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Abstract. The advancement of large language models (LLMs) has significantly 

expanded the influence of artificial intelligence across various sectors. This paper 

explores building LLM agents to power applications and examines what is 

necessary to build an efficient and helpful AI assistant. The research investigates 

the core components necessary to create specialized agents, facilitate 

collaboration in problem-solving, and improve human task performance. The 

development and application of tools designed to augment the capabilities of 

LLM agents are also explored. The paper addresses the potential risks of the 

unknowns, such as hallucinations, which can compromise the success of agent-

based solutions within LLM applications. The potential application areas for 

LLM agents and the broader implications of these findings on AI research and 

application development are discussed. 

1   Introduction 

Large Language Models (LLMs) are artificial intelligence (AI) designed to process 

and understand natural human language. These models employ deep learning 

architectures like transformers to process and generate text based on their input. They 

are trained on vast amounts of text data from diverse sources, such as books, articles, 

and websites, allowing them to learn patterns, relationships, and context within the 

language. As a result, large language models can generate contextually relevant, 

coherent, and human-like text in response to user inputs. LLMs have a wide range of 

applications, including natural language understanding, language translation, content 

generation, sentiment analysis, and assisting with various tasks through conversational 

interfaces. 

 

A large language model agent is created by engineering a prompt to define a role for 

the LLM to respond in. An agent is responsible for deciding what steps to take to 

complete a task. It uses a language model as a reasoning engine to make these decisions. 

Autonomous language agents can automatically solve complicated tasks and interact 

with environments, humans, or other agents. 

 

Designing and implementing an extensive language model application that 

successfully leverages the capabilities of agents can be a complex yet rewarding task. 

This paper investigates various aspects of multi-agent-based applications, including the 

methodologies and techniques used for creating agents, the strategic deployment of 
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multiple agents within an application, the degree of autonomy granted to agents, and 

the evaluation of agent effectiveness in alignment with specific use cases. Furthermore, 

the paper will delve into the challenges and potential drawbacks of developing large 

language model applications that rely heavily on agents. It will discuss the factors that 

may contribute to the success or failure of such applications, including scalability, cost, 

ethical considerations, and the impact of agent interactions on the overall system 

performance. 

 

By providing a thorough analysis of those topics, this paper aims to contribute to 

understanding large language model agent applications and their effective integration 

of the agents. It ultimately aims to assist researchers, developers, and business units in 

making informed decisions when designing and deploying agent-based systems.. 

2   Literature Review 

Numerous studies have explored and implemented a broad spectrum of cognitive 

approaches that can be integrated into prompts for agent generation, thereby enhancing 

their overall performance and adaptability. This paper examines these studies to glean 

insights into the most promising approaches and their potential applications. 

 

Large Language Model (LLM) agents are intelligent systems capable of processing 

vast amounts of unstructured text data to generate coherent and contextually 

appropriate responses. These agents form the backbone of various problem-solving 

applications, from facilitating consensus-building during web discussions to simulating 

economic situations (Horton, 2023). These agents' key attributes are their ability to 

learn and adapt, effectively leveraging their training datasets to generate diverse 

responses or solutions (Askari et al., 2023). 

 

The efficacy of LLM agents does not solely depend on the number of agents 

deployed; it is also contingent on how effectively these agents are designed and trained. 

For instance, less advanced large language models consistently chose similar options 

despite the different endowments provided during a fairness judgment experiment. In 

contrast, more advanced models displayed variation based on specific endowments. 

This highlights the importance of quality over quantity; having well-trained AI systems 

capable of understanding context-specific nuances will likely lead to better 

performance outcomes (Askari et al., 2023). 

