. 

Literature on using Q-Learning approaches explored the issues of designing a 

multiagent system that aims to provide an effective decision support for daily stock 

trading problem. One example of note is the MQ-Trader model. MQ-Trader defines 

multiple Q-learning agents in order to effectively divide and conquer the stock trading 

problem in an integrated environment [6]. In MQ-Trader the signal agent is provided 

with following 10 technical indicators that include the relative strength index, MA 

convergence and divergence, price channel breakout, stochastics, on-balance volume, 

MA crossover, momentum oscillator, and commodity channel index. There is interest 

in the use of relative strength indicator and moving average indicators as these overlap 

with other noted in reference papers [1, 2, 5]. The results were that the learning 

framework produces better trading performances than the systems based on other 

alternative frameworks. However, there was no specific comparative examples of the 

alternative frameworks. 

Mnih et al. (2016) explores the need for using asynchronous methods building a 

Reinforcement Learning system. Multiple policy learn methods are to be available and 

the use of them varies depending upon the state of an environment.  If it is large and 

using Q-Tables is infeasible, Deep NN are used as function approximators for the state 

space. These Deep NN are also referred to as Deep Q networks since the output of these 

Deep NN are Q-values for all the actions that are to be taken. The data to train this Deep 

Q-Network is collected after random actions are taken by agent. The next state and 

rewards after taking this random action will be stored in experience replay memory. 

The random samples from experience replay memory will be taken to avoid correlation 

between sequential samples.  The approach taken by Mnih et al (20160 is worth 

considering is to create multiple environments in parallel which will explore the 

environment using different epsilon greedy strategy so that each individual 

environment is uncorrelated to each other. 

Li et al. (2020) explores the rich features of a framework to implement 

Reinforcement learning system.  The applications of Deep Neural networks are 

numerous. They are used in Health care, Finance, Automotive industries to name a few. 

As the data sets become larger, the need to distribute the training across multiple 

compute resources become more prominent. Framework analysis is key to being able 

to establish a model-free policy capable of providing predictive capability.  As noted 

in this research PyTorch provides a data parallel model which will facilitate the training 

of Neural networks in parallel. During the training process of DNNs, the forward pass, 

backward pass and weights optimizations is done in a loop. This loop count will get 

larger as the size of DNNs and data increases. Using data parallel package, the 

applications can create multiple replicas of models using a portion of the available data. 
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These models can synchronize the gradients and weights to achieve a faster training. 

The data parallel package provides convenient APIs to achieve this task. The data 

parallel APIs are designed to be non-intrusive. The application developer does not have 

to rewrite large part of the code in case they find local resource to be limiting and want 

to distribute the workload across multiple resources. 

Chong, T., Tai-Leung, N., Liew, W., & Khim-Sen, V provide useful guidance of use 

of relative strength indicator (RSI) and moving average convergence-divergence 

(MACD) indicator as features that can address challenges encountered with stock 

market volatility. The challenge is that in small time steps stock processes can at times 

vary widely. It is only when use of RSI and MACD can inflection points can be 

detected. The inflection points of when a stock is trending up or trending down. The 

paper revisits the performance of the two trading rules in the stock markets of five other 

OECD countries [5]. The authors provided evidence that the MACD and RSI indicators 

consistently generate significant abnormal returns in the Milan Comit General and the 

S&P/TSX Composite Index. In addition, RSI rule is also profitable in the Dow Jones 

Industrials index. Key observation point is the research referenced profits are 

sustainable in the presence of a 1% round-trip transaction cost. The conclusion results 

provide evidence supporting investors believe in these two technical indicators in 

developed markets.  

Prior work reported that RL modeling is one of the state-of-the-art techniques 

machine learning techniques among others that in recent years are providing a risk-

adjusted return superior to the S&P 500. The reason noted is that the traditional 

statistical learning algorithms cannot cope with the non-stationary and non-linearity of 

the stock markets [1,2]. Both evaluate related variants of Deep Q-learning, double DQN 

and dueling double DQN [2]. Baseline comparison RNN-LSTM model with a greedy 

strategy approach was used. The greedy strategy means buying every-time the stock is 

predicted to go up and selling if the stock is predicted to go down. Important 

observations are (1) the state needs to contain as much information of the factors that 

affect stock prices as possible. (2) The state needs to contain less noise so the agent can 

learn right experience and is more likely to choose right action at each time step so that 

a positive long-term accumulative reward can be acquired [1]. The focus is on having 

the right information and reduce noise or volatility. Chen et al.  (2019) provided 

example that Deep Q-learning is Q-learning with the Q-table be replaced with a deep 

neural network. The paper presents use of RNN-LSTM as replacement. The conclusion 

deep Q-network can learn profitable patterns from raw stock trading data and utilize 

them to achieve high accumulated reward. 

W. Muller and H. Schumann EDA of time-series points to analytical uses of 

converting data into visualizations [20]. Silva and Catarci show innovative techniques 

focus on helping users identify periodic patterns in the data [21]. These techniques 

focus on the issue of optimal space management, enabling the display of an increased 

number of time-series compared to a single temporal representation. The visualizations 

have shown to be effectively processed in CNN models to provide create useful RL 

policies that set framework for RL environment state, actions, and rewards. 
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3 Data 

 
The initial exploratory data analysis (EDA) helps to establish a RL environment so 

that RL agent learns to reach goal as efficiently as possible. The agent interacts with an 

environment to trade on stocks and receives positive reward for trading gain or receives 

negative reward for trading loss. The detailed EDA shall construct a trading 

environment so that agent can maximize cumulative rewards with minimum number of 

interactions or minimum number of trading. 

