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Abstract. This paper explores the intricate challenges log files pose from data science and 

machine learning perspectives. Drawing inspiration from existing methods, LAnoBERT, PULL, 

LLMs, and the breadth of recent research, this paper aims to push the boundaries of machine 

learning for log file systems. Our study comprehensively examines the unique challenges 

presented in our problem setup, delineates the limitations of existing methods, and introduces 

innovative solutions. These contributions are organized to offer valuable insights, predictions, 

and actionable recommendations tailored for Microsoft's engineers working on log data analysis. 

1   Introduction 

Log files are indispensable system monitoring and management tools, providing 

essential data for real-time performance assessment and system health checks. They 

play a crucial role in security and compliance, detecting breaches, auditing activities, 

and ensuring regulatory adherence. Logs are essential for debugging, troubleshooting, 

and analyzing network performance in software development and network 

administration. Furthermore, data scientists and engineers increasingly utilize log files 

in machine learning for predictive analytics, while customer support teams employ 

them to enhance product and service quality. 

Support engineers, software developers, and other technical services interpret these 

logs, which lead to actions such as enhancing security measures, troubleshooting, 

optimizing system operations, understanding user behaviors, ensuring regulatory 

compliance, and preventing future issues. 

While invaluable, these record-keeping systems have limitations due to the inherent 

complexity and volume of log data. Traditional methods often struggle to identify and 

explain relevant information effectively, leading to challenges in efficiently extracting 

meaningful insights. This complexity heightens the challenge of detecting system 

failures, underscoring the urgent need for more effective automated solutions. Support 

engineers methodically analyze the varied data in logs, filtering and interpreting 

extensive information to construct viable solutions for system issues. The broad scope 

of logs results in a level of complexity that no singular support engineer can generalize 

to and becomes a complex task for large corporations that provide a plethora of 

applications to consumers. The role of artificial intelligence for IT operations (AIOps) 

aims to improve reliability and stability in IT services by detecting failures and fully 

utilizing logs as a resource for troubleshooting.  

Recent advancements in natural language processing (NLP) have unlocked new 

opportunities for application design. Neural networks and the introduction of 

transformers, as highlighted by Vaswani et al. in their pivotal 2017 paper "Attention is 
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All You Need." prove transformers have outperformed traditional neural network 

models by enhancing text parsing efficiency and context comprehension from input 

text. Large Language Models (LLMs) build on transformers' capabilities, offering a 

context-rich analysis and enabling users to interact with models in a human-

understandable text, receiving probabilistic responses from training data. This approach 

efficiently analyzes text-heavy data, such as log messages, as noted by Mahowald et al. 

in 2023. Developments of robust platforms, such as TensorFlow and HuggingFace, 

allow any interested party to use models such as OpenAI’s GPT 3.5/4, Meta’s LLaMA, 

and Google Gemini innovatively. The community has already started testing and 

ideating how to best leverage these models for log files and anomaly detection. 

(DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep 

Learning, 2017) Despite these advancements, there is still disagreement on their 

capabilities and the future of generative AI (What's wrong with LLMs and what we 

should be building instead, 2023). 

Significant development has been made in utilizing NLP methods to identify 

relevant information within log analysis. (Karlsen, 2023) Log files contain a slew of 

relevant numerical information regarding the state of the program or the machine and 

many human-readable messages in the form of system status updates. Potential NLP 

solutions include topics such as summarizing information found within log files, 

developing trends to visualize data, and the ability to isolate and highlight anomalous 

log files within large datasets. The generalization of an approach using unsupervised 

models is a uniquely helpful branch of NLP. A distinct challenge for applying NLP 

methods to these messages is that they can be treated as both natural and artificial 

language. They contain readable variable names, insightful sentences, and 

programmatic rules with regularity and consistency. This unique data hints at the need 

for NLP models to be explicitly tailored to log data. 

The application of Transformers in methods such as Bidirectional Encoder 

Representations from Transformers (BERT) has revolutionized NLP-driven tasks and 

iterated and improved on the NN-driven models. The paper Log Anomaly detection 

based on BERT (LAnoBERT) sets a foundational understanding for implementing 

transformers to isolate and highlight anomalous logs while maintaining the 

unsupervised nature, allowing for novel applications without previous 

information/documentation. 

Despite transformer advancements, their predictive anomaly detection methods have 

significant limitations due to the need for enormous amounts of accurately labeled data, 

which is time-consuming and costly. Traditional classification methods degrade 

performance when dealing with underrepresented classes in the data set, which is a 

detriment to detecting anomalous log events. Also, most transformer models are trained 

on datasets with typical words and formatting. Log files often use a wide variety and 

heavy use of delimiters and frequently use unstandardized abbreviations, making it 

difficult for models to interpret their meanings. Other limitations, such as quadratic 

scaling attention, are quickly being addressed, allowing for multimodal understanding 

across millions of tokens (Gemini 1.5: Unlocking multimodal understanding across 

millions of tokens of context, 2024) (Mamba: Linear-Time Sequence Modeling with 

Selective State Spaces, 2023). 

The PULL method, proposed by Wittkopp T in 2023, introduces a reactive anomaly 

detection strategy that leverages attention-based models with a unique objective 

function for weakly supervised deep learning, focusing on predicted failure time 

windows. Similarly, isolation forests present an innovative and effective technique for 

anomaly detection, especially when integrated with failure time windows. 
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Many problems remain unsolved despite innovative solutions. Within academic 

research, a common approach leverages labeled datasets from repositories such as 

LogHub (Loghub: A Large Collection of System Log Datasets for AI-driven Log 

Analytics). These datasets typically categorize log events into distinct classes like 

messages, warnings, and errors based on pre-defined labels. While this classification 

method provides a structured way to identify potential anomalies, it often overlooks log 

data's nuanced and contextual nature, which is crucial for a comprehensive analysis. 

