
SMU Data Science Review SMU Data Science Review

Volume 8
Number 1 Spring 2024 Article 10

Intelligent Solutions for Retroactive Anomaly Detection and Intelligent Solutions for Retroactive Anomaly Detection and

Resolution with Log File Systems Resolution with Log File Systems

Derek G. Rogers
Southern Methodist University, dgrogers@mail.smu.edu

Chanvo Nguyen
Southern Methodist University, vnguyen@mail.smu.edu

Abhay Sharma
Southern Methodist University, abhays@mail.smu.edu

Follow this and additional works at: https://scholar.smu.edu/datasciencereview

 Part of the Databases and Information Systems Commons, and the Data Science Commons

Recommended Citation Recommended Citation
Rogers, Derek G.; Nguyen, Chanvo; and Sharma, Abhay () "Intelligent Solutions for Retroactive Anomaly
Detection and Resolution with Log File Systems," SMU Data Science Review: Vol. 8: No. 1, Article 10.
Available at: https://scholar.smu.edu/datasciencereview/vol8/iss1/10

This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU
Data Science Review by an authorized administrator of SMU Scholar. For more information, please visit
http://digitalrepository.smu.edu.

https://scholar.smu.edu/datasciencereview
https://scholar.smu.edu/datasciencereview/vol8
https://scholar.smu.edu/datasciencereview/vol8/iss1
https://scholar.smu.edu/datasciencereview/vol8/iss1/10
https://scholar.smu.edu/datasciencereview?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol8%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol8%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol8%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/datasciencereview/vol8/iss1/10?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol8%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

Intelligent Solutions for Retroactive Anomaly Detection

and Resolution with Log File Systems

Abhay Sharma1, Derek Rogers1, Vo Nguyen1, Paul Huggins2, Dan Ma2
1 Master of Science in Data Science, Southern Methodist University

(Email: Abhays@mail.smu.edu, Dgrogers@mail.smu.edu, Vnguyen@mail.smu.edu)
2 Microsoft, NE 36th St,

 Redmond, WA 98052 USA
paulhuggins29@gmail.com

danma@microsoft.com

Abstract. This paper explores the intricate challenges log files pose from data science and

machine learning perspectives. Drawing inspiration from existing methods, LAnoBERT, PULL,

LLMs, and the breadth of recent research, this paper aims to push the boundaries of machine

learning for log file systems. Our study comprehensively examines the unique challenges

presented in our problem setup, delineates the limitations of existing methods, and introduces

innovative solutions. These contributions are organized to offer valuable insights, predictions,

and actionable recommendations tailored for Microsoft's engineers working on log data analysis.

1 Introduction

Log files are indispensable system monitoring and management tools, providing

essential data for real-time performance assessment and system health checks. They

play a crucial role in security and compliance, detecting breaches, auditing activities,

and ensuring regulatory adherence. Logs are essential for debugging, troubleshooting,

and analyzing network performance in software development and network

administration. Furthermore, data scientists and engineers increasingly utilize log files

in machine learning for predictive analytics, while customer support teams employ

them to enhance product and service quality.

Support engineers, software developers, and other technical services interpret these

logs, which lead to actions such as enhancing security measures, troubleshooting,

optimizing system operations, understanding user behaviors, ensuring regulatory

compliance, and preventing future issues.

While invaluable, these record-keeping systems have limitations due to the inherent

complexity and volume of log data. Traditional methods often struggle to identify and

explain relevant information effectively, leading to challenges in efficiently extracting

meaningful insights. This complexity heightens the challenge of detecting system

failures, underscoring the urgent need for more effective automated solutions. Support

engineers methodically analyze the varied data in logs, filtering and interpreting

extensive information to construct viable solutions for system issues. The broad scope

of logs results in a level of complexity that no singular support engineer can generalize

to and becomes a complex task for large corporations that provide a plethora of

applications to consumers. The role of artificial intelligence for IT operations (AIOps)

aims to improve reliability and stability in IT services by detecting failures and fully

utilizing logs as a resource for troubleshooting.

Recent advancements in natural language processing (NLP) have unlocked new

opportunities for application design. Neural networks and the introduction of

transformers, as highlighted by Vaswani et al. in their pivotal 2017 paper "Attention is

1

Rogers et al.: Anomaly Detection and Resolution with Log File Systems

Published by SMU Scholar,

mailto:Abhays@mail.smu.edu
mailto:Dgrogers@mail.smu.edu
file:///F:/Capstone%20A/Vnguyen@mail.smu.edu
mailto:paulhuggins29@gmail.com
file:///F:/Capstone%20A/danma@microsoft.com

All You Need." prove transformers have outperformed traditional neural network

models by enhancing text parsing efficiency and context comprehension from input

text. Large Language Models (LLMs) build on transformers' capabilities, offering a

context-rich analysis and enabling users to interact with models in a human-

understandable text, receiving probabilistic responses from training data. This approach

efficiently analyzes text-heavy data, such as log messages, as noted by Mahowald et al.

in 2023. Developments of robust platforms, such as TensorFlow and HuggingFace,

allow any interested party to use models such as OpenAI’s GPT 3.5/4, Meta’s LLaMA,

and Google Gemini innovatively. The community has already started testing and

ideating how to best leverage these models for log files and anomaly detection.

(DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep

Learning, 2017) Despite these advancements, there is still disagreement on their

capabilities and the future of generative AI (What's wrong with LLMs and what we

should be building instead, 2023).

Significant development has been made in utilizing NLP methods to identify

relevant information within log analysis. (Karlsen, 2023) Log files contain a slew of

relevant numerical information regarding the state of the program or the machine and

many human-readable messages in the form of system status updates. Potential NLP

solutions include topics such as summarizing information found within log files,

developing trends to visualize data, and the ability to isolate and highlight anomalous

log files within large datasets. The generalization of an approach using unsupervised

models is a uniquely helpful branch of NLP. A distinct challenge for applying NLP

methods to these messages is that they can be treated as both natural and artificial

language. They contain readable variable names, insightful sentences, and

programmatic rules with regularity and consistency. This unique data hints at the need

for NLP models to be explicitly tailored to log data.

The application of Transformers in methods such as Bidirectional Encoder

Representations from Transformers (BERT) has revolutionized NLP-driven tasks and

iterated and improved on the NN-driven models. The paper Log Anomaly detection

based on BERT (LAnoBERT) sets a foundational understanding for implementing

transformers to isolate and highlight anomalous logs while maintaining the

unsupervised nature, allowing for novel applications without previous

information/documentation.

