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1   Introduction 

Style transfer, a deep learning technique used to stylize an image's content in the 

fashion of a reference image, is gaining popularity in various commercial applications, 

including social media products, gaming, photo, and video editing, and artistic content 

generation. Advances in style transfer techniques will enable applying these methods 

to more complex television, film, and gaming problems. One application made possible 

by these techniques is a pet to Pokémon stylizer. 

Pokémon—a franchise spanning television, movies, games, and more— has been 

wildly popular since its inception in 1998. With a 24-season TV show, 23 movies, 122 

video games, and over 30 billion trading cards sold, it is safe to say Pokémon generates 

tremendous excitement and revenue amongst its large fanbase. The popularity of the 

franchise, with hundreds of millions of fans, all but guarantees a market for a mobile or 

web app that can take user-submitted images of pets and transform them into another 

one of their favorite Pokémon characters. 

To effectively accomplish this task, an ideal style-transfer algorithm must preserve 

the essential source image information, such as the pet's shape and recognizable 

features, while applying nuanced stylistic differences to the various semantic segments 

within an image. While dozens of techniques are developed to address this class of 

problems, this paper focuses on two methods of approach: Neural Style Transfer (NST) 

and Image-to-Image translation with generative adversarial networks (GANs). 

The first method developed to address this problem is the Neural Style Transfer 

method. The central issue addressed by style transfer algorithms is the separation of an 

image's content—the objects of interest within the image and their structure—and its 

style—aspects like color, color gradients, shading, and blending. Supervised style-

transfer methods rely on corresponding image-stylized image pairs that allow the style 

to be inferred from the difference between the object representation in both image 

domains. However, given the creative nature of cartoon content generation and the lack 

of stylized image examples for newly created content, unsupervised style-transfer 

methods will be the most versatile and functional for most applications.  

Most current methods build on deep neural network architectures. Convolutional 

Neural Networks (CNNs) have been a powerful basis for style transfer problems 

[1,2,3,4]. CNNs effectively extract high-level feature information as well as stylistic 

information from images. CNNs alone, however, tend to produce images with distorted 

content, artifacts, and a single style. Much research has been done to reduce distortions 

and expand output images' complexity, incorporate multiple styles, control color 

schemes, and blend styles [3,4,5,6]. These rely on semantic image segmentation, object 

recognition, and various color transformation techniques. Another popular approach is 

to employ encoder-decoder architectures [7,8]. Encoders and decoders are used to 

process image content and image style information separately. Images are iteratively 

restyled until style loss, and content loss is minimized compared to the original photos 

[8]. These methods are exceptional in their ability to adapt to unseen styles and 

contents. Still, they require multiple images of a given object in many distinctive styles 

and multiple objects in a given style to function.  
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The technique of Transfer Learning was employed to limit the number of images 

required to transfer style from one image to another successfully.  Transfer learning 

allows for a model to be built by taking an existing, trained neural network and reusing 

the weights and biases in that network for a different purpose, replacing the final layers 

of the network with ones trained to the current task [9,10,11,12].  A neural style transfer 

mechanism can be built with minimal additional training by reusing the weights and 

biases in the VGG class of trained neural networks. 

However, while these methods have succeeded in transferring style, they still have 

many shortcomings that more recent approaches have overcome. The style-transferred 

output images created by the NST model were full of random edges in the image 

background and on the animal itself.  These edges resulted from confusing low-level 

style features with low-level structural features, which the NST model could not 

distinguish. However, the model did an excellent job transferring the colors, color 

gradients, and shading found in the Pokémon images. To limit the occurrence of these 

artefacts, a preprocessing data pipeline was created. Given the application's nature, real-

world animal images were used to simulate the images the models are expected to 

handle in operation. YOLO object detection was used to detect animals within an image 

and create bounding box coordinates that contain the animal. These coordinates and the 

corresponding images were fed into OpenCV's GrabCut algorithm to perform image 

segmentation. The algorithm iteratively learned an image mask, the pixel labels for the 

image (background, foreground), for each image, and applied the mask to remove the 

background pixels. The segmentation process successfully segmented roughly 30-40% 

of animal images without manual intervention. Images that could not be segmented via 

mask learning were supplemented with manually created masks, which resulted in 

significantly improved segmentation results. This was too cumbersome to perform for 

this research. Still, the app could include a feature to allow users to submit their masks 

for complicated images to prevent segmentation from being a performance bottleneck. 

The masks generated in this step can be used to remove background artifacts from the 

output images from style transfer models downstream. 

The next stage of the preprocessing pipeline involved an image-to-image translation 

approach. A modified version of CartoonGAN [13] was used to toonify the full user-

submitted picture. The network was modified to include ten residual blocks, stronger 

content retention, and increased pre-training to allow the GAN to learn and better retain 

structures within the image. The animals retained their shape and color scheme while 

being rendered in a Pokémon cartoon-like style. The optimized network successfully 

stylized most images but tended to introduce artifacts and distort images if the image 

had a bland color scheme. In output images that were not appealing, the model created 

vibrant colored artifacts near the edges of the image, overlaid a single-colored filter, or 

imposed a pixelated grid-like filter. The wide range of effects suggests a lack of 

convergence on a single style. The masks generated for the images can then be used to 

segment the toonified pet in downstream image blending models. 

Researchers also explored taking two trained StyleGANs and "blending" the two 

models to transfer both the high-level and low-level features [14]. The concept is to 

blend the base StyleGAN model with a finely tuned StyleGAN model. A method to 

interpolate between the two trained StyleGANs weights that can control independently 

which model you take the high-level weights and low-level weights from in the 

"blended" model will be utilized. To create Pokémon from a pretrained StyleGAN the 

2

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 10

https://scholar.smu.edu/datasciencereview/vol5/iss2/10



weights will be interpolated between a trained StyleGAN from a Pokémon dataset [14], 

and a pretrained StyleGAN from Massachusetts Institute of Technology (MIT) 

researchers [15] on cat faces.  

