
SMU Data Science Review SMU Data Science Review 

Volume 5 Number 2 Article 12 

2021 

Rocket Learn Rocket Learn 

Daanesh Ibrahim 
Southern Methodist University, daaneshi@mail.smu.edu 

Jules Stacy 
Southern Methodist University, jstacy@smu.edu 

David Stroud 
Southern Methodist University, david@davidstroud.me 

Yusi Zhang 
Southern Methodist University, yusiz@mail.smu.edu 

Follow this and additional works at: https://scholar.smu.edu/datasciencereview 

 Part of the Data Science Commons 

Recommended Citation Recommended Citation 
Ibrahim, Daanesh; Stacy, Jules; Stroud, David; and Zhang, Yusi (2021) "Rocket Learn," SMU Data Science 
Review: Vol. 5: No. 2, Article 12. 
Available at: https://scholar.smu.edu/datasciencereview/vol5/iss2/12 

This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU 
Data Science Review by an authorized administrator of SMU Scholar. For more information, please visit 
http://digitalrepository.smu.edu. 

https://scholar.smu.edu/datasciencereview
https://scholar.smu.edu/datasciencereview/vol5
https://scholar.smu.edu/datasciencereview/vol5/iss2
https://scholar.smu.edu/datasciencereview/vol5/iss2/12
https://scholar.smu.edu/datasciencereview?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol5%2Fiss2%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol5%2Fiss2%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/datasciencereview/vol5/iss2/12?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol5%2Fiss2%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/


Rocket Learn  

Daanesh Ibrahim, Jules Stacy, David Stroud, Yusi Zhang  
1 Master of Science in Data Science, Southern Methodist University,  

Dallas, TX 75275 USA  

  

Acknowledgments. Jacquelyn Cheun, PhD. – Capstone Professor  

Abstract. This paper covers the development, testing, and implementation of 

Reinforcement Learning methods designed to autonomously learn and optimize Rocket 

League play. This study aims to analyze and benchmark model frameworks commonly 

used in Reinforcement Learning applications. These models can be applied to tasks 

ranging in difficulty from simple to superhumanly complex, and this study will begin 

with and build upon simple models performing simple tasks. It will result in complex 

models performing difficult tasks. Models will be allowed to train autonomously on the 

game using mass parallelization to expedite training times with the goal of maximizing 

reward function scores. This research constructs a framework to identify the best 

performing Reinforcement Learning model to complete this task. Multiple 

Reinforcement Learning methods were attempted and it was found that a Proximal 

Policy Optimization (PPO) model was able to learn how to play the game and 

consistently increase its reward function scores over time. Of all the models attempted 

for this game, PPO did the best job of learning how to play and it is recommended for 

future tasks in similar spaces.  

1   Introduction  

Reinforcement Learning is still in its infancy. However, even though it is not widely 

implemented, it is indisputable how important the concept is with regards to technological 

advancement and how great of an impact it will have on day-to-day life. Society is at the 

forefront of the era of automation, and Reinforcement Learning is the cutting edge.  

Digital twins and toy models are an important explorative stage of automation and 

Reinforcement Learning models. Training a Reinforcement Learning model in a digital 

environment before deploying it in a real-world environment enables production teams to 

avoid risks and save untold amounts in development value regarding capital, development 

time, and human work. Enabling Reinforcement Learning models to train the same agent 

through trial-and-error through mass parallelization allows them to develop optimal strategies 

and paths to achieve desired outcomes while even exhibiting human traits such as logical 

reasoning and intuition. These outcomes are reinforced through reward functions, which 

reward desired behavior and punish undesired behavior. These methods allow models to solve 

complex problems and to develop strategies to solve future, never-encountered problems.  

1

Ibrahim et al.: Rocket Learn

Published by SMU Scholar, 2021



Reinforcement Learning is a type of Machine Learning, that allows machines and software 

agents to automatically determine the ideal behavior within a specific context. Markov 

decision processes model decision making in discrete, stochastic, sequential environments. 

Reinforcement Learning has its origins in Markov decision processes and learning by trial and 

error. As early as 1983, neuronlike models were being built to solve difficult learning 

problems, and Barton et. al. benchmarked such a model using the pole balancing problem [1]. 

More recently, genealogically evolutionary methods were developed by Stanley et  al. in 2002 

with the NEAT algorithm [2]. This was expanded upon with HyperNEAT, which was trained 

to play video games as recently as 2012 by Hausknecht et al. [3]. Reinforcement Learning 

entered the public view when AlphaGo learned how to play Go well enough to defeat a 

professional champion Go player in 2016 [4]. Silver et al. created AlphaZero in 2017, which 

learned how to play Chess well enough to beat other world-champion programs Stockfish and 

Elmo [5]. And in 2019, Berner et al. introduced OpenAI Five, which became the first AI 

system to defeat professional world champions at an esports game [6], Dota 2, where it won 

2-0 in a best-of-3 competition. Footage of the first match is cited in the sources cited [7].  

Reinforcement Learning algorithms currently in use by the industry include NEAT, 

QLearning, LSTM, ε-greedy, optimistic initial values, upper confidence bound, and soft 

actorcritic.  

  

Reinforcement Learning is an important algorithm in that it deals with large and complex 

problems but may only have partial information regarding it. Most importantly, it is the closest 

algorithm in Machine Learning that resembles human learning. A Reinforcement Learning 

model can be trained to respond to unforeseen environments by receiving a reward or 

punishment based on every action taken. This is critical for industries such as supply chain 

management and robotics, where the problems that arise are highly dynamic —solutions to 

problems such as these need to be highly adaptive. Let the algorithm make the mistakes and 

learn in a simulated environment so fewer mistakes are made in the natural environment, all 

while optimizing the process. Future uses of Reinforcement Learning will include self-driving 

cars, fulfillment center robots, city traffic grids, environment controls, and military 

applications.  

  

Reinforcement Learning models have a wide range of applications in Machine Learning and 

real-world applications. Products such as self-driving cars, automated fulfillment centers, and 

self-monitored coolant systems are just a few examples of Reinforcement Learning models' 

applications. Our theories will utilize multiple Reinforcement Learning models in a similar 

manner for alternative applications, namely training a Reinforcement Learning model to play 

Rocket League by analyzing our reward function's performance, with the ultimate goal of 

creating an AI player that can play and win a match against an opponent. This study aims to 

be able to compare model performances directly, with broader goals of both improving 

existing Reinforcement Learning methods as well as educating a wider audience on novel 

approaches to Reinforcement Learning.  

  

Rocket League is a video game that draws similarities between hockey, soccer, rally car 

racing, and aerial dogfighting. Players are put into an enclosed square arena with rounded 

corners with goals on either end. Points are scored when the player’s team knocks a ball into 

2

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 12

https://scholar.smu.edu/datasciencereview/vol5/iss2/12



the opponent’s goal, with the object of the game is to score more points than the opposing 

team. Teams consist of up to three players per team. Players are able to accelerate, brake, turn 

left and right, and “drift” or power-slide their car. Players also have a boost meter which fills 

up when the player drives over pads on the ground, and the boost resource allows players to 

accelerate their car faster than what is achievable without it. Players are able to jump, double 

jump, control the aerial rotation of their car, and “air dodge” with their vehicle; an air dodge 

provides instantaneous velocity in midair and then attempts to rotate the car 360 degrees along 

an axis. The arena is fully 3-dimensional, and boost can be applied in midair, allowing cars to 

be propelled through the air. The team-focused nature of the game and the freedom of 

movement constrained by the arena have given rise to many strategy patterns present within 

the community, affecting ball control, shots on goal, offense, and defense in a very similar 

manner to real-world sports. The game has a dedicated audience and is considered an “esports 

game, with yearly global world championships. Related to Rocket League, RLBot is a 

community dedicated to developing superior artificial intelligence which play Rocket League 

and are pitted against each other in regularly scheduled tournaments. This environment 

provides ample opportunity for Reinforcement Learning applications, especially with regard 

to the development of artificial intelligence capable of playing the game.  