Despite transformer advancements, their predictive anomaly detection methods have

significant limitations due to the need for enormous amounts of accurately labeled data,

which is time-consuming and costly. Traditional classification methods degrade

performance when dealing with underrepresented classes in the data set, which is a

detriment to detecting anomalous log events. Also, most transformer models are trained

on datasets with typical words and formatting. Log files often use a wide variety and

heavy use of delimiters and frequently use unstandardized abbreviations, making it

difficult for models to interpret their meanings. Other limitations, such as quadratic

scaling attention, are quickly being addressed, allowing for multimodal understanding

across millions of tokens (Gemini 1.5: Unlocking multimodal understanding across

millions of tokens of context, 2024) (Mamba: Linear-Time Sequence Modeling with

Selective State Spaces, 2023).

The PULL method, proposed by Wittkopp T in 2023, introduces a reactive anomaly

detection strategy that leverages attention-based models with a unique objective

function for weakly supervised deep learning, focusing on predicted failure time

windows. Similarly, isolation forests present an innovative and effective technique for

anomaly detection, especially when integrated with failure time windows.

2

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10

Many problems remain unsolved despite innovative solutions. Within academic

research, a common approach leverages labeled datasets from repositories such as

LogHub (Loghub: A Large Collection of System Log Datasets for AI-driven Log

Analytics). These datasets typically categorize log events into distinct classes like

messages, warnings, and errors based on pre-defined labels. While this classification

method provides a structured way to identify potential anomalies, it often overlooks log

data's nuanced and contextual nature, which is crucial for a comprehensive analysis.

The reliance on such hard-coded labels can lead to a myopic view of anomaly detection,

where the actual value lies not just in predicting these labels but in understanding the

broader context in which these log events occur.

Anomalies in log data are frequently characterized by unusual patterns, such as a

sudden surge in log messages or a clustering of specific types of events, which may not

always correspond to error labels. For instance, a series of failed login attempts might

be classified simply as messages. Nevertheless, their concurrent occurrence within a

short timeframe could indicate a brute force attack, a critical security issue that warrants

immediate attention. Similarly, an error indicating a server's inability to process

requests becomes significantly more meaningful when observed with preceding logs

showing an abnormal server usage spike. This context, which extends beyond the scope

of predefined labels, is pivotal in accurately identifying and diagnosing anomalies. It

underscores the necessity for a more sophisticated approach to log anomaly detection

that can capture and analyze the intricate patterns and relationships within log data,

thereby providing deeper insights and more actionable intelligence for support

engineers and system administrators.

This paper focuses on creating valuable tools to effectively contextualize the unique

problem setup of analysis on unknown log data. By limiting the amount of prior

information from each log dataset and focusing on statistical inferences from each

dataset, we can provide a generalized approach to each log set, allowing parts of the

finalized product to be used with any log dataset.

2 Literature Review

This section focuses on setting a foundational understanding of modern methods

used for log analysis and classification.

2.1 BERT Log Text Analysis

Understanding the nuanced integration of log data into BERT models provides

valuable context and a universal lens on the fundamental differences and challenges log

data provides within the context of models primarily trained and tested on text from

web pages, books, and other sources most humans read and write. Logs can contain

much numerical information and enough English to explain and provide context. These

clips of English, in combination with column data, are usually enough for a support

engineer to piece together strings of logs to create a narrative and understand

overarching problems when performing a diagnosis. However, since logs can come in

the tens of thousands per second, it becomes prohibitive to manually piece through and

parse the descriptive English from each log to generate a picture. To effectively parse

and understand English en-masse, it is advantageous to utilize deep learning text-

interpretation methods, one of which is used heavily within the NLP industry, BERT.

BERT or ‘Bi-directional Encoder Representations from Transformers’ is a novel

processing tool that introduces the application of the Transformer in conjunction with

3

Rogers et al.: Anomaly Detection and Resolution with Log File Systems

Published by SMU Scholar,

using bidirectional ‘context’ from large strings of sentences. When generating context

from sentences passed in, the BERT model can tune faster and more effectively while

performing comparable to, if not surpassing, traditional Transformer approaches

(Devlin et al., 2019.). The BERT model utilizes the power of transfer learning, which

allows for the initial pre-training of the model and then specifically on any generalized

NLP task after the fact. By having the model extensively trained on sources such as

Wikipedia or BooksCorpus, BERT can maintain an expansive ‘context’ for large strings

of sentences. This pre-trained model can then be trained on more specific tasks;

however, since the deepest layers of BERT are already pre-trained out of the box, the

tuning time for specific executions is much faster than standard approaches.

BERT’s approach is the foundation for deep learning bidirectional Transformers.

However, there are more standard methods that are used within the industry. These

methods include models such as LSTMs (Du et al., 2017), an application of RNNs, and

CNNs (Lu et al., 2018) for parsing text. However, due to the rigid structure of these

neural networks, they are exclusively dependent on a parser that needs to sit between

the data and the model. While some applications develop their parser unique to their

task, the standard parser that is used is called the Drain parser, which utilizes decision

trees to parse lengths of strings and then force log data into a log template, designed to

work with previously mentioned NN architectures (He et al., 2017). The decision to use

NN or Transformer models depends on the task due to the sporadic and unstructured

nature of logs around the industry.

2.2 Log Anomaly Detection

With the overarching goal of detecting anomalies, several models exist that perform

anomaly detection on log files. These methods usually vary in two ways: first, the

necessity of a log parser, and second, the supervised/unsupervised nature of the model.

With the objective being the generalized approach to log anomaly detection, the less a

parser is utilized, the broader the application of the log anomaly detection methods can

be. One of the initial methodologies that represents this ideology is the PULL model.

PULL (Reactive Log Anomaly Detection Based on Iterative PU Learning) utilizes a

text classifier that is trained on Positive and Unlabeled Examples (PU Learning)

(Wittkopp et al., 2023). This data framework focuses on applying attention-based

models with a non-parser approach due to the unavailability of capturing and labeling

structured data for these log files. The PULL model uses a combination of supervised

and unsupervised analysis to provide a guided analysis that allows it to perform

significantly better than most of its single-approach counterparts. The focus on the lack

of a parser and novel application of attention-based text analysis models provides a

robust foundation for any anomaly detection.

