


   

 

   

 

 

With the hierarchy implementation in Figure 1 d), an input image starts from the N1 

root. Then Q1 determines if it should move downward to N2 and its children or the left 

branch, while Q2 does similar things for N3 and its children or the right branch. The 

Q1 and Q2 make decisions independently, which means that an input image can 

descend parallel to both left and right branches. This multi-threading method prevents 

the network from prematurely committing to a single path when the input image is 

ambiguous. The input image then moves down to a branch of Q3 to Q7. At the end of 

the network, N4 to N8 nodes are in charge of fine-level class classification. The study 

measured the 4 different D2NN architectures' performance using F1 accuracy-cost. The 

results showed that using hierarchical D2NN reduced half of the computational cost 

while maintaining the same model accuracy. 

In 2019, Researchers Seo and Shin implemented Hierarchical Convolutional Neural 

Networks (H–CNN) using VGGNet-16 and VGGNet-19, a CNN architecture 

(Simonyan & Zisserman, 2014), on the Fashion-MNIST dataset (Seo and Shin, 2019). 

The study aims to solve the difficulties in apparel image classification by using the 

hierarchical structure on CNN. The way that the researchers organized their H-CNN 

based Fashion-MNIST is that the top of the hierarchy is the coarse level consisting of 

goods and clothes. The medium layer assigns labels to some of the classes and passes 

the rest to a third a final layer. Their H-CNN hierarchy is depicted in Figure 3. 

 

 

 
 

Fig. 3. Hierarchical Classes of Fashion-MNIST Dataset (Seo and Shin, 2019). 
 

 

The researchers conducted two experiments. First, they compared the VGG16 H–

CNN model with the VGG16 base model. In the second experiment, the researchers 

compared the VGG19 H–CNN model with the VGG19 base model. Their results have 

shown that the H-CNN models outperform the base CNN models with higher accuracy 

and lower loss. In conclusion, the hierarchical structure is able to improve the image 

classification upon the CNN base models. 

In 2021, a Queen’s University, Ontario Canada research team implemented the use 

of HNN to classify images from the Kaggle Fashion Dataset by building Condition-

CNN on top of the B-CNN. It begins with a standard CNN base model low-level feature 
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learning (coarse-grained features) across all levels in the class hierarchy. After that, the 

model learns more specific, higher-level features at each level in an individual CNN 

subnetwork in parallel. The Condition-CNN accelerates training time and improves the 

fine-grained class outcomes by providing the predictions priors to the lower level as 

input features (Kolisnik et al., 2021). They found that a hierarchical structure is efficient 

because each fine-grained class has only a single coarse-grained class. The use of 

teacher force eliminates the need to use the Branch Train algorithm. Their research 

produced the following results. Their CNN achieved the following results on the 

Kaggle Fashion Dataset; 99.8% accuracy in predicting coarse-level classes, 98.1% 

accuracy for medium-level classes, and 91.0% accuracy for fine-level classes. 

The success of using HNN demonstrates the promise of using hierarchical 

architecture. Both for their accuracies and efficiency in training and re-training. One 

obstacle is the lack of a readily available tool in TensorFlow. Google’s TensorFlow is 

an open-source library that allows users to build neural networks easily. It uses a Python 

API for building applications and executes those in C++. The research is, in part, 

motivated to demonstrate how TensorFlow can be used to build HNN rather than 

needing to build or acquire a separate proprietary tool. 

 

2.5 Convolutional Layers versus Dense Layers 

 

In an image classification problem, convolution layers apply a set of filters to an 

image. Filters are relatively small matrices containing numbers, the size and initialized 

values within the matrix depend on the type of filter. The smaller filter matrix passes 

across the larger matrix of the input image. The smaller filter matrix ‘convolves’ across 

the image matrix. The dot product of the filter matrix is stored as a convolutional filter 

of the image. Maxpooling is another kind of filter used in convolutional networks. Same 

sliding matrix process as before applied to convolutional dot product matrix but 

maxpooling takes and stores the largest value. In this way, maxpooling reduces the size 

of the matrix representing the image. When maxpooling is applied, sometimes other 

techniques of downsampling are used, the resulting matrix stores the activations of the 

convolutional layer’s filters in what is called a feature graph or feature map. Repeatedly 

applying the same filter to an input result in a map of activations called a feature map 

that indicates the locations and strength of a detected feature within an image (LeCun 

et al., 1998). Convolution is effectively a sliding dot product. The kernel shifts along 

with the input matrix and takes the dot product between the two as if they were vectors. 