 
3.1  Time-Series Data Analysis 

 
In the EDA preprocessing analysis this research was able to leverage readily 

available stock data from Yahoo Finance and Wharton Data Services. There was no 

need to impute data or address any missing data. The preprocess data step leverages the 

features selected from the exploratory data analysis. As part of research the exploratory 

data analysis focus on identifying features that improve the predictive accuracy for 

stock returns. In practice investment trading, various information needs to be 

considered, for example the historical stock prices, current holding shares, stock 

technical indicators, macroeconomic and micro economic data are used for stock 

prediction. Stock historical prices alone are not sufficient to create a useful prediction 

model. As shown in Fig 1, the historical stock prices have slow dampening 

autocorrelations. The slow dampening autocorrelations provide evidence that the 

historical data does not have strong correlation between time lags and not useful for 

prediction independently.   

 

 
Dow 30 Historical Stock Price Autocorrelation 

 
Fig 1: Dow 30 (ETF) Historical Stock Price Autocorrelation (ACF vs Lag) 

 

 
The time-series data analysis involves use of the “stockstats” package. The 

“stockstats” features are calculated for feature selection purposes. This paper study 

included EDA of “stockstats” technical indicators (Moving Average, Relative Strength 

Indicators, etc) to identify features that would be useful in establishing a Reinforcement 
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Learning Environment and allow the algorithms to experiment to learn when to trade 

an investment vehicle (e.g., Dow stock).  

In Fig 2 the technical indicators are illustrative of the initial RL Environment State 

values.  As part of the research feature engineering was conducted to assess evidence 

of correlation between the stock market closing price (both trend and detrend) and 

“stockstats” technical indicators. In addition, we experiment with a traditional simply 

move average (SMA) 20-Day vs 200-day crossover indicator created as part of the 

study. The feature engineering included time-series analysis using vector 

autoregression (VAR), Pearson correlation coefficient and rolling 30-day correlation of 

technical indicators vs the Dow Jones Index (Ticker: ^DJI) closing stock price.    

In Fig 2, the Lead/Lag charts are used to visually show the output of the rolling 30-

day correlation (technical indicator vs DJI closing stock price).  The black dotted line 

indicates the center where an indicator either leads or lags the closing stock price. The 

red dotted line shows optimal correlation and the set number of days the indicator leads 

or lags. Numerous technical indicators were researched but the paper only shows results 

in Fig 2. Only indicators that lag stock close price are useful for signaling whether to 

“buy”, “sell” or “hold” a stock. Based upon research it showed evidence that MACD, 

CCI and RSI may be use for signaling stock trade decision predictions.  20-day vs 

200-day crossover and ADX showed evidence of not being useful for signaling stock 

trade decisions.  

As will be outlined in Methods Section below, the selected technical indicators will 

be set as the RL Environment State for the RL policy agent neural network (MLP and 

LSTM) to determine actions that will optimize the RL reward (i.e., portfolio account 

value). 

 

 

NOTE:  The correlation is not meant to imply causation relationship between 

technical indicator and the DJI closing stock price. The technical indicators are used by 

RL policy agent to assist with signaling whether to “Buy”, “Sell”, or “Hold” a stock.  

In Fig 2 Technical Indicator definitions source: Investopedia.com. 
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Lead / Lag Chart Corr 

               
20-Day SMA vs 200-Day SMA Crossover 

 

 

Leads 

 

 
MACD - Moving Average Convergence Divergence 

 

 

Lags 

 

  
RSI - Relative Strength Index 

 

 

 

Lags 

 

  
           CCI - The Commodity Channel Index  

 

 

 

Lags 

 
ADX – Average Directional Index 

 

 

 

Leads 

        

                     Fig 2: Technical Indicators vs Dow Jones Index (ETF) 

 
A complete list of technical indicators is available at the stockstats documentations 

site. Macro-economic data such as US Treasury Bonds, Commodity Prices (e.g., 

Copper, Lumber, Gold) and the use of a pre-defined “turbulence” indicator were 
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investigated. The same time-series EDA steps conducted for “stockstats” was also 

applied to other potential useful predictor data.   

It is worth noting that as part of the study random data was created to simulate white 

noise and used with the RL algorithm to help gauge the validity of the policy predictions 

vs the use of lagged time-series financial stats and macro-economic data.  This white 

noise test provided a validation check that the data identified as part of feature 

engineering is useful. This test helped provide evidence that the technical indicators 

acted as useful features for improving the RL cumulative reward value. 

The feature engineering process utilized in this study allows for the RL Environment 

state to be established at regular intervals. Features that may prove useful in a trending 

market may not be as useful as a volatile market. The time-interval for this research 

was kept to a quarterly time-period.  

 

 

4   Methodology 
 

For research, this paper leveraged the Reinforcement Learning (RL) stock trading 

framework from “AI4Finance LLC”. Below paper outlines the components of RL and 

how research was conducted with various RL Environment state spaces [22]. 