The reliance on such hard-coded labels can lead to a myopic view of anomaly detection, 

where the actual value lies not just in predicting these labels but in understanding the 

broader context in which these log events occur. 

Anomalies in log data are frequently characterized by unusual patterns, such as a 

sudden surge in log messages or a clustering of specific types of events, which may not 

always correspond to error labels. For instance, a series of failed login attempts might 

be classified simply as messages. Nevertheless, their concurrent occurrence within a 

short timeframe could indicate a brute force attack, a critical security issue that warrants 

immediate attention. Similarly, an error indicating a server's inability to process 

requests becomes significantly more meaningful when observed with preceding logs 

showing an abnormal server usage spike. This context, which extends beyond the scope 

of predefined labels, is pivotal in accurately identifying and diagnosing anomalies. It 

underscores the necessity for a more sophisticated approach to log anomaly detection 

that can capture and analyze the intricate patterns and relationships within log data, 

thereby providing deeper insights and more actionable intelligence for support 

engineers and system administrators. 

This paper focuses on creating valuable tools to effectively contextualize the unique 

problem setup of analysis on unknown log data. By limiting the amount of prior 

information from each log dataset and focusing on statistical inferences from each 

dataset, we can provide a generalized approach to each log set, allowing parts of the 

finalized product to be used with any log dataset. 

2   Literature Review 

This section focuses on setting a foundational understanding of modern methods 

used for log analysis and classification. 

  

2.1 BERT Log Text Analysis 

  
Understanding the nuanced integration of log data into BERT models provides 

valuable context and a universal lens on the fundamental differences and challenges log 

data provides within the context of models primarily trained and tested on text from 

web pages, books, and other sources most humans read and write. Logs can contain 

much numerical information and enough English to explain and provide context. These 

clips of English, in combination with column data, are usually enough for a support 

engineer to piece together strings of logs to create a narrative and understand 

overarching problems when performing a diagnosis. However, since logs can come in 

the tens of thousands per second, it becomes prohibitive to manually piece through and 

parse the descriptive English from each log to generate a picture. To effectively parse 

and understand English en-masse, it is advantageous to utilize deep learning text-

interpretation methods, one of which is used heavily within the NLP industry, BERT. 

BERT or ‘Bi-directional Encoder Representations from Transformers’ is a novel 

processing tool that introduces the application of the Transformer in conjunction with 
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using bidirectional ‘context’ from large strings of sentences. When generating context 

from sentences passed in, the BERT model can tune faster and more effectively while 

performing comparable to, if not surpassing, traditional Transformer approaches 

(Devlin et al., 2019.). The BERT model utilizes the power of transfer learning, which 

allows for the initial pre-training of the model and then specifically on any generalized 

NLP task after the fact. By having the model extensively trained on sources such as 

Wikipedia or BooksCorpus, BERT can maintain an expansive ‘context’ for large strings 

of sentences. This pre-trained model can then be trained on more specific tasks; 

however, since the deepest layers of BERT are already pre-trained out of the box, the 

tuning time for specific executions is much faster than standard approaches. 

BERT’s approach is the foundation for deep learning bidirectional Transformers. 

However, there are more standard methods that are used within the industry. These 

methods include models such as LSTMs (Du et al., 2017), an application of RNNs, and 

CNNs (Lu et al., 2018) for parsing text. However, due to the rigid structure of these 

neural networks, they are exclusively dependent on a parser that needs to sit between 

the data and the model. While some applications develop their parser unique to their 

task, the standard parser that is used is called the Drain parser, which utilizes decision 

trees to parse lengths of strings and then force log data into a log template, designed to 

work with previously mentioned NN architectures (He et al., 2017). The decision to use 

NN or Transformer models depends on the task due to the sporadic and unstructured 

nature of logs around the industry.  

  

2.2 Log Anomaly Detection  

  

With the overarching goal of detecting anomalies, several models exist that perform 

anomaly detection on log files. These methods usually vary in two ways: first, the 

necessity of a log parser, and second, the supervised/unsupervised nature of the model. 

With the objective being the generalized approach to log anomaly detection, the less a 

parser is utilized, the broader the application of the log anomaly detection methods can 

be. One of the initial methodologies that represents this ideology is the PULL model. 

PULL (Reactive Log Anomaly Detection Based on Iterative PU Learning) utilizes a 

text classifier that is trained on Positive and Unlabeled Examples (PU Learning) 

(Wittkopp et al., 2023). This data framework focuses on applying attention-based 

models with a non-parser approach due to the unavailability of capturing and labeling 

structured data for these log files. The PULL model uses a combination of supervised 

and unsupervised analysis to provide a guided analysis that allows it to perform 

significantly better than most of its single-approach counterparts. The focus on the lack 

of a parser and novel application of attention-based text analysis models provides a 

robust foundation for any anomaly detection.  