Fully Connected (FC) layers, sometimes called Dense layers, apply a linear function 

to the input vector through a weight matrix. All possible connections layer to layer 

exists, hence the name fully connected or dense layers. In dense layer architecture, 

every input within the input vector influences every output on the output layer by 

having some effect on the weight matrix. Dense layers can be used in conjunction with 

convolutional layers. Picking back up the explanation of convolutional layers, the 

results of the convolutional filters or feature map is mapped to the dense layer. The sum 

product of the two matrices is called the dense layer activation.  

In an effort to understand the role of dense layers or fully connected layers (FC) 

researchers Basha et al. performed experiments on 4 different CNN architectures using; 

CIFAR-10, CIFAR-100, Tiny ImageNet, and CRCHistoPhenotypes datasets (Basha et 

al., 2020). The result of the research gives guidelines to help understand the tradeoffs 
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between shallow and deep networks with regards to FC and CNN layers and their 

performance gains given deeper or wider datasets. The deeper vs. wider data is 

sometimes referred to as tall-skinny vice short-fat matrices. For a given dataset with an 

equal number of observations, a dataset is said to be deeper than another dataset if it 

has more representations per class in the training set (Bansal et al., 2017). Take for 

example CIFAR-10 & 100. Both Datasets contain 50,000 images. CIFAR-10 is said to 

be deeper data set because it has 5000 images for each of its 10 classes within the 

training set. Likewise, CIFAR-100 has 100 classes each containing 500 images and is 

thus wider. 

To summarize the guidelines proposed by Basha et al. Deeper CNNs should be 

paired with deeper datasets and vice versa. Deep CNN networks will require fewer 

neurons in their FC/dense layers no matter the type of dataset (Basha et al., 2020). 

 

2.6 Neural Networks overfitting and regularization 

 

Combining the weights from all the parameters can sometimes lead to overfitting. 

Dropout is a technique used to prevent overfitting. Typically, an overfit model will not 

generalize well. During the training phase, specifically selected neurons are ignored. 

They are, in a sense, dropped out randomly during training. This means their 

contributions to activation functions forward in the network and weights passed 

backward through the backpropagation algorithm are not applied. Researchers from the 

University of Toronto published a paper on this topic, “Dropout: An Effortless Way to 

Prevent Neural Networks from Overfitting” (Srivastava et al., 2014). 

Averaging the outputs from many different models is helpful when these models 

differ from one another. However, training different architectures is difficult and time-

consuming to find the optimal hyperparameters for each model. Applying the dropout 

methodology allows users to approximate many different neural networks architectures 

efficiently. This significantly reduces overfitting and gives significant improvements 

over other regularization methods. 

 

 
 

Fig. 4. Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An 

example of a thinned net produced by applying dropout to the network on the left. Crossed units 

have been dropped (Srivastava et al., 2014). 
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Another promising regularization technique is VICReg. VICReg, short for variance 

invariance covariance regularization (VICReg). The variance and covariance terms are 

responsible for avoiding the collapse problem. While the invariance term is used to 

make the two output embedding vectors similar. Its use avoids the collapse problem of 

weight sharing between batches, stop gradient, output quantization, etc. The research 

shows that variance regularization terms stabilize the training of other methods and lead 

to performance improvements (Bardes et al., 2021). New advancements in training 

techniques rely on joint embedding. That creates two identical twins of the networks 

(Siamese networks) to produce embeddings for different views of the same image. The 

main challenge of this type of architecture is to prevent the collapse in which two 

branches ignore the inputs and produce identical and constant vectors. Two methods 

are typically used to avoid this. Contrastive methods are one technique where one 

model feeds positive examples and the other negative examples. The problem with the 

technique is that for higher-dimensional data, the number of contrastive variables is 

exorbitant. Informative methods such as the quantization-based approaches for the 

embeddings of different samples to belong to different clusters on the unit sphere. These 

methods attempt to produce embeddings variables that are de-correlated from each 

other, thus preventing collapse as described above. The research team applied VICReg 

on ImageNet using a ResNet-50 backbone pre-trained with VICReg. 