 

Integrating multiple intelligent agents into larger systems or applications is another 

crucial aspect of LLMs. For example, the 'Agent for Recommending Information 

Relevant to Web-based Discussion' utilized GPT-3 to generate queries and a BERT-

based model for classifying information based on relevance within the ongoing 

discussion context (Kinoshita & Shiramatsu, 2022). Similarly, the Auto-GPT 

framework incorporated supervised or imitation-based learners into the Auto-GPT 

scheme without requiring fine-tuning of foundational LLMs, significantly enhancing 

performance in online decision-making benchmarks (Yang et al., 2023). 
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The ability of these agents to interact effectively with their environment is also 

critical. This includes their capacity to parse complex instructions into executable plans, 

a feature that HTML-T5++ exhibits, outperforming human-level performance on 

MiniWoB and achieving the highest zero-shot performance on CompWoB among all 

tested models (Furuta et al., 2023). Furthermore, LLM agents have also been 

successfully applied in the recruitment sector to automate resume screening (Gan et al., 

2024), in data analytics tasks through the TaskWeaver framework (Qiao et al., 2023), 

and in the creation of multiple specialized agents to form an AI team tailored to various 

tasks through the AutoAgents framework (Chen et al., 2023). 

 

Edward Chang and Emily Chang (2023) delve into how effective communication 

between different agents can enhance the overall success rate of LLM applications. 

They observed that agents incorporated their extensive knowledge in various agent-to-

agent conversations, basing their discussions on reason. Their adept use of cultural 

references and literary connections enriched the conversation and broadened the scope 

of comprehension, making their points more relatable. In various cases, the agents 

enhanced the depth of the conversation and fostered interconnectedness between topics 

(Chang et al.; E., 2023). 

 

WebArena is a realistic environment for evaluating the performance of autonomous 

agents on web-based tasks based on high-level natural language commands. The 

benchmark focuses on diverse, long-horizon tasks humans routinely perform online and 

evaluates task completions' functional correctness. The success rate achieved by these 

agents needs further improvement, highlighting the challenges in handling complex 

tasks within realistic environments (Zhou S. et al., 2023). 

 

Experimentation with agents has proven promising for conducting pilot studies via 

simulation before testing in the real world. This approach offers insights into human 

behavior at lower costs and in less time than other methods. By endowing these AI 

agents with baseline beliefs and putting them through various scenarios, the author 

demonstrates that this approach can qualitatively recover findings from experiments 

with actual humans (Horton, 2023). 

 

An agent was developed to perform relevant-information-recommendation. This 

agent retrieves necessary discussion data from ongoing web discussions, generates 

query terms, and recommends related information based on the phase of the current 

discussion progress (Kinoshita & Shiramatsu, 2022). 

 

The “GPT-in-the-loop” approach is a novel method that combines the advanced 

reasoning capabilities of generative pre-trained transformers with multi-agent systems. 

Researchers achieved superior decision-making and adaptability without extensive 

training when integrating GPT-4 into agents. The authors use the framework for the 

Internet of Things to incorporate GPT into agent-driven applications. The results show 

that GPT's iterative approach showcases significant adaptability and improvement 

compared to traditional methods and human-generated solutions (Nascimento et al., 

2023). 
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SPRING is a novel approach that employs an LLM agent to read a paper about a 

game and use what is learned to play the game. The SPRING agent can reason and 

make decisions in complex open-world game environments by extracting critical 

information from the paper and incorporating it into a QA summarization framework. 

The framework demonstrates improved performance compared to traditional 

reinforcement learning methods while requiring no training, showcasing the potential 

of LLMs for understanding and reasoning with human knowledge in gaming contexts 

(Wu et al., 2023). 

 

AutoML-GPT is a framework that integrates agents into the automated machine 

learning (AutoML) process, aiming to simplify model development by automating 

various stages of the machine learning workflow. It consists of two types of agents: the 

Reasoning agent and the Coding agent. The Reasoning agent understands human 

requests and plans tool usage sequences, while the Coding agent reads documentation 

and modules, generates AutoML code, and executes it. AutoML-GPT demonstrated 

competitive performance compared to other renowned AutoML frameworks while 

significantly reducing the time and effort required for machine learning tasks (Tsai et 

al., 2023). 

 

AGENTS is an open-source library containing key and helpful features for building 

LLM agents. The framework provides support for various scenarios such as single-

agent systems (e.g., chat bot), multi-agent systems (e.g., cooperative or competitive 

interactions), human-agent interaction (e.g., debating), web navigation tasks (e.g., 

customer service agent using web search engines), among others (Zhou, W. et al., 

2023). 