The second major paper that approaches the task of log anomaly without a parser is 

the LAnoBERT paper, which utilizes the previously mentioned BERT text encoder 

model in conjunction with statistical methods in isolating and classifying anomalous 

data within the dataset (Lee et al., 2023). The approach uses an MLM (Masked 

Language Model) approach, where a pre-trained BERT model is loaded and trained on 

non-anomalous data within the log files. The data is methodically masked to provide 

the BERT model with a unique context representative of the data it is trained on. Once 

trained, the model passes in both anomalous and non-anomalous data, where the 

resulting logs are classified with a probability to highlight which log files might be 

anomalous and which might not. This method provides a robust, unsupervised method 

that effectively removes any dependence on a log parser, keeping in line with the 

objective of a generalized log anomaly detection method.  
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2.3 ChatGPT for Log-Based Anomaly Detection 

  

Log-based anomaly detection is a new and robust technique in monitoring network 

and system activities to determine suspicious behavior. While traditional methods have 

been commonly used in analyzing logs, such as PULL and LAnoBERT, the 

introduction of GenAI and LLMs demonstrates that new, robust techniques are on the 

horizon. One such framework, LogGPT, proposes the methodology to leverage LLMs 

for the enhancement of log-based anomaly detection (LogGPT: Exploring ChatGPT for 

Log-Based Anomaly Detection, 2023)This approach utilizes three frameworks: 

• Log preprocessing: This technique transforms raw log messages into a 

structured format utilizing log parsing methods like Drain. 

• Prompt Construction: This uses basic prompt engineering to create specific 

prompts in log anomaly detection tasks. 

• Response Parser: Extracting outputs from ChatGPT to evaluate detected 

anomalies. 

  

The paper focuses on five research questions regarding LogGPT performance with 

different prompts, window sizes, human knowledge injection, comparison to baseline 

methods, and interpretability. The datasets contain the NGL and Spirit, which were used 

for evaluation. These datasets have logs from a high-performing computing 

environment with 4.7 million messages. The baseline methods included deep learning 

methods that were previously established, such as LogAnomaly and LogRobust. There 

were some limitations in the sensitivity of the prompt variation and window sizes. There 

were also high false positive rates and hallucination problems provided by ChatGPT. 

  

Significant findings from the paper include: 

• Prompt Construction has a significant impact on anomaly detection 

performance. 

• Window Size: Chunk sizes improve performance based on the configuration 

of how much data is used for contextual information. 

• Human knowledge injection of specific domain knowledge helps enhance 

anomaly detection. 

• LogGPT promises performance that often outperforms traditional methods. 

• The interpretability of LogGPT provides helpful feedback and specific 

information about the anomalies and potential preventive suggestions. 

  

The study concludes with LogGPT representing a step forward in using LLM for 

log-based anomaly detection, promising performance, and increased interpretability for 

future work. This study is also pivotal in exploring the applications of large language 

models in log-based anomaly detection. It opens avenues for integrating advanced 

languages to understand system monitoring and security analysis capability, potentially 

transforming how log data is analyzed in various industries.  

 

2.4 Unsupervised Clustering Count  

 

One of the manual processes performed in this paper was determining cluster sizes 

for grouping error log messages. Established methods of determining cluster size, such 

as the elbow method and average silhouette method, are a good starting point to 

automate this process. Because of the nuances and complexity of the log messages, 

more advanced methods, such as supervised graph embeddings, might be able to take 
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advantage of the additional context of the log messages to provide better clustering 

results. (Automatic selection of clustering algorithms using supervised graph 

embedding, 2020) 

3   Methods 

This study utilizes methods that provide varied and valuable perspectives on log data 

presented by Microsoft. We focus on identifying patterns and anomalies, extracting 

relevant information, and classifications within the log events. Methods and insights 

are stacked on one another, providing an architecture that offers analysis where the 

whole is more valuable than the sum of the parts. 

 

3.1 Data Description with Existing Tools and Methodologies 

 

The data provided by Microsoft consisted of two CSV files containing snippets of 

Azure ServiceBus event logs. Both log files were close to 10 minutes long and 

contained between 600,000 and 1,000,000 event logs, where each event in the file had 

over 20 columns of details, including log level, clock time, size, IDs, and event names. 

The Message Compiler (MC.exe) compiles instrumentation manifests and logs message 

content into message resource files to which an application can link. SvcPerf, visualized 

in Figure 1, is an application with a UI designed for filtering and searching through log 

files using explicit query selections. 

The typical SvcPerf workflow involved adding the log event data and a manifest file, 

which was used to populate the message information about event logs. There is also a 

plot of log-level frequencies; however, so many log events occur over the 10 minutes 

that it is impossible to see any change in frequency for all but the most critical level of 

errors for how the plot is designed. Using the MC backend, SvcPerf created the message 

content utilized by many of our subsequent analysis steps. SvcPerf also provided a 

baseline for information such as start and end times, diagnostics, and the number of 

rows.  

 

 
Figure 1: UI of SvcPerf 

 

3.2 Data Collection and Preprocessing 

 

The initial phase of our research focused on data preprocessing of Microsoft Azure 

Service Bus log files, which are the basis of all our subsequent analyses. To prepare 
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this data for analysis, we started with the tabular data. We implemented preprocessing 

techniques to convert the data into a structured .csv format and correctly assigned the 

data type for each column. Utilizing SvcPerf, we extracted the message data and parsed 

it into a list of log event messages. From here, we had structured column data that could 

be matched with its corresponding message string. 

 

3.3 Data Analysis 

 

With the formatted data, we started collecting basic information about the log files 

to verify that our results matched SvcPerf's and established a foundational 

understanding of our data. Analyzing the log files' metadata provided vital insights into 

the scope of the data and some of the limitations we would have to consider, as 

represented in Table 1. 

 
Table 1: Collected Meta Data 

File Size 350 MB 

Start and End Time 8/19 7:01 – 8/19 7:11 

Duration of Files 10 minutes and 8 seconds 

Total Number of Log Events 968,737 

Average Messages Per Second 1592 messages/second 

 

This provided relevant information about the data size, which would restrict many 

of our data analysis techniques and motivate the anomaly detection techniques to occur 

after the data was distilled to a more focused subset, as running anomaly detection on 

close to a million log messages was too computationally complex. 