VICReg is demonstrated to be useful when two networks are built that provide 

inference to one another. This structure is called Siamese networks (Pan et al., 2019). 

The ability of one network to provide inferential information to another network is an 

important idea for this research into HNNs. After all, HNNs are separate neural 

networks that feed into branched sub-networks.  

While many HNN-based classification and image classification approaches exist, 

none of these models was built on TensorFlow. The objectives of this research are, first, 

to implement building HNN-based image classification with TensorFlow without 

manually constructing the networks to the specific hierarchy, and second, to evaluate if 

a hierarchical structure of connected sub-neural networks can outperform a flat neural 

networks model. 

3   Methods 

3.1 Data  

  

The data used in the study is the Fashion-MNIST dataset, as described in the 

introduction. The dataset contains 70,000 observations amongst 10 balanced classes.  

containing Each item contains only one manual label by fashion experts. The 10 classes 

are balanced each containing 7,000 images for a grand total of 70,000 images split into 

60,000 images for the training set and 10,000 images for the test set. Figure 5 shows 

data samples for all 10 categories with their labels. The dataset has been popularly used 

as a benchmark for machine learning and deep learning for several years. 
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Fig. 5. Sample Images with Classification Labels. 

 

 

Many machine learning libraries have Fashion-MNIST dataset built-in and/or API. 

The dataset can also be downloaded directly from the Fashion-MNIST GitHub 

repository (Xiao et al., 2017). For this study, the dataset will be downloaded through 

TensorFlow. 

 

Table 1.  Fashion-MNIST Datasets Sample Size by Classification Categories. 

Fine Level  Medium Level   Coarse Level  

Class  Sample Size   Class  Sample Size   Class  Sample Size  

T-shirt/Top  6,000   

Tops  18,000  

 

Clothes  36,000  

Pullover  6,000    

Shirt  6,000    

Trouser  6,000   Bottoms  6,000   

Dress  6,000   Dresses  6,000   

Coat  6,000   Outers  6,000   

Bag  6,000   Accessories  6,000   

Goods  24,000  
Sandal  6,000   

Shoes  18,000  

 

Sneaker  6,000    

Ankle Boot  6,000    

 

 

Multiple hierarchy structures were evaluated. This research uses the benchmark 

hierarchy structure according to the approach of Seo and Shin, 2019 referenced in 

section 2.2 above. The count for each fine level, medium level, and coarse level class 

of the training set is shown in Table 1. The sample counts for each class are intentionally 
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balanced in this dataset. However, after adding the broader medium and coarse level 

labels, the class imbalance is an issue of concern in modeling. Each observation in the 

data contains a 28 x 28 array of pixels that can be plotted for visual representation and 

flattened for modeling inputs. 

 

3.2 Neural Network Platform and Models 

 

A. The platform used in the research is TensorFlow. TensorFlow is an end-to-end 

open-source platform for machine learning and artificial intelligence. It was 

developed by the Google Brain team with the initial version released in 2015 

(Abadi et al., 2015). Keras is a high-level application programming interface 

(API) that is tightly integrated into TensorFlow. It uses TensorFlow as its 

backend. To answer the research questions and hypothesis, five models had 

been created with different structures and parameters using TensorFlow Keras. 

For each model, the training time and classification metrics (accuracy, 

precision, recall by class) are recorded. 