A reinforcement learning system was designed to find effective investment strategy 

to either to trade a single stock or multiple stocks or to build a diversified equity focused 

portfolio with periodic automatic rebalancing to achieve goal of maximizing profits 

with minimum risks. Reinforcement learning is a novel approach in the field of 

portfolio management and lot of research is currently being done in this area. These 

methods are proven to be useful in stochastic environments such as trading environment 

on the public market exchanges where decisions must be taken under uncertainty. 

The challenging part of building Reinforcement Learning system is to build an 

environment which can mimic the problem and its eco system at hand. As was 

described in the Section 4.2.3 below, the environment is made up of the stock portfolio 

account and stock analytical technical indicators. The stock portfolio account changes 

with every action taken by the agent. Even though the action is generated outside of the 

environment, the design of action space is tied to overall functioning of the 

environment. The design of environment state space, action space, reward function and 

policy agent are below in Sections 4.2 and 4.3. 

 
4.1 Overall Reinforcement Learning (RL) Performance Comparison Approach 
 

In this section, the performance comparison results are shown. This research 

included performing back-testing for the individual agents (e.g., A2C, PPO, DDPG) 

and the ensemble approach. Following three stock trade scenarios are modeled to 

identify stock trading strategies for producing better Sharpe Ratios relative to baseline 

Dow Jones Index (^DJI) performance.  
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1. Dow ETF Single Stock Trading 

2. Dow 30 Multi-Stock Trading  

3. Dow 30 Portfolio Rebalance 

 
This paper started with Dow ETF (Electronic Trading Fund) single stock trading in 

order to research the “stockstats” technical indicators and other methods (e.g., time-

series lag analysis). The Dow ETF single stock trading modeling allow for quick 

analysis on whether an indicator showed evidence of being useful for signaling whether 

to “buy”, “sell” or “hold” stocks. If technical indicator showed evidence of being useful, 

then it was used for multi-stock and portfolio rebalance modeling. 

To produce comparative results to Dow Jones Index (^DJI) performance this paper 

leveraged a financial industry standard practice of “backtesting” that allowed for 

establishing both Sharpe Ratio and comparative charts of study scenario vs ^DJI 

baseline. The overall Sharpe Ratio for Dow Jones Index Jan 2009 – July 2021 is ~0.74. 

For this paper the Sharpe Ratio of ~0.74 was the selected baseline comparison for 

establishing the RL Environment State.  

 
4.1.1  Sharpe Ratio – Overview 
 

Sharpe Ratio is used for general comparison of RL algorithm model return of 

investment trades vs portfolio risk. Sharpe Ratio is widely used in the Finance Industry 

to determine strength of portfolio results. The ratio is the average return earned more 

than the risk-free rate per unit of volatility or total risk. Volatility is a measure of the 

price fluctuations of an asset or portfolio. For this paper, the yield for a U.S. Treasury 

bond is used as the risk-free rate. Below is the calculation of the Sharpe Ratio: 

 

Sharpe ratio = (Rp − Rf) / σp (xx) 

Where: 

 

Rp =return of portfolio 

Rf =risk free rate 

σp =standard deviation of the portfolio’s excess return 

 
Overall, the greater the value of the Sharpe ratio, the more attractive the risk-adjusted 

return. As a comparison prior to Covid pandemic the Dow ETF (^DJI) had a Sharpe 

ratio of 0.90. After the Covid pandemic, the Dow ETF (^DJI) Sharpe Ratio for past 3 

years has been lower at 0.74. According to “Seeking Alpha” website, a good financial 

advisor (CFA) typically has a Sharpe Ratio of 0.75 - 1.00. Above 1.00 Sharpe Ratio is 

considered particularly good and above 2.00 is exceptional. 
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4.2  Reinforcement Learning (RL) Environment Components 
 

4.2.1  RL Environment Component Overview 

 
 Reinforcement learning system consist of different components as depicted in Fig 

3. The first component in this is the portfolio account which is made up of the 

investment funds and count of stocks that are part of the account. The second 

component is the state of the market which affect the net worth of the account and it 

changes with every tick of time. The third component is the intelligent agent which will 

observe the current state of the market and take actions to optimize the portfolio 

account. A stochastic model to represent the state of the market needs to be built. 

Markov Decision Process (MDP) is chosen as a modeling method to represent the 

market Markov model assumes that the current state of the market is a good indicator 

to predict the future state provided the current state includes sufficient statistic to 

represent the history of the environment. To build a state to satisfy this requirement, 

various technical indicators of the stocks are included into state. These technical 

indicators like relative strength index (RSI) are calculated over a period called look 

back period providing a good representation of the stock for the look back period. 

The agent is supposed to take a decision based on current market conditions and state 

of the portfolio account. A neural network is considered as an agent. 

 

 
Fig 3: Block diagram of Reinforcement Learning System 

 
The block diagram above depicts the reinforcement system for portfolio account 

management. The Agent consists of “policy network” and module to execute the 

predicted action. The input to policy network is the combination of current state of the 

market and current state of the portfolio account. Based on this input, policy network 

will predict a vector of action. These actions will be applied on the account to change 

the net worth of the account.    
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4.2.2  RL Environment Component - Action Space 

 
Single and Multiple Stock Trading  

 
In the case of single stock trading and multiple stock trading environments the 

possible actions in the trading environment are Buy, Sell or Hold action for any stock 

in the account and the number of stocks that needs to be acted upon. The job of the 

agent at any step is to predict the right set of actions on x number of stocks to maximize 

the rewards. The experimental portfolio account is limited to 30 stocks in the DOW 

index. The action space at any tick of time needs to generate suggestions to act upon all 

30 stocks which makes it a vector of size 30. Each individual values in this vector are 

decimals between –1 and +1. The interpretation of these decimal values by the 

environment can be explained with example below. 