We also used this phase to gauge and understand the efficacy of our columns. Many 

columns were filled with technical information irrelevant to our analysis and were 

omitted from modeling techniques. These included naming schemes, activity IDs, etc., 

where the data had patterns we could not interpret. Outside of the messages, one of the 

most relevant columns we utilized was the Levels column, with a set of pseudo-labels 

indicating some severity level within the data. Following the labeling schema of 4 

through 1, where a log level 4 was considered normal, and 1 was the most abnormal, 

the dataset contained information on the logs following this schema. 

Though the log file used for analysis contained approximately a million rows of 

information, our method of extracting data from SvcPerf required further preprocessing. 

Most notably, the contents of our Message column were desynced from the rest of the 

dataset due to the lack of a consistent pattern to indicate where one message ends and 

the following message begins. This was a quirk of using SvcPerf, which we overcame 

by implementing custom parsing logic and manual changes to the message data file.  

Our second significant analysis focused on a more statistically driven time series 

analysis to create a focused subset of data. To visualize log frequency distributions 

within the dataset, we created bins of log events at consistent time intervals and found 

the count for each bin. Plotting this message frequency helped identify patterns in log 

events, which can efficiently highlight the location of relevant anomalies. 
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Figure 2: Plot of Message Frequency 

 

When plotting the message frequency data, visualized in Figure 2, we saw that there 

were distinct locations within the distribution of log data that would be of interest for 

our analysis. We used these spikes as general locations of possible anomalies to distill 

our data. 
 

3.4 LanoBERT  

  

With a partially distilled dataset, we utilized LanoBERT to perform a more robust 

anomaly detection sweep, reducing the number of log files even further. The execution 

of LanoBERT was split into two major components: first, training the requisite BERT 

Masked Language Model, then building an inference algorithm that allowed us to score 

the log files utilizing the trained BERT MLM model. We utilized the Level column to 

separate the nominal and abnormal files when organizing the data. We collapsed a 

training subset of log levels 3 and 4 into a dataset defined as nominal data and used it 

to train the MLM.  

With a trained MLM, we recreated the inference algorithm pseudo-code, represented 

in Python to perform a scoring loop over any new dataset. For the inference step, we 

took a test subset of the files, ensuring that the dataset had at least some count of 

anomalous files (represented as log levels 1 and 2) and passed it through the scoring 

function of LanoBERT. Having generated an ‘Anomalous Score’ for each log file, we 

could define an arbitrary scoring threshold to pick out any files that scored above the 

threshold as anomalous to build our final distilled dataset. 

3.5 Embedding Generation  

Our next steps began with embedding generation using an embedding model. This 

technique translated our text data into high-dimensional vector space. These 

embeddings are dense vector representations, where each vector captures the semantic 

essence of the text using floating-point numbers. The proximity between any two 

vectors within this space is a semantic similarity; closer vectors represent closely 

related content. 

To generate the embeddings, we utilized OpenAI’s third-generation embeddings 

models, specifically designed to capture their robustness and ability to capture textual 

relationships of unstructured text. The embedding model we initially chose was text-

embedding-ada-002, but with the newest release, text-embedding-3-small was 

considered. 

8

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10



   

 

   

 

 

3.6 Cluster Visualization & Analysis  

 

Next, we applied clustering algorithms to the high-dimensional embedding 

representation. Our principal aim was to simplify analysis by providing information 

about groups of similar messages instead of analyzing messages individually. We 

experimented with multiple clustering techniques to achieve this, ultimately opting for 

the k-means clustering algorithm. This algorithm is celebrated for its efficiency and 

effectiveness in aggregating data based on feature similarity. 

The k-means algorithm segments the dataset into a predefined number of clusters. 

Manual validation of the output results informed the selection of this number. The 

algorithm iteratively assigns each data point to the nearest cluster center, subsequently 

updating the center based on the aggregate of current members in each cluster. This 

iterative refinement persists until the cluster assignments stabilize, thus uncovering the 

inherent groupings within our dataset. 

Given the high-dimensional nature of our vectors, dimensionality reduction 

techniques were essential for visualization. We chose Uniform Manifold 

Approximation and Projection (UMAP) over other methods, such as PCA and t-SNE, 

due to its superior performance in preserving the data's local and global structure. 

UMAP provided a robust and insightful two-dimensional representation of our clusters. 

Applying UMAP to our embedding data allowed us to project the clusters into a two-

dimensional space, significantly enhancing our capacity to visually discern 

relationships and distinctions between the datasets. 

Visualization plays a pivotal role in preliminarily identifying each cluster's 

characteristics. For instance, a distinctly separate cluster could indicate unique error log 

messages. This observation necessitates further examination of the data points within 

this unique cluster, applying prompt engineering techniques to uncover commonalities. 

Such analytical depth is crucial in understanding the nuances of our dataset, guiding 

our investigation toward meaningful insights, and potentially revealing novel patterns 

within the log messages. 

The next step in our investigation was to label our identified clusters. This endeavor 

aims to understand the distinct groupings revealed comprehensively and allows a 

deeper exploration of cluster analysis.  