  

2   Literature Review  

2.1 Foundations of Reinforcement Learning  

Reinforcement Learning methods originated with the concept of the Markov Decision Process. 

Previous work on Markov decision processes has been done by Oguzhan et al. (2010) on the 

construction and evaluation of MDPs used in medical decision making like the timing of liver 

transplantation in a patient who has a living donor available, compare Markov decision 

processes and standard Markov process [8]. The authors use the policy iteration algorithm in 

solving the illustrative MDP model by applying the backward induction algorithm while 

ensuring the value functions for any 2 subsequent steps are identical. MPM model is able to 

evaluate only one set of decision rule at a time so it calculates the total expected life years 

when a decision rule specifying threshold MELD scores. Authors found by selecting the 

threshold patient health that results in optimal policy with the largest total life expectancy. But 

in the MDP model, a patient's dynamic behavior complicates the decisions further, so authors 

developed an infinite-horizon discounted stationary MDP model with a total expected 

discounted reward criterion. The resulting set of actions provide the maximum values that 

give the optimal policies. After comparing these two models with liver transplant problems, 

MDP are able to model sequential decision problems in embedded decision mode at every 

stage, the computational time is much smaller. This could be useful in a fast-paced learning 

environment such as Rocket League, where algorithm completion must occur multiple times 

per second. However, MDP also requires the data needed to estimate a transition probability 

function and a reward function for each possible action, and there is no software for MDP so 

extra programming will be needed. Alberto et al., (2018) proposed another framework called 

3

Ibrahim et al.: Rocket Learn

Published by SMU Scholar, 2021



Configurable Markov Decision Processes (Conf-MDP), also a new learning algorithm Safe 

Policy -Model Iteration (SPMI) to combine and optimize the policy and environment 

configuration [9]. Conf-MDP’s principle is to restrict attention to the transition model and 

focus on the problem of identifying the environment that will achieve the highest performance 

possible even though any of the Conf-MDP’s parameters can be tuned.   

Foundations for Reinforcement Learning also stem from Monte Carlo problems, where 

random exploration can lead to possible solutions for deterministic problems [10]. The Monte 

Carlo method for Reinforcement Learning learns from experience with no prior knowledge of 

the actions. The random aspect is whether there is a reward or not. Therefore, when applying 

the Monte Carlo method to Reinforcement Learning, it must be in an episodical situation. This 

is because an episode must “terminate” before any returns can be calculated [11]. There is no 

update after every action, only after every episode. Using an incremental means to update the 

average reward with each episode will allow the algorithm to see how much progress is made 

with every episode [12]. This will monitor each instance of playing Rocket League and judge 

if it is improving exponentially or not. Given the number of episodes this will require, anything 

that helps monitor the progress in a summarized way will be extremely beneficial.  

2.2 Explore vs. Exploit  

Many Reinforcement Learning algorithms vary their approach based on the concept of 

exploration versus exploitation. One of the simplest implementations of an explore vs exploit 

algorithm is the Multi-Armed Bandit approach.. An agent chooses an action, and that action 

yields a reward based on whatever the probability distribution is for that action. The agent 

does this over many episodes in an effort to maximize its reward. Take a slot machine for 

example. This slot machine possesses many levers with different rewards given for each one. 

Every pull of one of the levers is a “turn” and there are in total a 100 turns. Therefore, it must 

find a strategy to get the most reward that can be obtained in 100 turns. An option could be to 

pull each lever once and keep track of the reward given for each one, and then simply go back 

to the lever that gave the most reward. While it is a valid strategy, the issue with this method 

is that each lever has its own probability distribution associated with it [13]. It may take 

multiple turns to properly sample which levers give the most reward (or the best chance for 

it).   

The downside to many Reinforcement Learning algorithms is that every action spent trying to 

gather information is an action taken away that could have been used to maximize the reward. 

This is the explore vs. exploit dilemma, and it represents how to balance the issue of sampling 

vs maximizing reward. So how does one determine the probability distributions for each 

action while maximizing the reward? One approach is Epsilon-Greedy [14]. EpsilonGreedy 

initializes by taking random actions and determining the starting average reward for each one. 

A value is picked for epsilon – this value represents how much of the remaining time or turns 

will be spent exploring the other levers and is usually quite low (5-10%). The rest of the time 

or turns will be spent on the action that gives the maximum reward in the first step. Another 

approach is Optimistic Initial Values [14]. This algorithm does not find the best action 

initially, but instead sets the average reward to an unattainable value. Then it goes through an 

option and updates the average reward for that option, and picks whatever action has the next 

4

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 12

https://scholar.smu.edu/datasciencereview/vol5/iss2/12



highest average. Since the first value of the reward was so high, the average will therefore fall 

with every turn. Therefore, the top option will always be changing and over time the average 

reward for each action will reach its true value. The benefit over Epsilon-Greedy is that once 

the optimal choice is found, the algorithm no longer needs to explore any other options. A 

third approach is Upper Confidence Bound and is similar to the Central Limit Theorem in that 

it states as the number of observations increases, the distribution of the sample mean will 

approach normality centered around the true population mean [15]. So, a sample mean of 10 

observations is less accurate than a sample mean derived from 100 observations. This 

algorithm puts an upper bound on the sample mean according to the number of observations. 

It no longer chooses the action with the highest reward, instead it chooses the action with the 

highest upper confidence bound. As the algorithm progresses the confidence bound gets 

tighter, allowing it to sample each action enough to know the distribution confidently and 

move to the next action once it is no longer competitive.   

2.3 Off-Policy Learning  

Soft Actor-Critic is an off-policy algorithm which is used for Reinforcement Learning tasks 

that contain continuous actions and which functions independently from Epsilon-Greedy, 

Optimistic Initial Values, and Upper Confidence Bound methods. Instead of only trying to 

gain the maximum reward, Soft Actor-Critic also attempts to maximize the entropy of the 

action. Essentially this means it wants to increase the randomness and unpredictability of the 

Reinforcement Learning algorithm to combat the “brittleness” of the attempted task it wants 

to accomplish [16]. Higher entropy encourages exploration and can create a more stable 

process overall. It also helps to prevent the algorithm from finding an inconsistency and 

exploiting it to get the maximum reward, something that would not be sustainable over time 

[17]. Using Soft Actor-Critic could even train an algorithm on things that it has never seen 

before by applying actions based on generalized conditions it faced during training. The idea 

is to use Soft Actor-Critic to see if what the algorithm learns in one aspect can be applied to 

other aspects, such as having the agent take shortcuts on the track or finding a boost on the 

path to maximize speed and efficiency. Deep neural networks and Q-Learning algorithms are 

also off-policy algorithms. Arthur  et al. (2015) explored double Q-Learning in an Atari 2600 

environment [18]. A deep Q network is a multi-layered neural network but double Q-Learning 

uses the same values to select and evaluate the action. In this paper, the results show that 

overestimations are really common and severe. This model was run on Atari games. With 

Double-Q learning one can successfully reduce the over optimistic results in a more stable 

and reliable learning environment.   