2   Background 

2.1 Style Transfer Using Convolution Neural Networks 

One of the first applications of neural style transfer (NST) to address stylistic 

variations within a style-source image was introduced by Gatys et al. [2]. They 

extracted high-level semantic features from target images using the VGG network, pre-

trained object recognition, and localization CNN. They matched them to feature 

representations within a collection of stylized images, allowing control over which 

regions of the stylized image are used to style specific target image regions. It also 

benefited from generalizing across datasets and other visual information processing 

tasks [2]. The algorithm constrained the style synthesis by feature representations from 

CNNs, which reduced the style transfer method to an optimization problem. The 

algorithm performed a pre-image search to match target image features to features 

within a corpus of example style images based on deep image representations. 

The VGG network utilized a feature space described by a normalized version of the 

16 convolutional and five pooling layers of the 19-layer VGG network. The 

normalization was conducted by scaling the weights within layers. The mean activation 

of each convolutional filter over images and positions was equal to 1, which was found 

to perform better than max pooling. The representation of image content was done in 

the following manner. Each layer of filter banks stores the filter response to the image 

in a matrix of dimensions N (number of filters in the layer) x M (the height times the 

width of the feature map). The objective function utilized to train the network is a 

squared-error loss defined within each layer, and the loss is calculated by differencing 

the original image's feature representations and the generated image within a given 

layer. The derivative is calculated with respect to activations in each layer, and a 

gradient is computed using standard error backpropagation. This method reduced image 

content to a series of high-level features determined by CNNs trained explicitly for 

object recognition. By contrast, the representation of image style in this method is built 

upon a feature space defined by the correlation between filter responses in any layer of 

the network. The expected value is determined within each feature map's spatial extent 

independently. This had the effect of defining style as the correlation of nearby pixel 

values within each feature independently. This approach is extended to include feature 

correlations between multiple layers, which allows the capture of style information 

excluding global arrangements within the image [2]. Style transfer is accomplished by 

generating a new white-noise image that matches both the target image's content and 

the reference image's style as defined by a minimized content and style loss over all 

layers. The aggregate loss is a composite of loss functions that can be weighted 

independently to favor content or style in the output image. The most visually appealing 

3

Hedge et al.: PokéGAN: P2P (Pet to Pokémon) Stylizer

Published by SMU Scholar, 2021



output images were created by matching style features to higher layers in the network. 

The initialization of all images was done via white noise; however, the initialization 

could be done with the content image at the cost of biasing the output image towards 

the content image.  

In subsequent work, Gatys et al. extended the method to control key perceptual 

factors, such as spatial location, color information, and spatial scales [3]. To effect 

spatial control, a segmented version of each image (consisting of R spatial guidance 

channels of value 0 or 1, representing foreground and background) is provided as input. 

Each channel in the target image is given the style that corresponds to the channel of 

the style image with the same value. In the case of multiple style images, the regions 

are indexed overall example style images. The first method multiplies each layer's 

feature maps by R guidance channels to compute one spatially guided Gram Matrix for 

each R region in the style image. Each of these guided Gram Matrices is then used as 

the optimization target for each corresponding region in the content image. The second 

method stacked the guidance channels with the feature maps to spatially guide neural 

patches, reducing the computation required to one Gram Matrix with R additional 

channels at the expense of style quality. Color control was implemented using one of 

two methods: luminance-only transfer and color histogram matching. Luminance-only 

Transfer extracts luminance channels from the style and content images then apply the 

NST algorithm to produce and output luminance image. The color information of the 

content image is then combined with the output luminance image. This method best 

preserves the color scheme of the content image. Color histogram matching replaces 

the style image with the colors of the content image, and then performs the NST 

algorithm unchanged. This method was found to preserve best the color distribution of 

the style image [3,4]. The main drawbacks of these approaches are that retained color 

schemes apply to the entire image rather than segments, and output images are prone 

to having artifacts introduced. 

Zhao et al. (2019) introduced a novel method to automatically segment objects in 

both content and style images and extract their 'soft semantic mask' to reduce the 

prevalence of artifacts in output images. The soft masks and source images are provided 

multichannel input to an augmented deep CNN framework incorporating a generative 

Markov random field model [6]. Soft masks contain the probabilities of an image 

containing an object. The effect of this approach is to extend the spatial guidance 

channels developed by Gatys [3] beyond two regions, giving more fine-tuned control 

over the transferred style, and to allow more robustness in regions where multiple 

objects are probable. The architecture was based on VGG-19 and incorporated soft 

semantic masks that were downsampled to the appropriate resolution as input. The 

model's semantic style transfer optimization was accomplished using a patch-based 

augmented loss function that penalizes patch matches with inconsistent semantic 

masks. The style loss function is computed on a matched patch basis, independently 

optimizing the style transfer for each patch. 

In contrast, the content loss function minimizes the squared error using 

backpropagation with L-BFGS. The main innovation in this approach was semantic 

image prediction using a CRF-RNN architecture. Semantic probability maps are 

created by extracting the neural activations before max pooling and scaling them to 

between 0 and 1. They are then treated as the probabilities that a pixel belongs to each 

object category. This method was most effective for photographs and experienced 
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increasingly degraded performance for increasingly stylized images. This method's 

poor performance regarding stylized images suggests a different semantic segmentation 

method is necessary for cartoon-style transfer.  

