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1   Introduction 

The Electric Reliability Council of Texas (ERCOT) is an Independent System Operator 

(ISO), the central electricity operator in Texas. ERCOT is not connected to any other 

grid in North America. As an ISO, it is solely responsible for running the electric grid 

for most of Texas, planning for reliability, and providing wholesale rates for electricity. 

In February 2021, Texas experienced extremely frigid temperatures causing large 

blackouts throughout ERCOTs service area, leading to the loss of hundreds of lives and 

billions of dollars in economic damages.  

Part of reliability planning is demand response. The grid reduces power generation 

during normal declines in electric load. During peak periods, the generators connected 

to the grid produce more power. This mechanism catastrophically failed during the 

recent blackouts. 

This paper aims to provide insights on ERCOT demand response during peak 

electric consumption. As ERCOTs service area population continues to increase and 

the weather impacts consumption and the generation of power in Texas, it is beneficial 

to understand the changes necessary to ensure a reliable electric grid. As demand 

increases, supply must also increase to meet that demand. Generation supply and 

electrical demand are mirror images of each other. ERCOT does not import or export 

power to any great extent. Power storage is in its’ infancy and not a significant 

contributor. Therefore, demand and supply balance each other out, and any changes in 

one affect the other. This paper will analyze ERCOT outages to understand ERCOTs 

demand response and the changes that need to be made to accommodate the increase in 

electricity consumption. The blackouts in Texas this past February had several causes. 

This paper will show that increased reliance on renewables and inadequate backup 

generation was a primary cause of the blackouts. 

Additionally, increased reliance on renewables poses other risks to reliable grid 

operation that can manifest themselves under more normal operating regimes. The 

paper explores the characteristics of traditional generation sources and how they benefit 

grid reliability. Also examined are the issues created by renewable energy forming a 

significant part of the electric generation on the grid and how this form of generation 

lacks normal grid stabilizing characteristics. 

Demand response in extreme weather circumstances is not a well-understood 

phenomenon due to a lack of examples. Of particular concern is the absence of 
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historical data that includes the current prevalence of renewable energy on the electric 

grid. Under almost all circumstances, electric demand follows classic time-series 

patterns. The paper proposes time-series models that include the necessary parameters 

to satisfy extreme operating conditions. 

Extreme operating conditions are only some of the issues relating to grid reliability. 

The electric grid requires reserve power to deal with generation or transmission outages 

and other technical problems even under normal operating conditions. As the 

percentage of renewable energy increases, certain negative consequences occur that 

traditional power generation sources would normally mitigate. This paper uses 

modeling to answer what portion of electric generation can be met from renewable 

sources before impacting grid reliability. 

It is not only the maximum peak load that can present problems. Unexpected load 

that deviates from the norm and occurs out of season can create issues as well. From a 

generation standpoint, extremely light load conditions can be problematic as they can 

concentrate the amount of renewable power on the grid, impairing grid reliability. 

Enhancing grid reliability is important to every person in ERCOTs service area. The 

recent blackouts demonstrate the severe negative consequences of unreliable electric 

power. However, it is not just during severe weather events that reliable power is 

important. Reliable electric power is necessary for normal life and commerce (Edison 

Electric Institute, 2020). Blackouts can have numerous negative financial consequences 

and potentially life-threatening ones. 

 

2 Literature Review 
 

2.1 How the electric grid works 

 

When researching electric power an issue that repeatedly crops up in reviewing the 

literature, whether done intentionally, the terms “Watt” (W) and “Watt-hour” (Wh) and 

their derivatives are frequently confused. This is seen in literature and announcements 

of new projects and technologies such as batteries. A Watt is a rate at which power can 

be delivered. Watts are directly related to the concept of horsepower; 746 Watts equals 

one horsepower. Watt-hour is the total amount of energy produced or consumed. Using 

an automobile as an analogy Watts are how much power that can be delivered by the 

engine at a given moment, Watt-hours represent the total energy content of the fuel in 

the fuel tank. 

The electric grid has three main components generation, transmission, and load. 

Generation consists of a limited number of power plants, each with one or more 

generating units. All generating units at a power plant typically run on the same type of 

fuel. Thus, it is common to refer to the plant as a gas plant or coal plant in the industry.  

Texas's electric power transmission system moves electricity generated in one part 

of the state to the load centers in other parts of the state. Particular generation units are 

only available in one part of the state. Wind generation is primarily located in the 

panhandle region of Texas. Lignite coal generation units are typically located with 

direct access to the fuel source due to the low energy density of the coal and the high 

cost of moving it. Also, problems in one area of the state can be met by transmitting 

power from another part of the state if necessary. The backbone of the Texas 
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transmission grid is formed from multiple 345kV transmission lines. These lines move 

electric power around the state. 

“Load” is any consumer of electric power. The load can vary from individual homes 

in a suburb consuming 20 kW of power with 1500 kWh of total electric consumption 

per month to an aluminum smelter pot line consuming 500 mW of power with a total 

monthly consumption of 360 gWh. The largest load center is typically cities. 