 

3.7 Fine-Tuning LLM for Naming the Clusters 

 

Upon successfully labeling the clusters, our next step was using prompt engineering 

to allow a large language model to summarize a sample of each cluster. This 

summarization allowed us to get any main ideas or similar patterns in determining the 

underlying patterns or characteristics of the grouping. To achieve this, we used GPT-4-

Turbo, which utilized the following prompt to generate meaningful summaries:  

 
3.7.1 Prompt Engineering Strategy 

 

"Analyze Microsoft Azure Service Bus error log messages. This cloud service is 

designed to facilitate communication between applications and services. In analyzing 

Azure Service Bus error logs, common issues include permissions, connectivity, 

sender, receiver, processor, and transaction-related problems. These encompass 

handling Service Bus exceptions, managing access rights, addressing network 

connection challenges, troubleshooting message sending and receiving difficulties, 

resolving processor operation concerns, and navigating transaction complexities. Your 
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primary role is identifying log error patterns clustered around a suspected anomaly and 

summarizing what the clusters of log messages represent."  

 
3.7.2 Selection of Text Samples 

 

Each identified cluster had a random sample of up to 10 messages. This selection 

aims to capture a broad spectrum of the clusters' characteristics while remaining 

manageable in cost and time. After selecting text samples, we will apply the prompt to 

summarize and name them. 

 

3.8 Random Forest for Anomaly Detection 

 

The Isolation Forest algorithm represents an alternative strategy for anomaly 

detection. It is distinguished by its focus on isolating anomalies rather than modeling 

non-anomalous data points. It identifies significant deviations within the dataset, 

assuming the outlier is highly distinct. 

Due to the difficulty of anomaly classification, an atypical data point was introduced 

into the dataset when testing the random forest by adding a quote from "The Lord of 

the Rings." This outlier aimed to test the detection mechanism, and the random forest 

correctly identified the quote as the anomaly. 

 

3.9 Analytical Application of LAA (Log Analysis Assistant) 

 

 

Retrieval Augmented Generation (RAG) LLMs retrieve relevant information from a 

curated knowledge base and use this as context when responding to user prompts. Using 

OpenAI’s custom GPT, we create the Log Analysis Assistant, which serves as our RAG 

LLM with which the support engineer could interact. Information such as 

troubleshooting documentation, metadata, signal data, cluster summaries, and the 

anomaly from the isolation forest are all stored in the LAA’s knowledge base. 

 

3.10 Web User Interface Application Proof of Concept 

  

Once the entire pipeline was developed, a Microsoft User Interface Streamlit 

application was conceptually created for an interactive and user-friendly interface. This 

application leveraged Streamlit, an open-source app framework, to create a lightweight 

web application that integrates with Microsoft Error Log uploads. The application was 

designed to allow users to upload their error logs and view the analysis results from the 

pipeline, including classification, anomaly detection, and machine learning models. The 

application's backend incorporated Python scripts that perform the necessary pipelines' 

executions, effectively recreating most of our methods through programmatic means. 

4   Results 

4.1 Log Analysis Results 
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Figure 3: Plot of the frequency of log messages over 10 minutes. 

When plotting the message frequency data, visualized in Figure 3, we see a 

significant spike soon after the 5-minute mark. We decided to focus our following levels 

of analysis on this subset of the data. There are other intriguing patterns. For example, 

the minute before the significant spike, there is a wandering pattern in contrast to the 

noise of the rest of the plot. Smaller spikes occur about every minute. There are two 

medium-sized spikes near minutes 1 and 2. With the proper domain knowledge and 

analysis, this plot can tell a story to the support engineer and direct their analysis to 

focused subsets of relevant log events. 

 

4.2 LAnoBERT Results 

 

In executing the LanoBERT process, we first obtained a fine-tuned BERT-masked 

language model trained on log data selected at levels 3 and 4 to represent the nominal 

dataset. This fine-tuned model was conceptually apt in representing the context of 

nominal log files, which was verifiable by the decreasing loss function through the 

model training process. 

With the model fine-tuned, we executed the inference algorithm by passing in a 

separate, isolated dataset that combined normal and abnormal messages. Using our 

scoring metric as a combination of loss and abnormal probability, we generated a score 

for each log within the provided dataset. This method allowed us to then focus on the 

'Anomaly Score' and create arbitrary thresholds that could be used to cut through and 

pick out messages with the highest scoring. Of the 1,000 messages selected from the 

bin containing the most significant spike in message frequency, LnoBERT helped select 

the 77 most anomalous log events comprised of levels 1 and 2 and errors.  

 

4.3 Embedded Results 

 

The embedding function created from Section 3.1 yielded valuable outcomes that 

are instrumental in understanding the semantics in a vector space. Utilizing OpenAI’s 

text embedding-3-small model, we translated the table of messages from error logs into 

a structured, high-dimensional embedding vector space, as seen in Table 2. 
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Table 2: The embedding generation results using the text-embedding-3-small model. 

Index Message Embedding 

0 "Faulting messaging object due to an error. Na... [-0.01512…, ... 

1 "Aborting messaging object. Name = srikandi:qu... [-0.02315…, ... 

2 "Aborting messaging object. Name = srikandi:Qu... [-0.02454…, ... 

3 "Faulting messaging object due to an error. Na... [-0.01683…, ... 

 

These embedding vectors detail the error log messages and represent the information 

within the message content abstracted to some vector space. This allows the messages 

to be utilized in techniques that only function over highly structured data. 

 

4.4 Cluster Analysis: Visualization in 2D 

 

Using k-means clustering and applying UMAP for dimensionality reduction helped 

identify log message groupings. The data table in Figure 3 was also viewed in ascending 

order to determine correct grouping matching, which produced significant and 

compelling results.  