2.2 Image-to-Image Translation Using GANs 

The Generative Adversarial Network (GAN), developed by Goodfellow, et al. [16], 

offered an alternative approach to the domain transfer problem. Goodfellow employed 

two competing neural networks, a generator, and a discriminator, to learn the 

underlying statistical distribution of image data. The generator network receives a noise 

vector and produces an output image with an assumed statistical distribution. The 

generator's outputs are shuffled evenly with images from the training set and fed to the 

discriminator network. The discriminator classifies the images as real or generated and 

sends the associated probabilities to a cost function, which uses backpropagation to 

update the generator or discriminator's weights based on the training phase. To stabilize 

the network, only one network is trained, and it is trained until its performance has been 

optimized for a given adversarial state. Once the network has been optimized, the 

adversary begins its training phase. This process is iterated until the approximated 

distribution of the generator is sufficiently close to the training data distribution. When 

built with CNNs this network can learn an image style and content described in terms 

of statistical distributions. 

One such approach by Zhu et al. in 2017 developed an image-to-image translation 

method (CycleGAN) that did not require paired image inputs. It could perform multiple 

tasks like collection style transfer, object transfiguration, season transfer, and more 

[17]. This utilized a GAN to translate content images to the style domain represented 

by the style-image data. Without image pairs to explicitly learn style, Zhu et al. assume 

an underlying mapping between the two sets of images that can be known. A mapping 

G: X --> Y such that G's output is indistinguishable from the images y in style set Y. 

They found difficulties in optimizing the adversarial objective in isolation, which often 

led to mode collapse issues. To address this, they imposed cycle-consistency on style 

transfer. The function that maps content images to stylized images is trained 

simultaneously with an inverse mapping function (F: Y --> X), and a cycle consistency 

loss is added to encourage F(G(x)) ≈ x and G(F(y)) ≈ y—constraining the image sets' 

relationship allowed for convergent training of the unpaired image-to-image style 

transfer algorithm. The architecture utilizes Dx to distinguish content images from 

style-to-content domain translated images, and Dy to distinguish style images from 

stylized-content images. The objective function was defined as the sum of the 

adversarial loss and cycle consistency loss functions, defined below.  

𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑦 , 𝑋, 𝑌) =  𝐸𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)[log 𝐷𝑦(𝑦)] +  𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log (1 − 𝐷𝑦(𝐺(𝑥))]     

(eq 1) 

 

𝐿𝐶𝑌𝐶 (𝐺, 𝐹) =  𝐸𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)  ||G(F(y)) − 𝑦||
1

+  𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥) [| | 𝐹(𝐺(𝑥)) −  𝑥||]1 

(eq 2) 

 

𝐿(𝐺, 𝐹, 𝐷𝑥𝐷𝑦) =  𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑦 , 𝑋, 𝑌)  + 𝐿𝐺𝐴𝑁(𝐹, 𝐷𝑥 , 𝑌, 𝑋) +  𝜆𝐿𝑐𝑦𝑐(𝐺, 𝐹) 
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(eq 3) 

 

where λ is a weighting factor for the cycle loss, the optimal solution to the problem 

then becomes: 

 
(eq 4) 

To stabilize the training procedure, the researchers implemented two techniques. The 

first was to replace the negative log-likelihood objective (eq 1) with a least-square loss, 

which is more stable and produces higher quality results. 

𝐿𝐿𝑆𝐺𝐴𝑁(𝐺, 𝐷𝑦 , 𝑋, 𝑌) =  𝐸𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦) [ 𝐷𝑦(𝑦) − 1]2 + 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[(𝐷𝑦(𝐺(𝑥))
2

] 

      (eq 5) 

 

 

The second implements Shrivastava et al.'s strategy to update the discriminators 

using a history of generated images rather than those produced by the latest generative 

networks to reduce model oscillation. 

Similar work by Bousmalis et al. [18] imposed a similarity requirement on the GANs 

input and output images to preserve content from the source image. The generator 

creates images from both a noise vector and the original content image. The objective 

function is a weighted min-max argument of two log-loss functions: one for the domain 

loss and one for a task-specific loss, in their case an object classification SoftMax cross-

entropy loss. The addition of a task-specific loss forced the model to produce images 

that more closely resembled the input image. To reduce content-similarity loss further, 

they incorporate the image's segmentation into the foreground and background layers 

and augment the loss function with a penalty for large differences between source and 

generated images in the foreground only. This grounds the generation process to the 

original image and stabilizes the minimax optimization [18]. The loss function was a 

masked pairwise mean squared error to penalize the differences between pairs of pixels 

[18].  

Taigman et al. took a similar approach to unsupervised domain adaptation. Still, they 

developed a more generalized method that considers a distribution within the target 

space rather than replicating the style of an image set [19]. Given a source set (S), target 

set (T), and classification function f, they learned a mapping G: S -> T such that f(x) ~ 

f(G(x)). The function G is a composition of classifier f and a learned function g. The 

network utilized a compound loss consisting of an adversarial loss, a classification loss 

that minimizes ||f(x) - f(G(X))||, and a regularization term that encourages G to be the 

identity mapping for all x in T [19]. Taigman achieved generalized domain adaptation 

by inverting the classification function f in the domain T by generating training samples 

(f(x), x) for x in T and learn a function h from f(T) = {f(x)|x in T} to T. Domain 

adaptation was used to map f(S) = {f(x)|x in S} to T [19]. The domain transfer portion 

of their network contains two modifications: the classifier f(x) is the baseline 

representation sent to the generator function G. During training, the algorithm considers 

the generated samples G(x) for x ∈ t. The researchers successfully transferred face 

images to a cartoonized emoji space capable of retaining identifying facial features. 
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In 2018, Yang Chen et al. developed CartoonGAN to translate images from the real 

world to a cartoon image space. Instead of learning the intricacies of an image 

collection's style, they assume that cartoon images have simplified high-level 

abstractions and clear edges, smooth color shading, and simple textures. Two novel loss 

functions are employed: semantic content loss and edge-promoting adversarial loss. 