 
[AAPL, HD, INTC, IBM, …........] = [-0.9, 0, 0.8, -0.1, …...] 
 

Consider the vector above which shows only first 4 values of a vector which is of 

the size 30. This vector is associated with individual stocks by its position. The value –

0.9 is an action to be taken on AAPL stock. The environment normalizes this action by 

multiplying with 100 before interpreting and acting. The value –0.9 will become –90 

after normalization and the negative value indicates sell 90 stocks of AAPL which are 

in the portfolio account. 

 

Portfolio Rebalancing 

 
    The stock markets are dynamic, volatile and situation changes every day. The 

stocks which were profitable yesterday become riskier today and vice versa. In 

diversified portfolio riskier stocks may hurt overall portfolio standing. The job of 

portfolio manager is to watch market closely and take decisions to buy and sell stocks 

periodically to maximize returns. The portfolio rebalancing environment achieves the 

same. The difference between multiple stock trading and portfolio rebalancing is, in 

multiple stock trading RL strategy is applied to each stock independently that 

maximizes returns on that specific stock, but portfolio rebalancing maximizes returns 

on overall portfolio.  

     In this environment, the reinforcement learning agent learns to reallocate weights 

of stocks to maximize returns. These selected weights are positive numbers between 0 

and 1 such that sum of all weights for stocks in portfolio is equal to 1. The agent returns 

weight vector as an action vector. The length of this action vector is equal to total 

number of stocks in the portfolio. For this paper portfolio account is limited to 30 stocks 

in the DOW index therefore action vector is of length 30. Each element in the weight 

vector represents a proportion of stock on the day of trading. This environment was 

setup for daily rebalancing, so reallocation is done every day at the end of trading 

session. The sample action vector is as below. 
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[AAPL, HD, INTC, IBM, …........] = [0.1, 0.0, 0.3, 0.2, …...] 

 

 

 
 

Fig 4: Sample actions taken by agent 
 

Sample actions in Fig 4 does not show actions on all 30 stocks due to space limitations. 

It shows actions taken on the first 16 stocks from day 1 to 12 consecutive days. On day 

1 all 30 stocks in portfolio carry same weight and sum of all weights on each row is 1. 

The rebalancing moves money out of risky asset to assets with lower risk thus 

minimizes overall risk of the portfolio.  

          
4.2.3  RL Environment Component - State Space  
 

Single and Multi-Stock Trading 

 
The Reinforcement Learning agent makes a decision about its next action based on 

current market conditions and the current state of the portfolio account. The RL agent 

needs these two data to define the state space or state vector. State space vector 

combines the data of current market conditions and current state of the portfolio 

account. In single stock and multiple stock trading environments dimension of state 

space vector is 181x1. The contents of the vector are as shown below. 

 
[‘Available funds/Balance], [Adj cp x 30], [Shares owned x 30], [MACD x 30], [RSI x 

30], [CCI x 30], [ADX x 30]] 

 

Portfolio Rebalancing 

 
In portfolio balancing environment dimension of the state space vector is 240x1. The 

contents of the vector are as shown below. 

 

[Adjusted Close/Open x 30], [High/Open x 30] , [Low/Open x 30],  [Volume x 30], 

[MACD x 30], [RSI x 30], [CCI x 30] , [ADX x 30] 
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Table 1 contains description each of RL Environment State is below: 

 
State Components Description 

Portfolio Balance Available balance/funds in the portfolio account at current time 

step. 

Adjcp Adjusted close price of each of the Dow or ETF stock. 

Shares Owned Shares owned of each Dow stock. 

Volume Number of shares traded on any given day 

MACD Moving Average Convergence Divergence (MACD) - It is stock 

momentum indicator that identifies moving averages. 

RSI Relative Strength Index (RSI) - RSI quantifies the extent of recent 

price changes. 

CCI Commodity Channel Index (CCI) CCI compares current price to 

average price over a time window to indicate a buying or selling 

action. 

ADX Average Directional Index (ADX) ADX identifies trend strength 

by quantifying the amount of price movement. 

 

Table 1: Components of States of Environment 

 
In this reinforcement system, the agent is allowed to act on the portfolio account 

once every day. Once an action is completed by the environment, the date advances to 

next calendar date to fetch the state of market and combines it with state of portfolio 

account to advance to next state space. 

  
4.2.4  RL Environment Component - Reward Function   

 

Single and Multiple Stock Trading 

 
Reward is the incentive mechanism for an agent to learn to improve action. The 

policy network which represents the intelligent agent needs to be trained to produce 

actions which can maximize the rewards. For every state of the environment, the 

possible action space is sufficiently large. If a matrix consisting of state space, action 

space and reward is constructed, the best action for a given state is the action with 

highest reward. An example matrix with action vector having 2 values is as below. 