 

B. Model-1 Base Flat Neural Networks with single dense layer: Built a base model 

of one neural network with a single dense layer with 128 neurons and 10 epochs 

to make all classifications as a benchmark for accuracy and training time. This 

model is hereafter referred to as the “base model”. The goal is to create a model 

definition that can be consistently repeated to compare other model structures 

rather than to maximize accuracy on this base model. Recorded the training 

time and classification metrics (accuracy, precision, recall by class). 

 

C. Model-2 Hierarchical Neural Networks with single dense layer: Built using 

connected individual networks for each branch within the course, intermediate, 

and fine levels of the Fashion-MNIST relationships. To control for comparison 

to the base model, each sub-network used the same single dense layer and 

model conditions as the base model. The classifications from the coarse level 

model were used to subset the data to feed into separate neural networks for 

each of the intermediate level groups and similarly those classifications divided 

the data further into individual fine-layer models. Recorded the training time 

and the final layer classification metrics (accuracy, precision, recall by class) to 

compare to the base model. Then compared these results to evaluate whether a 

hierarchical structure of connected sub-neural networks outperforms the flat 

neural networks base model in terms of accuracy based on the structure alone. 

With multiple sub-networks all using a consistent 10 epochs, Model-2 

experienced a longer training time than the base model, further models will 

explore the training time comparisons. 

 

D. Model-3 Flat Neural Networks with early stopping criteria: Expanding on the 

base model, early stopping criteria was added based on validation accuracy 

rather than stopping consistently at 10 epochs. Early stopping is based on 

validation loss with a minimum delta of 0.0001, the patience of 10 epochs, and 

restores the weights from the best epoch. This model possessed increased 

training time but better training efficiency. The goal here is to set a benchmark 
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for training time that can be compared to other models with consistent training 

criteria.  

 

E. Model-4 Hierarchical Neural Networks with early stopping criteria: Expanding 

on Model-2, added early stopping criteria based on validation accuracy rather 

than stopping consistently at 10 epochs. Early stopping matches model 3 and is 

based on validation loss with a minimum delta of 0.0001, the patience of 10 

epochs, and restores the weights from the best epoch. Recorded the training 

time and classification metrics (accuracy, precision, recall, and F1-score by 

class). 

 

a. Multiple hierarchy structures will be evaluated with Model-4A’s 

structure based on the approach referenced in section 2.2 above (Seo 

& Shin, 2019). 

 

 
 

Fig. 6. Hierarchy Structure for Model 4A. 

 

 

b. Model-4B has an alternate hierarchy structure developed from 

insights gained from performance metrics obtained in Models 1 

through 4A. 

 

 
 

Fig. 7. Hierarchy Structure for Model 4B. 

 

 

c. Model-4C has an alternate hierarchy structure developed from 

insights gained from performance metrics obtained in models 1 

through 4B. 

 
 

Fig. 8. Hierarchy Structure for Model 4C. 
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All models’ training time and classification metrics (accuracy, precision, recall, and 

F1-score) were collected. Model-3 and Model-4 give a better comparison of training 

time for fully trained models versus the comparison base Model-1 and Model-2. Class 

level precision, recall, and f1 scores were compared for all models for insight into how 

various structures affect each class. The goal is to determine if a hierarchically 

structured model can provide classifications suited to the use case, as overall accuracy 

for all classes may not be the priority when there are costs associated with errors in 

specific classes. 
 

3.3 Producing Results for comparison 

 

Neural networks use random initial weights and biases which impact the entire 

training process of a network and the optimization during gradient descent. Therefore, 

training the same model multiple times can produce different results. One method for 

comparing different models is to collect predictions over multiple pieces of training of 

each model and compare the distributions of performance. This method can be 

computational and time expensive. 

The models in this study instead set constant and consistent seeds for all random 

generators so that each individual model produces repeatable results. All models were 

trained 3 times to confirm repeatability. Comparisons between different models are 

done on this basis rather than a distribution of multiple pieces of training. Since models 

are sensitive to initialization one seed may generate weights that produce better results 

for one model over another. The effect of different initialized parameters was not 

studied in this research.  

