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Abstract. Electroencephalography (EEG) or brainwave signals serve as a 

valuable source for discerning human activities, thoughts, and emotions. This 

study explores the efficacy of EXtreme Gradient Boosting (XGBoost) models in 

sentiment classification using EEG signals, specifically those captured by the 

MUSE EEG headband. The MUSE device, equipped with four EEG electrodes 

(TP9, AF7, AF8, TP10), offers a cost-effective alternative to traditional EEG 

setups, which often utilize over 60 channels in laboratory-grade settings. 

Leveraging a dataset from previous MUSE research (Bird, J. et al., 2019), 

emotional states (positive, neutral, and negative) were observed in a male and a 

female participant, each for 3 minutes per state while watching movie scenes 

designed to stimulate emotions. The dataset comprises 2548 features extracted 

statistically from each sliding time window (mean, median, standard deviation, 

etc.). Employing XGBoost, a subset of the top 100 features is selected from the 

original 2548, achieving an exceptional accuracy of 99.1%. This research aims 

to make significant contributions to accurately classify human emotion while 

advancing EEG-based sentiment classification for future real-time emotion 

prediction applications. 

1   Introduction 

Electroencephalography (EEG) is a non-invasive neuroimaging technique that 

records and measures the electrical activity generated by the brain using electrodes 

placed on the scalp. These electrodes detect and amplify the tiny electrical signals 

produced by neurons, allowing researchers and clinicians to observe the brain's 

dynamic activity in real time. EEG provides valuable insights into brain function, 

revealing patterns of electrical activity associated with different mental states, cognitive 

processes, and emotional responses. This technique has diverse applications beyond 

clinical diagnosis, extending to fields such as neuroscience research, cognitive 

psychology, and brain-computer interface development. By monitoring the brain's 

electrical signals, EEG enables the study of various brain functions and facilitates a 

deeper understanding of neurological conditions and cognitive processes. 

Furthermore, integrating EEG with machine learning has paved the way for 

innovative applications in diverse domains. In the realm of Brain-Computer Interfaces 

(BCIs), EEG signals serve as a crucial input, allowing individuals to control external 

devices or interfaces directly with their thoughts. In healthcare, EEG-based machine 

learning applications contribute to the development of advanced diagnostic tools, 
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personalized treatment strategies, and real-time monitoring of neurological conditions. 

Beyond healthcare, EEG combined with machine learning has found applications in 

entertainment and gaming, enabling more immersive experiences by adapting content 

based on users' cognitive states. In neuromarketing, EEG data analysis aids in 

understanding consumers' emotional responses to products and advertisements, shaping 

more effective marketing strategies. Sports performance enhancement benefits from 

EEG by providing insights into cognitive aspects, helping athletes optimize their mental 

preparation and focus. Additionally, EEG-based machine learning applications have 

been explored for security purposes, utilizing brainwave patterns for biometric 

identification and authentication. These examples showcase the versatility of EEG 

combined with machine learning across various sectors, driving advancements in 

technology and human-computer interaction. Emotion recognition is a vital component 

of understanding human behavior and well-being. It has far-reaching implications for 

various industries, from mental health monitoring to personalized user experiences in 

fields such as entertainment and marketing. Traditionally, emotion recognition has 

heavily relied on expensive and resource-intensive electroencephalography (EEG) 

laboratories with a multitude of channels for data collection, making it inaccessible to 

many and impractical for real-time applications. An additional note on structure, in 

general, I frown upon subsections in the Introduction section; however, when done 

appropriately, they can be very useful to segment the information.  

However, the deployment of Laboratory-Grade EEG Equipment comes with its own 

set of challenges. The traditional setup involves the placement of 64 or more electrodes 

on the scalp, necessitating meticulous preparation and precise placement. This process 

often requires the application of conductive gel to ensure a good electrical connection 

between the electrodes and the scalp. While these high-density configurations provide 

detailed and accurate data, the setup is inherently messy and time-consuming. 

Moreover, the need for skilled technicians to handle the intricate electrode placement 

and maintenance makes this approach both labor-intensive and expensive. The 

requirement for a controlled laboratory environment further limits the accessibility of 

this technology, hindering its widespread use in real-world applications. 

Despite the challenges posed by the complexity and expense of Laboratory-Grade 

EEG Equipment, numerous successful research studies have been conducted using this 

technology, particularly in medical and university research facilities. The high-density 

electrode configurations and precise data acquisition capabilities of these setups have 

enabled researchers to delve deep into understanding various aspects of brain function 

and neurological disorders. However, the extensive resources and expertise required 

for handling such equipment have limited its application primarily to controlled 

research environments within medical institutions or universities. This concentration of 

usage in specialized settings underscores the need for more accessible and practical 

alternatives that can extend the benefits of EEG technology to a broader range of 

applications and industries beyond the confines of academic and medical research. 
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Fig. 1. Muse headset, a wearable EEG device used for brainwave data collection, equipped with 

four EEG electrodes strategically positioned at TP9, AF7, AF8, and TP10 locations on the scalp 

 

In contrast to the intricacies of Laboratory-Grade EEG Equipment, the emergence 

of devices like the Muse EEG wearable represents a significant breakthrough. With its 

user-friendly design, the Muse EEG headband offers a more accessible alternative to 

traditional EEG setups. Featuring only four dry electrodes, this wearable eliminates the 

need for conductive gel, streamlining the setup process and making it less messy. 

Released less than a decade ago, the Muse EEG headband allows users to effortlessly 

wear and connect to various devices, providing a hassle-free means of tapping into EEG 

data. This simplicity not only enhances user experience but also broadens the scope of 

potential applications beyond specialized research settings. 