 

LLMs are intelligent systems capable of processing vast amounts of unstructured 

text data to generate coherent and contextually appropriate responses. They have been 

successfully applied in a range of problem-solving applications. However, areas still 

need improvement, particularly in their ability to solve complex real-world tasks and 

their interaction with their environment. Despite these challenges, the potential of 

LLMs in computational social science, economic simulations, and consensus building 

during web discussions remains promising (Liu et al., 2023). 

 

LLMs are intelligent systems capable of processing vast amounts of unstructured 

text data to generate coherent and contextually appropriate responses. They have been 

successfully applied in a range of problem-solving applications. However, areas still 

need improvement, particularly in their ability to solve complex real-world tasks and 

their interaction with their environment (Suri et al., 2024). Despite these challenges, the 

potential of LLMs in computational social science, economic simulations, and 

consensus building during web discussions remains promising (Li et al., 2024). 
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3   Analysis of Agents 

3.1 Range of Autonomy in Agents 

 

Large language model (LLM) agents exhibit a range of autonomy, from the least to 

the most. The least autonomous agents focus on specific tasks and rely heavily on short 

descriptions. They may have limited interaction with their environment and other 

agents and limited long-term memory capabilities. 

 

As we move towards more autonomous LLM agents, they incorporate features such 

as tool usage, long-short-term memory, multi-agent communication, human-agent 

interaction, and symbolic control. These advanced agents can interact with 

environments or other agents over time while maintaining a record of their previous 

actions and decisions. 

 

In addition to these frameworks explicitly designed for developing language models 

with varying degrees of autonomy in performing tasks or interacting with humans or 

other AI entities in real-world applications like customer service consulting, 

programming, writing, teaching, etc., there are also projects such as Auto-GPT, 

BabyAGI, and SuperAGI aimed at achieving AGI by enabling users build customize 

test tune deploy state-of-the-art without much coding effort required from them (Liu et 

al., 2023).  

 

3.2 Components of LLM Agents 

 

3.2.1 Cognitive Function 

 

An indispensable segment of an LLM agent is its cognitive function or "brain," 

which is an intricate complex that can be elucidated into four significant parts. Each 

part is pivotal in how the LLM agent processes information, makes decisions, and 

interacts with its environment. The components mimic the cognitive functions of the 

human brain, enabling the agent to understand, process, and generate language in a 

sophisticated and human-like manner. 

 

1. General Knowledge: 

 

Large language models, such as GPT-4, are the base for establishing an intelligent 

agent. These models, grounded in machine learning principles, utilize transformer-

based architecture characterized by self-attention mechanisms. GPT-4, trained 

exhaustively on an expansive corpus of internet text, becomes an agent's 

foundational source of general knowledge. This broad base empowers the agent to 

converse on, comprehend, and generate coherent narratives across diverse topics. It 

can respond to factual inquiries and even demonstrate creative writing capabilities 

without necessitating supplementary information integration. 
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However, it is pivotal to understand that GPT-4, acting as a base for general 

knowledge, essentially operates as an advanced pattern recognition system. It learns 

from the vast data it has been trained on to generate contextually accurate and 

pertinent responses. This learning process involves a complex data encoding and 

decoding sequence, where the model learns to predict the probability of a word 

occurrence given the preceding words in a sentence. Through a multitude of 

processing layers and millions of parameters, the model eventually acquires the 

ability to generate contextually relevant and coherent sentences. 

 

Nonetheless, there are inherent limitations when utilizing the general knowledge 

provided by an LLM in isolation. While an LLM agent constructed on the GPT-4 

model can answer a wide range of inquiries with impressive accuracy, it must 

improve in specific or private domains, such as internal company data and processes. 

Furthermore, while the model can generate creative text based on the patterns it has 

learned, it does not know which documents specifically contributed to its training 

set, nor does it have access to any classified, proprietary, or confidential information. 

Thus, the utilization of LLM agent outputs necessitates an understanding of these 

limitations. A scholarly appreciation of these parameters will ensure the agent's 

capabilities are leveraged effectively and responsibly. 