The methods used to achieve repeatability include setting the same fixed seed values 

in all models for the python environment variable ‘PYTHONHASHSEED’, the python 

built-in pseudo-random generator, the NumPy pseudo-random generator, and the 

TensorFlow pseudo-random generator. The TensorFlow session also has both the intra 

and inter-parallel threads limited to 1 so that processing methods do not unintentionally 

introduce differences from training to training. 

While these measures allowed for repeatability, it should be noted that the amount 

of time to train models is affected and could vary from machine to machine. The 

training time recorded and compared in the results of this study were collected from a 

single machine thus comparable in relative measures. 

4   Results 

As referenced above, overall accuracy and training time are critical components in 

comparing the usefulness of each model. However other tradeoffs such as prediction 

success for each class may be more important for specific use cases. Examining the 

performance for each class also helps understand and potentially improve models. 
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4.1 Overall Accuracy and Training Time 

 

The summary in Table 2 below generally shows that the HNN models performed 

slightly better than the flat non-hierarchical models in terms of the fine level 

classification accuracy but at the expense of significantly longer training times. 

Paired comparisons demonstrate that the optimized training with early stopping 

(Models 1 vs. 3 and 2 vs. 4) slightly improved accuracy and doubled training time for 

both the flat and HNN varieties.  

All HNN models performed well separating the coarse level classes with 99.5% 

accuracy before feeding observations into the medium level models. The best HNN 

models (Models 4B and 4C) also performed well at separating the medium-level classes 

before feeding into the final fine-level models. HNN model 4C achieved 96% accuracy 

at the medium level classifications which is more than 2% better than the flat model at 

the medium level.  

Comparing the fully trained models shows that the initial HNN structure (Model 4A) 

only gained 0.12% in overall accuracy and tripled in training time vs. the flat NN 

(Model 3).  

Adjusting the hierarchy structure based on discussions in section 4.2 (Models 4B 

and 4C) improved the HNN’s accuracy with only modest increases in training time vs. 

the original hierarchical structure. Although these HNN’s still only increased accuracy 

by 0.69% and 0.77% respectively over the flat neural network. 

Table 2. Accuracy and Training Time By Model. 

  Training 

Time 

Accuracy by Level  

Model Description Coarse Medium Fine 

1 Flat NN, 10 Epochs  73s 99.52% 93.74% 87.30% 

2 HNN, Structure A, 10 Epochs 208s 99.48% 93.63% 87.88% 

3 Flat NN, Optimized Training 133s 99.48% 93.43% 88.07% 

4A HNN, Structure A, Optimized Training 415s 99.49% 93.67% 88.19% 

4B HNN, Structure B, Optimized Training 422s 99.49% 95.16% 88.76% 

4C HNN, Structure C, Optimized Training 444s 99.49% 95.96% 88.84% 

 

 

4.2 Prediction Performance by Class 

 

All models explored showed varying degrees of prediction success at the fine level 

classes. Table 3 shows that the flat neural network performed well in most classes but 

struggled significantly with both precision and recall in the “Shirt” category. The model 

also has room for improvement in the categories “Coat” and “Pullover.” 
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Table 3. Fine Level Classification Report for Model 3 (Flat NN). 

Model Class Precision Recall F1-Score 

3 Flat NN, Optimized Training Ankle Boot 0.99 0.97 0.98 

3 Flat NN, Optimized Training Bag 0.83 0.86 0.84 

3 Flat NN, Optimized Training Coat 0.79 0.77 0.78 

3 Flat NN, Optimized Training Dress 0.90 0.88 0.89 

3 Flat NN, Optimized Training Pullover 0.73 0.87 0.79 

3 Flat NN, Optimized Training Sandal 0.98 0.96 0.97 

3 Flat NN, Optimized Training Shirt 0.73 0.62 0.67 

3 Flat NN, Optimized Training Sneaker 0.93 0.97 0.95 

3 Flat NN, Optimized Training T-shirt/Top 0.97 0.95 0.96 

3 Flat NN, Optimized Training Trouser 0.99 0.95 0.97 

 

 

The first hierarchy structure used (Model 4A) showed improvement vs the flat mode 

on the “Shirt” category but performed significantly worse on precision and recall for 

the “T-shirt/Top” category. Similar to the flat NN model this HNN also has room for 

improvement in the categories “Coat” and “Pullover.” 