Moreover, the Muse EEG wearable has demonstrated its effectiveness in various 

medical research studies. Successful applications include stress [7] and anxiety [8] 

detection, where the device's portability and ease of use contribute to accurate and 

reliable data collection in real-world scenarios. Additionally, Muse has shown promise 

in stroke detection research [11], showcasing the versatility of this wearable in medical 

contexts. The combination of affordability, simplicity, and successful medical 

applications positions devices like Muse as transformative tools in the field of EEG-

based research, offering opportunities for wider adoption and impacting diverse areas 

of healthcare and beyond. Hence, the inclination towards utilizing data from devices 

like Muse becomes evident. The streamlined and cost-effective nature of Muse EEG 

wearables, coupled with their successful applications in various medical research areas, 

aligns with the broader goal of making EEG technology more accessible and impactful. 

By leveraging the advantages of Muse, this study aims to contribute to the expansion 

of EEG-based research beyond traditional confines, fostering innovation and 

accessibility in fields ranging from healthcare to personalized user experiences. 

The Muse EEG wearable device, with its accessible and unintrusive design, emerges 

as a key enabler in advancing emotional classification research. By democratizing 

access to reliable emotional data, Muse contributes to the development of 

comprehensive models that can be applied in real-world scenarios. This 

democratization of emotional insights has the potential to revolutionize mental health 

care, human-computer interaction, and various industries, fostering a deeper 

understanding of individuals and promoting overall well-being. 
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While many emotion classification studies have achieved high accuracy using 

various techniques, there is an ongoing pursuit of improving and refining these models 

for even greater precision. Hybrid deep learning, in particular, has showcased 

remarkable success in emotion recognition from EEG data, as demonstrated by studies 

using lab-grade EEG datasets like DEAP [4]. Additionally, random forest and deep 

neural networks have also achieved high accuracy using the MUSE dataset [5]. 

However, the integration of complementary techniques like XGBoost presents an 

intriguing avenue for enhancing classification accuracy further. XGBoost, known for 

its efficiency and robust performance, could enhance sentiment classification further, 

offering a synergistic approach alongside deep learning methodologies. This study aims 

to explore the capabilities of XGBoost in EEG-based sentiment classification, 

leveraging its efficiency and robustness to achieve improved accuracy and 

generalization. Through innovative model architectures, hyperparameter optimization, 

and tailored feature engineering, this research seeks to contribute to the ongoing 

evolution of affective computing and push the boundaries of emotion recognition 

capabilities. 

The quest for accurate EEG-based emotional prediction faces challenges stemming 

from the limitations and costs associated with conventional lab setups. This research 

addresses this disparity by focusing on practical solutions, notably leveraging the Muse 

EEG headband as a cost-effective alternative with promising potential. The study aims 

to enhance sentiment classification accuracy by exploring the capabilities of XGBoost 

in EEG-based sentiment classification. With a focus on real-time emotion prediction, 

the research explores novel model architectures, hyperparameter optimization, and 

EEG-specific feature engineering to advance affective computing. The significance lies 

in bridging the accessibility gap and making EEG technology valuable across diverse 

industries, particularly in real-time sentiment analysis, mental health monitoring, and 

personalized user experiences. 

Furthermore, this research aims to contribute significantly to the field by 

investigating the effectiveness of XGBoost in EEG-based sentiment classification using 

Muse data. Through this exploration, we anticipate achieving higher accuracy rates 

compared to existing research endeavors. The outcomes of this study are expected to 

offer valuable insights into the viability and potential applications of the proposed 

approach, laying the groundwork for further enhancements and real-world 

implementations. 

 

 

2   Literature Review 

In this literature review, our exploration of EEG-based emotion analysis encompasses 

four key areas: studies conducted with laboratory-grade EEG equipment, those utilizing 

the Muse EEG wearable device, medical and physiological applications beyond 

emotion analysis, and XGBoost applications in EEG signal analysis. This fourfold 

approach allows us to delve into insights from high-quality laboratory settings and 

emerging wearable technologies, as well as explore the broader scope of EEG 

applications in medical and physiological domains, including the innovative use of 

XGBoost algorithms. Through this comprehensive analysis, our objective is to 
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contribute to the advancement of effective and accurate classification methods while 

highlighting the diverse potential of EEG technology across various fields. 

2.1   Emotion Sentiment Classification Model Using Laboratory-Grade EEG 

Equipment Data 

A comprehensive dataset for analyzing human affective states (referred to as DEAP) 

was introduced in a previous study, wherein EEG and peripheral physiological signals 

were recorded from 32 participants as they viewed 40 one-minute music video excerpts. 

Participants also provided ratings for various emotional dimensions [1]. The process of 

collecting such data in a laboratory setting, which involves capturing both EEG and 

peripheral physiological signals simultaneously, underscores the challenges and 

resource-intensive nature of stimulus selection and data integration. This foundational 

work contributes significantly to the field's understanding of utilizing EEG data for 

emotion analysis, paving the way for further advancements in subsequent research 

sections, which explore more cost-effective and accessible methodologies. 

The study conducted by Kulkarni et al. (2021) makes a significant contribution to 

the field of emotion classification through the utilization of EEG-based methodologies, 

which represent a transformative approach within affective computing [2]. 