All generation units in Texas, and the rest of the U.S., generate power at a frequency 

of 60 Hz. This corresponds to 3600 revolutions per minute. All generation units on the 

electric grid are in phase and spinning at the same rate. The term “in phase” means that 

the peak of the sinusoidal waveform matches that of all other generation units. 

Generation units pulling out of phase carries the potential of causing damage to the 

units and requires shutdowns and inspections (Ruthford, 2021). Electric generation 

units have two main controls that affect the power delivered. The first is a load/speed 

governor. When a unit is unconnected to the grid, this control will determine how fast 

the generating unit turns. The load/speed governor determines how much power the 

generating unit produces when connected to the grid. The second control is voltage 

control. All generating units generate power at a rated voltage. When the generating 

unit is not tied to the grid, the voltage control sets the amount of voltage on the 

generator’s output, typically expressed in units of kilovolts (kV). When tied to the grid, 

the voltage control affects the reactive power output of the generating unit. Reactive 

power issues will be discussed later in this paper. 

 

2.2 Grid Stabilizing Influences of Renewable and Traditional Power Sources 

 

The momentum of rotating turbines and generators plays an integral part in grid 

reliability. The large rotating masses present in traditional generating sources store 

potential energy. This potential energy is available to the grid because these generating 

sources are directly tied to the grid. The potential energy present in the inertia of the 

rotating equipment dampens transient power fluctuations on the grid. Solar power has 

no rotating store of potential energy and wind power has relatively little. Also, 

renewables connect to the grid through inverters. Without a direct connection to the 

grid, renewables cannot be used to stabilize the grid from power fluctuations (Fanglei 

et al., 2020, p. 607). All generators on a grid spin at the same speed and are in phase. 

Under normal operation generation unit trips are compensated for instantly by trading 

inertia for power. The grid frequency slows down, some of the rotating inertia is 

converted to additional power. The output of the remaining units is ramped up with the 

extra load, and additional units placed online as necessary. Wind and solar power rely 

on inverters to couple to the grid. “Renewable energy sources with low inertia 

generators are posing serious operational and analytical issues in power systems” (Lin 

& Varwandkar, 2019, p. 1). Neither renewable source can compensate for generation 

unit trips or other system issues by training rotational inertia for power. 

Trading momentum for power does have limits. AC power equipment is rated for 

specific voltages at specific frequencies. The ratio between voltage and frequency is 

critical. For example, a generator rated at 13.8kV at 60 Hz is rated at only 11.5kV at 

50Hz. This relationship between Volts and Hertz limits the ability of the grid to rely on 

momentum to continue to supply power. The slower speeds eventually result in 

generation units tripping or automatically reducing voltage. “If the Texas grid stays 
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below 59.4Hz for nine minutes, generators would have automatically tripped out, 

making a bad situation for people shivering at home even worse” (Burton, 2021). 

While not commonly understood, AC electric power demand is composed of two 

parts. Most people are familiar with the concept of power; not many people are familiar 

with reactive power. Loads on a grid are composed of resistive and either a capacitive 

or inductive load component. The resistive load component quantifies the real work 

that electricity does. However, the inductive or capacitive load also referred to as 

reactive power, is a real quantity intrinsic to a given load. Inductive loads are typically 

found in anything with a coil of wire wrapped around an iron core, such as motors or 

transformers. Capacitive loads are less common on the grid, but a typical case would 

be lightly loaded transmission lines, long parallel conductors forming a capacitor.  

Failure to supply the correct reactive load leads to voltage problems. Too much excess 

inductive load leads to lower line voltages and an increase in current. As current 

increases, the efficiency of equipment connected to the grid decreases, leading to 

reduced transmission and distribution equipment capacity. Exceeding the required 

capacitive load can cause excessive voltage on equipment and lead to sections of the 

grid slipping out of phase and causing blackouts and damage to equipment. The phase 

lock of the grid becomes weak when capacitive loads dominate the grid. Losing the 

phase lock, called slipping a pole, on a generating unit or a grid section causes enormous 

problems, often resulting in protective relays tripping units and extended outage times 

spent inspecting and repairing equipment. Generation equipment must supply the 

correct output for both power and reactive load on the grid as a whole and locally. The 

current push to renewables presents new challenges.  

Power from REG’s, renewable energy generation, is variable and intermittent. When 

REG sources comprise a significant portion of the grid, their shortcomings affect the 

available power on the grid and create voltage issues. The grid voltage is directly related 

to reactive power supplies. Also, amplifying the issue in the case of Texas, the REG’s 

are located at a considerable distance from the load centers. These long-distance spans 

with unreliable voltage support can amplify the negative effects on grid reliability 

(Sarkar et al., 2018, p. 41460).  

Inverter based resources (IBR), including wind and solar, are also intrinsically 

vulnerable to grid frequency and voltage disturbances. IBR’s lack the stabilizing 

influence of potential energy contained in the mass of rotating equipment. The 

electronics of the inverters themselves are vulnerable to system transients, whether 

frequency or voltage. California had instances in 2016 and 2017 during which the 

REG’s disconnected from the grid because they could not tolerate grid instabilities 

(Romero Aguero et al., 2019, p. 78). 