 
State Action Reward 

S1 [0,0] 1 

S1 [0,1] 3 

S1 [1,0] 2 

S1 [1,1] 1 

 

Table 2: Rewards for State-Action pairs 
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Clearly in the above matrix, action [0,1] is the best action since it produces the 

highest reward. But the time and compute resources required to try every possible 

action in larger environments is impractical. Instead of trying every possible action, a 

global function approximator like neural network is used. To train this neural network 

there are multiple algorithms like A2C, PPO, DDPG etc. which interacts with the 

environment, collect the rewards back from the environment and train the neural 

network which is the policy network to produce actions which can get best rewards 

from the environment. While the training algorithms of policy network takes care of 

choosing the best action, the reward calculation is with the environment.  

This paper defines the reward function as the change of the portfolio value when 

“action” is taken at “state” and arriving at “new state”. The goal is to design a reward 

function that maximizes the total portfolio value. The reward is a number which 

indicates the total profit or loss that was achieved out of the action that was applied to 

the environment. This reward increases when actions result in decisions which leads to 

increasing the total asset value of the account. To direct the training of policy network 

in right direction, the environment needs to penalize the rewards for bad actions.  

 

Example:  

 

When an action to buy is suggested but there are no funds available in the account and 

an action to sell a stock which is not held in the account needs to be penalized.  

 
Portfolio Rebalancing 
 

The reward function for this environment was designed to maximize mean 

logarithmic cumulative returns. The reward function is defined as follows,                                    

        

  
Where  

      is reward at time T  

      is portfolio return at time t.     

 
Portfolio return is calculated as follows,  

 

 
Where  
     is returns at time T,  

     m is number of stocks in the portfolio  

     is weight vector at time t 

    Adjcp is adjusted closed price of the stock 

   

 

Transaction cost at time T is calculated as follows, 
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Transaction cost =  *  * Total cost percentage 
 

Where,      

     Portfolio value at time T 

    

4.3 Reinforcement Learning (RL) Policy Agent  

An intelligent agent is the one which automates the portfolio management, and it 

replaces the human fund manager. This agent is nothing but a neural network. This 

intelligent agent also called as policy network will have to learn to take right kind of 

decisions for given market conditions. As mentioned in the previous section, there are 

multiple algorithms which can help train the policy network. Stable baselines library is 

a mature open-source library which implements these algorithms. This library is used 

successfully to train the policy network.  

  RL algorithms (Fig 5) are broadly divided based on the concept whether the agent 

has access to a model of the environment. By a model of the environment, it is meant a 

function which predicts state transitions and rewards. This paper focused on using 

different agent policy functions to create comparative results for analyzing which 

produced better total returns. The agent policies were selected on whether they work 

well for the financial stock trading action space (buy, sell, hold). Model-Free algorithms 

involve training function approximators like neural networks and they are suitable for 

environments with large state spaces like stock trading environments.  

 

 
 

Fig 5: Taxonomy of RL Algorithms (not exhaustive) 
Source: AI4Finance-LLC 
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There are many other available policy algorithms. The intent of this paper was not 

to conduct an exhaustive search but establish an ensemble framework that will allow 

for flexibility as market environment evolves.  
  The selection of algorithms used for this paper’s study is based upon the related works 

referenced in Related Works papers [2][7][22]. Table 3 is an overview of the algorithms 

and for this paper only actor-critic algorithms were included in research.  A2C, PPO 

and DDPG results are shown in this paper. 

 

   
 

Table 3: Researched Algorithms  

 (Note: Only A2C, DDPG and PPO results are included in paper) 

 

 
4.3.1  Policy Agent Algorithm - PPO  

   

In many settings where RL algorithm is used, the training data is generated on the 

fly while the agent explores the environment but in this portfolio management case, the 

market conditions are not affected by any action taken on the portfolio account. The 

training data from market is independent of the actions. So, the worry about exploring 

those regions in the environment which can result in learning a bad policy which is not 

useful is eliminated. But still there a worry about market data varying significantly. It 

can contain multiple distributions which are not similar to each other. As the policy 

network is trained on the market data, the learnt behavior of the network can be 

destroyed when it gets trained on a distribution which is not typical of the market 

behavior. Proximal Policy Optimization (PPO) addresses this issue by incrementally 

updating the policy network with an advantage function at every time step. In the 

mathematical formulation, πθ represents the policy network and At is an estimator of 

advantage function at time step t. 
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4.3.2  Policy Agent Algorithm - A2C   

 

Advantage Actor-Critic (A2C) is a synchronous and deterministic version of A3C 

(Mnih et al., 2016) in the family of actor-critic methods. This is hybrid technique that 

combines value based (Q-Learning) and policy based (Policy Gradients) learning. It 

eliminates the limitation and takes the best from both methods. In this approach the 

Actor is a parametrized policy that defines how the best actions are selected and Critic 

on the other hand evaluates this action. The Actor then updates its policy based on 

Critic’s evaluation. Advantage function in A2C is a low variance Q-value after taking 

State value off as equation shown below. 

 
A (s, a) = Q (s, a) - V(s) 

 
Fig 6 shows Asynchronous version (A3C) on the left and Synchronous version (A2C) 

on the right. In these methods multiple agents are trained with their own copies of 

environment, and each agent periodically updates global network. In asynchronous 

method different agents update global parameters at different times and may also have 

different versions of policies thereby aggregate updates might not be optimal. This is 

resolved by network shown on the right side of the diagram below in which it waits for 

each agent to finish an action on the environment before updating the global parameters. 