Conventional techniques, such as facial expressions or voice tone analysis, often 

produce inconclusive or biased results, prompting researchers to seek alternative 

methods like EEG (Encephalogram) analysis. Specifically, the research focuses on 

analyzing human affective states using the DEAP dataset, a comprehensive resource 

for emotion analysis utilizing physiological signals. This dataset comprises 40 channels 

and involves the participation of 32 subjects who viewed 40 one-minute music video 

excerpts, providing evaluations for each video based on dimensions such as Valence, 

Arousal, Dominance, and Liking. Through this detailed exploration, the study 

demonstrates the potential of EEG-based emotion analysis to uncover intricate aspects 

of human affective states, highlighting its relevance and applicability in understanding 

emotional responses. Furthermore, the study underscores the importance of utilizing 

high-quality, multimodal datasets like DEAP to advance our understanding of emotion 

recognition through EEG signals. 

Furthermore, the groundbreaking work by Kumar and Molinas (2022) not only 

contributes to the broader landscape of EEG-based emotion analysis but also highlights 

the significance of utilizing datasets derived from laboratory settings [3]. The study 

strategically employs two well-established EEG emotion datasets, SEED and DEAP, 

emphasizing the reliability and richness of data obtained in controlled laboratory 

environments. Recognizing the critical role of accurate emotion recognition across 

diverse sectors, including healthcare, education, marketing, and manufacturing, the 

researchers construct classification models that delve into the complexities of human 

emotions. Through the careful preprocessing of EEG signals, involving the 

decomposition into five distinct rhythms and the computation of differential entropy 

(DE) features, the study achieves remarkable results. Particularly noteworthy is the 

superior performance of the CNN-based method, attaining an impressive F1-score of 

93.7% for the SEED dataset and 94.5% and 94% for high vs. low arousal and high vs. 

low valence classes in the DEAP dataset, respectively. The use of datasets from 

laboratory-grade EEG equipment not only bolsters the robustness of the study's findings 
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but also sets a benchmark for future research endeavors in the realm of EEG-based 

emotion analysis. 

In the quest to identify emotions from EEG signals, representing the intricate brain 

activities of individuals, recent advances in machine learning algorithms have propelled 

the exploration of brain-computer interfaces for a broad spectrum of applications. 

Emotion categorization from EEG data has gained significant attention. The study 

conducted by Akshay et al. (2023) employs the DEAP dataset with 32 channels for 

EEG recording and excels in classification accuracy using the random forest machine 

learning (ML) algorithm [16]. In the subject-specific experiment, an average best 

accuracy of 91.26% is achieved, while in the subject-dependent experiment, the model 

reaches the best accuracy of 78.5% for the random forest classifier. The proposed 

method outperforms previous studies, particularly in the context of a four-class 

problem, where it surpasses previous accuracies, which were limited to 71.43%. This 

accomplishment underscores the potential of employing EEG data from high-resource 

lab settings for robust emotion recognition, setting a benchmark for more accessible 

and economical approaches discussed in the following sections. 

Additionally, the study by M. Manjusha et al. (2016) on the classification of epilepsy 

risk level from EEG signals deserves mention. This achievement of a 93% classification 

accuracy underscores the effectiveness of their approach in discerning epilepsy risk 

levels from EEG signals [13]. Such high precision in analyzing neurological data 

highlights the potential applicability of EEG-based methodologies in various domains, 

including emotion recognition and affective computing. 

Emotion recognition from EEG signals remains a challenging task, demanding 

extensive research to attain high accuracy. Researchers have put forth various feature 

extraction methods and machine learning models, often relying on datasets collected in 

resource-intensive lab settings. Notably, Dhara and Singh's research (2023) on 

"Emotion Recognition from EEG Data Using Hybrid Deep Learning Approach" 

presents a compelling solution. Their hybrid CNN-LSTM model, evaluated on the 

standard DEAP dataset, achieves outstanding test accuracies of 96.87% for valence and 

97.31% for arousal dimensions [4]. Furthermore, this model reaches a state-of-the-art 

level of accuracy within the EEG-based emotion recognition domain. This achievement 

underscores the potential of deep learning techniques in enhancing emotion recognition 

accuracy, even with data from expensive lab equipment. Such accomplishments in 

high-resource settings set a benchmark for future developments and inspire progress in 

more accessible and cost-effective methods for EEG-based emotion analysis. 

In another study, conducted by Chatterjee S et al. in 2022, their aim is to classify 

EEG signals into positive, negative, and neutral emotional states using a stacking-

ensemble-based classification model [18]. Their approach, RLGB-SE, combines base 

classifiers such as random forest, light gradient boosting machine, and gradient 

boosting classifier, achieving an exceptional classification accuracy of 99.55%. 

Notably, this high accuracy, particularly when employing lab-grade EEG equipment, 

underscores the promise of their stacking strategy in advancing emotion classification 

research. 
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2.2   Emotion Sentiment Classification Model Using Muse EEG Wearable 

Device 

 

Shifting our focus from resource-intensive lab settings to more accessible and cost-

effective approaches. In the study by Laureanti et al. (2020), titled "Emotion assessment 

using Machine Learning and low-cost wearable devices," the effectiveness of the 

MUSE headband [17], alongside the Shimmer GSR+ device, in gauging individuals' 

emotional states during stimulus exposure is assessed. Despite the inherent complexity, 

machine learning techniques were utilized to extract features and train binary 

classifiers, resulting in accuracies ranging from 53.6% to 69.9%. These findings 

highlight the MUSE headband's capability to provide valuable insights into emotional 

states, showcasing its potential for practical applications. 