 

2. Specific Knowledge 

 

Integrating RAG and Prompting techniques into an LLM agent significantly 

enhances its functionality, giving it a distinct personal touch, mainly when dealing 

with domain-specific or private data. With its complex cognitive structure, the LLM 

agent is notably enhanced by a component known as Specific Knowledge, facilitated 

by a pipeline known as Retrieval-Augmented Generation (RAG). This component 

effectively supplements the general knowledge of the LLM with domain-specific 

expertise, thereby diversifying and deepening its understanding of a variety of 

subjects. 

 

RAG is a sophisticated tool that enables an LLM to acquire and process domain-

specific, private, or even novel information. The distinct advantage of a RAG lies in 

its ability to utilize a knowledge retriever to source relevant information for the task 

at hand. Given the sheer volume of textual data, vector embeddings are commonly 

employed to extract similar text from a vector database. However, the versatility of 

a RAG pipeline allows for querying SQL databases, Graph databases, and even 

internet searches. This flexibility significantly enhances the depth of understanding 

of an LLM agent on previously unfamiliar subjects. 

 

3. Thought Process 

 

The thought process of an LLM (Large Language Model) agent is created through 

a combination of training on massive amounts of text data, prompt design, and 

integration with various tools or APIs. The agent's reasoning mechanism is designed 

to respond similarly to how a human would react to prompts, making it capable of 

understanding and processing natural language input. 
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In multi-agent systems, LLMs are used as proxies for human participants in 

surveys or experiments who respond to questions posed through prompts. This 

enables researchers to study these agents' behavior and decision-making processes 

in different scenarios. Incorporating LLMs into agents has two benefits: an enhanced 

reasoning mechanism for each agent and more efficient communication across 

diverse multi-agent landscapes (Askari et al., 2023). 

 

Using LLM-based agents in strategic game experiments has several advantages. 

These models can capture latent social information like economic laws, decision-

making heuristics, and common social preferences. They are trained on large corpora 

containing written text where people reason about and discuss such matters. 

 

Prompt design plays an essential role in the performance of language-based 

agents. Adapting LLMs for decision-making tasks often involves non-trivial prompt 

design and memory retrieval mechanisms that dynamically construct the agent's 

context. Moreover, integrating prior knowledge from various sources helps improve 

their overall performance. 

 

LLM-powered autonomous agents have significant potential applications across 

multiple domains like customer service consulting programming service, reducing 

the human effort required roles such as customer service consulting programming 

writing teaching, etc. reducing human effort required roles such customer service 

consulting programming writing teaching, etc., reducing the human effort required 

roles. 

 

4. Personality 

 

Finally, the personality of an LLM Agent is shaped by a combination of 

prompting and fine-tuning. Personality in humans is a unique blend of characteristics 

and qualities that define an individual's behaviors and attitudes. Creating a 

personality for an LLM agent infuses uniqueness and consistency into the agent's 

responses, thereby giving it a distinctive character. 

 

Prompt Engineering is a technique that involves crafting prompts that set the tone, 

style, and context for the agent's responses. This can elicit different personalities, 

such as formal, humorous, or empathetic, or even different ways an agent might 

respond, such as adopting a pirate's speech pattern. Prompts guide the agent's 

responses while fine-tuning adjusts the agent's behavior to align with specific 

characteristics or traits. This creates a unique "personality" for the agent, making it 

more relatable and engaging to users. 

 

Fine-tuning the parameters of the LLM allows the developer to adjust the agent’s 

behavior to align better with the desired characteristics. It helps to mold 

characteristics, influence the behavior, and shape the agent's responses. This process 

is integral to imbuing the LLM agent with a unique 'personality' that can make 

interactions more engaging, relatable, and user-friendly. 
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Fine-tuning is training the LLM on a specific dataset after training it on a broad 

dataset. The specific dataset is typically smaller and more specialized, often curated 

to reflect the desired traits or characteristics. This procedure adjusts the LLM's 

output, guiding it towards generating responses that align with the given personality 

traits. Fine-tuning can also adjust the LLM's responses to specific prompts or 

situations. For instance, an LLM agent can be fine-tuned to respond more positively 

or neutrally, depending on the desired personality trait. It can also be trained to 

exhibit a specific attitude or tone, such as humor, empathy, or enthusiasm. 