 
 

Table 4. Fine Level Classification Report for Model 4A (HNN). 

 

Model Class Precision Recall F1-Score 

4A HNN, Structure A, Opt. Training Ankle Boot 0.95 0.96 0.96 

4A HNN, Structure A, Opt. Training Bag 0.98 0.96 0.97 

4A HNN, Structure A, Opt. Training Coat 0.82 0.76 0.79 

4A HNN, Structure A, Opt. Training Dress 0.87 0.91 0.89 

4A HNN, Structure A, Opt. Training Pullover 0.76 0.82 0.79 

4A HNN, Structure A, Opt. Training Sandal 0.98 0.95 0.97 

4A HNN, Structure A, Opt. Training Shirt 0.72 0.69 0.70 

4A HNN, Structure A, Opt. Training Sneaker 0.94 0.96 0.95 

4A HNN, Structure A, Opt. Training T-shirt/Top 0.82 0.85 0.83 

4A HNN, Structure A, Opt. Training Trouser 0.99 0.97 0.98 

 
 

Beyond the precision and recall, confusion matrices shown in Figures 9 and 10 were 

produced to study what misclassifications were being predicted as. The flat NN (Model 

3) which struggled the most with “Shirt” shows the misclassifications are spread across 

predictions of “Coat”, “Pullover” and “T-shirt/Top”. The HNN (Model 4A) shows that 

the first hierarchy structure significantly reduces the errors of predicting “Shirt” as 

“Coat” but has a similar number of erroneous predictions of “Pullover” and “T-

17

Fontenot et al.: Hierarchical Neural Networks (HNN)

Published by SMU Scholar, 2022



   

 

   

 

shirt/Top”. Based on the hierarchy in Model 4A, the coats were successfully predicted 

and split off as “Outers” at the medium level and separated from these other categories 

which fed into the Tops model. This shows that adjustments in the hierarchy can 

improve an HNNs performance.  

Beyond the “Shirt” category, the second most misclassified categories were “Coat” 

predicted as “Pullover” and vice versa. While the HNN (Model 4A) shows 

improvements in precision for both categories, it shows a lower recall for both as well. 

Based on hierarchy structure A, pullovers were classified as “Tops” at the medium level 

and coats were classified as “Outers”, so they were separated before the fine-layer sub-

models.  

Based on these insights, the hierarchy structure was modified in Model 4B in an 

attempt to separate the “Pullover” from “Shirt at the medium level as well as include 

“Coat” and “Pullover” in the same final fine-layer model. Whereas hierarchy structure 

A included “Tops”: {“T-shirt/Top”,” Shirt”,” Pullover”} and “Outers”: {“Coat”}, the 

new structure in hierarchy B is “Shirts”: {“T-shirt/Top”,” Shirt”} and “Other Tops”: 

{“Pullover”, “Dress”, “Coat”}  

The original hierarchy structure (Model 4A) also struggled with predicting the 

“Shirt” category compared to the flat NN. The misclassifications as “Dress”, “Pullover” 

and “Shirt” are the same categories on both flat Model 3 and HNN Model 4A, but the 

HNN has errors at a higher rate. Since the best performance for “Shirt” was on the flat 

model, this insight led to another hierarchy structure modification from 4B to 4C where 

“T-shirt/Top” are separated from all other categories at the medium level and “Shirt” is 

moved into the “Other Tops” category. 

 

 
 

Fig. 9. Fine Level Class Confusion Matrix, Flat NN Model 3. 
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Fig. 10. Fine Level Class Confusion Matrix, HNN Model 4A. 