Deterministic policy gradient algorithms are most useful in environments with continuous 

actions. Policy gradient algorithms are normally used by sampling this random policy and 

adjusting the policy parameters in the direction of greater cumulative rewards. In 2013, David 

et al. introduced an off-policy learning algorithm to choose actions according to a random 

behavior policy, then learned about a deterministic target policy to ensure deterministic policy 

gradient algorithms continue to find satisfaction [19]. In the experiments, authors first focused 

on a direct comparison between the stochastic policy gradient and the deterministic policy 

gradient, the results shows a significant better performance to the deterministic update; second 

5

Ibrahim et al.: Rocket Learn

Published by SMU Scholar, 2021



experiments focused on the stochastic actor-critic and used the same fixed variance as the 

deterministic actor-critic. Compatible off-policy deterministic actor-critic Q learning had 

slightly better performance than stochastic actor-critic and off-policy actor-critic. Under 

policy gradient algorithms, Mohammad et al. (2006) proposed a Bayesian framework that 

models the policy gradient as a Gaussian process  [20]. Early stage, both conventional and 

natural policy gradient methods depend on Monte Carlo techniques to estimate the gradient 

of the performance measure, however they tend to produce high variance estimates. Bayesian 

alternative is to treat the first term in the integrand as a random function, the randomness of 

which reflects the subjective uncertainty concerning the true identity, by modeling the gradient 

as a Gaussian Process. In this article, authors ran experiments in continuous-action bandit 

problem and a continuous state and action linear quadratic regulation problem. Bayesian 

quadrature has lower bias than Monte Carlo in a bandit problem, the BQ gradient estimate has 

lower variance than its MC counterpart in a linear quadratic regulator. In conclusion, even the 

experimental results are as we expected, but authors assume that there are even higher gains 

using this approach.  

2.4 NeuroEvolution  

There also exists the concept of a model whose topology (and therefore behavior) is randomly 

evolved from a simple starting model to a complex, application-specific model. 

NeuroEvolution of Augmenting Topologies (NEAT) was introduced in a 2002 article by 

Kenneth O. Stanley et. al. [2]. NEAT was able to outperform the best fixed-topology method; 

the authors claimed that this was primarily due to evolution and speciation of networks and 

starting with and then building upon a lightweight modeling framework. NEAT outperforms 

other Reinforcement Learning methods such as Adaptive Heuristic Critic and Q-Learning by 

searching for behaviors instead of a value function, and thus is well-adapted to handling tasks 

in continuous and high-dimensional state spaces. It can solve Non-Markovian pathing by 

trialing two models and then creating an offspring of the two models by mixing each model’s 

“genetics.” The authors benchmarked the algorithm using the classic “double pole balancing” 

test, and the results showed that NEAT was “several times more efficient than [other] 

neuroevolution methods.” More recently, Helmuth et al. (2020) explored many methods for 

parent selection in genetic programming with the goal of benchmarking “recent and common 

parent selection methods” [21]. Algorithm performances were evaluated in the program 

synthesis domain. Established benchmarking methods were used to determine optimal parent 

selection methods, and the authors found that lexicase-selection-derived methods were 

consistently the top-performing selection methods. Ranking averages were listed, and the 

topperforming selection methods were Down-sampled lexicase and MADCAP ε-lexicase. 

Other selection methods such as Tournament or novelty search performed poorly.  

HyperNEAT was a further development of NEAT explored by Van den Berg et al. in 2013. 

The authors examined success factors for HyperNEAT and found that performance decayed 

for more advanced tasks, and that there was underperformance for tasks with a fracture in the 

problem space when compared to NEAT [22]. They further found that HyperNEAT’s 

performance decreased on irregular tasks, and suggested that “irregularity is an extreme form 

of fracture.” They state that though the premise of genotype-phenotype encodings used in 

6

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 12

https://scholar.smu.edu/datasciencereview/vol5/iss2/12



HyperNEAT are promising for evolutionary computation, employing such methods in 

practice has proved challenging. Hausknecht et. al. (2012) developed a HyperNEAT-based 

agent to play Atari games Asterix and Freeway with minimized domain-specific knowledge 

[3]. Their ultimate goal was to generate an “agent capable of learning and seamlessly 

transitioning between many different tasks.” The way that the HyperNEAT algorithm works 

is outlined in four stages within the article: 1. Compositional Pattern Producing Network 

(CPPN) topology evolution, 2. Using the CPPN to develop input/output node weights for a 

neural network, 3. Applying the neural network to a problem, and 4. Evolving CPPN 

populations using NEAT. Visual processing, agent detection, API interfacing, and 

experimental design are discussed. Test results showed that the HyperNEAT agents 

outperformed Sarsa(λ) agents.  

Though the application of such algorithms to a game as complex as Rocket League will be a 

challenge, they are good starting points to properly train an agent to maximize reward 

efficiently.  

2.5 Parallelization  

In order to maximize the efficiency of training an agent, training will be parallelized to hasten 

training time. Eldridge et. al. (2014) proposed the utilization of neural network-based 

accelerators to approximate functions used by the GNU C Library which commonly appear in 

modeling benchmarks [23]. The authors were able to achieve math functions that were 68x 

lower in average energy-delay than the traditional library functions. Whiteson et. al. (2006) 

explored evolutionary function approximation as an automatic approach to function 

approximation methods for facilitation Reinforcement Learning models. Their approach 

combined NEAT with Q-Learning to create a NEAT+Q model, which “automatically 

discovers effective representations for neural network function approximators.” To 

benchmark these methods they utilize the mountain car task and server job scheduling. Using 

temporal difference methods allows agents to learn over the course of its lifetime; however, 

cases where multi-dimensionality results in a value function that is impractically big 

ultimately require function approximation for value functions. The authors set out to automate 

the search for optimal hyperparameters that would allow for function approximation to occur 

in an implementable manner, as poor hyperparameter selection often results in an unusable 

model. NEAT methods are used to select function approximators for Q-Learning models to 

be applied to “on-line” scenarios, or scenarios where the agent not only tries to quickly learn 

an optimal policy, it also attempts to maximize the rewards for the policy. Kosiachenko et. al. 

(2019) developed a CUDA library known as Multi-Agent Spatial Simulation (MASS) [24]. 

The library attempts to address problems with automating parallelization at the GPU level, 

but the authors admit that their method does not improve parallel performance.  

2.6 Popular Projects  

Reinforcement Learning algorithms are what people think of when they imagine Artificial 

Intelligence or Machine Learning. This is in large part thanks to exhibitions where 

7

Ibrahim et al.: Rocket Learn

Published by SMU Scholar, 2021



Reinforcement Learning algorithms learned to play popular games such as Chess or Go, and 

later to a variety of video games. In 2018, Siljebråt et al. used Starcraft 2 as an environment 

to test both human and artificial agents on the same task [25]. One of their goals was to extend 

the capabilities of Reinforcement Learning to capture abstract concepts such as situational 

insight. They attempted to relate the field of cognitive sciences (e.g. neuroscience, 

psychology, behavioral economics) to general video game playing (GVGP) in such a way that 

it impacted their Reinforcement Learning model, where the actions taken by the agent could 

be reasonably taken by a human and would have logical rationale. The authors make mention 

of prior models such as LetaBot which uses Monte Carlo Tree Search and text mining, 

however they make note of the fact that prior models are not able to play an entire match as 

they are trained on certain portions of the game; as such prior models are difficult to 

benchmark and not as comparable to human behavior. The authors developed a StarCraft II 

Learning Environment (SC2LE) to provide an environment that mimics the environment a  

human would play within. The authors conclude that instead of focusing on training a model 

to play an entire game, they propose that the study will focus on moving an individual unit 

within the game onto a beacon. They set up a framework by which they will collect human 

data and apply it in future work.  