The second major paper that approaches the task of log anomaly without a parser is

the LAnoBERT paper, which utilizes the previously mentioned BERT text encoder

model in conjunction with statistical methods in isolating and classifying anomalous

data within the dataset (Lee et al., 2023). The approach uses an MLM (Masked

Language Model) approach, where a pre-trained BERT model is loaded and trained on

non-anomalous data within the log files. The data is methodically masked to provide

the BERT model with a unique context representative of the data it is trained on. Once

trained, the model passes in both anomalous and non-anomalous data, where the

resulting logs are classified with a probability to highlight which log files might be

anomalous and which might not. This method provides a robust, unsupervised method

that effectively removes any dependence on a log parser, keeping in line with the

objective of a generalized log anomaly detection method.

4

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10

2.3 ChatGPT for Log-Based Anomaly Detection

Log-based anomaly detection is a new and robust technique in monitoring network

and system activities to determine suspicious behavior. While traditional methods have

been commonly used in analyzing logs, such as PULL and LAnoBERT, the

introduction of GenAI and LLMs demonstrates that new, robust techniques are on the

horizon. One such framework, LogGPT, proposes the methodology to leverage LLMs

for the enhancement of log-based anomaly detection (LogGPT: Exploring ChatGPT for

Log-Based Anomaly Detection, 2023)This approach utilizes three frameworks:

• Log preprocessing: This technique transforms raw log messages into a

structured format utilizing log parsing methods like Drain.

• Prompt Construction: This uses basic prompt engineering to create specific

prompts in log anomaly detection tasks.

• Response Parser: Extracting outputs from ChatGPT to evaluate detected

anomalies.

The paper focuses on five research questions regarding LogGPT performance with

different prompts, window sizes, human knowledge injection, comparison to baseline

methods, and interpretability. The datasets contain the NGL and Spirit, which were used

for evaluation. These datasets have logs from a high-performing computing

environment with 4.7 million messages. The baseline methods included deep learning

methods that were previously established, such as LogAnomaly and LogRobust. There

were some limitations in the sensitivity of the prompt variation and window sizes. There

were also high false positive rates and hallucination problems provided by ChatGPT.

Significant findings from the paper include:

• Prompt Construction has a significant impact on anomaly detection

performance.

• Window Size: Chunk sizes improve performance based on the configuration

of how much data is used for contextual information.

• Human knowledge injection of specific domain knowledge helps enhance

anomaly detection.

• LogGPT promises performance that often outperforms traditional methods.

• The interpretability of LogGPT provides helpful feedback and specific

information about the anomalies and potential preventive suggestions.

The study concludes with LogGPT representing a step forward in using LLM for

log-based anomaly detection, promising performance, and increased interpretability for

future work. This study is also pivotal in exploring the applications of large language

models in log-based anomaly detection. It opens avenues for integrating advanced

languages to understand system monitoring and security analysis capability, potentially

transforming how log data is analyzed in various industries.

2.4 Unsupervised Clustering Count

One of the manual processes performed in this paper was determining cluster sizes

for grouping error log messages. Established methods of determining cluster size, such

as the elbow method and average silhouette method, are a good starting point to

automate this process. Because of the nuances and complexity of the log messages,

more advanced methods, such as supervised graph embeddings, might be able to take

5

Rogers et al.: Anomaly Detection and Resolution with Log File Systems

Published by SMU Scholar,

advantage of the additional context of the log messages to provide better clustering

results. (Automatic selection of clustering algorithms using supervised graph

embedding, 2020)

3 Methods

This study utilizes methods that provide varied and valuable perspectives on log data

presented by Microsoft. We focus on identifying patterns and anomalies, extracting

relevant information, and classifications within the log events. Methods and insights

are stacked on one another, providing an architecture that offers analysis where the

whole is more valuable than the sum of the parts.

3.1 Data Description with Existing Tools and Methodologies

The data provided by Microsoft consisted of two CSV files containing snippets of

Azure ServiceBus event logs. Both log files were close to 10 minutes long and

contained between 600,000 and 1,000,000 event logs, where each event in the file had

over 20 columns of details, including log level, clock time, size, IDs, and event names.

The Message Compiler (MC.exe) compiles instrumentation manifests and logs message

content into message resource files to which an application can link. SvcPerf, visualized

in Figure 1, is an application with a UI designed for filtering and searching through log

files using explicit query selections.

The typical SvcPerf workflow involved adding the log event data and a manifest file,

which was used to populate the message information about event logs. There is also a

plot of log-level frequencies; however, so many log events occur over the 10 minutes

that it is impossible to see any change in frequency for all but the most critical level of

errors for how the plot is designed. Using the MC backend, SvcPerf created the message

content utilized by many of our subsequent analysis steps. SvcPerf also provided a

baseline for information such as start and end times, diagnostics, and the number of

rows.

Figure 1: UI of SvcPerf

3.2 Data Collection and Preprocessing

The initial phase of our research focused on data preprocessing of Microsoft Azure

Service Bus log files, which are the basis of all our subsequent analyses. To prepare

6

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10

this data for analysis, we started with the tabular data. We implemented preprocessing

techniques to convert the data into a structured .csv format and correctly assigned the

data type for each column. Utilizing SvcPerf, we extracted the message data and parsed

it into a list of log event messages. From here, we had structured column data that could

be matched with its corresponding message string.

3.3 Data Analysis

With the formatted data, we started collecting basic information about the log files

to verify that our results matched SvcPerf's and established a foundational

understanding of our data. Analyzing the log files' metadata provided vital insights into

the scope of the data and some of the limitations we would have to consider, as

represented in Table 1.

Table 1: Collected Meta Data

File Size 350 MB

Start and End Time 8/19 7:01 – 8/19 7:11

Duration of Files 10 minutes and 8 seconds

Total Number of Log Events 968,737

Average Messages Per Second 1592 messages/second

This provided relevant information about the data size, which would restrict many

of our data analysis techniques and motivate the anomaly detection techniques to occur

after the data was distilled to a more focused subset, as running anomaly detection on

close to a million log messages was too computationally complex.

We also used this phase to gauge and understand the efficacy of our columns. Many

columns were filled with technical information irrelevant to our analysis and were

omitted from modeling techniques. These included naming schemes, activity IDs, etc.,

where the data had patterns we could not interpret. Outside of the messages, one of the

most relevant columns we utilized was the Levels column, with a set of pseudo-labels

indicating some severity level within the data. Following the labeling schema of 4

through 1, where a log level 4 was considered normal, and 1 was the most abnormal,

the dataset contained information on the logs following this schema.