 
MESSAGE CLUSTER 

Entity size become negative. Entity name = trac … 0 

Entity size become negative. Entity name = trac … 0 

Aborting messaging object. Name = mcapesea … 1 

Aborting messaging object. Name = mcapesea … 1 

Aborting messaging object. Name = mcapesea … 1 

… … 

Protocol Client of type of ‘AmqpMessageConsuder … 2 

Protocol Client of type of ‘AmqpMessageConsuder … 2 

… … 

"Amqp publish failed. TrackingId: 3 

"An exception was handled. TrackingId: 3 

… … 

"The AmqpProtocolClient is being closed … 8 

"The AmqpProtocolClient is being closed … 8 

"The AmqpProtocolClient is being closed … 8 

 
Figure 3: KMeans Clustering of Error Log Messages (K = 8) Table. 
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Figure 4: KMeans Clustering of Error Log Messages (K = 8) 2D Visualization. 

When plotting the results of KMeans in a reduced two-dimensional space, visualized 

in Figure 4, there was a grouping of clusters near x = 0 to x = 5, whereas near x = -6, 

there was a distinct grouping separated from all the rest. This preliminary observation 

guided further analysis into the content of this unique cluster and employed prompt 

engineering to extract and understand the specific nature of these errors.  

 

 
Figure 5: A bar graph of the distribution of clusters within each cluster label. 

 

In addition to our clustering, we plotted a distribution of the log files within each 

cluster, visualized in Figure 5, to gain information on the types of log files clustered 

together. Through visual inspection, cluster label 1 has the highest count, followed by 

cluster labels 0 and 4. Although we can inspect the messages and confirm they present 

similar information contextually, further domain knowledge would be required to 

interpret why these log files are being grouped. Another noteworthy result is that the 

isolation forest result was grouped in cluster 2, which had the lowest count. This hints 

at an agreement between the KMeans and random forest results. 

 

4.5 Fine-Tune GPT-4-Turbo using Prompt Engineering 
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After labeling the clusters from the visualization of the distinct cluster groups, 

prompt engineering with a large language model was employed to summarize a sample 

of up to 10 log messages for each cluster group. This process extracts the central ideas 

or patterns to determine the error logs' underlying characters. For this task, GPT-4-

Turbo was selected as our deployment model, which helped generate meaningful 

summaries at an acceptable cost and speed. 

The successful clustering of log files highlights the integration of OpenAI's Text 

Embedding ChatGPT 4 Turbo with sophisticated prompt engineering techniques to 

dissect and interpret log messages across various clusters. The output uncovered 

common patterns and aided us in identifying anomalies within the data. Despite the 

initial analysis yielding distinct outputs, the figure suggests a potential need to refine 

our prompt strategies or explore alternative feature extraction methodologies to 

enhance effective clustering. Figure 4 underscored the critical role of prompt 

engineering and feature extraction in leveraging AI for deep insights into system log 

analysis, setting the stage for further explorations in optimization techniques. 

 

 

4.6 Anomaly Detection Results 

 

The experiment to evaluate KMeans’ effectiveness for anomaly detection yielded 

significant insights. We introduced a deliberate outlier, a line from "The Lord of the 

Rings," into the dataset, which served as an artificial anomaly. 

 
Table 4: Results of the Cluster Anomaly Detection 

Message Embedding Cluster 

Entity size become negative. En... [-0.00871…, -0.01648…, …] 6 

Entity size become negative. En... [-0.00952…, -0.01545…, …] 6 

Let this be the hour when we d ... [-0.01556…, -0.03345…, …] 6 

 

As seen in Table 4, the clustering did not isolate the movie line into its distinctive 

group; instead, it was grouped with other log event messages. This outcome could 

suggest a potential grouping of anomalies, indicating that clustering has created one 

distinct group of outlier categories. This finding may lead to further analysis or prompt 

engineering of cluster group 6 to identify it as the anomaly grouping. This highlights 

the limitations of KMeans for identifying anomalies and motivates our use of the 

isolation forest method for anomaly detection. 

 

4.7 Isolation Forest Algorithm Findings 

 

The Isolation Forest algorithm's application demonstrated its effectiveness as a 

viable strategy for detecting anomalies. This method successfully identified the 

introduced outlier – a quote from “The Lord of the Rings” as detailed in Table 5. This 

underscores the algorithm's capability to distinguish irregularities within the dataset. 

Moreover, Table 6 presents the Isolation Forest’s findings in the absence of the “Lord 

of the Rings” quote, where it selects a message from cluster 2, which recorded the 

lowest count, thereby corroborating the concordance between our KMeans clustering 

and Isolation Forest analyses in pinpointing the most anomalous messages. 
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Table 5: Results of the Isolation Forest Algorithm with Lord of the Rings Quote 

Message Embedding Cluster 

Let this be the hour when we d ... [-0.01556,-0.03345, ... ]  6 

 
Table 6: Results of the Isolation Forest Algorithm without Lord of the Rings Quote 

Message Embedding Cluster 
Protocol client of type ‘SoapMessageGroup ... [-0.0210134294, ... ]  2 

 

Both methods demonstrated their respective strengths in anomaly and outlier 

detection. Cluster analysis with text embeddings revealed semantic analysis's potential 

in categorizing and summarizing atypical data points. The isolation forest algorithm, 

on the other hand, was notable for efficiently isolating and identifying anomalies 

based on their uniqueness. These observations offer valuable insights into anomaly 

detection methodologies in textual data, suggesting that combining both strategies 

could improve detection and analysis capabilities. 

 

4.8 Streamlit User Interface Application 

 

 

 
Figure 6: Sample Microsoft UI for Log Analysis 

As our final step and the culmination of our work, we developed a prototype UI for 

Microsoft using Streamlit. The UI, shown in Figure 6, allows support engineers to 

upload their log files. Inexpensive metadata analysis and plots are generated. This will 

allow the support engineers to create a more focused dataset where they believe relevant 

information can be found. After that, the error clustering analysis will appear, including 

a summarization and a question-and-answer system for engineers to chat with the data. 