Berner et. al. (2019) developed a Reinforcement Learning model that learned to play Dota 2, 

a video game with critical acclaim [6]. Their model, named OpenAI 5, was scaled to train on 

approximately 2 million frames every 2 seconds, and continually trained for 10 months. The 

authors then trained the AI against human players; it trained against 3,193 teams and achieved 

a win rate of 99.4%. The model ultimately defeated a professional, world champion Dota 2 

team on April 13th 2019. The researchers state that “OpenAI Five demonstrates that self-play 

Reinforcement Learning can achieve superhuman performance on a difficult task.” The 

researchers outline aspects of the game of Dota 2; in particular the long time horizons, partially 

observed states, and high dimensionality. Regarding time horizons, the authors compare Dota 

2 to both Chess and Go. Dota 2 has 20,000 steps per episode whereas Chess has 80 and Go 

has 150. Regarding partially observed states, Dota 2 has an active team-level fog-of-war 

during play, and thus the model must infer and predict enemy positioning and react 

accordingly. Regarding high-dimensionality, the model observes 16,000 total values and 

chooses between 8,000 and 80,000 actions per time step; Chess requires approximately 1,000 

values per observation and Go approximately 6,000 values per observation. The authors define 

one time step as acting on every 4th frame, and the game runs at 30 frames per second. The 

authors state that certain game decisions are pre-scripted such as item purchase order; they 

believe that the agent could perform better if these decisions were not scripted, and that 

superior performance was achieved prior to scripting. The neural network built by the authors 

contains approximately 159 million parameters, and is passed through a Long Short Term 

Memory (LSTM) recurrent neural network architecture. The authors acknowledge the fact 

that while the model does not see all the information a human can gain access to, the model 

observes all information instantaneously and simultaneously. The model does not see each 

frame, as this would greatly impact computational complexity in a negative manner as well as 

impede the goal of studying strategic long-term planning. Reward functions were decided 

upon at the start of the project based on the team’s game familiarity, and found that the initial 

8

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 12

https://scholar.smu.edu/datasciencereview/vol5/iss2/12



reward choices worked well and that only minor adjustments were needed. The model was 

trained using self-play experience on a pool of up to 1,536 GPUs. The Adam optimizer was 

applied to samples of length 16 timesteps. Games were run at approximately half the speed of 

real time as more than double the number of parallel game instances could be run. The most 

recent agent iteration trained against itself 80% of the time and against old policies 20% of 

the time. The authors discuss computing architecture and game/model communication, and 

how model data is updated while games are in-progress rather than at the end of each game. 

Because training the model was capital-intensive with long time frames, and because game 

updates would change the structure of the model, the authors would update the model using a 

process they termed “surgery,” where new models would be created from updated older 

models. The authors continue to discuss training parameters such as batch size, long term 

credit assignment, and adjusting for long time horizons.  
Given the various methods of Reinforcement Learning that have been described, a technique 

will be developed to produce the best performing agent for a continuous deterministic 

environment such as Rocket League.  

3   Methods  

3.1 Data Collection and Model Utilization  

A Reinforcement Learning model is trained using the Rocket League client as the training 

environment, which serves as the source of data. The algorithm is developed within RLBot, 

an extension of the Rocket League client. RLBot is a development environment for building 

automated Rocket League players, or “bots.” RLBot was developed by the RLBot community, 

and consists of a Rocket League client, a menu for adjusting match settings, and a python 

interpreter to read custom code for developing bots. The end goal is to build a bot capable of 

playing and winning a match against an opponent. RLBot allows raw gamestate monitoring 

in real time, including the position, velocity, and orientation of all cars and the ball within the 

arena. In addition it allows for the monitoring of the time remaining in the match, the score, 

what gamemode is currently being played, and much more. With this raw input available to 

the AI, a deep learning model could apply it’s filters to this raw data and generate a strong 

understanding of what it means. Thus, with the use of RLBot a deep learning AI for Rocket 

League is possible. The efficacy of the trained bot can be tested in live matches against 

opponents (both bot and human) and overall win rates can be used as scoring metrics.  

  

Data is collected from successive training sessions within the Rocket League client in live 

exhibition matches against active opponents. The environment will be mass-parallelized, such 

that the algorithm will train a multitude of agents at the same time; this will allow for more 

rapid learning which will ultimately speed the training process. Reinforcement Learning 

models that will be explored include Multi-Arm Bandits, NEAT, Policy Gradient Algorithms, 

Deep Q Learning, and the Soft Actor Critic Model.   

  

9

Ibrahim et al.: Rocket Learn

Published by SMU Scholar, 2021



General Overview of Reinforcement Learning  

  
[26] Fig. i: The Reinforcement Learning loop  

  

Reinforcement Learning is an unsupervised Machine Learning method by which an algorithm 

learns to perform a task. The general method flow is illustrated in Figure i. The agent is the 

actor, and represents the portion of the model that the algorithm can control. This agent takes 

actions within the environment, which is the general setting and which the algorithm can 

interact with through actions taken by the agent. The agent takes an action, and obtains 

updated data from the environment. Once the algorithm obtains and processes the new 

environment information, it updates the agent’s state. The state of the agent is a concept 

relating to the agent’s current action, and could include variables such as velocity, physical 

and metaphysical properties, structural properties, locational data, and many more. During 

this state update, the algorithm also evaluates and updates its reward function. Another loop 

is then primed for the agent to take another action based on the updated state and reward 

functions.  

The reward function is a separate measure that determines the agent’s overall performance 

and ultimately drives its actions. The reward function is in essence a list of desired and 

undesired behaviors or outcomes that are scored and applied to the agent as it performs actions. 

If an outcome is desirable it is assigned a positive score, and if an outcome is undesirable it is 

assigned a negative score. In this way, the agent is rewarded and punished for the outcomes 

of its behaviors. Rewards and punishments can be very closely related to agent actions, such 

as rewarding speed increases, or indirectly related, such as a reward being applied when a ball 

goes into a goal. The algorithm is then directed to maximize the score from the reward 

function, and in this way the reward function directly drives the behavior of the agent.  

Similar to other Machine Learning methods, there are training and test phases. During the 

training phase, the algorithm is given the opportunity to take explorative or exploitative 

behavior (this is referred to “explore vs. exploit”). At the initial stages of training, the agent 

takes purely explorative behavior as it learns how to interact with the environment, how to 

avoid punishment, and how to obtain rewards. As the agent’s pathing becomes more defined 

10

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 12

https://scholar.smu.edu/datasciencereview/vol5/iss2/12



and as its actions become more optimized, the algorithm changes from exploring to exploiting 

as it attempts to maximize its reward score. During the test phase, the agent undergoes a trial 

in order to benchmark its performance.  

With regards to Rocket League, the car is the agent. The arena, ball, and opponents are the 

environment. Actions the agent can take include turning, jumping, air dodging, boosting, 

drifting, accelerating, and aerial rotation. And the greatest reward will be when the agent wins 

a match, and the second greatest reward will be when the agent scores a goal.  

3.2 Markov Decision Process  

The Markov Property is a theory of probability named after  the Russian mathematician 

Andrey Markov, in which the values of future observations depend only on the series’ most 

recent values. As a result, the Markov Decision Process (MPD) will not memorize the past if 

the present state is given; thus it is a memoryless random process. In general, the relationship 

between Reinforcement Learning(RL) and MDP is that RL is a framework for solving 

problems that can be expressed as MDPs. One key factor that affects how well RL will work 

is that the states should have the Markov property which the value of the current state is 

enough knowledge to fix immediate transition probabilities and immediate rewards following 

an action choice.   