Initially, the generator begins with a flat convolution stage followed by two down-

convolution blocks to compress and encode the images [13]. Useful features are 

extracted at this stage to be manipulated later. The content and manifold features are 

constructed from 8 residual blocks. Cartoonized images are produced using two up-

convolution blocks. They utilized a patch-level discriminator that classified N x N 

patches of the output image as real or fake rather than the entire image. To classify the 

images, the discriminator employed two strided convolutional blocks to reduce image 

resolution and encode essential features. A feature construction block and 

convolutional layer are used to classify the image. The loss function is composed of an 

adversarial loss and a weighted content loss. A standard discriminator network is 

insufficient because clear edges are a defining feature of cartoons but only a minor 

fraction of image pixels [13]. To address this, the cartoon image training set is 

preprocessed to remove clear edges using a standard Canny edge detector, dilation of 

edge regions, and the application of a Gaussian smoothing function in the edge regions. 

The adversarial loss is also adjusted to include a third term over the edge-removed 

images. The edge-promoting adversarial loss function becomes: 

𝐿𝑎𝑑𝑣(𝐺, 𝐷) = 𝐸𝑐𝑖~𝑆𝑑𝑎𝑡𝑎(𝑐)[log(𝐷(𝑐𝑖)] + 𝐸𝑒𝑗~𝑆𝑑𝑎𝑡𝑎(𝑒)[log(1 − 𝐷(𝑒𝑗)] +

𝐸𝑝𝑘~𝑆𝑑𝑎𝑡𝑎(𝑝)[log(1 − 𝐷(𝐺(𝑝𝑘)))]  

(eq. 6) 

 

The discriminator is trained to maximize the probability of assigning the correct 

label to the generated images G(p), the edge-removed cartoon images (e), and real 

cartoon images (c). Content loss is prevented by using high-level feature maps from a 

pre-trained VGG network and is formulated as: 

𝐿𝑐𝑜𝑛(𝐺, 𝐷) = 𝐸𝑝𝑖~𝑆𝑑𝑎𝑡𝑎(𝑝)[||𝑉𝐺𝐺𝑙(𝐺(𝑝𝑖) − 𝑉𝐺𝐺𝐿(𝑝𝑖)||1]  

(eq. 7) 

 

Where l refers to the feature maps of a specific VGG layer, and the loss is defined 

using the L1 sparse regularization of VGG feature maps between the input and output 

images. The L1 norm is used due to the major style difference between real-world 

images and cartoons, which causes the L2 norm to underperform. Their experiments 

found that the use of the L1 norm was instrumental in the success of the algorithm. The 

researchers also used a modified initialization phase during training. Initially, the 

generator reconstructs the content of input images and is trained using only the semantic 

content loss. This sped up convergence while creating sufficient cartoon-styled images 

early on. The network was trained on 5,402 real-world photos and thousands of cartoon 

images from 4 different cartoons, which allowed the GAN to learn multiple styles. The 

high-quality images produced outperform state-of-the-art techniques using neural style 

transfer and CycleGAN.  

This paper proposes a pipeline for a pet-to-Pokémon stylizing app utilizing a style 

transfer method. Pictures of pets can be mapped from the real world to a Pokémon-

stylized cartoon rendering of the animal. It should handle multiple Pokémon styles and 
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preserve important input image information such as body structure and fur patterns 

while allowing for the target image color, gradients, and bold edges to be imparted to 

the pet within the image. It will build upon the results of CycleGAN and CartoonGAN. 

The proposed architecture will consist of a Generative Adversarial Network that utilizes 

a pre-trained VGG-16 network and an image segmentation pipeline to impart the target 

image style and remove unwanted artifacts. 

3   Methods 

3.1 Neural Style Transfer 

The paper started with performing basic style transfer as a proof of concept. This 

proof was to show that it was possible to get a photo of a pet and an image of a Pokémon 

character and blend these two images. The result from the proof of concept was to get 

output images that were recognizable as a blend of the two input images.  

The Pokémon data used for this method was the Pokémon Images Dataset from 

Kaggle user kvpratama [20]. This consists of 819 images of Pokémon from the first to 

the third generations. This data was also used in the model blending approach found in 

section 3.3. The animal images were freely available and downloaded from 

[21,22,23,24] 

This approach started with a standard VGG19 neural network from the python 

PyTorch library.  Input images were reduced to 256 x 256 pixels, and their color values 

were normalized.  The convolutional layers of the VGG19 model were then chosen for 

their contribution to either style or content, and the remainder of the network was 

discarded.  The content loss was calculated as a simple mean squared error between the 

content convolutions and the input content image. Style losses were calculated as a 

normalized Gram matrix between the style layers and the input style image.  Style 

losses were weighed to give preference over the content loss.  The training was stopped 

when the weighted losses were minimized. 

3.2 Style Transfer Preprocessing with CartoonGAN 

The style transfer results above, found in Figure 2, show that the Pokémon-style 

transferred to the animal included unwanted artifacts scattered throughout the 

background and on the animal itself. These artifacts result from the transfer of low-

level structural features of the Pokémon, like well-defined edges and borders. To 

address both background and foreground artefacts, a method was devised by which a 

toonified version of the pet image could be obtained for blending in the above model. 

By toonifying the pet image before performing neural style transfer, the low-level 

structural features of the pet would already be similar to that of the Pokémon, and the 

neural style model could focus on other aesthetic aspects of the Pokémon such as colors 
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and color gradients. Image segmentation masks are created for each pet image to 

prevent background artifacts in the output images, which filter out the background 

while retaining the pet. These masks can then be used to combine the original pet 

photo's background with the stylized pet image, effectively converting the pet into a 

Pokémon in the original image context. The CartoonGAN model developed by 

researchers Chen et al. was modified and retrained with Pokémon images for this style 

transfer approach [13]. 