 

3.2.2 Action-ability 

 

The second primary component of an LLM agent is the ability to take action on 

thoughts or generate thoughts through observation. Agents can act by utilizing tools, 

which are instrumental in empowering them to transform their thoughts into 

actionable tasks. Thus, tools play a pivotal role in the functionality of the LLM agent. 

There are several types of tools that the agent can utilize, each contributing distinct 

capabilities to the agent's operational proficiency. 

 

Some of the most common tools for LLM Agents allow the agent to generate, 

execute, and test code. These tools can be powered by code interpreters, which are 

instrumental in writing and executing code snippets in various programming 

languages, such as Python, JavaScript, or SQL. These interpreters transform abstract 

algorithms into functional programs, enabling the LLM agent to carry out specific 

tasks efficiently and effectively (Yuan et al., 2024). 

 

Another tool that gives an LLM agent the ability to take action and gather 

information is the ability to make API calls. This tool allows the agent to access real-

time data, providing a dynamic dimension to the agent's capabilities. For instance, 

an agent can call an API to obtain current weather statistics for a specific location, 

thereby providing users with timely and relevant information. 

 

A newer but important capability that agents can now access is the ability to ‘see.’ 

Recent advancements in LLM models give them the ability to understand and even 

generate images, which, when given to an LLM agent, takes it to the next level. 

 

By harnessing the power of these tools, an LLM agent can not only process and 

reason with information but also take direct action based on its thoughts, 

significantly enhancing its utility and efficiency.  

 

3.3 Agent Examples 

 

Various agent types can include: 

 

1. Reasoning/Planning Agent: A reasoning agent is responsible for understanding 

human requests, planning the sequence of tool usage, monitoring subtasks, and 

combining tools to achieve the desired outcome. 
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2. Coding Agent: A coding agent can perform actions such as reading 

documentation and module-related packages within a code base, generating code 

for executing tasks, and returning code execution results. 

 

3. Master Agent/Group Chat Manager: These agents focus on managing 

interactions and relationships. They usually have the most information and 

context, so they can effectively guide problem-solving and/or discussion. 

 

4. Data Agent: A data agent leverages an LLM to assist with data analysis tasks. 

They can extract insights from datasets, generate reports, and provide 

recommendations. One use case where one might find a data agent is in financial 

analysis. Here, a data agent can answer questions about a company's 

performance based on financial statements. 

 

Overall, large language model agents combine reasoning abilities with coding skills 

and memory management features that allow them to understand natural languages and 

perform complex tasks autonomously by leveraging various APIs/tools available on the 

web or in any specific environment they operate in. 

4   Methodology 

4.1 Define the problem 

 

The initial step in building a large language model application involves clearly 

defining the problem statement and understanding the requirements. This process 

includes identifying the specific task or tasks the model is expected to perform and 

understanding the context in which it will be used. It is crucial to consider the user's 

needs and the type of interaction they will have with the model. This step also involves 

understanding the model's use's ethical, safety, and fairness considerations.  

 

When building LLM agents, creating an environment where the agent can deeply 

understand the application domain and clearly define the problem is essential. This is 

because an agent might be designed to handle a specific aspect of the more significant 

problem or domain. For example, in a customer service scenario, one agent might 

handle billing inquiries, another technical support, and another product information. 

This division of labor requires a clear understanding of the domain and problem to 

ensure that each agent is trained with the appropriate data and fine-tuned to handle its 

specific tasks. 

 

Understanding the application domain and obtaining a clear definition of the 

problem are fundamental steps in developing LLM agent(s). They guide the choice of 

data and resources for training and fine-tuning the models, and they are particularly 

crucial when building and fostering collaboration among LLM agents (Wu et al., 2024). 

For this paper, we will build an LLM agent that acts as a personal assistant and 
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demonstrates the use of cognitive function and actionability as described in the key 

components section above.  