A Markov Process (or Markov Chain) can be represented by a tuple {S,P}: S is (finite) set of 

states, and P is the state transition probability matrix Pss’  = P [St+1 = s ‘ | St = s]. The Markov 

reward process is a Markov chain with values{S, P, R, γ}. R is a reward function and γ is a 

discount factor, where γ  [0, 1]. The decision process is a Markov reward process with 

decisions {S,A, P, R, γ}. S is a finite set of states, A is a finite set of actions, P is a state 

transition probability matrix where P a ss’= P [St+1 = s ‘ | St = s, At = a], R is a reward function 

where Ra/s = E [Rt+1 | St = s, At = a], and y is a discount factor where γ  [0, 1]. In the two 

functions below, an MDP is a 5-length tuple {S, A, P, R, y} where [27]:  

● S is a set of states  

● A is a set of actions  

● P(s, a, s’) is the probability that action a in state s at time t will lead to state s’ at 

time t+1  

● R(s, a, s’) is the immediate reward received after a transition from stat s to s’, due 

to action a  

● y is the discounted factor which is used to generate a discounted reward.   

● π is the policy, a solution to the MDP, and is defined in each possibility of state  

  

11

Ibrahim et al.: Rocket Learn

Published by SMU Scholar, 2021



This function gives the probability that a given action will change from state S to state S’ [28]. 

This probability function can be explained as the probability of  state change from S to S’ 

under state S when executing policy π, and should equal the sum of the probability of 

executing all the actions under state S times the corresponding action’s probability.   

  

This reward function can be explained as the reward  under state S when executing policy π, 

and should equal the sum of the probability of executing all the actions under state S times the 

corresponding action’s reward.   

The goal of MDP is to frame the problem of learning from interaction to achieve a goal. This 

directly applies to Reinforcement Learning which is founded upon MDP and operates in a 

very similar manner.   

3.3 Deep Learning  

Deep learning is a part of the broader topic of Machine Learning, specifically those based on 

artificial neural networks with representation learning. This learning can be further 

categorized as supervised, semi-supervised, or unsupervised. The “deep” aspect of it refers to 

the use of multiple layers within the network to extract higher level features from raw input. 

These higher-level features can be abstract and composite representations of the original raw 

data, such as a matrix of pixels or separating individual profiles from a group photo in image 

recognition. The caveat of deep learning is that the algorithm figures out these higher-level 

features completely on its own. After initializing and tuning the algorithm, the design 

ultimately lets the algorithm read inputs and separate out noise while applying layers to learn 

the important features effectively. The number of layers present in the algorithm is usually a 

direct indication of how complex it is as well. While this could be interpreted as “the more 

layers the better”, this is not always the case. For example, a deep learning network which 

contains numerous layers can be prone to overfitting and long computation times. Overfitting 

can be defined as taking non-important variables which would normally be classified as noise 

and attempting to extract meaningful data for the algorithm to use. This results in a situation 

where finding additional features is more difficult. The same is true for the inverse: 

underfitting a model results in a poor representation of the entire dataset. Any predictions or 

outputs created by an under fitted or overfitted model would be unreliable. If the size of the 

training data contains too many features or observations the deep learning model runs the risk 

of extensive computation times. For modern GPUs and CPUs computation time is usually a 

non-factor, however it could be an issue for older hardware or be indicative of a larger issue 

(such as uncleaned data).  

With regards to Rocket League, an AI using deep learning could theoretically improve over 

time and achieve superhuman performance. Currently, the AI in the Rocket League client are 

12

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 12

https://scholar.smu.edu/datasciencereview/vol5/iss2/12



used as placeholders until a human player can connect to the game. This allows the rest of the 

players on the server to start the match while waiting for additional human players to take the 

place of the AI. The AI is also used to replace a player who suddenly left the game in the 

middle of the match so that the game can continue for everyone else. The AI in Rocket League 

are “basic representations” of players, and often pale in comparison to human performance, 

such that they can barely defend the goal or score on an open net. Often in casual online 

matches, the AI are viewed as liabilities on both ends of the field. If an AI could be 

successfully trained using deep learning, then there would be no need for “placeholder” AI. 

Instead, a competitive AI could be present that would hold its own against a multitude of 

opponents. Over time, the AI could learn optimized strategies to be dominant against any 

competitor in real time, including changing strategies based on the current situation in order 

to best ensure a victory.  

3.4 Proximal Policy Optimization  

Proximal Policy Optimization (PPO) belongs to the policy gradient algorithm family. This 

means that the policy is updated in such a way that the probability of actions taken now are 

much more likely to provide a larger reward in the future. The agent will explore the state and 

the algorithm will track the agent’s actions and how the state changes as a result. These 

interactions are referred to as trajectories. When the algorithm has a collection of trajectories 

it will examine them to see which actions performed by the agent resulted in a positive or 

negative reward [29]. The policy will then be updated based on these results.   

With regards to weights, these are adjusted to make favorable results more likely and make 

bad results less likely. Within the PPO, the advantage function does this by predicting the 

benefit of the action the agent is about to perform. The actual result of the action is then 

recorded and compared to the advantage estimate. If it is better than the estimate, the gradients 

are updated with increased weights that make that action more likely to occur again. If it is 

worse than the estimate then the result will be weights that are decreased making that action 

less likely to occur [29].  

What sets PPO apart from other algorithms is the probability ratio that factors into updating 

the policy. This is the difference between the original action log probability and the new 

model’s action log probability. It prevents large updates to the policy from happening. Why 

would this be beneficial?  

  

Loss function using ratios from the new and old policy action log probability, referred to as Conservative  
Policy Iteration (CPI) [29]  

  

13

Ibrahim et al.: Rocket Learn

Published by SMU Scholar, 2021



With normal policy gradient algorithms, any update to the policy can potentially be so drastic 

that a potential reward peak window could be missed. Without that knowledge of the large 

reward, the policy will not know which way to update the gradient to improve the policy loss. 

With this confusion the policy could potentially be eliminated without being able to be 

recovered. A PPO using the ratio of the original action log probability to the new model’s 

action log probability will prevent the risk of missing reward windows and hurting the policy. 

It can’t miss reward windows because the policy is not allowed to update too much after every 

step - the updates are clipped according to a set amount (the default is 0.2). The tradeoff for 

this is that training agents can take quite a long time on even the most basic functions.  

PPO is the perfect algorithm for an environment as complex and continuous as Rocket League. 

There are so many different ways to achieve the goal-state. Many cannot be coded into proper 

rewards. The agent must explore and try things incrementally in order to make proper 

connections from actions to desired state changes. The goal is to have the agent try different 

avenues and see what works. Rocket league is a game of unpredictability - no two games are 

alike. PPO helps the agent to do that as well. It is much more difficult to predict the actions of 

an agent trained using PPO than it is with any other policy gradient algorithm. It is expected 

that over the course of many timesteps, an agent worthy of the ever changing environment of 

Rocket League will be produced.  

4   Results  

4.1 Scope  

The scope of this study is to compare the performance of a Reinforcement Learning model 

with its past performance and show evidence of improvement. Further, the study aims to 

compare a successful Reinforcement Learning model with other models; in this case a 

Proximal Policy Optimization model and a Twin Delayed DDPG model.  