The research conducted by Bird, J. et al. (2018), which introduces sentiment 

classification using EEG brainwave data acquired through a commercial Muse EEG 

headband [12]. Utilizing the Muse EEG headband equipped with four EEG sensors 

(TP9, AF7, AF8, TP10), they meticulously curated a dataset aimed at categorizing 

mental states associated with relaxation, neutrality, and concentration. The study 

explored various features extracted from the EEG headband, emphasizing the activity 

and frequency levels of signals, such as alpha, beta, theta, delta, and gamma waves. 

Through systematic evaluations, including 10-fold cross-validation, the researchers 

assessed the performance of feature selection and classification methods. Their findings 

revealed that, out of a vast pool of over 2100 features, only 44 were essential for 

achieving accurate mental state recognition. This streamlined approach, particularly 

when coupled with classical classifiers like Bayesian Networks, Support Vector 

Machines, and Random Forests, not only enhanced the accuracy of EEG-based emotion 

analysis but also reduced computational complexity. As a result, it offered significant 

potential for optimizing human-machine interaction through EEG-based mental state 

recognition. 

Furthermore, studies led by the same authors (Bird, J. et al., 2019) focus on the 

crucial role of feature selection in optimizing EEG-based emotion analysis for precise 

mental state recognition [5]. which introduces sentiment classification using EEG 

brainwave data acquired through a commercial MUSE EEG headband. This headband 

features a low-cost setup with four electrodes corresponding to TP9, AF7, AF8, and 

TP10 locations, presenting an economical alternative to traditional EEG labs with 

extensive channels. The researchers invoke positive and negative emotional states using 

film clips with clear valence while also recording neutral resting data without stimuli. 

Statistical extraction of various brainwaves, including alpha, beta, theta, delta, and 

gamma, generates a substantial dataset. Feature selection based on OneR, Bayes 

Network, Information Gain, and Symmetrical Uncertainty scores results in a subset of 

63 features with high Information Gain values. Ensemble classifiers like Random 

Forest, when applied to this subset, achieve impressive overall accuracy, surpassing 

existing methodologies by a notable margin. The best single classifier, a deep neural 

network, attains a high accuracy rate as well. 

Additionally, a subsequent study from the same year further investigated the 

potential of EEG-based emotion analysis using wearable devices, indicating the 

ongoing evolution and refinement of methodologies in this field. This research 

investigates the use of evolutionary algorithms to select discriminative EEG features 
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and optimize Artificial Neural Networks (ANNs) [6]. Utilizing a Muse EEG headband 

with four electrodes, experiments encompassing attention state classification, 

emotional sentiment classification, and number guessing tasks were conducted. The 

results obtained demonstrate the effectiveness of this approach, with an Adaptive 

Boosted LSTM achieving remarkable accuracies of 97.06% for emotional sentiment 

classification and 84.44% for attentional state classification. The adoption of a Muse 

EEG headband, known for its cost-effectiveness and practicality, underscores the 

advancements in EEG-based emotion analysis facilitated by wearable devices.  

 

Fig. 2. Four-electrode setup for Muse EEG headband. Adapted from Bird, Jordan & Ekart, Aniko 

& Buckingham & Faria, Diego (2019) 

 

The dataset collected through this setup serves as a valuable asset for further 

exploration into accessible and accurate emotion recognition methodologies. These 

findings highlight the promising potential of low-cost EEG setups in achieving 

exceptional accuracy in emotion recognition tasks, thus encouraging the investigation 

of practical and economical alternatives for EEG-based sentiment classification.  

2.3   Medical and Physiological Applications Beyond Emotion Analysis Utilizing 

Muse EEG Wearable 

Beyond emotion analysis, wearable EEG devices demonstrate remarkable accuracy 

and potential for diverse medical and psychological applications. Arsalan et al. (2019) 

showcase this potential by effectively classifying perceived mental stress using the 

Muse EEG headband's four electrodes, achieving high accuracy rates [7]. Their findings 

highlight the suitability of low-cost EEG setups for robust data collection, paving the 

way for precise model development in addressing mental health concerns. 

Additionally, the same author (Arsalan et al. 2020) introduced a trait anxiety 

detection framework leveraging the device's data quality to distinguish between 

anxious and non-anxious individuals [8].  

Wearable EEG devices demonstrate remarkable potential for data-driven model 

development across various medical and psychological applications. The effectiveness 

of neurofeedback in treating PTSD is underscored, highlighting the device's role in 
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mental health therapy and its ability to provide precise data crucial for advancing 

therapeutic interventions [9]. 

Furthermore, the capability of a 4-electrode Muse EEG device in classifying 

cognitive fatigue with high accuracy is demonstrated, paving the way for robust models 

to detect cognitive fatigue and improve interventions for individuals experiencing 

mental exhaustion [10]. 

Additionally, the utility of the Muse EEG headband for predicting stroke severity is 

emphasized, facilitating the development of models for early stroke diagnosis and 

patient triage, thereby enhancing the efficiency of healthcare delivery and improving 

patient outcomes [11]. 

Collectively, these studies underscore the accuracy and reliability of data collected 

using wearable EEG devices, emphasizing their pivotal role in building robust models 

for a wide range of medical and psychological applications. The high-quality data 

provided by these devices opens new avenues for precise and effective healthcare 

solutions. 

2.4   XGBoost Applications in EEG Signal Analysis 

XGBoost offers numerous advantages that make it well-suited for EEG data 

classification tasks. Its ability to handle large datasets, deal with missing values, and 

prevent overfitting makes it a powerful tool in the realm of EEG signal analysis. The 

versatility and robustness of XGBoost make it particularly promising for accurately 

classifying EEG data, thus paving the way for more efficient and reliable processing. 