Next A2C restarts a new action on environment with all parallel agents having the same 

new state. Synchronous method proven to be performed better and it converges faster 

than asynchronous (A3C) method. 

 

 

 
 

Fig 6: Architecture of A3C vs A2C 

[Image source - Lil'Log’s github website] 

 
A2C can be used for Discrete or Continuous state actions. As with PPO, it is useful 

for either single stock trading or multi-stock trading scenarios. It is setup to work better 
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with large batch sizes. This proves to be helpful when learning on stock market 

environment. 

 
4.3.3  Policy Agent Algorithm - Deep Deterministic Policy Gradient (DDPG)  
 

DDPG is a reinforcement learning technique that combines both Q-learning and 

policy gradients. Basic elements of DDPG are training actor-critic network models, 

target actor-critic network models and replay buffer. The actor is a policy network that 

takes the state as input and outputs the exact action, instead of a probability distribution 

over actions. The critic is a Q-value network that takes in state and action as input and 

outputs the Q-value. The replay buffer consists of the observation, action, reward and 

next observation [22]. Fig 7 is a process flow diagram that provides the DDPG approach 

for training. 
 

 

 
 

Fig 7: DDPG Algorithm Process Flow 
[Source: spinningup.openai.com] 

 

 

 At each time step, the DDPG agent performs an action at state (s), receives a reward 

(r) at time (t) and transition to next state (st+1). The RL components (s, a, st+1, r) are 

stored in the replay buffer. A batch of N transitions are drawn from replay buffer and 

the Q-value yi is updated as [22]: 

 

    (1) 
 

The critic network is then updated by minimizing the loss function L(θ Q) which is 

the expected difference between outputs of the target critic network Q0 and the critic 

network Q [22]: 
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           (2) 
 

DDPG can be used for continuous state actions. DDPG is an “off”-policy method. 

For multiple stock trades and portfolio rebalance, DDPG shows evidence of being 

useful for stock trading.  

 

 

5   Results 
 

The results from paper’s research showed evidence that the “portfolio rebalance” 

modeling produced better accumulative returns and higher Sharpe Ratio comparative 

to the Dow baseline, Dow ETF single stock and Dow 30 multi-stock models.  In 

Sections 5.2, 5.3 and 5.4 will show the results obtained for the respective stock trading 

scenarios (i.e., single, mult-stock and portfolio rebalance).  In Section 5.1 the paper 

will outline a simple example how the RL stock trading model results demonstrate 

learning trading decisions.  

 
5.1  Learnt pattern of Agent 

 
One of the important aspect of results is to demonstrate the behavior of the agent in 

real world trading environment. To see how the intelligent agent performs at every 

trading cycle, the data about how many stocks were held in the account at every time 

step was collected and plotted. This is a particular case of AAPL stocks. The agent is 

demonstrating right buying and selling behavior at multiple places in this chart. Take 

for example at x-axis scale of around 2018-01. The agent bought around 500 stocks 

and sold it at around x-axis scale of 2018-04 when adjclose was higher thereby 

making a profit. This ideal behavior is not seen at every opportunity of low adjclose 

price. But few of this behavior is good enough to increase the asset value of the 

portfolio account. 
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Fig 8: Trading decisions by RL agent 

 

 

5.2  Dow ETF Single Stock Trading Results 

  
As referenced in the Data Section, this paper conducted time-series analysis on the 

stock technical indicators to establish an initial RL state environment. Upon establishing 

initial RL environment state this paper ran RL policy models using the Dow Jones Index 

ETF (ticker symbol ^DJI) as an aggregate baseline to determine whether the time-series 

analytics showed evidence of being useful for more complex multiple stock trade and 

portfolio rebalancing.   

Table 4 are sample output from the Dow ETF single stock trading modeling.   As 

referenced in the Methods Section the goal for Dow ETF single stock trade modeling 

was to be an efficient approach of screening technical indicator features to be included 

in more complex Dow multi-stock and Dow portfolio rebalance modeling.  

The cells highlighted in green show an example of evidence where the selected RL 

environment state action features and selected policy agent algorithm (PPO) may be 

useful for signaling stock trading decisions (i.e., buy, sell, hold) when compared to the 

^DJI Baseline. The environment state space technical indicators that showed consistent 

evidence of producing higher Sharpe Ratios were primarily MACD, CCI and RSI.   

 

Note:  DDPG is not able to be used for single stock trade modeling and Ensemble was 

only utilized for multiple stock trading scenario that showed evidence of producing 

higher Sharpe Ratios. 
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Metric\Agent  Baseline A2C PPO 

Annual Returns 13.45% 14% 15.14% 

Cumulative Returns 101.24% 105.8% 117.02% 

Annual Volatility  19.52% 19.2% 19.36% 

Sharpe Ratio 0.74  0.78 0.82 

Sortino Ratio 1.02 1.08 1.27 

Stability 0.84 0.87 0.86 

Max Markdown -37.08% -35.5% -37.05% 

Daily value at Risk -2.40% -2.40% -2.37% 

Alpha 0 0 0.01 

Beta 1 0.98 0.98 

 

Table 4: Backtest results from RL Models in Dow ETF single stock environment. 
 

The results from the single stock trading modeling analysis were used to establish 

the environment state for the final multi-stock and portfolio rebalancing modeling.   