4.2 Model  

The optimal model for this application was found to be Proximal Policy Optimization. This 

model was successful in increasing its average reward score over time. These results are 

shown in Fig. 2. Average scores approximate a natural log curve. Additionally, it exhibited 

the behavior of intentionally hitting or carrying the ball into the goal.  

  

A TD3 and an A2C model were both attempted, but neither model was able to intentionally 

hit or carry the ball into the goal. These models would begin training in a similar manner as 

the PPO model, then would relatively quickly get stuck in a forward/reverse behavioral pattern 

in the middle of the field, unable to move.   

14

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 12

https://scholar.smu.edu/datasciencereview/vol5/iss2/12



  
Fig. 2: Average Cumulative Rewards vs. Timesteps Trained, PPO  

5   Discussion  

5.1 Reward Function  

The overall objective of Rocket League is to score more goals than the opponent in the allotted 

time. While this is the most important aspect of the game, rewards must be formulated to help 

the agent achieve this task as efficiently as possible. Below is the breakdown of the rewards 

used to train the agent.  

  

- Event Reward  

- Reward given for every goal the agent scores.  

- Punishment given for every goal scored against the agent.  

- Reward for every time the agent touches the ball.  

- Reward given for every shot the agent takes at the goal.  

- Reward given for every save the agent makes.  

- Reward given for every time the agent demolishes the opponent.  

- Velocity of agent to ball  

- Finding the distance between the agent and the ball multiplied by the 

velocity the agent was traveling at. The closer the agent is to the ball the 

larger the value for “distance” will be (ratio using normalization).  

- This is an attempt to train the agent to get to the ball as fast as it can. It 

should make shot attempts easier to come by if it can beat the opponent to 

the ball.  

- Velocity of ball to goal  

15

Ibrahim et al.: Rocket Learn

Published by SMU Scholar, 2021



- Finding the distance between the ball and the agent’s target goal multiplied 

by the velocity the ball was traveling at. The closer the ball is to the goal 

the larger the value for “distance” will be (ratio using normalization). This 

value is then multiplied by the ball’s height with respect to the height of the 

goal (1+[height of ball/height of goal]).  

- The agent will learn to hit the ball towards the goal consistently and with 

speed while giving it a bonus multiplier if the ball has height on it. Shots 

that have height and speed are significantly harder to save than just a slow 

aerial shot or fast ground shot.  

- Reward for agent being behind ball  

- Take the Y-coordinate position of the agent and the ball. If the ball’s 

Ycoordinate is greater than the Y-coordinate of the agent, the reward is 

given.  

- Helps to train the agent to keep the ball in front of it at all times. This is 

beneficial to learn for offensive and defensive purposes.  

- Save Boost  

- The boost amount the agent currently holds from 0 to 1 (50 boost being 

equal to 0.5). The square root of this number is then taken for the reward.  

- Taking the square root allows the bot to learn that even holding 20 boost is 

beneficial than holding 0 boost. Helps to train the agent not to waste boost 

unnecessarily.   

5.2 Exploitation of reward function  

The agent’s primary goal is to maximize the score it achieves from the reward function. In 

other words, given enough training time the agent will attempt to display only those behaviors 

which will increase its reward score. This behavior is called exploitation, and it is pivotal to 

an agent’s performance. With this in mind, behaviors are observed after training that 

demonstrate that the agent exhibits exploitative behavior.  

Shots made by the agent tend to go into the air. Rewards obtained for a shot on goal are 

multiplied by a coefficient that increases with the height of the ball. It is possible for the 

exploitation of this behavior to become problematic as the reward happens even when the shot 

is made inaccurately; this is balanced by the fact that a reward is given if the ball goes into the 

goal.  

Other behaviors the agent expresses are demolishing cars and not expending boost 

immediately. These are consistent with exploitative behavior. The agent is also consistently 

observed aligning the ball in-between the car and the opponent’s goal; this increases the 

likelihood that the ball will go in the goal, and is a form of exploitative behavior.  

5.3 Subjective comparison to human play  

As a subjective analysis of the agent’s level of play at 175 million timesteps of training, the 

agent takes common actions that a human player would take during play. Humans tend to 

develop strategies that take into account the positioning of their car, the ball, and the goal in 

such a way that the three are aligned in order to maximize the likelihood that a shot on the 

16

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 12

https://scholar.smu.edu/datasciencereview/vol5/iss2/12



goal would go in. Additionally, skilled human players are likely to shoot on the goal in an 

unpredictable manner in order to make goalkeeping difficult, and save boost for pivotal 

moments in order to tip the advantage in their favor. After training, the agent is consistently 

observed aligning the car, ball, and goal: if the ball is to the right of the goal, the agent will 

drive further right until the ball is between the car and the goal before taking a shot. The agent 

is also consistently observed shooting the ball into the air rather than on ground level as well 

as saving boost for big moments, both of which are consistent with rewards given by the 

reward function.  

Shortcomings are observed in the agent’s playstyle. Agents consistently remain oriented 

towards the opponent’s goal, and if both the ball and the opponent’s goal are not in front of 

the car the agent will drive backwards until they are. In this situation a human player typically 

orients towards the ball rather than the opponent’s goal, and will turn around to position 

themselves between their own goal and the ball. Additionally, agents are not observed jumping 

into the air with any frequency. Jumping and aerial flipping are commonly observed actions 

of human players as these actions impart immediate change to the momentum of the car, 

allowing for control of the car in midair.  

As discussed, these behaviors are consistent with exploitative behavior by the agent in order 

to maximize its reward score. Desired behaviors not yet demonstrated can still be learned 

through additional training and reward function adjustment. 5.4 Proximal Policy 

Optimization vs. Other Models  

The Proximal Policy Optimization method performed best in this space because it is designed 

for continuous action spaces, long-term goal achievement, and gradual policy updates [29]. 

These properties allow agents to develop beneficial behaviors while also allowing for the 

development of fundamental behaviors. Other models attempted were a Deep Q Learning 

model and a Twin Delayed DDPG (TD3) model. These were found to be ineffectual for 

learning how to play Rocket League. Deep Q Learning was developed for discrete action 

spaces such as in the game of Go, whereas Rocket League is a continuous space.  TD3 is an 

update to Deep Deterministic Gradient Policy (DDPG), which suffers from brittleness with 

respect to tuning hyperparameters as well as overestimation of reward probabilities. These 

shortcomings are addressed in TD3, which learns two reward functions instead of one, delayed 

updates to its policy, and attempts to smooth actions by adding random noise. However, this 

method is still problematic when compared to PPO. TD3’s policy is still prone to large updates 

resulting in potentially drastic behavior changes, making it more prone to non-discovery of 

fundamental behaviors; this is contrasted with PPO’s much more gradual policy updates. And 

the noise that TD3 adds to actions is problematic for games with high amounts of physics 

precision such as Rocket League,  since it interferes with object control (namely, steering the 

car and dribbling the ball).   

Subjectively, the TD3 function does not behave in an optimal manner. It does not exhibit 

strategic behavior, and play appears to be chaotic. The gaussian noise added to actions causes 

the car to jump and flip constantly, which interferes with the agent’s ability to approach the 

ball. The agent does not touch the ball and goals scored are more often attributed to random 

chance than to exploitative behavior. Early iterations of PPO exhibit this same behavior, which 

is chaotic; however PPO is able to actively increase its reward scores unlike TD3.  