 

4.2 Model Selection 

 

Choosing an appropriate large language model is a pivotal component in the process 

of constructing LLM agents. This selection notably influences the agent's functionality, 

flexibility, and efficiency. The selection of an apt model for a specific task necessitates 

an in-depth examination of several elements. The initial step is to comprehend the 

nature and complexity of the task. For instance, tasks that necessitate understanding 

context and human-like text generation may be suited to models such as Generative 

Pretrained Transformers (GPT). 

 

Conversely, for tasks that require comprehension of relationships between entities, 

models like Bidirectional Encoder Representations from Transformers (BERT) might 

be more fitting (Chen et al., 2023). Once the task is clearly understood, the volume and 

quality of available training data should be considered. Larger, more intricate models 

typically necessitate more data; however, data quality is equally important. High-

quality, pertinent data can enhance model performance, irrespective of the model's size. 

 

Creating an LLM agent collaboration involves amalgamating multiple LLM agents 

to accomplish intricate tasks collectively. This collaboration can be horizontal, where 

all agents possess the same complexity level and work on different task components, 

or vertical, where more straightforward agents relay their outputs to more complex 

agents for additional processing. Such collaboration can augment the agents' 

performance by enabling them to specialize in various tasks and share their expertise. 

 

4.3 Fine-Tuning  

 

Once you have chosen the appropriate LLM, the next step is the fine-tuning process. 

Fine-tuning is a method used to improve the performance of a pre-trained model on a 

new task. You train the model on a specific task while keeping the pre-trained weights 

fixed. This helps the model adapt to the new task's nuances without losing the general 

language understanding it has acquired from pre-training.  

 

Tuning a large language model for a specific task is a complex, multi-step process. 

It begins with pre-training, where the model is trained on a large corpus of text data to 

learn the underlying patterns and structures of the language. This process allows the 

model to develop a broad understanding of the language, including its grammar, 

common phrases, and even some context-based decision-making. 

 

4.4 Architecture   

 

For successful LLM agent solutions, especially when there is agent collaboration, 

the architecture must be carefully designed, distinct roles for each agent must be clearly 

defined, and effective agent communication must be ensured. The agents should 

undergo coordinated training, and their performance should be evaluated and optimized 
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regularly. With an appropriate build, rigorous methodologies, and continuous 

optimization, one can construct LLM agents that excel in various tasks. 

 

Collaboration among LLM agents could include sharing insights, learning from each 

other's experiences, or coordinating to handle complex tasks. This requires resources 

such as a communication infrastructure that permits the agents to exchange information 

and coordination mechanisms for their actions. It also necessitates data that mirrors the 

collaborative aspects of the problem, such as multi-agent interaction transcripts or data 

about successful collaborations. 

 

4.5 Implementation   

 

In this study, an LLM Agent was developed to serve as a personal assistant to 

illustrate the principal characteristics of LLM agents. This assistant, constructed using 

the AutoGen library, can perform diverse tasks such as managing a calendar, emails, 

and a to-do list. AutoGen, an open-source framework developed by Microsoft, 

facilitates the creation of Language Model applications employing multiple agents that 

engage in conversation to solve tasks (Wu et al. et al., 2023). This framework 

streamlines the orchestration, automation, and optimization of complex LLM 

workflows, enabling developers to construct diverse conversation patterns that consider 

conversation autonomy, agent count, and conversation topology. 

 

The implementation, detailed in the appendix, starts by importing the necessary 

modules and initializing the AI assistant and user proxy. The assistant is configured 

with a series of configurations, a termination message function, and parameters 

including temperature, timeout, and cache seed. The user proxy is set up with 

parameters such as the maximum number of consecutive auto-replies and the working 

directory. 

 

The assistant is designed to perform several functions delineated in the script. These 

functions are decorated with @user_proxy.register_for_execution() and 

@assistant.register_for_llm(), indicating their registration for execution by the user 

proxy and inclusion in the assistant's LLM. The following tools were created:  

 

1. ask_planner: This function asks a planner agent to create a plan for finishing a 

given task and verify the plan's execution result. 

2. add_event: Function to add an event to a calendar.   

3. get_events: Function to get calendar events between two times. 

4. get_emails: Function to retrieve emails from a given path. 

5. draft_email: Function to draft an email and save it to a given ‘outbox’ path. 