The process of leveraging single stock trading modeling is meant to be an iterative 

method for keeping the environment state relevant as the stochastic stock market 

evolves over time. Section 5.3 and Section 5.4 extend the modeling research using 

multiple stock trading environment, MLP and LSTM policy neural networks and 

hyperparameter tuning. 

 
5.3  Dow 30 Multi-Stock Trading (Ensemble) 

 
Multi-Stock portfolio account holds all 30 stocks of Dow Jones Index. The 

intelligent agent varies the proportion of stocks held in the account based on learnt 

behavior from past data of these stocks. The learning of intelligent agent is done by 3 

different algorithms (A2C, PPO and DDPG) and the one with best Sharpe ratio is 

chosen for trading cycles. After 3 months of exposure to trading, the policy network is 

retrained for all the data until that point before employing it in trading again. The 

Ensemble agent for multiple stock trading environment was trained on data containing 

Dow Jones 30 stocks from Jan-2009 to Dec-2015 initially and then retrained every three 

months starting from day 1 up to 90 trading days that are already processed in the 

trading cycle. The initial investment amount was set to $100,000. 

As shown in Table 5, with ensemble modeling, the portfolio account was able to get 

annual returns of 10.9%. As the research was conducted there was evidence that 

Portfolio Rebalance scenario outperformed the multi-stock trading approach. The rest 

of this paper is focused on Portfolio Rebalance scenario as outlined in the next section.  
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Metric\Agent  Baseline Ensemble 

Annual Returns 12.21% 10.9% 

Cumulative Returns 78.24% 67.6% 

Annual Volatility  20.24% 16.681% 

Sharpe Ratio 0.67 0.72 

Sortino Ratio 0.93 1.37 

Stability 0.8 0.88 

Max Markdown -37.08% -29.899% 

Daily value at Risk -2.48% -1.172% 

Alpha 0 0.12 

Beta 1 0.05 

 

Table 5: Back test results from RL Models in Dow ETF multi-stock environment. 
 

5.4  Dow 30 Portfolio Rebalancing 

 
To implement this form of multiple stock (portfolio) trading separate environment 

was created with the portfolio containing Dow 30 stocks. The purpose of this setting is 

to rebalance portfolio (change proportions of the stock) periodically in order to 
maximize returns. For this paper, rebalancing was done daily.  

    Three RL agents A2C, PPO and DDPG were trained and evaluated separately 

along with Ensemble which combines performance of these three agents and results are 

presented in the table 6. All models were trained on same data containing Dow series 

of 30 stocks from Jan-2009 to Dec-2015 initially. The agents trained for this duration 

are used for trading for 90 days and then they were retrained with the data from the 

original start date to already traded days and same process followed until end of the 

time series.  

    The different experiments that were carried out in the process of training it has 

been observed that on re-training these agents periodically they learn new patterns in 

the data, update their experience and hence their actions improve which in improves 

the cumulative returns in the portfolio. All agents were trained up to 80000 timesteps 

with an initial investment amount of $100,000. These agents were trained using OpenAI 

gym (stable baselines) library after tuning learning rate (0.00005) and entropy 

coefficient (0.0005) by leaving other hyperparameter configuration to default. The 

stable-baselines code base from OpenAI gym provides several policies to train RL 

agents. For the results presented in this paper agents have been trained using policies 

listed in Table 6 below: 

 

Agent Policy Description 

A2C MlpLnLstmPolicy This is actor-critic policy using normalized LSTM layer with 

MLP feature extraction. 

PPO MlpPolicy This is actor-critic policy using MLP feature extraction. 

DDPG LnMlpPolicy This is actor-critic policy using MLP with normalized layers. 

 

Table 6: Agent’s policy networks. 
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Table 7 shows backtesting result of the RL strategy learned by these agents for the 

trading period Jan 2016 up to July 2021 which is total 65 months of trading. As shown 

in the table Ensemble which combines performance of three agents performs better 

(Sharpe ratio 0.97) than other agents and it is a winning model of this experiment.  

 
Metric\Agent  Baseline A2C DDPG PPO Ensemble 

Annual Returns 13.45% 17.17% 17.73% 16.58% 18.40% 

Cumulative Returns 101.24% 140.63% 146.98% 134.01% 154.92% 

Annual Volatility  19.52% 19.19% 19.11% 19.11% 19.25% 

Sharpe Ratio 0.74  0.92 0.95 0.90 0.97 

Sortino Ratio 1.02 1.30 1.34 1.27 1.38 

Stability 0.84 0.92 0.92 0.91 0.93 

Max Markdown -37.08% -34.56% -35.60% -34.75%  -33.94% 

Daily value at Risk -2.40% -2.34 -2.33% -2.34% -2.35% 

Alpha 0 0.04 0.04 0.03 0.05 

Beta 1 0.97 0.97 0.97 0.98 

 
Table 7: Backtest results from RL Models in Portfolio rebalancing environment. 

 
Fig-9 shows Backtesting plots obtained using python package pyfolio by Quantopian.   

On X-axis it is day of trading and on Y-axis is cumulative returns on the trading day.  

 

  
a) A2C     b) DDPG 

 
c) PPO     

 
d) Ensemble 

 
Fig 9: Backtesting on RL strategies 
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As displayed in above figures RL strategy learned by these agents outperforms 

baseline which indicates that rebalancing portfolio periodically can help keep portfolio 

in good standing compared to doing nothing. The performance of all agents is close in 

terms of Sharpe ratio. This experiment found Ensemble gives better cumulative returns 

(154.92% in this case) compared to individual RL agents.  