17

Ibrahim et al.: Rocket Learn

Published by SMU Scholar, 2021



5.5 Real-World Applications   

Though Reinforcement Learning is likely to one day be used for video gaming applications, 

there are other industries more likely to make use of it before then. The most direct real-world 

applications for Reinforcement Learning related to Rocket League are self-driving cars and 

rocket trajectories, since agents trained in Rocket League have control over a car that can fly 

through the air with a rocket booster. Besides these and other automated trajectories systems, 

Reinforcement Learning is actively used in cooling systems for computer systems, trading and 

finance, natural language processing, and others.  

5.6 Challenges  

Reinforcement Learning is a novel, broad, and convoluted topic. This presents a formidable 

challenge to new practitioners and learners, as it proves to be a difficult topic to learn and 

apply. Because of its breadth and the application diversity, it is not feasible to test the full list 

of models in a single environment. Model selection and hyperparameter tuning was 

particularly challenging.  

Reinforcement Learning is not the only novelty relating to this project. The environment used, 

RLGym, was released shortly after the inception of the project. This added yet another degree 

of abstraction, and learning how to interact with environment proved to be a formidable task 

in its own right.  

5.7 Additional Insights  

Since Reinforcement Learning is such a broad topic, the potential for further research is 

obvious. Areas for further research span from hyperparameter tuning to model selection, and 

even include the development of new Reinforcement Learning models. In fact, the topic was 

chosen for its broad nature and this project carried out in an exploratory fashion. To that end, 

one of the primary reasons this problem was chosen was for fun! Another reason was to 

showcase the possibilities of Reinforcement Learning to a broader audience, which is expected 

to conduct further independent research on the topic. Ultimately, the project proved to be a 

success: a Reinforcement Learning agent was trained to play Rocket League, and the method 

used was compared to others. But beyond that, the project was successful in other ways; 

namely, it served as an excellent learning experience.  

5.8 Ethics  

Artificial intelligence has become part of daily life; dealing with the simulation of intelligent 

behavior using computers concerning the capacity to copy and ideally improve human 

behavior. It is aiming to improve efficiency, lower the costs and accelerate development but 

at the same time there are a lot of worries that those complex models may do more societal 

damage than economic benefit. Reinforcement learning is well used in a big variety of fields 

like autonomous driving, trading and finance, reinforcement learning in Natural Language 

Processing, healthcare, gaming, news recommendation, marketing and advertising, etc.   In 

autonomous driving, there are some considerations such as driable zones, traffic rules and 

18

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 12

https://scholar.smu.edu/datasciencereview/vol5/iss2/12



traffic conditions, avoiding  human and other objects, speed limits in different road choices, 

etc. The core of reinforcement learning is that the optimal behaviour or actions is reinforced 

by a positive reward. In order to get the positive rewards, the model will need more and more 

driving data captured from the cameras and LiDar and radar around the car to maximize the 

reward which is to make predictions about the surroundings and take actions based on those 

predictions.. The confidentiality of the customer’s driving data is a big concern in this 

scenario. Companies will be able to collect the driving habit, driving path, real-time location 

information, etc. There is a lot of discussion around data privacy for self-driving car use, the 

data can be valuable to various government and private organizations for various uses that it 

does not matter if it benefits the driver or not. The fact that the user's location, on- road 

behaviour and inside or outside footage of the car is personal privacy, there is no party who 

should ever use that without the driver or the passenger’s consent. The potential data security 

risks come from a variety of sources, both internal and external to the self-driving car, 

eventually there should be laws to cover data usage and privacy.   

Reinforcement Learning Algorithms used in the self-driving vehicle’s decision making 

process might lead to some ethical problems, the risk to the safety of the passengers and human 

beings on the road. There is no guarantee that accidents will be avoidable for selfdriving cars. 

How should the algorithm minimize the risk of harm like loss of life is a bid discussion. When 

human driving, there are moral values to consider while making the decision on how this 

accident would happen. A self-driving car will make real-time decisions while driving with 

various inputs from the sensor data and the result of code developed by a programmer ahead 

of time. It is really difficult to code the decision in a lot of scenarios. For instance there is a 

unpreditic driving car straight towards the self-driving car, to avoid that, the car needs to hit 

the wall on the left side. It might cause a serious crash and bring death to the passenger. Or 

more ethically, a self-driving car has the option to go straight to hit a person or to avoid hitting 

that one person doing a sharp turn might hit the other person on the other side. There is no 

right or wrong answer, both are human beings. But there will be some grey answer if it is 

being discussed in ethical perspective, for example if one pedestrian is criminal and the other 

pedestrian is a pregnant lady, with all these information like gender, age, criminal background, 

will this make the car change the decision when the accident has to happen especially with 

Reinforcement Learning, it tend to let the car to make the decision on its own. There should 

be an ethical discussion behind the development of the self-driving car.   

6   Conclusion  

Training an AI to play Rocket League shows what Reinforcement Learning is capable of. 

Rocket League is a complex game that even humans have trouble learning effectively in. This 

is because of the information overload that can occur - too many options to potentially 

perform. Mistakes are going to occur, but how well do humans learn from their mistakes? 

That answer varies, but for a Reinforcement Learning algorithm the answer is clear - yes, but 

extremely slowly.  

The optimal model for this application was found to be a PPO model. This model is able to 

consistently improve its reward score over time, indicating that it actively learns desired 

behaviors and performs exploitative behavior in attempts to maximize its reward scores. 

19

Ibrahim et al.: Rocket Learn

Published by SMU Scholar, 2021



Ultimately this model is a good choice for applications with continuous action spaces and long 

term goal setting and achieving, and could be a good candidate in self-driving vehicles, 

trajectory pathing, and industry automation.  

  

  

    

References  

1. A. G. Barto, R. S. Sutton and C. W. Anderson, "Neuronlike adaptive elements that 

can solve difficult learning control problems," in IEEE Transactions on Systems, 

Man, and Cybernetics, vol. SMC-13, no. 5, pp. 834-846, Sept.-Oct. 1983, doi:  

10.1109/TSMC.1983.6313077.  

  

2. Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving neural networks 

through augmenting topologies. Evol. Comput. 10, 2 (Summer 2002), 99–127. 

DOI:https://doi-org.proxy.libraries.smu.edu/10.1162/106365602320169811  

   

3. Matthew Hausknecht, Piyush Khandelwal, Risto Miikkulainen, and Peter Stone.  

2012. HyperNEAT-GGP: a hyperNEAT-based atari general game player. In 

Proceedings of the 14th annual conference on Genetic and evolutionary 

computation (GECCO '12). Association for Computing Machinery, New York, NY, 

USA, 217–224. 

DOI:https://doiorg.proxy.libraries.smu.edu/10.1145/2330163.2330195  

   

4. Silver, D., & Hassabis, D. (2016, January 27). AlphaGo: Mastering the ancient 

game of Go with Machine Learning. Google AI Blog.  

https://ai.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html.  

  

5. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,  

M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. 

(2017). Mastering Chess and Shogi by Self-Play with a General Reinforcement 

Learning Algorithm. ArXiv, abs/1712.01815.  

  

6. Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, 

D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C.,  

Pachocki, J.W., Petrov, M., Pinto, H.P., Raiman, J., Salimans, T., Schlatter, J.,  

20

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 12

https://scholar.smu.edu/datasciencereview/vol5/iss2/12



Schneider, J., Sidor, S., Sutskever, I., Tang, J., Wolski, F., & Zhang, S. (2019).  

Dota 2 with Large Scale Deep Reinforcement Learning. ArXiv, abs/1912.06680.  