In this study, the focus lies on exploring the utilization of XGBoost for EEG data 

classification and understanding its potential applications in the broader context of 

brain signal analysis. While the study by Balli, Osman (2022) highlights the efficacy of 

XGBoost in EEG signal classification, it's important to note that other researchers have 

also explored the use of XGBoost in similar contexts [14]. This underscores the 

growing interest and recognition of XGBoost as a valuable tool in EEG signal analysis. 

Parui et al. (2019) propose an innovative approach to enhance the classification of 

different types of emotions with improved accuracy [15]. Their methodology involves 

the extraction of several features from EEG brain signals. These features are then 

optimized using techniques such as correlation matrix analysis, information gain 

calculation, and recursive feature elimination. The results of the study demonstrate that 

feature optimization followed by the XGBoost algorithm significantly improves 

classification accuracy for emotion recognition tasks. Notably, the proposed approach 

is evaluated using the DEAP dataset, sourced from high-cost laboratory EEG setups. It 

is essential to highlight that the study does not utilize the MUSE dataset commonly 

associated with low-cost EEG setups but instead relies on the DEAP dataset, which 

offers comprehensive EEG data obtained from high-cost lab EEG setups. 

In conclusion, the comprehensive exploration of emotion sentiment classification 

models using both laboratory-grade EEG equipment and Muse EEG wearable devices, 

alongside the examination of medical and physiological applications beyond emotion 

analysis, provides a solid foundation for our research endeavors. The integration of 

XGBoost applications in EEG signal analysis, as evidenced by prior studies, 

underscores its potential in enhancing emotion recognition accuracy and advancing the 

field of neuroscience. By leveraging the insights gained from these diverse approaches, 

9

Khamthung et al.: EEG-Based Brainwave Emotion Classification with XGBoost Model

Published by SMU Scholar,



we are confident in the success of our project. The utilization of XGBoost specifically 

for emotion recognition, without reliance on the MUSE dataset but instead leveraging 

the DEAP dataset from high-cost lab EEG, presents a promising avenue for achieving 

improved accuracy in emotion classification. This amalgamation of methodologies and 

datasets not only enriches our understanding of EEG-based emotion analysis but also 

propels us toward our research goals with optimism and determination. 

 

 

 

 

 

 

3   Method 

In the methodology section, we present our approach to developing and evaluating the 

sentiment classification model using EEG data. We introduce the data sources utilized, 

conduct exploratory data analysis (EDA) to understand the dataset's characteristics, and 

proceed with the modeling phase. 

3.1   Data Source 

The EEG brainwave data utilized in this study originates from two seminal research 

papers [5] [6] led by Bird, J. et al. These papers, recognized for their valuable 

contributions to EEG-based emotion classification and brain-machine interface 

research, are titled: "A study on mental state classification using EEG-based brain-

machine interface," presented at the 9th International Conference on Intelligent 

Systems in 2018 and "Mental emotional sentiment classification with an EEG-based 

brain-machine interface," presented at The International Conference on Digital Image 

and Signal Processing in 2019. 

The EEG data collection process involved human subjects participating in controlled 

experiments with carefully chosen emotional stimuli. Recorded using a Muse EEG 

headband equipped with dry electrodes at TP9, AF7, AF8, and TP10 locations, the 

dataset is publicly available on Kaggle. 

 

10

SMU Data Science Review, Vol. 8 [], No. 1, Art. 7

https://scholar.smu.edu/datasciencereview/vol8/iss1/7



 

Fig. 4. The diagram illustrates the data collection steps by previous research (Bird, J. et al., 2019). 

Subjects wear Muse EEG headbands while viewing stimulus videos, and the collected data 

undergoes raw EEG extraction. Feature extraction techniques, including temporal methods, are 

then applied to identify pertinent features. These features are compiled into a final dataset for in-

depth analysis and emotion classification 

 

The dataset comprises recordings from two participants, one male and one female, 

each observed for 3 minutes per emotional state  (positive, neutral, negative). Using 

dry electrodes, the Muse EEG headband captured EEG signals from TP9, AF7, AF8, 

and TP10 locations. In addition to the emotional states, six minutes of resting neutral 

data were also recorded. The emotional stimuli, as shown in Table 1, included scenes 

from well-known films and nature timelapse clips. 

Table 1.  List of emotional stimuli videos sourced from previous research (Bird, J. et al., 2019) 

Scene Studio Stimuli Emotion 

Marley and Me (2008) Twentieth Century Fox Negative 

Up (2009) Wal Disney Pictures Negative 

My Girl (1991) Imagine Entertainment Negative 

La La Land (2016) Summit Entertainment Positive 

Slow Life (2014) BigQuest Studios Positive 

Funny Dogs (2015 MashupZone Positive 

 

Following the collection of EEG signals in each emotional state, a comprehensive 

set of features was extracted for analysis. The dataset encompasses 2548 features 

extracted statistically from each sliding time window, employing temporal extraction 

techniques such as mean, median, standard deviation, and more. This extensive feature 

set aims to capture the diverse aspects of brainwave activity associated with different 

emotional states. 