Though the log file used for analysis contained approximately a million rows of

information, our method of extracting data from SvcPerf required further preprocessing.

Most notably, the contents of our Message column were desynced from the rest of the

dataset due to the lack of a consistent pattern to indicate where one message ends and

the following message begins. This was a quirk of using SvcPerf, which we overcame

by implementing custom parsing logic and manual changes to the message data file.

Our second significant analysis focused on a more statistically driven time series

analysis to create a focused subset of data. To visualize log frequency distributions

within the dataset, we created bins of log events at consistent time intervals and found

the count for each bin. Plotting this message frequency helped identify patterns in log

events, which can efficiently highlight the location of relevant anomalies.

7

Rogers et al.: Anomaly Detection and Resolution with Log File Systems

Published by SMU Scholar,

Figure 2: Plot of Message Frequency

When plotting the message frequency data, visualized in Figure 2, we saw that there

were distinct locations within the distribution of log data that would be of interest for

our analysis. We used these spikes as general locations of possible anomalies to distill

our data.

3.4 LanoBERT

With a partially distilled dataset, we utilized LanoBERT to perform a more robust

anomaly detection sweep, reducing the number of log files even further. The execution

of LanoBERT was split into two major components: first, training the requisite BERT

Masked Language Model, then building an inference algorithm that allowed us to score

the log files utilizing the trained BERT MLM model. We utilized the Level column to

separate the nominal and abnormal files when organizing the data. We collapsed a

training subset of log levels 3 and 4 into a dataset defined as nominal data and used it

to train the MLM.

With a trained MLM, we recreated the inference algorithm pseudo-code, represented

in Python to perform a scoring loop over any new dataset. For the inference step, we

took a test subset of the files, ensuring that the dataset had at least some count of

anomalous files (represented as log levels 1 and 2) and passed it through the scoring

function of LanoBERT. Having generated an ‘Anomalous Score’ for each log file, we

could define an arbitrary scoring threshold to pick out any files that scored above the

threshold as anomalous to build our final distilled dataset.

3.5 Embedding Generation

Our next steps began with embedding generation using an embedding model. This

technique translated our text data into high-dimensional vector space. These

embeddings are dense vector representations, where each vector captures the semantic

essence of the text using floating-point numbers. The proximity between any two

vectors within this space is a semantic similarity; closer vectors represent closely

related content.

To generate the embeddings, we utilized OpenAI’s third-generation embeddings

models, specifically designed to capture their robustness and ability to capture textual

relationships of unstructured text. The embedding model we initially chose was text-

embedding-ada-002, but with the newest release, text-embedding-3-small was

considered.

8

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10

3.6 Cluster Visualization & Analysis

Next, we applied clustering algorithms to the high-dimensional embedding

representation. Our principal aim was to simplify analysis by providing information

about groups of similar messages instead of analyzing messages individually. We

experimented with multiple clustering techniques to achieve this, ultimately opting for

the k-means clustering algorithm. This algorithm is celebrated for its efficiency and

effectiveness in aggregating data based on feature similarity.

The k-means algorithm segments the dataset into a predefined number of clusters.

Manual validation of the output results informed the selection of this number. The

algorithm iteratively assigns each data point to the nearest cluster center, subsequently

updating the center based on the aggregate of current members in each cluster. This

iterative refinement persists until the cluster assignments stabilize, thus uncovering the

inherent groupings within our dataset.

Given the high-dimensional nature of our vectors, dimensionality reduction

techniques were essential for visualization. We chose Uniform Manifold

Approximation and Projection (UMAP) over other methods, such as PCA and t-SNE,

due to its superior performance in preserving the data's local and global structure.

UMAP provided a robust and insightful two-dimensional representation of our clusters.

Applying UMAP to our embedding data allowed us to project the clusters into a two-

dimensional space, significantly enhancing our capacity to visually discern

relationships and distinctions between the datasets.

Visualization plays a pivotal role in preliminarily identifying each cluster's

characteristics. For instance, a distinctly separate cluster could indicate unique error log

messages. This observation necessitates further examination of the data points within

this unique cluster, applying prompt engineering techniques to uncover commonalities.

Such analytical depth is crucial in understanding the nuances of our dataset, guiding

our investigation toward meaningful insights, and potentially revealing novel patterns

within the log messages.

The next step in our investigation was to label our identified clusters. This endeavor

aims to understand the distinct groupings revealed comprehensively and allows a

deeper exploration of cluster analysis.

3.7 Fine-Tuning LLM for Naming the Clusters

Upon successfully labeling the clusters, our next step was using prompt engineering

to allow a large language model to summarize a sample of each cluster. This

summarization allowed us to get any main ideas or similar patterns in determining the

underlying patterns or characteristics of the grouping. To achieve this, we used GPT-4-

Turbo, which utilized the following prompt to generate meaningful summaries:

3.7.1 Prompt Engineering Strategy

"Analyze Microsoft Azure Service Bus error log messages. This cloud service is

designed to facilitate communication between applications and services. In analyzing

Azure Service Bus error logs, common issues include permissions, connectivity,

sender, receiver, processor, and transaction-related problems. These encompass

handling Service Bus exceptions, managing access rights, addressing network

connection challenges, troubleshooting message sending and receiving difficulties,

resolving processor operation concerns, and navigating transaction complexities. Your

9

Rogers et al.: Anomaly Detection and Resolution with Log File Systems

Published by SMU Scholar,

primary role is identifying log error patterns clustered around a suspected anomaly and

summarizing what the clusters of log messages represent."

3.7.2 Selection of Text Samples

Each identified cluster had a random sample of up to 10 messages. This selection

aims to capture a broad spectrum of the clusters' characteristics while remaining

manageable in cost and time. After selecting text samples, we will apply the prompt to

summarize and name them.

3.8 Random Forest for Anomaly Detection

The Isolation Forest algorithm represents an alternative strategy for anomaly

detection. It is distinguished by its focus on isolating anomalies rather than modeling

non-anomalous data points. It identifies significant deviations within the dataset,

assuming the outlier is highly distinct.

Due to the difficulty of anomaly classification, an atypical data point was introduced

into the dataset when testing the random forest by adding a quote from "The Lord of

the Rings." This outlier aimed to test the detection mechanism, and the random forest

correctly identified the quote as the anomaly.