 

 

 Figures 11-13 compare the precision, recall, and F1-scores for all classification 

categories across all models. In general, all HNN models significantly outperformed 

the flat model for the “Bag” category for all three metrics. The flat model significantly 

outperformed all HNN models for the “T-shirt/Top” category for all three metrics. For 

all other categories, the HNN models matched or outperformed the flat model and the 

adjustments to the hierarchy structure through insights discussed above made 

improvements over the initial structure across all image categories.  

The HNN model with hierarchy structure C performed the best of the models 

explored in this research. This warrants further research in HNN structures to 

understand their effect on optimization. 
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Fig. 11. Comparison of Precision by Class Across All Models. 

 

 

 

 

 
 

Fig. 12. Comparison of Recall by Class Across All Models. 
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Fig. 13. Comparison of F1-score by Class Across All Models. 

5   Discussion 

In a direct comparison of HNNs versus flat networks, our research suggests that 

HNNs offer only small net benefit to overall accuracy though may be able to optimize 

the performance of a single class.  

 

5.1 Comparison of Results to Other Research 

 

Table 5. Comparison of Related Work Fashion Classification Tasks. 

Model 
Research 

Team 
Data Set Used 

Test 

Accuracy 

VGG16 H-CNN Seo & Shin Fashion-MNIST .935 

VGG19 H-CNN Seo & Shin Fashion-MNIST .933 

C-CNN Kolisnik et al. Fashion-MNIST .910 

C-CNN B Kolisnik et al. Fashion-MNIST .904 

TensorFlow HNN-B Fontenot et al. Fashion-MNIST .887 

TensorFlow HNN-C Fontenot et al. Fashion-MNIST .888 

 

 

5.2 Discussion 

 

Comparing the results from this research to related work in fashion classification 

tasks, the HNN built with TensorFlow does not perform as well compared to Seo & 

Shin and Kolisnik et al. Direct comparison of results between this research and previous 
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work ought to be done with the knowledge of how the models were built and with what 

purpose. The design of the models in this research was done to compare the structure 

of an HNN to that of a flat NN. Each model was limited to a single dense layer. In 

addition, this research did not use a convolutional layer. Convolutional layers were used 

in the other research mentioned in table 5. This is likely the cause of the lower 

performance and not due to TensorFlow implantation. Given that the models used in 

this network were intentionally kept simple, the result compared to other researchers 

are promising.  

The results from this study indicate that HNNs do provide advantages compared to 

flat networks. A direct comparison of the overall accuracy performance of HNNs versus 

a flat network demonstrates a modest gain in the overall accuracy of 0.77%. An increase 

in overall accuracy came at the expense of longer training times and greater complexity. 

When taken into consideration the increase in complexity and training time may not be 

feasible in many cases. However, for specific use cases, HNNs could be valuable. 

HNNs segmented structures allow sub-models to be re-trained without altering the 

results from other models. Another interesting use case is model hierarchy is another 

parameter users can tune to adjust performance.   

Decisions regarding model hierarchy resulted in a dramatic effect on precision and 

recall scores at the fine level classification. Moving classes in the hierarchy increased 

the recall and precision of some classes but decreased the results in others. In other 

words, our findings suggest that model hierarchy is a hyperparameter and could be used 

in cases were predicting one class takes priority over others. 

To illustrate what a priority class is take for example a task in identifying cancer. In 

this computer vision scenario to identify dermatological markers on the skin for 

melanoma cancer predictions on this one category take precedence. The model must be 

excellent at identifying cancer. Correct predictions of other skin lesions, moles, etc. are 

important but one can understand the singular importance of this one category. 

Identifying cancer is out of the scope of this research. The example of identifying cancer 

is used to demonstrate an example of why one might want the ability to prioritize one 

class in a multi-class problem. 

The motivation for moving shirt, coat, and T-shirt classes within the hierarchy were 

to improve their scores. Model 4A showed signs of difficulty in distinguishing shirts 

and T-shirts. Thus, in model 4B the research team allowed T-shirts and shirts to pass 

through their final neural network head-to-head. The rationale being a dedicated 

network to decipher the minute differences between the two classes ought to improve 

their lagging scores. This proved not to be the case. Instead, the networks seem to 

respond in just the opposite manner. Pairing visually dissimilar classes in the same 

Neural network gives the network greater inferential ability. 