  

7. TI9 CHAMPION OG vs OpenAI Final Version 2019 - Game 1. (2019, September 

3). [Video]. YouTube. https://www.youtube.com/watch?v=t4il-QagP5w  

  

8. Oguzhan A., Heather H., Andrew J. S., Mark S. R., Markov Decision Processes:            

A Tool for Sequential Decision Making under Uncertainty, University of Pittsburgh, 

2010  

  

9. Alberto M.M., Mirco. M., Marcello M..(2018)Configurable Markov Decision 

Processes. https://arxiv.org/pdf/1806.05415.pdf.  

  

10. Medium. (n.d.). Retrieved April 12, 2021, from 

https://towardsdatascience.com/an-overview-of-monte-carlo-methods- 

675384eb1694  

  

11. Choudhary, A. (2020, April 30). Reinforcement Learning: Introduction to Monte 

Carlo Learning using the OpenAI Gym Toolkit. Analytics Vidhya. 

https://www.analyticsvidhya.com/blog/2018/11/reinforcement-

learningintroduction-monte-carlo-learning-openai-gym/  

  

12. Brownlee, J. (2019, September 25). A Gentle Introduction to Monte Carlo 

Sampling for Probability. Machine Learning Mastery.  

https://machinelearningmastery.com/monte-carlo-sampling-for-probability/  

  

13. Choudhary, A. (2020b, May 24). Reinforcement Learning Guide: Solving the 

Multi-Armed Bandit Problem from Scratch in Python. Analytics Vidhya.  

https://www.analyticsvidhya.com/blog/2018/09/reinforcement-multi-armed-

banditscratch-python/  

  

14. Hubbs, C. (2020, January 8). Multi-Armed Bandits and Reinforcement Learning - 

Towards Data Science. Medium. https://towardsdatascience.com/multi-

armedbandits-and-reinforcement-learning-dc9001dcb8da  

  

15. Dar, E. E., Mannor, S., & Mansour, Y. (2006). Action Elimination and Stopping 

Conditions for the Multi-Armed Bandit and Reinforcement Learning Problems. 

Journal of Machine Learning Research 7, 1079(1105), 3–4. 

https://www.jmlr.org/papers/volume7/evendar06a/evendar06a  

  

21

Ibrahim et al.: Rocket Learn

Published by SMU Scholar, 2021

https://www.youtube.com/watch?v=t4il-QagP5w
https://www.youtube.com/watch?v=t4il-QagP5w
https://www.youtube.com/watch?v=t4il-QagP5w
https://www.youtube.com/watch?v=t4il-QagP5w
https://arxiv.org/pdf/1806.05415.pdf
https://arxiv.org/pdf/1806.05415.pdf
https://arxiv.org/pdf/1806.05415.pdf


16. V.Kumar, V. (2019, January 9). Soft Actor-Critic Demystified - Towards Data 

Science. Medium. https://towardsdatascience.com/soft-actor-critic-

demystifiedb8427df61665  

  

17. Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., 

Zhu, H., Gupta, A., Abbeel, P., & Levine, S. (2019). Soft Actor-Critic Algorithms 

and Applications. ArXiv Preprint ArXiv:1812.05905, 1–6.  

https://arxiv.org/pdf/1812.05905.pdf  

  

18. van Hasselt, H., Guez, A., & Silver, D. (2016). Deep Reinforcement Learning with  

Double Q-Learning. Proceedings of the AAAI Conference on Artificial 

Intelligence, 30(1). Retrieved from 

https://ojs.aaai.org/index.php/AAAI/article/view/10295  

  

19. David S., Guy L., Nicolas H., Thomas D., Daan W., Martin R.. (2013) 

Deterministic Policy Gradient Algorithms  

  

20. Mohammad G., Yaakov E.. Bayesian Policy Gradient Algorithms, Department of 

Computing Science, University of Alberta, 2006  

  

21. Thomas Helmuth and Amr Abdelhady. 2020. Benchmarking parent selection for 

program synthesis by genetic programming. In Proceedings of the 2020 Genetic 

and Evolutionary Computation Conference Companion (GECCO '20). Association 

for Computing Machinery, New York, NY, USA, 237–238. 

DOI:https://doiorg.proxy.libraries.smu.edu/10.1145/3377929.3389987  

   

22. Thomas G. van den Berg and Shimon Whiteson. 2013. Critical factors in the 

performance of hyperNEAT. In Proceedings of the 15th annual conference on  

Genetic and evolutionary computation (GECCO '13). Association for Computing 

Machinery, New York, NY, USA, 759–766. 

DOI:https://doiorg.proxy.libraries.smu.edu/10.1145/2463372.2463460  

  

23. Schuyler Eldridge, Florian Raudies, David Zou, and Ajay Joshi. 2014. Neural 

network-based accelerators for transcendental function approximation. In 

Proceedings of the 24th edition of the great lakes symposium on VLSI (GLSVLSI 

'14). Association for Computing Machinery, New York, NY, USA, 169–174. 

DOI:https://doi-org.proxy.libraries.smu.edu/10.1145/2591513.2591534  

  

24. Kosiachenko L., Hart N., Fukuda M. (2019) MASS CUDA: A General GPU 

Parallelization Framework for Agent-Based Models. In: Demazeau Y., Matson E.,  

22

SMU Data Science Review, Vol. 5 [2021], No. 2, Art. 12

https://scholar.smu.edu/datasciencereview/vol5/iss2/12



Corchado J., De la Prieta F. (eds) Advances in Practical Applications of Survivable 

Agents and Multi-Agent Systems: The PAAMS Collection. PAAMS 2019. Lecture 

Notes in Computer Science, vol 11523. Springer, Cham.  

https://doi.org/10.1007/978-3-030-24209-1_12  

  

25. Henrik Siljebråt, Caspar Addyman, and Alan Pickering. 2018. Towards human-like 

artificial intelligence using StarCraft 2. Proceedings of the 13th International 

Conference on the Foundations of Digital Games. Association for Computing 

Machinery, New York, NY, USA, Article 45, 1–4. 

DOI:https://doiorg.proxy.libraries.smu.edu/10.1145/3235765.3235811  

  

26. Bhatt, Shweta. “5 Things You Need to Know about Reinforcement Learning.” 

KDnuggets, 2021, www.kdnuggets.com/2018/03/5-things-

reinforcementlearning.html  

  

27. Blackburn. “Reinforcement Learning : Markov-Decision Process (Part 1).” 

Medium, 23 Aug. 2020, towardsdatascience.com/introduction-to-

reinforcementlearning-markov-decision-process-44c533ebf8da.  

  

28. 范叶亮. “马尔可夫决策过程 (Markov Decision Process).” Leo Van | 范叶亮, 

23 May 2020, leovan.me/cn/2020/05/markov-decision-process.  

  

29. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017).  

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.  

  
  

  

  

  

  

  

   

23

Ibrahim et al.: Rocket Learn

Published by SMU Scholar, 2021

https://doi.org/10.1007/978-3-030-24209-1_12
https://doi.org/10.1007/978-3-030-24209-1_12
https://doi.org/10.1007/978-3-030-24209-1_12
https://doi.org/10.1007/978-3-030-24209-1_12
https://doi.org/10.1007/978-3-030-24209-1_12
https://doi.org/10.1007/978-3-030-24209-1_12
https://doi.org/10.1007/978-3-030-24209-1_12
https://doi.org/10.1007/978-3-030-24209-1_12
https://doi.org/10.1007/978-3-030-24209-1_12
https://doi.org/10.1007/978-3-030-24209-1_12
https://doi.org/10.1007/978-3-030-24209-1_12
http://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
http://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
http://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
http://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
http://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
http://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
http://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
http://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html

	Rocket Learn
	Recommended Citation

	tmp.1628455335.pdf.5jdGU