3.9 Analytical Application of LAA (Log Analysis Assistant)

Retrieval Augmented Generation (RAG) LLMs retrieve relevant information from a

curated knowledge base and use this as context when responding to user prompts. Using

OpenAI’s custom GPT, we create the Log Analysis Assistant, which serves as our RAG

LLM with which the support engineer could interact. Information such as

troubleshooting documentation, metadata, signal data, cluster summaries, and the

anomaly from the isolation forest are all stored in the LAA’s knowledge base.

3.10 Web User Interface Application Proof of Concept

Once the entire pipeline was developed, a Microsoft User Interface Streamlit

application was conceptually created for an interactive and user-friendly interface. This

application leveraged Streamlit, an open-source app framework, to create a lightweight

web application that integrates with Microsoft Error Log uploads. The application was

designed to allow users to upload their error logs and view the analysis results from the

pipeline, including classification, anomaly detection, and machine learning models. The

application's backend incorporated Python scripts that perform the necessary pipelines'

executions, effectively recreating most of our methods through programmatic means.

4 Results

4.1 Log Analysis Results

10

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10

Figure 3: Plot of the frequency of log messages over 10 minutes.

When plotting the message frequency data, visualized in Figure 3, we see a

significant spike soon after the 5-minute mark. We decided to focus our following levels

of analysis on this subset of the data. There are other intriguing patterns. For example,

the minute before the significant spike, there is a wandering pattern in contrast to the

noise of the rest of the plot. Smaller spikes occur about every minute. There are two

medium-sized spikes near minutes 1 and 2. With the proper domain knowledge and

analysis, this plot can tell a story to the support engineer and direct their analysis to

focused subsets of relevant log events.

4.2 LAnoBERT Results

In executing the LanoBERT process, we first obtained a fine-tuned BERT-masked

language model trained on log data selected at levels 3 and 4 to represent the nominal

dataset. This fine-tuned model was conceptually apt in representing the context of

nominal log files, which was verifiable by the decreasing loss function through the

model training process.

With the model fine-tuned, we executed the inference algorithm by passing in a

separate, isolated dataset that combined normal and abnormal messages. Using our

scoring metric as a combination of loss and abnormal probability, we generated a score

for each log within the provided dataset. This method allowed us to then focus on the

'Anomaly Score' and create arbitrary thresholds that could be used to cut through and

pick out messages with the highest scoring. Of the 1,000 messages selected from the

bin containing the most significant spike in message frequency, LnoBERT helped select

the 77 most anomalous log events comprised of levels 1 and 2 and errors.

4.3 Embedded Results

The embedding function created from Section 3.1 yielded valuable outcomes that

are instrumental in understanding the semantics in a vector space. Utilizing OpenAI’s

text embedding-3-small model, we translated the table of messages from error logs into

a structured, high-dimensional embedding vector space, as seen in Table 2.

11

Rogers et al.: Anomaly Detection and Resolution with Log File Systems

Published by SMU Scholar,

Table 2: The embedding generation results using the text-embedding-3-small model.

Index Message Embedding

0 "Faulting messaging object due to an error. Na... [-0.01512…, ...

1 "Aborting messaging object. Name = srikandi:qu... [-0.02315…, ...

2 "Aborting messaging object. Name = srikandi:Qu... [-0.02454…, ...

3 "Faulting messaging object due to an error. Na... [-0.01683…, ...

These embedding vectors detail the error log messages and represent the information

within the message content abstracted to some vector space. This allows the messages

to be utilized in techniques that only function over highly structured data.

4.4 Cluster Analysis: Visualization in 2D

Using k-means clustering and applying UMAP for dimensionality reduction helped

identify log message groupings. The data table in Figure 3 was also viewed in ascending

order to determine correct grouping matching, which produced significant and

compelling results.

MESSAGE CLUSTER

Entity size become negative. Entity name = trac … 0

Entity size become negative. Entity name = trac … 0

Aborting messaging object. Name = mcapesea … 1

Aborting messaging object. Name = mcapesea … 1

Aborting messaging object. Name = mcapesea … 1

… …

Protocol Client of type of ‘AmqpMessageConsuder … 2

Protocol Client of type of ‘AmqpMessageConsuder … 2

… …

"Amqp publish failed. TrackingId: 3

"An exception was handled. TrackingId: 3

… …

"The AmqpProtocolClient is being closed … 8

"The AmqpProtocolClient is being closed … 8

"The AmqpProtocolClient is being closed … 8

Figure 3: KMeans Clustering of Error Log Messages (K = 8) Table.

12

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10

Figure 4: KMeans Clustering of Error Log Messages (K = 8) 2D Visualization.

When plotting the results of KMeans in a reduced two-dimensional space, visualized

in Figure 4, there was a grouping of clusters near x = 0 to x = 5, whereas near x = -6,

there was a distinct grouping separated from all the rest. This preliminary observation

guided further analysis into the content of this unique cluster and employed prompt

engineering to extract and understand the specific nature of these errors.

Figure 5: A bar graph of the distribution of clusters within each cluster label.

In addition to our clustering, we plotted a distribution of the log files within each

cluster, visualized in Figure 5, to gain information on the types of log files clustered

together. Through visual inspection, cluster label 1 has the highest count, followed by

cluster labels 0 and 4. Although we can inspect the messages and confirm they present

similar information contextually, further domain knowledge would be required to

interpret why these log files are being grouped. Another noteworthy result is that the

isolation forest result was grouped in cluster 2, which had the lowest count. This hints

at an agreement between the KMeans and random forest results.

4.5 Fine-Tune GPT-4-Turbo using Prompt Engineering

13

Rogers et al.: Anomaly Detection and Resolution with Log File Systems

Published by SMU Scholar,

After labeling the clusters from the visualization of the distinct cluster groups,

prompt engineering with a large language model was employed to summarize a sample

of up to 10 log messages for each cluster group. This process extracts the central ideas

or patterns to determine the error logs' underlying characters. For this task, GPT-4-

Turbo was selected as our deployment model, which helped generate meaningful

summaries at an acceptable cost and speed.

The successful clustering of log files highlights the integration of OpenAI's Text

Embedding ChatGPT 4 Turbo with sophisticated prompt engineering techniques to

dissect and interpret log messages across various clusters. The output uncovered

common patterns and aided us in identifying anomalies within the data. Despite the

initial analysis yielding distinct outputs, the figure suggests a potential need to refine

our prompt strategies or explore alternative feature extraction methodologies to

enhance effective clustering. Figure 4 underscored the critical role of prompt

engineering and feature extraction in leveraging AI for deep insights into system log

analysis, setting the stage for further explorations in optimization techniques.