The process must use real-world images with complex backgrounds and multiple 

objects since these are the kinds of images the app is expected to receive as input in 

operation. The source data for this model consisted of mostly real-world animal images, 

while the target-style data consisted of frames from the Pokémon TV series.  

3.2.1 Dataset Description 

The target image dataset was manually created using FFmpeg to extract 640x480 

pixel frames from each episode in the first two seasons of Pokémon available on the 

Internet Archive. These images were resized to 256x256 pixels. Early iterations found 

that the GAN generator learned to fool the discriminator into thinking real-world 

images were from the TV show by inserting artifacts resembling pokeballs into the 

image without further stylization. This necessitated the removal of all images 

containing pokeballs. The final dataset contained 5,706 images. 

The source data used was a modified version of the Animals-10 dataset from Kaggle, 

containing only the 10,207 images of cats, dogs, cows, chickens, and butterflies [25]. 

The training set included 6,803 images balanced across each animal, and the test set 

contained 3,404 images. The real-world images in this dataset did not have a standard 

size and included complex background environments, which required normalization 

and substantial cleaning. All images were resized to 256x256. The background needed 

to be removed from the images via image segmentation to prevent artifacts and focus 

the first model's style transfer on the pet. This was done using YOLOv5s object 

detection and the OpenCV GrabCut algorithm. 

3.2.2 Data Preprocessing 

To segment the images with OpenCV's GrabCut algorithm, it was required to create 

bounding boxes containing each image's animal. This process was automated using 

YOLOv5s object detection constrained only to classify animals, including birds 

(chickens), cats, dogs, horses, sheep, cows, elephants, bears, zebras, and giraffes. It is 

not important that the algorithm correctly classify each animal, only that it detects them 

and creates the bounding box coordinates. Once the animal was seen, bounding box 

coordinates were generated and saved for use in the GrabCut algorithm. 

Each animal image and its corresponding bounding box coordinates were passed to 

the GrabCut algorithm, which learned the image mask and outputs the segmented 

animal. To improve the segmentation performance on complex images, segmentation 

masks were manually created, which resulted in significantly improved results at the 

cost of labor-intensive mask creation. Manual mask creation was not explored further 

9

Hedge et al.: PokéGAN: P2P (Pet to Pokémon) Stylizer

Published by SMU Scholar, 2021



since the bounding box method provided enough cleaned images for the models 

downstream. The masks created in these steps provide the additional benefit of 

removing artifacts from style-transferred images by segmenting the stylized animal 

from any artifacts in the background. 

3.2.3 Cartoon Style Transfer 

The network employed for cartoon-style transfer was a modified version of 

CartoonGAN. A brief overview will be given, but a detailed description of the network 

is beyond the scope of this paper. For a complete discussion of the network, see [13]. 

A GAN is an architecture that utilizes two competing neural networks. In this case, 

these are convolutional neural networks (CNNs): a generator and a discriminator. The 

generator's goal is to create images that resemble the target domain (Pokémon) as 

determined by the discriminator. The discriminator's goal is to classify images as real 

or generated accurately. The architecture employed can be seen in figure 1 [13]. The 

generator and discriminator networks use transfer learning by employing a pre-trained 

VGG-16 network to extract high-level features from the images. The final layers of the 

networks are trained using the Pokémon images to learn low-level stylistic features of 

the Pokémon image domain. 

 
Figure 1: The structure of the modified CartoonGAN network. K represents the kernel 

size for the filter, n is the number of VGG feature maps, and s is the stride. Image 

Credit: [13] 

 

The generator flattens and normalizes the images before feeding them to a series of 

down-convolution filters. After the down-convolution stage, the images are fed through 

10 residual blocks, which send the layer output to the next layer and the third layer after 

itself. These skip connections allow the early layers to learn nearly as fast as the final 

layers of the deep network. The generator then uses two up-convolution blocks to 

reconstruct the image in the new style domain. 
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The discriminator's goal is to classify a given image from the source domain or the 

target domain based on the low-level style features. Since style is a property of the 

image at a small scale, a patch-level discriminator reduces the number of train 

parameters. The discriminator discriminates between real and cartoon images by 

focusing on local features in image patches rather than the image as a whole, enabling 

a much shallower discriminator network. A leaky relu loss function is employed after 

each convolution phase. 

The network employs a compound loss function (eq 8) that incorporates a modified 

adversarial loss (eq. 9) and a content loss (eq. 10) to balance the trade-off between style 

transfer and content loss. One of the defining characteristics of cartoon images is bold, 

well-defined edges, but these edges are not prominent; they represent a small fraction 

of pixels in the image. Because of this, the adversarial loss was modified to incorporate 

edge-loss penalties, which guide the generator to retain well-defined edges in its output 

images (eq 9).  

𝐿(𝐺, 𝐷) = 𝐿𝑎𝑑𝑣(𝐺, 𝐷) + 𝜔𝐿𝑐𝑜𝑛(𝐺, 𝐷) 

(eq. 8) 

 

𝐿𝑎𝑑𝑣(𝐺, 𝐷) = 𝐸𝑐𝑖~𝑆𝑑𝑎𝑡𝑎(𝑐)[log(𝐷(𝑐𝑖)] + 

   𝐸𝑒𝑗~𝑆𝑑𝑎𝑡𝑎(𝑒)[log(1 − 𝐷(𝑒𝑗)] + 

𝐸𝑝𝑘~𝑆𝑑𝑎𝑡𝑎(𝑝)[log(1 − 𝐷(𝐺(𝑝𝑘)))] 

(eq. 9) 

 

  𝐿𝑐𝑜𝑛(𝐺, 𝐷) = 𝐸𝑝𝑖~𝑆𝑑𝑎𝑡𝑎(𝑝)[||𝑉𝐺𝐺𝑙(𝐺(𝑝𝑖) − 𝑉𝐺𝐺𝐿(𝑝𝑖)||1] 

(eq. 10) 

 

The content loss is measured by the VGG-16 network's feature maps and is 

controlled by the content loss weight, ω, which is tuned to optimize the model's 

performance. Larger ω's force more image content to be retained, resulting in less style 

transfer. The initialization stage of the algorithm pre-trains the generator to reconstruct 

the content of training images using only the content loss portion of the loss function. 