 
2.3 Time of use Considerations for Energy Consumption 

 

The widespread adoption of renewables in ERCOT and other areas causes unique 

challenges to grid reliability. REG’s are not dispatchable in the traditional sense; the 

generators create as much power as they can when they can. This is often dictated by 

law and policy. Various pricing schemes have been tried to alleviate both production 

and demand issues. Demand issues affect grids even if no renewable generation is 

present. Wind energy in ERCOT is available in the Texas panhandle, which is very far 

removed from the areas with the largest demand. This creates a need for extra capacity 
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on the electric grid and attenuates the generated power. The California Independent 

System Operator (CAISO) currently experiences steep demand increases daily, starting 

at about the same time available solar power begins to wane (Romero Aguero et al., 

2019, p. 77).  

Demand response, otherwise known as DR, is a key means of controlling electrical 

demand. “The best candidates for DR are commercial/industrial customers” (Romero 

Aguero et al., 2019, p. 80). Power curtailment agreements with larger customers are 

standard in ERCOT’s operating region; indeed, SMU has such an agreement. 

Time of use (TOU) pricing structures has also been used to reduce demand during 

peak load events. TOU pricing requires advanced metering infrastructure (AMI). 

Traditional electric meters just record how much power is used. The newer AMI 

systems allow variable pricing depending upon the time of day. During 2012 due to a 

lack of AMI 98% of utility customers in the U.S. were charged a flat rate for electricity. 

By 2014 50 million advanced meters had been installed. This covers almost half the 

homes in the country (Zhao et al., 2017, p. 5130). The prevalence of advanced meters 

now allows for alternative variable pricing programs to become more common. This 

would be a significant shift in practice for U.S. customers (Cappers et al., 2016, p. 16). 

 

2.4 Modeling the Electric Grid 

 

The electric grid generation demand can be modeled as a time-series. Parameters and 

additional data are used as necessary. Parameters are adjusted to try and match the 

statistical characteristics of previously modeled days. The parameters can be days of 

the week, general weather conditions, the prevalence of REG power on the grid (Hong 

Li et al., 2015, p. 2). Forecasting short-term-load demands requires consideration of 

time-series and other characteristics. Short-term load forecasting has periodic and 

regular characteristics. Factors such as temperature, weather, and economic activity can 

affect the demand forecast (Hong Li et al., 2015, p. 2). In Texas, expected wind speed 

in the panhandle area is critical in predicting REG availability. 

The periodicity of the load is significant in forecasting demand. The more regular 

the daily load cycle is, the greater the possible accuracy of the models. The accuracy of 

the models becomes dependent upon external factors like weather (Hong Li et al., 2015, 

p. 1).  

Electric demand modeling requires different models for different periods. Days will 

need to be classified by their expected load characteristics. For instance, weekends and 

weekdays will exhibit different demand curves. In one instance, when examining the 

demand of a university, the different types of days were broken down by academic 

period and day of the week resulting in improved models (Garcia et al., 2018, p. 1). 

Short-term forecasting is key to grid stability (He et al., 2012, p. 297). It is possible 

to estimate demand using an ARIMA model. “The accuracies of the models are very 

impressive as the MAPEs(Mean Absolute Prediction Errors)  are approximate 1.5%. 

As we can gather the real-time data from AMI system of the distribution power grid, a 

single seasonal ARIMA model can be used to forecast the next day’s load demand very 

accurately” (He et al., 2012, p. 297). One advantage is that grid reliability can be 

achieved with only the near-term, next several hours, forecasts. Accurate longer-term 

forecasts are still important as they reduce costs by enabling prior dispatching of 

generation resources. Direct comparison between grid conditions in China and ERCOT 
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is not always possible. China’s grid changes rapidly, and the previously mentioned 

paper only uses recent data. The conditions of the electric grid on both the demand and 

generation side change rapidly in China. This leads to an emphasis on short-term 

forecasting (He et al., 2012, p. 297). 

 

2.5 Spinning Reserve 

 

A key measure used for electric grid reliability is the concept of spinning reserve. 

Spinning reserve refers to the amount of power that is potentially available on the grid 

from generation units with extra or peak capacity. Normally generation units are run at 

full load. However, most have a peak capability as well. Peak generation is when 

generation units produce beyond their rated capacity for short periods (Porkar et al., 

2006, p. 1341). Usually, the spinning reserve is set at some percentage of expected 

demand on the grid. A useful outcome of the models in this paper will be modifications 

to the spinning reserve requirement based upon more than just the total demand.  

Time-series can be used to forecast grid demand. However, the high prevalence of 

renewables presents unique challenges to grid reliability and modeling. Newer 

technologies such as smart grids and large-scale energy storage can help alleviate these 

challenges. Time-series models can be constructed to forecast expected demand and 

determine the maximum safe proportion of renewable energy present on the grid at any 

time given the expected conditions and penetration of smart grid technologies and 

large-scale energy storage. Time-series forecasts can also be used to modify the 

required spinning reserve for safe grid operation. 

3   Methods 

Time-series will form the basis of the analysis used in this research. It will be necessary 

to classify days into demand clusters. Deviations from the expected demand will be 

modeled. Different seasons impact the normal distribution of power demand. Weather 

and specifically temperature greatly influence electric demand. ERCOT generation data 

and NOAA weather data are the primary data sets used in this paper.  