4.6 Anomaly Detection Results

The experiment to evaluate KMeans’ effectiveness for anomaly detection yielded

significant insights. We introduced a deliberate outlier, a line from "The Lord of the

Rings," into the dataset, which served as an artificial anomaly.

Table 4: Results of the Cluster Anomaly Detection

Message Embedding Cluster

Entity size become negative. En... [-0.00871…, -0.01648…, …] 6

Entity size become negative. En... [-0.00952…, -0.01545…, …] 6

Let this be the hour when we d ... [-0.01556…, -0.03345…, …] 6

As seen in Table 4, the clustering did not isolate the movie line into its distinctive

group; instead, it was grouped with other log event messages. This outcome could

suggest a potential grouping of anomalies, indicating that clustering has created one

distinct group of outlier categories. This finding may lead to further analysis or prompt

engineering of cluster group 6 to identify it as the anomaly grouping. This highlights

the limitations of KMeans for identifying anomalies and motivates our use of the

isolation forest method for anomaly detection.

4.7 Isolation Forest Algorithm Findings

The Isolation Forest algorithm's application demonstrated its effectiveness as a

viable strategy for detecting anomalies. This method successfully identified the

introduced outlier – a quote from “The Lord of the Rings” as detailed in Table 5. This

underscores the algorithm's capability to distinguish irregularities within the dataset.

Moreover, Table 6 presents the Isolation Forest’s findings in the absence of the “Lord

of the Rings” quote, where it selects a message from cluster 2, which recorded the

lowest count, thereby corroborating the concordance between our KMeans clustering

and Isolation Forest analyses in pinpointing the most anomalous messages.

14

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10

Table 5: Results of the Isolation Forest Algorithm with Lord of the Rings Quote

Message Embedding Cluster

Let this be the hour when we d ... [-0.01556,-0.03345, ...] 6

Table 6: Results of the Isolation Forest Algorithm without Lord of the Rings Quote

Message Embedding Cluster
Protocol client of type ‘SoapMessageGroup ... [-0.0210134294, ...] 2

Both methods demonstrated their respective strengths in anomaly and outlier

detection. Cluster analysis with text embeddings revealed semantic analysis's potential

in categorizing and summarizing atypical data points. The isolation forest algorithm,

on the other hand, was notable for efficiently isolating and identifying anomalies

based on their uniqueness. These observations offer valuable insights into anomaly

detection methodologies in textual data, suggesting that combining both strategies

could improve detection and analysis capabilities.

4.8 Streamlit User Interface Application

Figure 6: Sample Microsoft UI for Log Analysis

As our final step and the culmination of our work, we developed a prototype UI for

Microsoft using Streamlit. The UI, shown in Figure 6, allows support engineers to

upload their log files. Inexpensive metadata analysis and plots are generated. This will

allow the support engineers to create a more focused dataset where they believe relevant

information can be found. After that, the error clustering analysis will appear, including

a summarization and a question-and-answer system for engineers to chat with the data.

The streamlined workflow and insights gained will allow the engineers to maintain the

system more quickly and develop better error resolution strategies.

15

Rogers et al.: Anomaly Detection and Resolution with Log File Systems

Published by SMU Scholar,

5 Discussion

5.1 Creating a Manageable Subset of Log Data

The methods and architecture proposed overcome the challenges of log analysis.

Signal analysis of event log frequency or data size frequency provides unique

visualizations and interpretations using simple column data. After narrowing down the

dataset with signal analysis visualizations, LAnoBERT shows a way to remove the

dependency on log parsers, feature embedding for long-term dependencies, a model for

valuable anomaly detection, and a foundation for creating a model for understanding

log messages that contain elements of natural and artificial languages. PULL further

elevates the reactive anomaly detection problem setup and sets the gold standard for

approaching reactive anomaly detection. Combined with the tools and knowledge

already provided by existing methods, these ideas create a first level of log analysis that

helps engineers focus their search on a manageable subset of essential information from

an overwhelmingly large dataset.

5.2 Extracting Valuable Information from Focused Dataset

After narrowing the focus to the most relevant information, we can now call upon

methods with more computational complexity. Utilizing embeddings, we can extract

the most anomalous message using an isolation forest and cluster categories of

messages. From here, methods can summarize clusters and generate insightful labels.

All the information collected for this specific dataset merged with general knowledge

about the log system provides a knowledge base for a retrieval augmented generation

large language model. This RAG LLM can directly interact with engineers to help look

up information, interpret results, and provide suggestions. Combining the ability to talk

to the dataset with a log analysis application that provides other valuable functionality

and information will revolutionize system diagnostics, leading to more efficient and

accurate analysis. Enhancing the depth of analysis and improving the cost-efficiency of

log examination will empower engineers to elevate their focus to higher-order tasks and

strategic initiatives.

5.3 Noteworthy Discoveries

During our investigation, remarkable discoveries emerged, particularly in the

context of anomaly detection within log files. Notably, the frameworks presented by

LAnoBERT and PULL distinguish themselves by addressing the nuanced complexities

inherent in log file analysis. Traditional methodologies often simplify anomaly

detection to a binary classification task, relying on datasets with an explicit error-level

column for categorization. While these approaches retain their merit, they frequently

fall short in scenarios devoid of explicit indicators, a common occurrence in real-world

datasets.

The innovative approaches employed by LAnoBERT and PULL offer a refreshing

perspective on this challenge. LAnoBERT, with its foundation in the BERT

architecture, leverages deep learning to comprehend the intricate semantics of log files,

moving beyond mere surface-level analysis. This method demonstrates a significant

stride in identifying anomalies within logs by understanding their contextual nuance

rather than relying solely on predefined error levels.

Similarly, PULL introduces a novel paradigm by adopting a reactive anomaly

detection strategy that is particularly adept at managing imbalanced datasets.

16

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10

Traditional methods often struggle with high false positive rates in such contexts,

leading to inefficient anomaly detection processes. PULL's approach mitigates this

issue by focusing on the underlying patterns within the data, thereby enhancing the

precision of anomaly detection.