The streamlined workflow and insights gained will allow the engineers to maintain the 

system more quickly and develop better error resolution strategies. 
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5   Discussion 

5.1 Creating a Manageable Subset of Log Data 

 

The methods and architecture proposed overcome the challenges of log analysis. 

Signal analysis of event log frequency or data size frequency provides unique 

visualizations and interpretations using simple column data. After narrowing down the 

dataset with signal analysis visualizations, LAnoBERT shows a way to remove the 

dependency on log parsers, feature embedding for long-term dependencies, a model for 

valuable anomaly detection, and a foundation for creating a model for understanding 

log messages that contain elements of natural and artificial languages. PULL further 

elevates the reactive anomaly detection problem setup and sets the gold standard for 

approaching reactive anomaly detection. Combined with the tools and knowledge 

already provided by existing methods, these ideas create a first level of log analysis that 

helps engineers focus their search on a manageable subset of essential information from 

an overwhelmingly large dataset.  

 

5.2 Extracting Valuable Information from Focused Dataset 

 

After narrowing the focus to the most relevant information, we can now call upon 

methods with more computational complexity. Utilizing embeddings, we can extract 

the most anomalous message using an isolation forest and cluster categories of 

messages. From here, methods can summarize clusters and generate insightful labels. 

All the information collected for this specific dataset merged with general knowledge 

about the log system provides a knowledge base for a retrieval augmented generation 

large language model. This RAG LLM can directly interact with engineers to help look 

up information, interpret results, and provide suggestions. Combining the ability to talk 

to the dataset with a log analysis application that provides other valuable functionality 

and information will revolutionize system diagnostics, leading to more efficient and 

accurate analysis. Enhancing the depth of analysis and improving the cost-efficiency of 

log examination will empower engineers to elevate their focus to higher-order tasks and 

strategic initiatives. 

 

5.3 Noteworthy Discoveries 

 

During our investigation, remarkable discoveries emerged, particularly in the 

context of anomaly detection within log files. Notably, the frameworks presented by 

LAnoBERT and PULL distinguish themselves by addressing the nuanced complexities 

inherent in log file analysis. Traditional methodologies often simplify anomaly 

detection to a binary classification task, relying on datasets with an explicit error-level 

column for categorization. While these approaches retain their merit, they frequently 

fall short in scenarios devoid of explicit indicators, a common occurrence in real-world 

datasets. 

The innovative approaches employed by LAnoBERT and PULL offer a refreshing 

perspective on this challenge. LAnoBERT, with its foundation in the BERT 

architecture, leverages deep learning to comprehend the intricate semantics of log files, 

moving beyond mere surface-level analysis. This method demonstrates a significant 

stride in identifying anomalies within logs by understanding their contextual nuance 

rather than relying solely on predefined error levels. 

Similarly, PULL introduces a novel paradigm by adopting a reactive anomaly 

detection strategy that is particularly adept at managing imbalanced datasets. 
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Traditional methods often struggle with high false positive rates in such contexts, 

leading to inefficient anomaly detection processes. PULL's approach mitigates this 

issue by focusing on the underlying patterns within the data, thereby enhancing the 

precision of anomaly detection. 

These methodologies significantly depart from conventional binary classification 

models, offering a more holistic and effective strategy for anomaly detection in log 

files. Their ability to adapt to the unique challenges of imbalanced datasets and the 

absence of explicit error-level indicators underscores their value and ingenuity in 

advancing the log file anomaly analysis field. 

Our research unveiled compelling insights that significantly influenced our 

analytical approach and methodology. Foremost among these was signal analysis's 

remarkable simplicity and efficacy. This technique emerged as our preferred method 

for distilling the dataset, facilitating a more focused and refined subsequent level of 

analysis. Its ability to efficiently parse and prioritize data for further scrutiny 

underscored the power of integrating straightforward analytical methods into more 

complex investigative frameworks. 

Additionally, our methodologies' adeptness in deciphering log messages, 

characterized by a blend of natural and artificial language components, was noteworthy. 

This capability highlighted our models' advanced understanding and interpretation 

skills, which could navigate the intricate interplay between human-readable text and 

system-generated codes. This nuanced comprehension is pivotal for extracting 

actionable insights from log data, bridging the gap between human analysts and 

machine-generated logs. 

Moreover, our exploration revealed substantial prospects for developing systems 

automating routine analytical tasks. Such systems can transform the landscape of log 

analysis, offering avenues to streamline processes, enhance efficiency, and allow 

engineers and analysts to allocate their expertise to more complex, high-value 

challenges. These findings underscore our methodologies' transformative impact on log 

file analysis, heralding a new era of efficiency and effectiveness in data interpretation 

and anomaly detection. 

 

5.4 Challenges 

 

While comprehensive in its scope and ambition, our investigation encountered 

certain constraints that must be acknowledged. Firstly, realizing the proposed 

architecture delineated within this paper remains theoretical. The transition from 

concept to implementation is anticipated to be a substantial endeavor, necessitating 

extensive development time. During this phase, unforeseen challenges inherent in the 

practical application of theoretical models will likely surface, adding complexity to the 

project. 

Moreover, our project focuses on developing an analytical tool capable of examining 

and interacting with log datasets. However, it stops short of integrating automated 

resolution steps. This delineation means that while our tool can identify and highlight 

anomalies or patterns within the data, the user remains responsible for executing 

resolution strategies. 