6. add_todo: Function to add a to-do task to a task list. 

7. get_todos: Function to get to-dos from the task list. 

8. get_files: Function to get a list of file names in a specific directory. 

9. read_file: Function to read the content of a given file. 

 

The tools equip an LLM agent with the ability to gather information about its 

environment, interact with it, and execute tasks. These tasks range from managing a 
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calendar and handling emails to reading and writing data and files. Based on user 

commands, the developed agent can perform a spectrum of tasks, including email and 

calendar management, file handling, and task planning. It employs Microsoft’s agent 

library AutoGen to create the AI assistant and execute the tasks. 

 

4.6 Results 

 

The code initiates a chat with the assistant, asking it to check recent emails, draft 

responses, and update the calendar or to-do list accordingly. This demonstrates the 

assistant's ability to handle complex tasks involving multiple functions. The assistant 

successfully performs the tasks, showcasing the potential of large language models in 

automating routine tasks. 

 

The code output demonstrates the assistant's ability to handle complex tasks 

involving multiple functions. The assistant checks recent emails, drafts responses, and 

updates the calendar or to-do list accordingly. The assistant also summarizes class notes 

and drafts an email to share the notes. The assistant's responses are based on executing 

the functions defined in the script, demonstrating the assistant's ability to manage a 

calendar, handle emails, and manage a to-do list. 

 

4.7 Future Enhancements 

 

The AI personal assistants described above are already capable of performing a 

variety of tasks, such as managing a calendar, handling emails, and managing a to-do 

list. However, the addition of more agents and tools could potentially enhance its 

capabilities and make it a more complex and effective AI assistant. 

 

Incorporating more agents could allow for the distribution of tasks among different 

AI entities, each specialized in a particular domain. For example, one agent could be 

dedicated to managing the calendar, another to handling emails, and another to 

managing the to-do list. This would allow for more efficient task management, leading 

to faster response times and improved performance. Also, adding more tools could 

expand the range of tasks the AI assistant can perform. For instance, tools could be 

added to manage finances, track health and fitness data, or even provide personalized 

news updates. This would make the AI assistant more versatile and useful to the user. 

 

As delineated in the provided code, the AI assistant is already proficient in executing 

various tasks, such as managing a calendar, emails, and a to-do list. However, 

integrating additional agents and tools could augment its capabilities, creating a more 

sophisticated and effective AI assistant. 

 

Incorporating more agents could facilitate the distribution of tasks among different 

AI entities, each specialized in a specific domain. For instance, one agent could be 

dedicated to managing the calendar, another to handling emails, and another to 

managing the to-do list. This would allow for more efficient task management, 

potentially leading to faster response times and improved performance. 
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Adding more tools could broaden the range of tasks the AI assistant can perform. 

For instance, tools could be added to manage finances, track health and fitness data, or 

even provide personalized news updates. This would enhance the versatility of the AI 

assistant, making it more useful to the user. 

 

It is important to remember that adding more agents and tools could potentially 

enhance the capabilities of the AI assistant; careful consideration would need to be 

given to the design and implementation of these additions to ensure that they improve 

the overall effectiveness of the assistant. 

5   Discussion 

5.1 Cost 

 

Hosting or using a large language model, such as OpenAI's GPT-4 or similar models, 

can entail significant costs due to various factors. Firstly, the computational power 

required for training and fine-tuning these models is immense, necessitating specialized 

hardware like GPUs or TPUs. This results in high electricity consumption and 

infrastructure costs. Secondly, the storage requirements for such models are also 

substantial due to the vast amounts of data they need to process and store. This leads to 

increased data storage, backup, and management expenses. 

 

These models' ongoing maintenance and updates require a dedicated team of experts, 

which adds to the labor costs. In addition, there are often licensing fees associated with 

using pre-trained models or accessing APIs from service providers, which can be a 

recurring expense. Lastly, the environmental costs of running these models cannot be 

overlooked, as the energy consumption contributes to a larger carbon footprint. Overall, 

the costs of hosting or using a large language model can be substantial and should be 

carefully weighed against the potential benefits before committing to their 

implementation. 