This speeds up model convergence by enabling the generator to create realistic content 

before training and focusing on optimizing the adversarial loss responsible for learning 

the cartoon image's style.  

3.3 StyleGAN Model Interpolation 

Once the pet has been segmented from the rest of the image and stylized, the image 

blending may occur. The proposed architecture will use a pre-trained StyleGAN 

network to map high-level features in the content image and introduces a content loss 

that compares high-level feature maps from both the content and the target image to 

ensure the retention of the input image's key features. The resulting blended structure 

would have the structure of the Pokémon (with some deviations resulting from pet 

shape in the blending process). In contrast, the color of the blended object would use 

the colors of the pet as a baseline while imparting new color gradients from the selected 

Pokémon image. The StyleGAN uses a generator and discriminator in its combative 
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modeling technique. The question is how we can quantitatively validate the output 

quality of the images from the StyleGAN. Unlike other pure mathematical models and 

formulae, the GANs' input and output images cannot be easily compared because the 

quality of the output is based on how well the created images look to the human eye. It 

has not yet been possible to recreate the generate human visual interpretation from 

computer electronics electronically. In 2016, the concept of inception scoring (IS) was 

introduced. IS is an objectively applied metric to generated images to evaluate their 

quality to an original image. This method was specifically designed to be used for 

synthetic images that were the resulting outputs of GANs. IS did not provide optimal 

or clearly quantifiable results, which led to issues with its application and use. In 2017, 

a new metric was introduced called the Fréchet inception distance (FID) specifically to 

assess the quality of images created by generative models such as GANs. Unlike its 

predecessor, IS, FID evaluates only the distribution of the generated images. FID 

compares the distribution of the real images that are used to train the generator to the 

distribution of the generated images. In this way, the FID value is used similarly in the 

way of a loss function and provides us with a quantitative measure used to provide 

quantitative proof of the quality of the GAN images without overfitting our model. 

Similar in behavior to other loss functions, the value of FID will decrease as the GAN 

is evaluated for the model based on the outputs from, and the FID will reach a minimum 

number for each run. After this minimum value, the FID value will increase, like other 

loss functions, which is a sign of model overfitting. 

 

4   Results 

4.1 Initial Style Transfer 

The results of the initial investigation into neural style transfer are shown in figure 

2 below. The images on the left are the source content images, with the source style 

image on the upper right. Output images for the combination of content and style input 

are shown in the lower portion of the right-hand column. With varying degrees of 

success, the neural style transfer gave impressive results, with some caveats. 

The sweet spot for training this network appears to be around the 300-400 iteration 

mark. Fewer iterations led to poor image quality, while more than that number of 

iterations caused the loss to behave erratically, sometimes increasing exponentially.  

Further research is warranted to improve the loss calculation to see if it can get a more 

consistent result.  

The output images retain most of their original content.  The dog still looks like a 

dog, and the frog is still a frog.  The style of the input image also transferred well.  The 

overall look and feel of the input image were modified to appear to be more like the 

input style image. Still, there is evidence of visual artifacts outside of the original 

content of the image. The worst example of this is the final tortoise image. In the input 

image, there is a discernible but exceptionally light gray background that shows up in 
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the output image as a colored band horizontally centered on the tortoise. In this image, 

the network noticed the gray band in the input image and attempted to transfer the style. 

This is an undesirable result to human viewers but proved too difficult to remove in the 

research period. For this reason, image segmentation to separate the content from the 

image background was attempted as a corrective action. 

 

 

 

 

 

 

Figure 2: These are the original images of pets: dog, rabbit, frog, and turtle in the left-

hand column. The Pokémon Flareon atop the right-hand column above the blended 

images of the Flare-dog, Flare-rabbit, Flare-frog, and Flare-tortoise. 
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4.2 Style Transfer Preprocessing with CartoonGAN 

Image Segmentation Results  

The image segmentation pipeline was tuned to provide the highest number of well-

segmented images while maintaining a low-performance cost. The pre-trained object 

detection pipeline required a detection confidence threshold for its classifications. A 

confidence level of 0.3 was found to classify multiple animals in a single image 

accurately. This was unnecessary for the initial stages of the application. The concept 

needs to be proven possible first; the additional animals in each image would only 

complicate the style transfer process. A confidence threshold of 0.6 resulted in the most 

prominent animal in each image being correctly classified/detected and was used as the 

final threshold value. 

The GrabCut algorithm was tuned to learn image masks over 25 iterations, balancing 

processing time and segmentation quality. Iterations above this value did not 

significantly improve segmentation quality, while iterations below 20 could result in 

poor segmentation results for mildly complex images. This resulted in roughly 30-40% 

of images being sufficiently segmented for downstream neural style transfer use. These 

are images in which most of the background has been removed, with a minimal amount 

of the foreground object (pet) being removed from the image. The images that were not 

successfully segmented were of two types. The first is complex images with large 

variations in color and color gradients, multiple objects, or inconsistent backgrounds. 

The second type are those images in which the animal is very prominent and takes up 

most of the image space. In these images the bounding box coordinates include the 

majority of the image, which creates a lack of background pixel labels for the GrabCut 

algorithm to train on, resulting in poor segmentation. Image masks were manually 

created for a sample of complex images. They were found to dramatically improve 

segmentation results at the cost of time-consuming mask creation on an image-by-

image basis.  