These methodologies significantly depart from conventional binary classification

models, offering a more holistic and effective strategy for anomaly detection in log

files. Their ability to adapt to the unique challenges of imbalanced datasets and the

absence of explicit error-level indicators underscores their value and ingenuity in

advancing the log file anomaly analysis field.

Our research unveiled compelling insights that significantly influenced our

analytical approach and methodology. Foremost among these was signal analysis's

remarkable simplicity and efficacy. This technique emerged as our preferred method

for distilling the dataset, facilitating a more focused and refined subsequent level of

analysis. Its ability to efficiently parse and prioritize data for further scrutiny

underscored the power of integrating straightforward analytical methods into more

complex investigative frameworks.

Additionally, our methodologies' adeptness in deciphering log messages,

characterized by a blend of natural and artificial language components, was noteworthy.

This capability highlighted our models' advanced understanding and interpretation

skills, which could navigate the intricate interplay between human-readable text and

system-generated codes. This nuanced comprehension is pivotal for extracting

actionable insights from log data, bridging the gap between human analysts and

machine-generated logs.

Moreover, our exploration revealed substantial prospects for developing systems

automating routine analytical tasks. Such systems can transform the landscape of log

analysis, offering avenues to streamline processes, enhance efficiency, and allow

engineers and analysts to allocate their expertise to more complex, high-value

challenges. These findings underscore our methodologies' transformative impact on log

file analysis, heralding a new era of efficiency and effectiveness in data interpretation

and anomaly detection.

5.4 Challenges

While comprehensive in its scope and ambition, our investigation encountered

certain constraints that must be acknowledged. Firstly, realizing the proposed

architecture delineated within this paper remains theoretical. The transition from

concept to implementation is anticipated to be a substantial endeavor, necessitating

extensive development time. During this phase, unforeseen challenges inherent in the

practical application of theoretical models will likely surface, adding complexity to the

project.

Moreover, our project focuses on developing an analytical tool capable of examining

and interacting with log datasets. However, it stops short of integrating automated

resolution steps. This delineation means that while our tool can identify and highlight

anomalies or patterns within the data, the user remains responsible for executing

resolution strategies.

Furthermore, akin to the premise underpinning the PULL model, our approach is

predicated on the assumption that the dataset under analysis contains the answers to the

questions posed. This presupposes the presence of relevant data within the dataset and

the dataset's comprehensiveness in encompassing the necessary information for

analysis. Consequently, the efficacy of our methodology is inherently tied to the

availability and relevance of the provided dataset and documentation for the log system.

17

Rogers et al.: Anomaly Detection and Resolution with Log File Systems

Published by SMU Scholar,

Without a dataset that aligns closely with the analytical objectives, the tool's utility

could be compromised, limiting its applicability to scenarios where comprehensive and

pertinent data is readily available.

5.5 Future Research

Our work opens avenues worth exploring in future research, each with the potential

to refine log analysis methodologies significantly. A key area involves developing

methods that incorporate contextual understanding from the start of the automated

analysis. Future studies could investigate how starting with a clear context can lead to

more targeted analysis, focusing efforts on the most relevant log events. This approach

promises to make data analysis more efficient and relevant, setting a precedent for

context-driven investigations in various domains.

The Kmeans clustering algorithm required us to set the number of clusters manually.

For a working implementation of the application proposed in this paper, an automated

solution for setting the number of clusters is essential for streamlining the workflow.

Our holistic strategy—understanding complex problems deeply and integrating

various methods—also offers valuable insights for various data science challenges.

Future research could explore how this adaptable framework can be applied in different

settings, potentially revealing universal strategies that enhance data science practices.

Another promising area is exploring streamlined models and innovative architecture.

Future work could aim to develop models that maintain high accuracy while being more

computationally efficient. This balance is crucial for making advanced analysis

techniques more accessible and practical for broader applications.

Furthermore, methods designed for analyzing large datasets need to be refined to

ensure efficiency and effectiveness optimization. This could lead to adaptations for

real-time log analysis systems capable of swiftly identifying and addressing issues as

they arise, enhancing system diagnostics and operational intelligence.

These future research directions build on our findings, leading to innovative

advancements in log analysis and broader data science fields.

5.6 Ethics

Ethical considerations are paramount in deploying machine learning models,

especially concerning data privacy and security. Ensuring ethical compliance involves

several critical measures: maintaining transparency and securing explicit consent from

users and system owners regarding data collection and analysis; adhering to data

minimization principles by processing only the essential information; establishing

robust accountability and auditability frameworks to monitor data access and safeguard

against unauthorized use; ensuring data integrity to prevent detrimental alterations or

manipulations; implementing anonymization or pseudonymization techniques to

protect sensitive information; enforcing strict access controls to limit data access to

authorized personnel only; ensuring full compliance with relevant legal and regulatory

standards; and fostering interdisciplinary collaboration with experts in ethics, law, and

social sciences to assess the ethical implications of log analysis practices holistically.

These steps collectively ensure that the application of machine learning in log file

analysis upholds the highest ethical standards, safeguarding the interests and privacy of

all stakeholders involved.

6 Conclusion

18

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10

Log files, often called the "system diaries," have been integral to diagnostics and

monitoring for decades. Their unusual complexity, diversity, lack of context, and the

sheer volume of data necessitate the evolution of methods and tools for efficient

analysis. Our research delved deep into the core challenges of log files, especially

regarding interpretability, adaptability, and the methodologies used for preprocessing,

feature embedding, anomaly detection, diverse analysis, and insights into root causes

and potential solutions.

By addressing these challenges, we aim to revolutionize how we interpret and

analyze log files, paving the way for more efficient and accurate anomaly detection in

systems and enhancing the overall reliability and performance of the systems they

monitor at lower costs. We encourage the academic and professional community to

build upon the research findings and continue to innovate by developing an accurate

problem setup and combining methods into holistic architectures.

Acknowledgements. We thank the Southern Methodist University faculty and Paul

Huggins for their guidance and support throughout this research.

References:

Cohen-Shapira, N., & Rokach, L. (2020). Automatic selection of clustering algorithms

using supervised graph embedding. https://github.com/noycohen100/MARCO-

GE

Devlin, J., Chang, M.-W., Lee, K., Google, K. T., & Language, A. I. (2018). BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

https://github.com/tensorflow/tensor2tensor

Du, M., Li, F., Zheng, G., & Srikumar, V. (2017). DeepLog: Anomaly Detection and

Diagnosis from System Logs through Deep Learning. CCS ’17 Proceedings of

the 2017 ACM SIGSAC Conference, 1285–1298.

https://doi.org/https://doi.org/10.1145/3133956.3134015

Gemini Team, G. (2024). Gemini 1.5: Unlocking multimodal understanding across

millions of tokens of context.