 

3.1 Time-series 

 

Electric demand follows a classic time-series sinusoidal pattern. However, the average 

daily consumption of electric power deviates from a simple time-series for several 

reasons. When examined on a year-over-year basis electric demand follows the classic 

airline model. Airline models  are defined as “a model that allows for seasonal and 

trending behavior” (Woodward et al., 2017, p. 344). Historically the electric power 

industry assumes electric demand will grow at double GDP growth (Ruthford, 2021). 

This provides a positive trend for the highly seasonal power demand data. 

Power demand has different seasonal periods. Power demand displays a pronounced 

hourly trend when measured over a day. Also, daily demand curves are different 

depending upon which day of the week and whether the day is a holiday. Finally, power 
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demand varies by season. Not only does the average daily demand change, but the 

demand curve within the day also changes characteristics. 

 

3.2 Seasonality and Time Series 

 

The time-series models used will need to account for all these different seasonality 

factors. The model created will use one hot encoded variables for month of year, day 

of week, and hour of day. This model also uses temperature data since it is a major 

driver of electric power usage.  

 

3.3 Demand and ERCOT data 

 

Generation data is collected from ERCOT. The data files are in fifteen-minute intervals, 

and the power amounts are broken down by fuel type. The data is remarkably complete 

and requires little cleaning. However, the format of the data is not convenient for 

processing. The data is normalized by aggregating the fifteen-minute intervals into an 

hourly format. 

Having data that separates the different generation sources allows closer inspection 

of the amount of power that is provided from different sources and when that power is 

available. The total power generated follows a sinusoidal pattern, the individual sources 

are much more chaotic in producing power. 

 

Power Data EDA 

 

Three years of data 2017 to 2019 were used as training data. A single year of data 2020 

was used for testing. The ERCOT power data is strongly cyclic. Under normal 

circumstances it follows a uniform behavior. February of 2021 was a departure from 

this normal behavior. Power generation with normal and extreme weather is shown in 

the graphs below. Both graphs are from February of their respective years. The graphs 

show different generation patterns, with the key difference being the extreme cold 

weather in February of 2021. 
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Fig. 1. The total power produced in ERCOT by the hour for February 2020. Data demonstrates 

strong cyclic behavior with the highest and lowest generation spread across the entire month. 

 

The data in Figure 1 shows typical power production. Some variances in the basic 

cyclic pattern can be observed. A variety of factors influences these variances. Models 

using these factors are necessary to explain the differences observed. This becomes 

incredibly important when looking at the data gathered during the extreme cold weather 

event in February of 2021. The data gathered does not tell the whole story. If power 

was not produced, even if demand was there, it can not be measured. Looking at only 

the data collected does not indicate how much power was needed. Establishing models 

that can be used to extrapolate the true power demand are needed to plan additional 

generation units for the grid.  
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Fig. 2. The total power produced in ERCOT by the hour for February 2021. Data demonstrates 

cyclic behavior except during the time of the blackouts. The blackouts are characterized by a 

large peak in the middle of the month followed by a steep trough. 

 

Figure 2 shows a substantial generation peak in the middle of the month followed 

by a steep drop-off starting on the 15th. This corresponds with the beginning of the 

forced outages. Notice that during the trough, the normal cyclic behavior of power 

generation is muted. All generation that was able to run was producing power during 

that time. The normal cyclic behavior instead was handled by load shedding, more 

customers disconnected during times of high demand since no power was available. 

Modeling the expected power demand during this event is a key factor in improving 

grid reliability. The exact load numbers required at that time can not be determined 

from either generation or demand data. There is no way to measure it. 

Compounding the task is the use of renewable energy. At one point during the 

extreme weather, renewables were only able to provide 634 mWh per hour. This 

contrasts with renewables providing a mean value of almost 11,000 mWh per hour 

during February of 2020. Grid reliability depends upon having dispatchable power 

ready right now. 
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Fig. 3. The total power produced in ERCOT by the hour for February 2021 includes wind power 

(dotted line) and solar power(dashed line). 

 

Figure 3 shows the almost nonexistent power produced by renewables when the grid 

was at its point of greatest distress. During the first and last weeks of the month, more 

normal conditions prevailed. During these times, renewables routinely comprised 50% 

of electric generation. 

Figure 1 through 3, examined power production on a monthly time frame with an 

hourly time scale. The daily cyclic behavior of power generation is self-evident. 
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Fig. 4. This figure indicates the daily power production in mWh in ERCOT for the years 2017 to 

2020 inclusive. The daily power production line shows cyclic behavior with some variances. The 

(dashed line) is a linear fit of the data with respect to time. The line shows a steady increase. 

 

The normal assumption with power generation data is that it follows the classic 

airline model. Figure 4 shows the daily production of power over the previous four 

years. Included on the graph is a linear fit of the data. This linear fit clearly demonstrates 

a rise over time. The figure clearly shows seasonal variations. These behaviors match 

the expectations if power data follows an airline model. 
 

3.4 Weather and NOAA data 

 

Weather is a contributing factor to electric demand and is critical to modeling demand 

accurately. Temperature plays a primary role in determining demand. Wind and cloud 

cover determine the availability of renewable power. Humidity and temperature have 

an impact on the availability of traditional power sources. 