 

 
Figure 3: An example image that did not segment well due to lack of background pixel 

labels. The manual creation of a mask (bottom middle) dramatically improved the 

segmentation results. 
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Cartoon Style Transfer 

Since the stylistic features of many anime cartoons are very similar, modifications 

to the generator and discriminator networks were not considered necessary. The 

network architecture was modified to improve the effect of retraining on the network 

layers and fine-tune the process to learn the Pokémon style specifically.  

The default network parameters caused the generator loss to stagnate early in the 

training process, and output images contained multiple artifacts. Artifacts consisting of 

pixelated overlays and vibrantly colored patches of patterns were found in select images 

indicating the generator would strategically sacrifice image structure to impose a style. 

The size and shape of the artifacts indicate that the generator had learned to trick the 

patch-based discriminator by applying enough stylistic features to regions with little 

relevant structure (edges, corners, etc.), allowing the discriminator to verify the original 

structure and the new style in output images. 

 

 
Figure 4: Results with default parameters. The generator strategically placed patches 

of stylized pixels to trick the discriminator without stylizing the whole image. 

 

To address the artifacts the generator was pre-trained for 20 epochs instead of 10 to 

ensure it would preserve more image structure. This dramatically improved the style 

transfer quality and reduced the number of artifacts but did not completely remove 

them. Interestingly, in some network configurations, the generator learned to insert 

Pokeball artifacts within the image without further stylization to trick the discriminator 

into thinking the photo was from the Pokémon TV show (figure 5). 
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Figure 5: These images were classified as being from the Pokémon TV show, even 

without stylization, because the generator placed Pokeballs in the images. 

 

In all of the experiments, there was a wide variety of stylistic effects applied to the 

images that appeared to be dependent on the animal in the image and the color scheme 

of the input image. While many images were stylized well, chicken images tended to 

have more artifacts and little-to-no style transferred. Images with little color variation 

or a lack of bright blue or green tended to get a blue, green, or sometimes yellow filter 

across the whole image. This may be the result of the Pokémon TV shows most 

prominent and frequent colors being green and blue. 

 

Figure 6: Example images showing the input image (left) and the stylized image 

(right). The variety of styles applied suggests a lack of convergence. 

 

All models produced several well-stylized images and differed only in the type of 

artifacts introduced and their frequency in output images. Butterfly images were 

consistently stylized without issue. Cow and cat images were also stylized well in most 

models. This suggests that the model is learning the appropriate style, but that variations 

in color schemes in the Pokémon TV show might represent multiple styles. There may 

be too much variation in the features of the animal images to apply the style to with 

consistent results. The best model, defined by producing the fewest images with 

artifacts, had ten residual network blocks, 25 generator pre-training epochs, and a 
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content loss weight of 8. The resulting images from this network can be seen in Figure 

7 below. 

 

Figure 7: Output images resulting from the optimum network after 100 training epochs.  

 

Segmentation of Toonified Animals 

The segmentation of the resulting toonified animals with their corresponding mask 

was not achieved due to data anonymization within the PyTorch data loader and time 

constraints. This can be achieved by developing a custom data loader to better track the 

images throughout the style transfer process. These segmented images can then be 

passed to a downstream neural style transfer model for a final style transfer. 

4.3 StyleGAN Model Interpolation Results 

Pokémon StyleGAN 

Using the PyTorch ada StyleGAN2 implementation, a StyleGAN was trained using 

the Pokémon dataset of all 819 Pokémon of size 256 x 256. Data augmentation was 

utilized to increase the number of training images. Figure 8 highlights the first 

generated fake Pokémon. At this stage, the StyleGAN is learning basic structures like 

edges. After training for 10,000 kimg on a single Graphics Processing Unit (GPU) 

Figure 9 shows the StyleGAN has learned the basic structure of a Pokémon. The lowest 

FID score achieved was 56. While this is not a good FID score, when considering the 

variability in the dataset compared to a human face StyleGAN it was believed it would 
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be sufficient to blend with a much higher tuned model. Training was stopped early of 

the 20,000 kimg goal due to not converging and fears of overtraining the StyleGAN. 

 

StyleGAN Interpolation  

The trained PokeGAN and a pretrained StyleGAN from MIT on cat faces were 

"blended" together by interpolating between the weights of the two models. Figure 10 

shows the results of the blended model where the low-level features extend from the 

PokeGAN model and the high-level features extend from the Cat Face model. 

Conversely, Figure 11 shows the results where the low-level features extend from the 

Cat Face model and the high-level features extend from the PokeGAN model. Each 

blend model was reproduced using the square resolutions of 8, 16, 32, 64, 128, 256. 

 

 
Figure 8: First Pokémon StyleGAN generated fakes 
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Figure 9: Last Pokémon StyleGAN generated fakes 

 

 
Figure 10: StyleGAN blending with low-level features from PokeGAN model 

 

 
Figure 11: StyleGAN blending with low-level features from Cat Face model 
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Table 1: FID evaluation metric values 

{"results": {"fid50k_full": 161.53432660965208}, 

{"results": {"fid50k_full": 159.50613867223507}, 

{"results": {"fid50k_full": 137.20510298680932}, 

{"results": {"fid50k_full": 113.66827320351852}, 

{"results": {"fid50k_full": 105.11048855403487}, 

{"results": {"fid50k_full": 93.69253234441443}, 

{"results": {"fid50k_full": 97.46586409441375}, 

{"results": {"fid50k_full": 85.46439140488454}, 

{"results": {"fid50k_full": 80.83827854413724}, 

{"results": {"fid50k_full": 68.4378085460448}, 

{"results": {"fid50k_full": 70.96046685942804}, 

{"results": {"fid50k_full": 70.54898323063446}, 

{"results": {"fid50k_full": 59.103657947644564}, 

{"results": {"fid50k_full": 69.44869986205205}, 

{"results": {"fid50k_full": 58.59892177103728}, 

{"results": {"fid50k_full": 61.49667888137908}, 

{"results": {"fid50k_full": 56.280171485416844},  
{"results": {"fid50k_full": 64.26374343747938}, 