Gu, A., & Dao, T. (2023). Mamba: Linear-Time Sequence Modeling with Selective

State Spaces.

He, P., Zhu, J., Zheng, Z., & Lyu, M. R. (2017). Drain: An Online Log Parsing

Approach with Fixed Depth Tree. Proceedings - 2017 IEEE 24th International

Conference on Web Services, ICWS 2017, 33–40.

https://doi.org/10.1109/ICWS.2017.13

Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, & Michael R. Lyu. (2023). Loghub: A

Large Collection of System Log Datasets for AI-driven Log Analytics.

Karlsen, E. (2023). EXPLORATION OF NLP-BASED FEATURE EXTRACTION

TECHNIQUES FOR SECURITY ANALYSIS AND ANOMALY DETECTION OF

SERVICE LOGS.

19

Rogers et al.: Anomaly Detection and Resolution with Log File Systems

Published by SMU Scholar,

https://github.com/noycohen100/MARCO-GE
https://github.com/noycohen100/MARCO-GE
https://github.com/tensorflow/tensor2tensor
https://doi.org/https:/doi.org/10.1145/3133956.3134015
https://doi.org/10.1109/ICWS.2017.13

Le, V.-H., & Zhang, H. (2021). Log-based Anomaly Detection Without Log Parsing.

https://doi.org/10.1109/ASE51524.2021.00051

Lee, Y., Kim, J., & Kang, P. (2023). LAnoBERT: System log anomaly detection based

on BERT masked language model. Applied Soft Computing, 146.

https://doi.org/10.1016/j.asoc.2023.110689

Lu, S., Wei, X., Li, Y., & Wang, L. (2018). Detecting Anomaly in Big Data System

Logs Using Convolutional Neural Network. IEEE.

https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00037

Mahowald, K., Ivanova, A. A., Blank, I. A., Kanwisher, N., Tenenbaum, J. B., &

Fedorenko, E. (2023). Dissociating language and thought in large language

models: a cognitive perspective. http://arxiv.org/abs/2301.06627

Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Liu, Y., Chen, Y., Zhang, R., Tao, S.,

Sun, P., & Zhou, R. (2019). LogAnomaly: Unsupervised Detection of Sequential

and Quantitative Anomalies in Unstructured Logs.

https://doi.org/https://doi.org/10.24963/ijcai.2019/658

Qi, J., Huang, S., Luan, Z., Fung, C., Yang, H., & Qian, D. (2023). LogGPT: Exploring

ChatGPT for Log-Based Anomaly Detection.

Staudemeyer, R. C., & Morris, E. R. (2019). Understanding LSTM-a tutorial into Long

Short-Term Memory Recurrent Neural Networks.

Thomas G. Dietterich. (2023, July 10). What’s wrong with LLMs and what we should

be building instead. https://www.youtube.com/watch?v=cEyHsMzbZBs&t=760s

Vaswani, A., Brain, G., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, Ł., & Polosukhin, I. (2017). Attention Is All You Need.

Wittkopp, T., Scheinert, D., Wiesner, P., Acker, A., & Kao, O. (2023). PULL: Reactive

Log Anomaly Detection Based On Iterative PU Learning.

X. Zhang, Y. X. Q. L. B. Q. H. Z. Y. D. C. X. X. Y. Q. C. Z. L. et al. (2019). Robust

log-based anomaly detection on unstable log data. ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations

of Software Engineering, 27, 807–817.

Zhu, J., He, S., He, P., Liu, J., & Lyu, M. R. (n.d.). Loghub: A Large Collection of

System Log Datasets for AI-driven Log Analytics. Retrieved December 3, 2023,

from https://github.com/logpai/loghub.

20

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10

https://doi.org/10.1109/ASE51524.2021.00051
https://doi.org/10.1016/j.asoc.2023.110689
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00037
http://arxiv.org/abs/2301.06627
https://doi.org/https:/doi.org/10.24963/ijcai.2019/658
https://www.youtube.com/watch?v=cEyHsMzbZBs&t=760s

Appendix 1:

Output of cluster summary:

Appendix 2:

Psuedo Code for LAnoBERT Inference Algorithm:

(Lee et al., 2023)

21

Rogers et al.: Anomaly Detection and Resolution with Log File Systems

Published by SMU Scholar,

Appendix 3:

Cluster Labels

Cluster groupings that are produced from Log Analysis Assistant

Cluster 0: Negative Entity Size and Consistent Entity Name Issues

Cluster 1: Idle Timeout and Aborted Messaging Objects

Cluster 2: Entity Availability and Timeout Issues

Cluster 3: QuotaExceededException and Entity Size Exceeded

Cluster 4: Messaging Objects Aborted

Cluster 5: Timeout Issues and Messaging Entity Not Found

Cluster 6: Idle Timeout Expired and Consistent TrackingId

Cluster 7: IdleTimerExpired Errors

Cluster 8: AMQP Links Force Detached due to Idle Timeout

Appendix 3:

Summarize: Analytical Application of LAA (Log Analysis Assistant)

This example demonstrates an initial test of the Log Analysis Assistant (LAA),

formerly known as LAC. We input log data we deemed relevant into a custom GPT

setup, which lacked a knowledge base about Azure Service Bus and its troubleshooting,

as well as log file analysis specifics. These results were encouraging as they provided

a general but helpful breakdown of the logs.

22

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10

23

Rogers et al.: Anomaly Detection and Resolution with Log File Systems

Published by SMU Scholar,

Appendix 4:

Adding Knowledge to LAA (Log Analysis Assistant)

Enhancements to the knowledge base resulted in more precise and higher quality

outcomes. The Log Analysis Assistant (LAA) can now offer links to pertinent

documents and reference specific Azure Service Bus tools and terminology. However,

the effectiveness of the LAA depends on the provided data. Without detailed examples

of troubleshooting steps, it still falls short of delivering clear, step-by-step remediation

guides.

24

SMU Data Science Review, Vol. 8 [], No. 1, Art. 10

https://scholar.smu.edu/datasciencereview/vol8/iss1/10

	Intelligent Solutions for Retroactive Anomaly Detection and Resolution with Log File Systems
	Recommended Citation

	tmp.1713199105.pdf.ybY7p