 

 

3.2   Exploratory Data Analysis (EDA) 

This section will delve into the Exploratory Data Analysis phase, providing insights 

into the characteristics of the EEG dataset. Descriptive statistics, visualizations, and 

key observations will be presented to offer a comprehensive understanding of the data's 

distribution, patterns, and potential challenges. 
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Fig. 5. Dataset Overview: Statistical Features Extracted from EEG Signals, with 2548 Features, 

1 Target Label, and 2132 Records 

 

The dataset under consideration, containing 2132 rows and 2549 columns, presents 

a comprehensive tabular structure for analysis. Each row signifies an individual 

observation, while columns encompass a range of features, such as 'mean_0_a,' 

'mean_1_a,' ..., 'fft_749_b,' and the 'label' column, designating the emotional sentiment 

category (NEGATIVE, NEUTRAL, POSITIVE) associated with each observation. One 

notable advantage in this dataset is the absence of missing values, streamlining the 

preprocessing stage and ensuring a complete dataset for analysis. The features within 

the dataset exhibit a numerical nature, reflecting statistical attributes like mean values 

('mean_0_a,' 'mean_1_a') and Fast Fourier Transform (FFT) coefficients ('fft_0_a,' 

'fft_1_a'). Given the structure, it is evident that these features are likely derived from 

EEG brainwave data, capturing both statistical characteristics and frequency-related 

components. 

 In Figure 6, we observe the distribution of sentiment labels across the dataset, 

revealing a well-balanced distribution among the three categories. Approximately 

33.6% of the instances are labeled as neutral, while positive and negative sentiments 

each constitute 33.2% of the dataset. This equal distribution is highly beneficial for the 

development of machine learning models, as it fosters a scenario where the model is 

exposed to a representative and diverse set of sentiment instances. This balance 

minimizes the risk of bias and ensures that the model can effectively learn from 

instances of each sentiment category. Such equilibrium in label distribution forms a 

solid foundation for training sentiment classification models, contributing to their 

ability to generalize and accurately predict emotions across a spectrum of positive, 

negative, and neutral states. 
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Fig. 6. Distribution of Labels: The balanced distribution among positive (33.2%), negative 

(33.2%), and neutral (33.6%) labels forms a solid foundation for training sentiment classification 

models. 

 

 
 

Fig. 7. EEG Signal Patterns illustrate show the distinctive EEG signal patterns corresponding to 

positive, negative, and neutral emotional states 
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As shown in figure 7, The plot illustrates the distinct signal patterns of EEG data 

corresponding to positive, negative, and neutral sentiments. Each subplot represents a 

sentiment category, with the x-axis denoting the sample index and the y-axis indicating 

the signal amplitude. Notably, positive and negative signals predominantly exhibit 

amplitudes greater than 600 and less than -600, suggesting pronounced variations. In 

contrast, neutral signals cluster within the range of -50 to 250, showcasing a 

comparatively narrower amplitude distribution. It's important to note that these patterns 

emerge from a subset of features, specifically filtered to focus on relevant information. 

The EEG data has 2548 features, and this analysis specifically considers the range from 

'fft_0_b' to 'fft_749_b,' narrowing down the features for a more targeted exploration. 

This separation highlights the potential discriminatory features present in the EEG data, 

laying the groundwork for further analysis and model development in sentiment 

classification tasks. 

In Summary, The Exploratory Data Analysis (EDA) of the EEG-based emotion 

classification dataset, comprising 2132 observations and 2549 features, revealed a well-

distributed label distribution with approximately 33.6% for neutral sentiments and 

33.2% each for positive and negative sentiments. The absence of missing values and 

the wide span of numerical representations contribute to the dataset's complexity. EDA 

plots, such as Figure 6, highlighted distinct patterns in positive, negative, and neutral 

signals, laying a robust foundation for subsequent model development with a balanced 

dataset conducive to effective sentiment classification based on EEG data. 

3.3   XGBoost Model Algorithm 

This section explores the utilization of the XGBoost algorithm for EEG-based 

sentiment classification. XGBoost, also known as Extreme Gradient Boosting, is 

renowned for its versatility and effectiveness in diverse machine learning tasks, 

including sentiment analysis based on EEG signals. 

XGBoost operates on a boosting ensemble learning technique, sequentially 

constructing multiple weak models to rectify errors made by its predecessors. Through 

iterative refinement, XGBoost achieves exceptional predictive performance, making it 

an appealing choice for sentiment classification tasks [22]. 

One of the notable strengths of XGBoost lies in its ability to handle complex datasets 

effectively. By incorporating regularization techniques, it prevents overfitting and 

enhances generalization. Additionally, XGBoost demonstrates robustness in handling 

missing values, ensuring efficient utilization of incomplete data [22]. 

Furthermore, XGBoost is highly scalable and adaptable, facilitating parallel 

processing even with large datasets. Its flexibility and robustness contribute to its 

widespread adoption in various machine learning tasks. 

In the context of EEG-based sentiment classification, XGBoost excels in capturing 

subtle patterns within EEG signals. With EEG data often exhibiting non-linear 

relationships, XGBoost's gradient boosting approach effectively captures complex 

interactions and dependencies, enabling accurate classification of emotional states [22]. 

XGBoost is typically employed in supervised learning scenarios, where training data 

denoted by (x, y) is utilized to predict a target variable y. The model's formulation can 

be expressed as follows: 
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𝑦�̂� = ∑ 𝑓𝑘(𝑥𝑖

𝐾

𝑘=0

), 𝑓𝑘  ∈  𝑈   
(1) 

 
This equation represents the aggregation process in XGBoost, where K denotes the 

total number of trees. Each tree's prediction, denoted by 𝑓𝑘 belongs to the function 

space U. The equation iterates over all K trees in the ensemble, summing up their 

individual predictions for the input data point 𝑥𝑖, yielding the final prediction 𝑦𝑖  as 

aggregated outcome [22]. 

Overall, XGBoost's versatility, scalability, and capability to handle non-linear 

relationships make it a powerful tool for EEG-based sentiment classification, enabling 

precise inference of emotional states from EEG data.  