{"results": {"fid50k_full": 71.56613421727334}, 

{"results": {"fid50k_full": 70.172117817697}, 

{"results": {"fid50k_full": 77.96363065281446}, 

{"results": {"fid50k_full": 93.60860238782399}, 

{"results": {"fid50k_full": 85.44940605597489}, 

{"results": {"fid50k_full": 95.43020930879177}, 

{"results": {"fid50k_full": 88.56208719211827}, 

 

The arrow in the table shows the minimum FID value for this 

StyleGAN run and designates which model will be used as starting 

image for next run. 

5   Discussion 

This research paper aimed to determine how pictures of animals could be 

transformed into Pokémon-like creatures. The popularity of Pokémon and the massive 

revenue made by the franchise suggests there is a market for an app that can do just 

that. In itself, this is an ambiguous problem with many potential solutions. The 

approaches taken in this paper showed promise, but further research must be done to 

obtain high-quality style-transferred images if these are to be implemented in a 

commercial app. 

One of the exciting results of the experimentation in this study was the clever tricks 

employed by some generator networks within the modified CartoonGAN network. In 

some iterations, these networks learned to create an artifact resembling a pokeball and 
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to insert it into the original image with no further style transfer applied. This was 

enough to trick the discriminator into classifying the image as from the Pokémon TV 

show, given the frequency of Pokeballs in the TV show images. 

Several unexpected challenges were found to complicate the quality of output 

images and prevented the timely improvement of the neural style transfer approach. 

The first of these challenges was the image segmentation pipeline. It could segment 

simple images without any issues. Still, complex images with multiple objects or 

backgrounds and foregrounds with large color variations consistently led to poor input 

data for our style transfer mechanism. Any style transfer app will be limited by the 

quality of the image segmentation pipeline. The app could utilize the current 

preprocessing pipeline if it includes a feature that allows users to submit their masks 

for each image if they desire. Another option is to look at some of the more state-of-

the-art deep segmentation models at the cost of increased computation times. 

Another challenge that prevented the application of segmentation masks to our 

results was anonymizing image data within PyTorch's base data loader. This also 

prevented the segmentation of the toonified animal images created with CartoonGAN, 

which were to be blended with Pokémon images in the NST model. Further work is 

necessary to create a custom data loader that can track its source data and use that 

information to create corresponding files for additional output.  

The training of a StyleGAN presented three main difficulties. The first challenge is 

the amount of computing power and time it takes to train a StyleGAN. The second 

challenge is the low amount of training images. Even with data augmentation can cause 

concern, most StyleGANs are trained with 10,000 images or more. The third challenge 

is the amount of variability in Pokémon. While human faces are all different, the 

structure is similar, I.e., two eyes, one mouth, two ears. Conversely, all Pokémon are 

very structurally different, making it exceedingly difficult for the StyleGAN to 

converge. The PokeGAN, at the end of the training, because it ran out of options to 

reduce the FID score, began to change the color of the entire fake dataset, which is an 

indicator of overfitting. Since the PokeGAN was not able to converge with a low FID 

score, the model blending was reduced. The interpolation between the two models 

between the PokeGAN and the cat face model did not produce quality results at any of 

the resolutions, which reflects the variability of Pokémon and the animals combined 

with the PokeGANs inability to converge. 

The next step to further this research would be to incorporate a softening edge 

algorithm, similar to that employed in CartoonGAN, within the NST approach. 

Softening the edges of the Pokémon images could significantly reduce the number and 

prominence of edges distributed throughout the stye-transferred output image. It would 

allow the networks to focus more solely on patterns, colors, and color gradients.  

 

Ethical Concerns 

Converting pictures of pets into Pokémon does not handle as sensitive of data as 

other industries such as healthcare. However, data ethics still applies and requires 

discussion.  Ownership of the supplied pictures of pets may include pictures of people 

and the pets' owners inadvertently.  This can be addressed by not storing supplied 

images and using image segmentation to isolate the pet from any other portion of the 

image to ensure the model is only applied to a pet.  Another ethical question is whether 

using a trademarked brand like Pokémon for monetary purposes infringes on trademark 
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rights.  This would have to be solved through private contract law with the Pokémon 

trademark and brand owners.  If the application including personal information to 

receive the results of the model, i.e., name, address, email address, payment, and billing 

address, it would be pertinent to have transparency to the consumer of how their 

personally identifiable information will be stored, what it will be used for, and how it 

will be protected from theft. 

6   Conclusion 

The research conducted in this paper laid the groundwork for a viable commercial 

application. It demonstrated that neural style transfer is capable of achieving what was 

set out to be accomplished. However, there are still significant improvements to be 

made. The approaches in this paper set out to improve upon the quality of the Pokémon-

styled images produced by the initial neural style transfer model, which accomplished 

the sort of style transfer that was desired but had many artifacts in the output images. 

The artifacts in the background of the images can be easily removed with the use of 

image masks developed in the preprocessing pipeline. The main problem is to remove 

the artifacts from the animal in the styled images from the NST model. The model 

distributes edges and borders from the Pokémon images indiscriminately throughout 

the styled output images. Further work should consider techniques to soften the edges 

of the source Pokémon images. The generator will not learn to consider bold, well-

defined edges as a defining feature of the style of the source images. 
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