This paper uses data from the NOAA website as a primary resource. The NOAA 

website provides hourly data from different stations. Sometimes the data is more 
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frequent. Stations can be located anywhere, but a common location is local airports. 

Many of the smaller stations display anomalies in the data. This typically takes the form 

of missing data. Missing weather data was imputed using the MICE library. MICE 

works by fitting multiple linear models to all data present and building linear models 

that describe each vector of data, a vector of data being the values of a variable over 

time. 

 

Weather Data EDA 
 

Fourteen geographically diverse weather sites were examined so that the resulting 

models can utilize different parameters. A single weather station for the entire state 

would not be representative of the weather and would lead to overly simplistic models. 

Three years of data from 2017 to 2019 were used as training data. A single year of data 

2020 was used for testing. 

 

 
 
Fig. 5. Map of the fourteen weather stations used for this paper 
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Fig. 6. Hourly temperature data for Houston, Texas recorded in February 2021. Data includes 

temperature at the time of the extreme cold spell. 

 

The data in Figure 6 does have some missing data. These are identified as straight 

horizontal lines in the temperature data. However, some NOAA weather stations have 

much greater issues with missing data. 
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Fig. 7. Hourly temperature data for Brownsville, Texas recorded in February 2021. Data includes 

temperature at the time of the extreme cold spell. 

 

    The Brownsville data in Figure 7 shows several sections of horizontal flat lines 

indicating missing data. The source data for this station was corrected before using. 
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Fig. 8. Hourly temperature data for Brownsville, Texas recorded in February 2021. Data includes 

temperature at the time of the extreme cold spell. Missing data was imputed with MICE 

 

Missing values in the weather data were imputed using MICE. The Brownsville data in 

Figure 8 shows the result of this imputation. 

    Heating and cooling represent the bulk of the difference in demand for electricity. 

At temperatures in the low to mid-70s electric demand is at a minimum. It is normal for 

planned outages on generating units to occur in the spring and fall for this reason 

(Ruthford, 2021). A temperature score was created for use in modeling. The equation 

for the score is seen below. 

 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≥ 72 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 72

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 72 (72 − 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) ∗ 0.6
 

 

Eq. 1. Temperature score equation 

 

The temperature score takes the absolute difference between the current temperature 

and 72 degrees. If the temperature is lower than 72, a correction factor of 60% is 
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applied. The reason for this is that it is heating a home is more energy-efficient than 

cooling one. Also, a significant amount of heating is done with natural gas and thus 

requires no electricity. Adjustments to this temperature score methodology would be 

one area that further study would be beneficial. 

4 Results 

Multiplpe Linear Regression with Time Series errors and seasonality 

 

Multiple ARIMA models were fit with different lags, AR(10) model was selected based 

upon AIC score. AIC is the Akaike's information criteria, and is a common measure for 

goodness of model fit (S. Prabhat, 2010) These models included temperature score data 

for regression as well as seasonality factors. However, the arima() function lacks the 

ability to model multiple seasonal components (Krispin, 2019, p. 274). An examination 

of residuals for the ARIMA model shows evidence of multiple seasonality factors. The 

final arima() model fitted took the form: 

 

𝑃𝑜𝑤𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡 = 42537 + 45.54𝑇𝐴𝑏𝑖𝑙𝑒𝑛𝑒 + 47.72𝑇𝐴𝑚𝑎𝑟𝑖𝑙𝑙𝑜 + 53.13𝑇𝐴𝑢𝑠𝑡𝑖𝑛
− 31.44𝑇𝐵𝑟𝑜𝑤𝑛𝑠𝑣𝑖𝑙𝑙𝑒 + 36.12𝑇𝐶𝑜𝑟𝑝𝑢𝑠𝐶ℎ𝑟𝑖𝑠𝑡𝑖 − 6.15𝑇𝐷𝐹𝑊
+ 22.75𝑇𝐸𝑙𝑃𝑎𝑠𝑜 + 1.47𝑇𝐻𝑜𝑢𝑠𝑡𝑜𝑛 + 0.32𝑇𝐿𝑜𝑛𝑔𝑣𝑖𝑒𝑤 + 28.83𝑇𝐿𝑢𝑏𝑏𝑜𝑐𝑘
+ 71.26𝑇𝑀𝑖𝑑𝑙𝑎𝑛𝑑 + 84.55𝑇𝑆𝑎𝑛𝐴𝑛𝑔𝑒𝑙𝑜 + 38.04𝑇𝑆𝑎𝑛𝐴𝑛𝑡𝑜𝑛𝑖𝑜
+ 121.58𝑇𝑆𝑤𝑒𝑒𝑡𝑤𝑎𝑡𝑒𝑟  

 
Eq. 2. Equation for the Multiple Linear Regression part of the model 

 

(1 − 𝐵24)(1 − 1.79𝐵 + 0.834𝐵2 − 0.037𝐵3 − 0.028𝐵4 + 0.086𝐵5 + 0.023𝐵6

− 0.037𝐵7 − 0.006𝐵8 − 0.0009𝐵9 − 0.023𝐵10)𝑍𝑡 = 0 

 
 