Reviewing the results of the HNNs built in this study demonstrates HNNs ability to 

outperform flat networks in predicting a single priority class. When the classes were 

moved in the hierarchy, the precision and recall of certain classes changed considerably. 

Moving shirts and coats, and pullovers to various levels within the hierarchy from 4A, 

4B, and 4C resulted in increases in precision and recall in some classes but to the 

detriment of others. This interesting result suggests that HNNs present a use case for a 

priority class prediction problem. 
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5.3 Limitations 

 

The research team’s ability to respond to observations on results was limited due to 

the highly customized and tightly coupled code. To explore HNN using TensorFlow 

meant the team had to use the library in ways not anticipated by the developers. Thus, 

deviating from initial test designs to explore other ideas was limited due to time and 

labor constraints. For example, the Initial experimentation design did not account for 

the arrangement of classes within the hierarchy as a factor. The phenomenon of the 

HNNs ability to optimize results on a certain class is drawn from a population of three. 

In the methods section, setting fixed seeds was discussed as a means of getting 

repeatable results for each given network. This was useful for a “fair” comparison 

between these models. Given more time each model could be trained many times to 

collect distributions of samples on the metrics and tested for statistical significance of 

performance differences between the models. 

 

5.4 Future Research  

 

The results of the HNN compared to flat networks displayed marginal results, 

though alternate hierarchical structures were explored. Our research was limited in its 

ability to make statistical inferences on the effect. Based on our results the research 

team believes studying the effect of hierarchy on predictions is worthy of future 

research. 

The results of this research did not have as high accuracy when compared to other 

work in fashion image classification. Reasons for this performance were mentioned in 

the discussion. To more accurately compare the image classification results from our 

HNN using TensorFlow to that of other research may require the use of convolutional 

layers. 

 

5.5 Ethics 

 

Ethics in data science and machine learning is an important consideration. The 

Fashion-MNIST data set used in this research is a low-threat environment for ethical 

considerations. One of the reasons Fashion-MNIST is often used for research. In recent 

years, however, the data science community is becoming increasingly aware of the bias 

that can unwittingly creep into their work. Algorithms do not possess bias or an agenda 

per se but the datasets they perform their routines on may be the result of an active 

biased process. 

This research employs a hierarchical structure. Hierarchical representations possess 

an ability to convey importance or value judgments. When applied to the Fashion-

MNIST dataset this framework is innocuous. Decisions on how black and white 

pictures of clothes flow downward in the hierarchy to receive labels is an antiseptic 

process. Whether shoes are passed through the ‘accessory’ network or dresses receive 

their label from the ‘tops’ network is trivial. The researchers are not trying to progress 

a bias against any garment. Yet, if the same hierarchical framework is applied to facial 

recognition the visual representation of the hierarchy becomes fraught with ethical 

considerations. Classes such as age, race, gender, and how they appear in relation to 

others within the hierarchy are the substance for scrutiny. The use of HNNs in future 
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applications needs to take into consideration labels and their representation within the 

hierarchy. 

Our research uses deep learning and neural networks. These tools can find hidden 

variables within the data. Even if sensitive data is removed from the dataset before 

training, factors may be encoded in the data set in other ways. Removing sensitive 

variables like race or sex from the dataset entirely can prohibit practitioners from 

identifying biased results. Data science practitioners ought to be aware of the ethical 

considerations when employing deep learning techniques. 

6   Conclusion  

The findings from this research show HNNs offer a slight improvement in overall 

accuracy compared to flat networks. Given the results in this study, the benefits of 

HNNs do not justify their complexity and additional training time. However, for certain 

use cases such as a priority class HNNs may offer benefits compared the flat NNs. 

Moving classes throughout the structure of the model’s hierarchy resulted in change at 

the fine level classification. Based on the finding of this research further investigation 

of HNNs might demonstrate a use case for optimizing the classification of a priority 

class. 
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