 

3.4   Model Development Process 

 

In the initial step, the categorical sentiment labels ('NEGATIVE', 'NEUTRAL', 

'POSITIVE') are transformed into numerical representations (0, 1, 2) using a predefined 

dictionary called label_mapping. This conversion is crucial for ensuring compatibility 

with machine learning algorithms. Subsequently, the preprocess_inputs function is 

utilized to partition the dataset into input features (X) and target labels (y), where the 

'label' column serves as the target variable. By employing the train_test_split function, 

the dataset is further divided into training and testing sets, with 70% of the data 

allocated for training and 30% for testing. This preprocessing pipeline prepares the data 

for subsequent modeling steps, facilitating the development and evaluation of sentiment 

classification models.  

Upon inspection, the training set comprises 1492 samples, each associated with a 

corresponding label, while the testing set consists of 640 samples, also aligned with 

their respective labels. This verification ensures the consistency and integrity of the 

dataset, guaranteeing that each observation is appropriately paired with its 

corresponding label for accurate model training and evaluation. 
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Fig. 8. The diagram illustrates the sequential workflow involved in preparing and developing a 

machine learning model. It consists of four main stages, each contributing to the refinement and 

optimization of the model for optimal performance. 

 

The sequential workflow outlined in the diagram (Fig. 7) presents the systematic 

progression of tasks involved in preparing and refining a machine learning model. 

Beginning with feature selection, the process identifies and prioritizes the most 

influential attributes crucial for effective classification. This initial stage streamlines 

the dataset, enhancing the model's efficiency by focusing on key features. Moving to 

hyperparameter tuning, the model's parameters undergo optimization to maximize 

performance, ensuring alignment with the dataset and task requirements. Once 

parameters are fine-tuned, the model proceeds to training, utilizing the selected features 

and optimized parameters to learn predictive patterns from the provided data. Finally, 

model evaluation rigorously assesses the trained model's performance using metrics 

such as accuracy, precision, recall, and F1-score, offering invaluable insights into its 

effectiveness and areas for potential refinement. This systematic approach to model 

preparation, as depicted in Fig. 7, guarantees the resulting model is not only robust and 

accurate but also meticulously optimized for its intended purpose. 

 

3.5   Model Feature Selection 

 

Feature selection techniques were utilized to identify the most informative and relevant 

features for the classification task. This step involved analyzing the importance of each 

feature and selecting a subset of features that contributed the most to the predictive 

power of the model.  

Following initial model training, we computed feature importance scores using the 

trained XGBoost classifier. These scores quantified the contribution of each feature to 
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the predictive capability of the model. Subsequently, we sorted the features based on 

their importance scores in descending order. 

 

Fig. 9. The top 100 features ranked according to their feature importance scores, highlighting the 

most influential factors identified by the XGBoost model in EEG-based sentiment classification 

 

To streamline the feature set and focus on the most influential attributes, we selected 

the top N features with the highest importance scores. In our case, we opted for the top 

100 features for further analysis and model refinement. These selected features were 

deemed to carry the most discriminative information for the task of emotional sentiment 

classification 

 

 

3.6   Model Hyperparameter Tuning 

In the model hyperparameter tuning phase, we meticulously defined a parameter grid 

that encapsulated various hyperparameter values pivotal for exploring the tuning 

process. The grid encompassed key parameters such as max_depth, min_child_weight, 

subsample, colsample_bytree, learning_rate, n_estimators, and gamma. Each 

parameter was assigned multiple values, ensuring a thorough exploration of the 

parameter space. 
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Table 2.  Hyperparameter Grid for XGBoost Model Tuning 

Parameter Name Value to search Optimal value 

max_depth 3, 5, 7 7 

min_child_weight 1, 3, 5 1 

subsample 0.6, 0.8, 1 1 

colsample_bytree 0.6, 0.8, 1 1 

learning_rate 0.01, 0.1, 0.2 0.2 

n_estimators 100, 200, 300 100 

gamma 0, 0.1, 0.2 0 

 

Table 2 illustrates the parameter grid utilized for hyperparameter tuning through grid 

search in the XGBoost model. It encompasses various hyperparameters, including 

max_depth, min_child_weight, subsample, colsample_bytree, learning_rate, 

n_estimators, and gamma, each with specific values aimed at optimizing the model's 

performance." 

To rigorously evaluate the model's performance, Stratified K-Fold cross-validation 

with 5 folds was implemented. This method enabled assessment across diverse dataset 

subsets while maintaining class distribution integrity, mitigating overfitting risks, and 

yielding reliable estimates of model generalization. 

The hyperparameter tuning approach relied on the robust GridSearchCV function 

from the scikit-learn library. This tool facilitated exhaustive exploration of the 

parameter grid, systematically evaluating each combination through cross-validation. 

To enhance efficiency and prevent overfitting, early stopping mechanisms were 

integrated, capping the maximum number of rounds at 10 during the grid search. 

Post grid search, the optimal hyperparameter combination was determined based on 

the highest accuracy score from cross-validation. This meticulous selection ensured the 

final XGBoost model was trained using the most effective hyperparameters obtained 

from the grid search, thereby bolstering its predictive performance and generalization 

capabilities. 

3.7   Model Training 

In the phase of model retraining, we undertook a meticulous approach by combining 

the top 100 features selected through the feature selection process with the optimal 

hyperparameters obtained from the grid search procedure. This integration aimed to 

refine the model's predictive capacity by prioritizing the most influential features while 

fine-tuning the model's parameters for optimal performance. 