Eq. 3. Equation for the AR part of the model 

 

 

Parameter Estimate Std. Error z value Pr(>|z|) Signifigance 

ar1 1.79E+00 6.46E-03 277.3004 < 2.2e-16 *** 

ar2 -8.34E-01 1.32E-02 -63.3296 < 2.2e-16 *** 

ar3 3.66E-02 1.38E-02 2.6468 0.008125 ** 

ar4 2.78E-02 1.37E-02 2.0294 0.042421 * 

ar5 -8.60E-02 1.37E-02 -6.2906 3.16E-10 *** 

ar6 -2.33E-02 1.37E-02 -1.705 0.088186 . 

ar7 3.73E-02 1.37E-02 2.7255 0.00642 ** 

ar8 6.01E-03 1.37E-02 0.4398 0.660103 
 

ar9 9.34E-04 1.27E-02 0.0738 0.941165 
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ar10 2.25E-02 6.17E-03 3.6524 0.00026 *** 

sma1 6.06E-01 4.35E-03 139.413 < 2.2e-16 *** 

intercept 4.25E+04 3.07E+02 138.4504 < 2.2e-16 *** 

TempScaleAbilene 4.55E+01 1.34E+01 3.3911 0.000696 *** 

TempScaleAmarillo 4.77E+01 1.18E+01 4.0324 5.52E-05 *** 

TempScaleAustin 5.31E+01 1.15E+01 4.6113 4.00E-06 *** 

TempScaleBrownsville -3.14E+01 1.10E+01 -2.8505 0.004365 ** 

TempScaleCorpusChristi 3.61E+01 1.12E+01 3.2169 0.001296 ** 

TempScaleDFW -6.15E+00 1.34E+01 -0.4582 0.646778 
 

TempScaleElPaso 2.28E+01 1.29E+01 1.7681 0.077037 . 

TempScaleHouston 1.47E+00 1.13E+01 0.1308 0.895922 
 

TempScaleLongview 3.23E-01 1.30E+01 0.0248 0.980197 
 

TempScaleLubbock 2.88E+01 1.11E+01 2.5893 0.009616 ** 

TempScaleMidland 7.13E+01 1.28E+01 5.5814 2.39E-08 *** 

TempScaleSanAngelo 8.45E+01 1.25E+01 6.7457 1.52E-11 *** 

TempScaleSanAntonio 3.80E+01 1.26E+01 3.0218 0.002513 ** 

TempScaleSweetwater 1.22E+02 1.75E+01 6.9487 3.69E-12 *** 

 

Tbl. 1 Parameters for arima() function model 

 

The temperature coefficients in table 1 show some unexpected values. The temperature 

in the two largest metropolitan areas, Houston and DFW, appears to not be statistically 

significant. The model overall has a poor MAPE (Mean Absolute Prediction Error) 

score of 13.40%. 

   As George E. P. Box once said “All models are wrong; some models are useful”. 

This situation applies to the model derived with the arima() function. Even though the 

predictive power of the model is low, the model residuals are useful because they show 

the three seasonalities present in the data, see figures 9 through 11 
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Fig. 9. ACF plot of ARIMA model residuals, 24-hour autocorrelation  

 

Figure 9 shows that a strong autocorrelation still exists in the ARIMA model residuals 

every 24 hours. 

 

Daily Peak 

Weekly Peak 
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Fig. 10. ACF plot of ARIMA model residuals, 168 hours is one week 

 

Figure 10 demonstrates the weekly nature of the residual’s autocorrelation. Every 168 

hours, a slightly higher peak in the autocorrelation can be detected. This peak denotes 

a second, weekly, seasonality factor. 

 
Fig. 11. ACF plot of ARIMA model residuals, 8760 hours is one year 

 

Lastly, a third autocorrelation peak is observed in Figure 11. This peak occurs at the 

one-year point or 8,760 hours. This is indicative of yearly seasonality. 

Yearly Peak 
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Fig.12. Actual versus predicted total power produced for the first ten days of January 2020 from 

arima() function 

 

Short-term predictions derived from the ARIMA model proved to be unsatisfactory. 

The predictions, shown in Figure 12 by the dashed line, almost immediately regressed 

to the mean of the overall time-series. 

 

Time-series Linear Regression with categorical variables for Seasonality 

components 

 

Using a different function, tslm(), a model was created that utilized one hot encoded 

categorical variables to model the three different seasonality components of the data. 

This model also used the temperature score of the fourteen different weather stations as 