Furthermore, akin to the premise underpinning the PULL model, our approach is 

predicated on the assumption that the dataset under analysis contains the answers to the 

questions posed. This presupposes the presence of relevant data within the dataset and 

the dataset's comprehensiveness in encompassing the necessary information for 

analysis. Consequently, the efficacy of our methodology is inherently tied to the 

availability and relevance of the provided dataset and documentation for the log system. 
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Without a dataset that aligns closely with the analytical objectives, the tool's utility 

could be compromised, limiting its applicability to scenarios where comprehensive and 

pertinent data is readily available. 

 

5.5 Future Research 

 

Our work opens avenues worth exploring in future research, each with the potential 

to refine log analysis methodologies significantly. A key area involves developing 

methods that incorporate contextual understanding from the start of the automated 

analysis. Future studies could investigate how starting with a clear context can lead to 

more targeted analysis, focusing efforts on the most relevant log events. This approach 

promises to make data analysis more efficient and relevant, setting a precedent for 

context-driven investigations in various domains. 

The Kmeans clustering algorithm required us to set the number of clusters manually. 

For a working implementation of the application proposed in this paper, an automated 

solution for setting the number of clusters is essential for streamlining the workflow. 

Our holistic strategy—understanding complex problems deeply and integrating 

various methods—also offers valuable insights for various data science challenges. 

Future research could explore how this adaptable framework can be applied in different 

settings, potentially revealing universal strategies that enhance data science practices. 

Another promising area is exploring streamlined models and innovative architecture. 

Future work could aim to develop models that maintain high accuracy while being more 

computationally efficient. This balance is crucial for making advanced analysis 

techniques more accessible and practical for broader applications. 

Furthermore, methods designed for analyzing large datasets need to be refined to 

ensure efficiency and effectiveness optimization. This could lead to adaptations for 

real-time log analysis systems capable of swiftly identifying and addressing issues as 

they arise, enhancing system diagnostics and operational intelligence. 

These future research directions build on our findings, leading to innovative 

advancements in log analysis and broader data science fields. 

 

5.6 Ethics 

 

Ethical considerations are paramount in deploying machine learning models, 

especially concerning data privacy and security. Ensuring ethical compliance involves 

several critical measures: maintaining transparency and securing explicit consent from 

users and system owners regarding data collection and analysis; adhering to data 

minimization principles by processing only the essential information; establishing 

robust accountability and auditability frameworks to monitor data access and safeguard 

against unauthorized use; ensuring data integrity to prevent detrimental alterations or 

manipulations; implementing anonymization or pseudonymization techniques to 

protect sensitive information; enforcing strict access controls to limit data access to 

authorized personnel only; ensuring full compliance with relevant legal and regulatory 

standards; and fostering interdisciplinary collaboration with experts in ethics, law, and 

social sciences to assess the ethical implications of log analysis practices holistically. 

These steps collectively ensure that the application of machine learning in log file 

analysis upholds the highest ethical standards, safeguarding the interests and privacy of 

all stakeholders involved. 

6   Conclusion 
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Log files, often called the "system diaries," have been integral to diagnostics and 

monitoring for decades. Their unusual complexity, diversity, lack of context, and the 

sheer volume of data necessitate the evolution of methods and tools for efficient 

analysis. Our research delved deep into the core challenges of log files, especially 

regarding interpretability, adaptability, and the methodologies used for preprocessing, 

feature embedding, anomaly detection, diverse analysis, and insights into root causes 

and potential solutions. 

By addressing these challenges, we aim to revolutionize how we interpret and 

analyze log files, paving the way for more efficient and accurate anomaly detection in 

systems and enhancing the overall reliability and performance of the systems they 

monitor at lower costs. We encourage the academic and professional community to 

build upon the research findings and continue to innovate by developing an accurate 

problem setup and combining methods into holistic architectures.  
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Appendix 1:  

 

Output of cluster summary: 

 

 
 

Appendix 2:  

 

Psuedo Code for LAnoBERT Inference Algorithm: 

 

 
(Lee et al., 2023) 
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Appendix 3: 

 

Cluster Labels 

Cluster groupings that are produced from Log Analysis Assistant 

 

Cluster 0: Negative Entity Size and Consistent Entity Name Issues 

Cluster 1: Idle Timeout and Aborted Messaging Objects 

Cluster 2: Entity Availability and Timeout Issues 

Cluster 3: QuotaExceededException and Entity Size Exceeded 

Cluster 4: Messaging Objects Aborted 

Cluster 5: Timeout Issues and Messaging Entity Not Found 

Cluster 6: Idle Timeout Expired and Consistent TrackingId 

Cluster 7: IdleTimerExpired Errors 

Cluster 8: AMQP Links Force Detached due to Idle Timeout 

 

Appendix 3: 

 

Summarize: Analytical Application of LAA (Log Analysis Assistant)   

 

This example demonstrates an initial test of the Log Analysis Assistant (LAA), 

formerly known as LAC. We input log data we deemed relevant into a custom GPT 

setup, which lacked a knowledge base about Azure Service Bus and its troubleshooting, 

as well as log file analysis specifics. These results were encouraging as they provided 

a general but helpful breakdown of the logs. 
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Appendix 4: 

 

Adding Knowledge to LAA (Log Analysis Assistant)   

 

Enhancements to the knowledge base resulted in more precise and higher quality 

outcomes. The Log Analysis Assistant (LAA) can now offer links to pertinent 

documents and reference specific Azure Service Bus tools and terminology. However, 

the effectiveness of the LAA depends on the provided data. Without detailed examples 

of troubleshooting steps, it still falls short of delivering clear, step-by-step remediation 

guides. 
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