 

Ensemble Result in Detail 
 

The ensemble method was employed for portfolio rebalancing trains all three models 

simultaneously, their performance was evaluated and the one with best Sharpe ratio is 

selected for next 90 days of trading. Table 8 shows details of experiment carried out for 

this paper. It depicts training, validation, and trading periods. Performance of agents in 

terms of Sharpe ratio for the given training period and selected RL agent based on 

Sharpe ratio. Last column trading Sharpe ratio shows the how selected agent performed 

on unseen data. It has a separate row for periods for which all agents were retrained 

after every 90 days of trading. 

 

 
 

Table 8: Ensemble training, validation, and trading 

 

 

6  Discussion 
 

6.1  Challenges and Recommendations 
  

The study proved interesting in understanding how Reinforcement Learning using 

Markov Decision Process (MDP) can be potentially useful for stochastic environment 

modeling. The growing availability of RL packages (e.g., OpenAI and Stable 

Baselines) allows for more focus on RL research vs. creating algorithms from scratch.  

The paper also proved helpful in understanding that the RL modeling approach was 

not about predicting the stock market prices but rather the use of rewards on “buy”, 

“sell” and “hold” decisions when training to produce useful model for making trading 

decision eventually. In addition, this paper’s observation that using feature engineering 

methods such as time-series analysis for establishing environment state space shows 

evidence of being beneficial in obtaining models with higher Sharpe Ratio’s. The 
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amount of time for hyperparameter tunning the neural networks and exhaustive 

research of potential technical indicators far exceeded available time for this paper’s 

research. 

It is the paper’s consensus that further analysis would be prove useful and may lead 

to building confidence in RL model’s abilities and apply them to actual stock trading.  

This includes further research on available financial stock trading indicators and 

gaining more in-depth financial market domain knowledge. The limitations are 

understanding that this modeling approach would require significant “paper testing” 

prior to deploying in real world trading. In addition, the model provides thousands of 

trade decisions to be completed over the investment period. This would require 

deploying this model in conjunction with an automated brokerage trade algorithm.  

This modeling does not include data about stock appreciation for each individual 

stock with respect to the buying price of the stock. At every instance of trade if this data 

is made available to the agent, it may provide better decision generation. This needs to 

be explored as part of future research. 

 

 

6.2  Ethical Consideration 
 

   Stock trading is an extremely difficult, complex, and tedious job for any portfolio 

manager. The movement of stock price depends on several factors like investors' 

sentiments, fundamentals of companies, trading volumes, market news, politics, policy 

decisions, etc. The job of portfolio managers is to keep a close watch on what is 

happening in the market, investments, politics etc., estimating the price movements in 

the market so that they can make accurate decisions for their clients to earn better 

returns.  

   The market generates huge volumes of data and at remarkably high velocity due to 

volumes of transactions that occur every minute so analyzing this information in a 

timely manner to take right decisions at the right time is very much critical. The 

automated agents can perform such analysis more efficiently than humans. Therefore, 

portfolio managers have started preferring automated agents to take full advantage of 

the market dynamics.  

   The goal of automated agent using reinforcement learning presented in this paper 

is to train machines to do such analysis and take appropriate actions in order to assess 

risks and maximize returns. They can be fully automated to perform analysis and to 

take automatic actions such as buy, sell or hold based on analysis. The ethical issue is 

that these ML (Machine Learning) models, specifically RL agents, evolve with the data 

and can take biased/illegal decisions if not evaluated periodically or someone can just 

deploy to manipulate market.  

   These models can execute trading transactions in large volumes in a short span of 

time and can potentially disrupt the market if bad decisions are taken by the agent either 

accidently or intentionally. Stock markets are regulated markets, and such actions are 

heavily penalized once detected. It is obvious that accidental behavior of these agents 

can be managed by following risk management principles and by following the best 
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software practices during the development phase and by monitoring live behavior of 

the agents.  

 
6.3  Future works 

 

There are significant areas available to extend the initial research and the research 

conducted in related works. Future works in consideration include the use of sentiment-

related indicators and social media analytics to improve upon RL modeling and at 

minimum, may provide useful in assessing market volatility. Potential of reframing the 

stock market analysis using CNN to capture daily market activity as images and use for 

training the policy agent neural networks.  

7   Conclusion  

This paper concludes that Markov Decision Process (MDP) and Reinforcement 

Learning show evidence of producing applicable stock trading decision models.  The 

study’s models show, via Sharpe Ratio, evidence of outperforming the baseline Dow 

Jones Index. This paper researched policy agent algorithms such as A2C, PPO and 

DDPG, and each appears to perform comparatively better to each others at various stock 

trading periods.  This reflects in the results when using an ensemble of all the policy 

agent algorithms at three-month model training intervals. Using Portfolio Rebalance 

scenario, this paper’s results show that the “ensemble method” produced the highest 

Sharpe Ratio and highest cumulative portfolio final balance. The feature engineering 

using time-series also contributed to the selection of environment state space that aided 

in producing this paper’s results. 

Given the evolving stochastic nature of the stock market, the requirement for future 

efforts is that continual feature engineering and an ensemble method be applied when 

performing future training of RL stock market trading models. 
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