a regressive component. The temperature regression portion of the model took the 

following form: 
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𝑃𝑜𝑤𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡 = 42537 − 13.94𝑇𝐴𝑏𝑖𝑙𝑒𝑛𝑒 − 12.62𝑇𝐴𝑚𝑎𝑟𝑖𝑙𝑙𝑜 − 58.29𝑇𝐴𝑢𝑠𝑡𝑖𝑛
+ 195.67𝑇𝐵𝑟𝑜𝑤𝑛𝑠𝑣𝑖𝑙𝑙𝑒 − 1.43𝑇𝐶𝑜𝑟𝑝𝑢𝑠𝐶ℎ𝑟𝑖𝑠𝑡𝑖 + 272.47𝑇𝐷𝐹𝑊
− 62.60𝑇𝐸𝑙𝑃𝑎𝑠𝑜 + 235.33𝑇𝐻𝑜𝑢𝑠𝑡𝑜𝑛 − 75.20𝑇𝐿𝑜𝑛𝑔𝑣𝑖𝑒𝑤
+ 12.94𝑇𝐿𝑢𝑏𝑏𝑜𝑐𝑘 + 66.37𝑇𝑀𝑖𝑑𝑙𝑎𝑛𝑑 − 47.60𝑇𝑆𝑎𝑛𝐴𝑛𝑔𝑒𝑙𝑜
+ 203.48𝑇𝑆𝑎𝑛𝐴𝑛𝑡𝑜𝑛𝑖𝑜 + 80.64𝑇𝑆𝑤𝑒𝑒𝑡𝑤𝑎𝑡𝑒𝑟  

 
Eq. 4. Equation for the Multiple Linear Regression part of the model 

 

Interestingly in this model the three largest population centers, Houston, DFW, San 

Antonio, all had large positive coefficients in the temperature score portion of the 

model. The rest of the model is not easily displayed since it is several thousand 

coefficients in length. 

 
Fig. 13. Daily autocorrelation of Linear Regression Time-series residual for a model fitted with 

monthly, day of the week, an hour of day categories, and temperature data 

 

Figure 13 shows the residuals for the tslm() function. This function allows the multiple 

seasonal components present in the data to be modeled as categorical variable. The 

resulting autocorellation residulas show a greatly diminished autocorrelation peak. The 

second peak in the graph is not even at the nominal 48-hour mark. 
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Fig. 14. Weekly autocorrelation of Linear Regression Time-series residual for a model fitted with 

monthly, day of the week, an hour of day categories, and temperature data 

 

Figure 14 does still show peaks in the autocorrelation at 168-hour intervals. However, 

they are greatly reduced. 
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Fig. 15. Yearly autocorrelation of Linear Regression Time-series residual for a model fitted with 

monthly, day of the week, an hour of day categories, and temperature data 

 

Figure 15 shows a prominent peak at the yearly 8760 intervals. 
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Fig. 16. Predicted versus actual demand, shaded region denotes 95% confidence range of 

predictions 

 

Figure 16 shows the predicted demand as a dotted line. The ten days shown in the graph 

are exactly one year before the blackouts in February of 2021, the following figure 

shows an identical graph taken during the blackouts. The 95% confidence interval is 

present as the gray band. The solid line represents the actual demand. The graph shows 

that the actual demand stayed within the 95% confidence interval except for a few cases. 

    The key takeaway is that here actual demand and forecasted demand are similar 

in magnitude. The model provides a reasonable prediction of total power needed. The 

model can be used to estimate the total power needed. 

 

Linear Regression Time-series Model applied to extreme weather events 

 

Applying the model to the events of February 2021 gives the following result. 
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Fig. 17. Predicted versus actual demand during the blackouts of mid-February 2021, shaded 

region denotes 95% confidence range of predictions 

 

During the extreme weather, the blackouts caused power deliveries to fall by different 

amounts. It is expected that the model would predict higher demand than the actual 

power delivered. However, before the blackouts began up through the 14th of February, 

the model predicted a lower demand than actual power delivered.  

    The key takeaway is that here actual demand and forecasted demand are different 

in magnitude. Electric demand can not be measured, only power delivered. The model 

can be used to estimate peak demand. The peak demand estimate shows the peak power 

that would have been required to avoid the blackouts 

    Keeping in mind, that the model is underestimating the required power by about 

10 gW before the blackouts start. During February 14th the model estimates a peak 

demand of 63 gW. Taking into account the previously mentioned underestimation of 

10 gW, a reasonable interpretation of the peak demand would be about 73 gW. 

 

 
 MAPE Score training data MAPE Score testing data 

Arima() function  13.40% 
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Linear Regression Model   

Seasonal, Trend 6.16% 9.87% 

Seasonal, Trend, Month, 

Weekday, Hour 

5.97% 9.58% 

Seasonal, Trend, Month, 

Weekday, Hour, 

Temperature 

4.18% 6.41% 

  
Tbl. 2. MAPE scores of the arima() function model and the various Linear Regression models  

 

The MAPE scores in Table 2 show a significant improvement in the final linear 

regression model over the original linear regression model which lacked seasonality 

and regression characteristics. Comparing the final linear regression model to the 

original arima function model the MAPE score has been halved. 

5 Discussion 

Several different models were created to explain the various interactions present in the 

data.  

 

5.1 Weather Data 

 

Temperature data collected from NOAA suffered from missing values. MICE 

imputation gave decidedly better results than most other means of imputing missing 

data. Better performance could be gained by selecting several stations within the same 

immediate area. The locations for this study were broadly dispersed across the state. 

Fitting the data with MICE from local sources would result in better performance. 

    Additional weather data is available that could be used to create models that 

explain wind and solar power availability. This is a definite need for future research. 