Through this integrated approach, we aimed to achieve a balance between model 

complexity and predictive accuracy, thereby ensuring that the final model is well-suited 

for real-world applications and capable of delivering reliable insights from the data. To 

evaluate the model's performance robustly, we implemented Stratified K-Fold cross-

validation with 5 folds. This approach allowed us to assess the model across diverse 

subsets of the dataset while preserving the distribution of classes. By employing 

Stratified K-Fold, we mitigated the risk of overfitting and attained reliable estimates of 

the model's generalization performance. 
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3.8   Model Evaluation 

In evaluating the performance of our trained XGBoost model, we will employ two key 

evaluation metrics: the classification report and the confusion matrix. 

Firstly, we will generate a classification report, which provides detailed metrics for 

each class, including precision, recall, and F1-score. This report allows us to assess the 

model's performance across different classes and identify any potential imbalances or 

biases in its predictions. 

Secondly, we will construct a confusion matrix to visually represent the model's 

performance. By comparing predicted labels against true labels, the confusion matrix 

helps us understand the distribution of correct and incorrect predictions across different 

classes. This analysis enables us to identify patterns of misclassification and assess the 

overall accuracy of the model. 

By utilizing both the classification report and the confusion matrix, we aim to gain 

comprehensive insights into the strengths and weaknesses of our XGBoost model, 

thereby making informed decisions regarding its deployment in real-world 

applications. 

 

4   Results 

The XGBoost model exhibited exceptional performance, achieving an accuracy of 

99.1% when trained with selected features, underscoring its effectiveness in sentiment 

classification across the dataset. 

A detailed analysis of the model's classification capabilities is presented in the 

classification report as shown in figure 11. Precision, recall, and F1-score metrics are 

provided for each sentiment category (negative, neutral, and positive), showcasing the 

model's ability to accurately classify instances within each class. The macro and 

weighted average F1-scores, both at 0.99, indicate high overall model performance 

across all sentiment categories. 

Furthermore, the confusion matrix offers valuable insights into the model's 

classification outcomes as shown in figure 12. The high diagonal values in the 

confusion matrix signify correct predictions, while off-diagonal elements highlight 

instances of misclassification. Specifically, the model demonstrates strong performance 

in accurately classifying instances across all sentiment categories, as evidenced by the 

distribution of values in the confusion matrix. 

19

Khamthung et al.: EEG-Based Brainwave Emotion Classification with XGBoost Model

Published by SMU Scholar,



 

Fig. 11. The classification report for XGBoost model provides detailed metrics on the XGBoost 

model's performance across different sentiment categories. 

 

 

Fig. 12. The confusion matrix for XGBoost model provides classification performance across 

sentiment categories. 

Overall, these results underscore the robustness and efficacy of the XGBoost model 

in sentiment classification, validating its potential for real-world applications in 

sentiment analysis and beyond. 

5   Discussion 

The utilization of XGBoost in EEG-based classification has demonstrated remarkable 

accuracy compared to conventional methods. Our model achieved higher accuracy rates 

than most research efforts in this domain. This suggests the efficacy of XGBoost in 

extracting meaningful patterns from EEG signals, contributing to enhanced sentiment 

classification performance. 

While achieving high accuracy is commendable for predictive tasks, it may not 

necessarily translate to interpretability. In our study, prioritizing accuracy enabled us 
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to develop a robust predictive model for sentiment classification. However, the trade-

off between accuracy and interpretability is crucial, especially in contexts where 

understanding the underlying factors driving predictions is essential for decision-

making processes. 

It's imperative to acknowledge the limitations of our study, particularly regarding 

the dataset's scope and generalizability. The data collection process involved a small 

sample size comprising only two individuals (1 male, 1 female), each monitored for 3 

minutes per state while watching specific video scenes. Such a limited dataset may not 

fully represent the broader population, thereby potentially constraining the model's 

generalization to diverse demographic groups. Additionally, gender differences in 

emotional processing and response patterns could influence the interpretation of the 

EEG signals [19] [20] and should be considered in future studies aiming for broader 

applicability. 

In future research, it is imperative to extend the applicability of the model to real-

time settings and larger participant cohorts, integrating EEG signals and an attention 

mechanism into deep learning models. By deploying the model in real-time scenarios 

where participants engage with various video stimuli, we can evaluate its performance 

across a more extensive range of emotional states and demographic profiles. 

Additionally, incorporating EEG data collected from devices like the MUSE EEG 

headband could enhance the model's scalability and applicability to real-world emotion 

prediction applications, paving the way for innovative solutions in affective computing 

and human-computer interaction, as well as consumer sentiment analysis in e-

commerce [21]. 

6   Conclusion 

This research represents a significant milestone in EEG-based sentiment classification, 

leveraging data obtained from the MUSE EEG wearable device to achieve an 

outstanding accuracy rate of 99.1%. Through the implementation of advanced machine 

learning techniques, particularly XGBoost, the study successfully decoded emotional 

states based on EEG signals recorded during participants' engagement with video 

stimuli. The approach adopted in this research underscores the effectiveness of 

employing ensemble learning algorithms like XGBoost to discern intricate patterns 

within EEG signals, thereby enabling precise inference of emotional states. By 

demonstrating the potential of machine learning models to decipher subtle nuances in 

human emotions, this study contributes substantially to the fields of affective 

computing and human-computer interaction. 

Moving forward, future research endeavors may explore avenues to expand the 

dataset, incorporating a more diverse sample of participants and scenarios. 

Furthermore, integrating real-time EEG monitoring devices like the MUSE EEG 

wearable device opens avenues for creating practical applications capable of accurately 

predicting and responding to users' emotional states in real-time settings. 
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