 

5.2 Power Data 

 

The power data collected provides a detailed look at the overall power generated and 

the various sources by fuel type. The power data contained no missing data. The one 

item of note in the data is how little renewables contributed during the February 2021 

winter storm. At times renewables accounted for less than one gW of power when the 

total generated was near 50 gW and actual demand was 70 to 80 gW. 
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Fig. 18. Predicted and actual demand from one year before the blackouts and during the blackouts 

 

On the left hand side of figure 18 a normal power demand and model prediction is 

shown. This is from one year prior to the blackouts. The figure show a mean demand 

of about forty gW. There is a double peak nature to the daily demand for most of the 

graph, that is normal behavior for this time of year. The double peak is caused by an 

early morning increase in electric demand as people are getting up and the temperature 

is usually at it’s lowest point at that time. The second daily peak is at the end of the day 

when people arrive home but many offices and schools are still partially occupied. 

    The left hand side shows the effects the blackouts had on demand. The first thing 

to note is the average demand is at least ten gW higher than before. The double peak 

nature is present early in the figure but breaks down during the blackouts because all 

power available was being used. 

 

5.3 Arima Function 

 

The arima function suffers because it cannot account for multiple seasonality. The 

model was useful as the residuals identify the different seasonality periods present in 

the data. The predicted values from this model regressed immediately to the mean and 

thus did not provide any insight into predicting power demand. 

 

5.4 Multiple Linear Regression Time-Series 

 

The model results produced using linear regression are useful for predicting power 

demand. However, these models rely on accurate temperature forecasts. The model is 

only as good as the forecasts of the temperatures. Local temperature forecasts are 

routinely available for a rolling 48-hour period. Used with the linear regression time-

series model, this will provide sufficient advance notice for scheduling generation unit 

availability. What this does not provide is sufficient notice for outage planning. 

Outtages due to generation unit maintenance can take anywhere from a day to many 

months, depending upon the scope of work (Ruthford, 2021). During the extremely 

cold weather, the model diverged significantly from the delivered power. Some of this 

was to be expected. The blackouts caused less power to be delivered than the actual 
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demand called for. The model’s primary purpose is to estimate this total demand during 

the blackouts. 

    The bigger issue is that prior to the 14th of February, the model consistently 

underestimated the demand. More than likely, this is due to the “Black Swan” nature 

of the weather. The model does an inadequate job of predicting in the face of extreme 

weather. Adjustments could be made to the model. However, this would have the effect 

of data snooping or biasing the model based upon what the modeler thinks should 

happen or how they expect the model to perform. 

    The model obtained by this study does not work like a traditional next observation 

ahead predictor. Instead this model is more like a function. The input is the expected 

temperature at the fourteen different weather stations. The output is the expected 

demand. The model is only as accurate as the temperature data provided. 

 

5.6 Renewables 

 

During the cold weather conditions, renewables were unable to provide a significant 

amount of power. Looking at Figure 3, total renewable hourly power generated during 

the period February 10-20 never exceeded 10 gigawatts and was frequently less than 1 

gigawatt. According to the model and actual power generated, demand was 

approximately 50 gigawatts with a maximum of 70 gigawatts, as seen in Figure 17. Not 

all the problems with renewable generation was caused by cold weather, lack of 

sunlight and lack of wind reduced available power generation as well. 

 

5.5 Ethics 

 

Government policy has been the primary driver determining the types of power 

generations installed over the last decade. The push for green energy has come at the 

cost of grid reliability. Solutions to compensate for the inclusion of renewable energy 

on the grid at scale have lagged far behind actual needs. The cost of this policy is now 

coming to fruition. 

Is allowing further unchecked renewable energy development, even though it risks 

more frequent and longer blackouts, worth the risks of possible deaths and economic 

harm? This is a question that policymakers and consumers need to keep foremost in 

their minds. 

6 Conclusion 

Currently, the Texas electric grid is in a crisis. The recent blackouts caused by the cold 

weather in February 2021 are a canary in the coal mine. These blackouts demonstrate 

the limits of renewable energy. They also point to issues that exist with more traditional 

energy sources, fossil fuel and nuclear. Modeling can help determine system 

requirements and provides a useful guide when planning generation unit operation, 

even for unprecedented conditions. However, the models are only as accurate as the 

temperature information fed to them and suffer accuracy degradation when faced with 

extreme events. The models do not provide a useful guide when considering the 
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intermediate-term, 10 to 60 days, because of inadequate temperature forecasting in that 

time span. This term would be most useful when outage planning. 

The inability of the grid to supply enough power in February illuminates’ problems 

with traditional sources of power. Traditional power sources are not robust when 

encountering extreme weather conditions. This is mainly due to fuel supplies for gas 

turbines. More needs to be done to provide gas turbines with alternative liquid fuel 

supplies during periods of peak winter use or when normal supplies of gas are 

interrupted. Renewable energy will need to have reliable backup power available to be 

of use on the grid. At this time, renewables use conventional power sources as a backup. 

Currently, batteries are looked at as a possible answer to this. However, batteries have 

yet to demonstrate a sufficient track record of reliable long-term operation, and it is 

unknown if they can be deployed in sufficient quantities to make an impact on grid 

reliability. To cope with a similar weather event, as discussed in this paper, batteries 

would need to deliver seventy gigawatts peak and sustain fifty gigawatts per hour for 

more than four days. 
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