 

5.2 Context Length 

 

Utilizing a large language model has its own set of limitations regarding context 

length. One major constraint is the model's maximum token limit, which determines 

the maximum number of tokens (words and punctuation) that can be processed in a 

single input. Exceeding this limit may result in truncation or omission of parts of the 

text, leading to incomplete or inadequate responses. Furthermore, as the context 

length increases, the model's ability to retain and process information can diminish, 

causing it to lose track of relevant details and potentially generate less accurate or 

coherent outputs.  

 

Longer contexts also increase the computational requirements for processing, 

leading to higher latency and increased costs. Large language models may need help 

maintaining coherence and consistency over extended context lengths, as they are 
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more likely to generate irrelevant or repetitive content. In summary, the limitations of 

context length when using a large language model can impact the quality of generated 

responses, computational efficiency, and overall usability of the model in various 

applications.  

 

5.3 Hallucinations 

 

Hallucinations in large language models occur when the model fabricates 

information not present in the input or training data, which can present notable 

challenges and risks. This phenomenon can propagate inaccurate or misleading 

information, creating an output that seems plausible but is unfounded, potentially 

leading to user confusion or misinterpretation. These hallucinations can also prove 

hazardous, particularly in delicate contexts such as health or legal advice. Users may 

act upon this fabricated information, unaware of its inauthenticity, resulting in 

significant real-world consequences. 

 

The unpredictability of hallucinations adds a layer of complexity to ensuring the 

responsible and ethical utilization of AI technologies. The difficulty in controlling or 

predicting when a model will hallucinate complicates the implementation of 

safeguards, necessitating both users and developers to approach the model's output 

with heightened caution. Moreover, hallucinations can engender trust issues. Frequent 

encounters with hallucinated information may lead users to question the model's 

reliability, potentially undermining its utility and credibility. Hence, AI developers 

must address this issue to maintain user trust and confidence in AI technologies. 

 

5.4 Ethics 

 

The utilization of large language models introduces an array of potential 

limitations and hazards, particularly those pertaining to uncertainties. A primary 

constraint is the unpredictability inherent in the model's outputs, resulting from its 

deficiency in comprehending the world and its complexities. Large language models 

do not possess 'consciousness' or 'understanding' like human cognition. Instead, they 

generate responses predicated on patterns derived from the data on which they were 

trained. This can potentially yield nonsensical, inappropriate, or even offensive 

outputs, contingent upon the input and the model's interpretation thereof. 

 

The risk emanates from the fact that these models, despite their advanced 

sophistication, can unintentionally generate detrimental or misleading information. 

For example, inaccurate information could precipitate harmful real-world 

repercussions in sensitive fields such as medical or legal advice. Another uncertainty 

is how these models would respond to unprecedented situations or inputs outside their 

training data. Their performance under such circumstances could be more predictable 

and could lead to inaccuracies. 

 

The issue of bias in AI constitutes another critical concern. If the training data is 

imbued with biased information, the model could inadvertently perpetuate or amplify 

these biases. This risk is particularly acute given that these models often operate as 
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'black boxes,' rendering their internal operations and decision-making processes 

largely inscrutable to users. The potential misuse of these models represents a 

significant hazard. In the wrong hands, such potent tools could be exploited to 

disseminate misinformation, generate deepfake content, or for other nefarious 

purposes. Consequently, managing the uncertainties associated with large language 

models is an essential task that necessitates ongoing diligence and vigilance from AI 

developers, users, and policymakers. 

5   Conclusion 

This comprehensive study into Large Language Models illuminates their 

transformative potential in application development, particularly for efficient AI 

agents. It offers crucial insights into the creation of specialized agents, their role in 

collaborative problem-solving, and their efficacy in human-centric tasks. 

 

The study further explores the development of tools enhancing LLM agents' 

capabilities while highlighting potential challenges and risks, such as hallucinations, 

that could compromise their effectiveness. It underscores the vast application spectrum 

of LLMs, including natural language understanding, language translation, sentiment 

analysis, and task assistance through conversational interfaces. 

 

Moreover, the research emphasizes the need for vigilance and continuous 

improvements to navigate uncertainties and biases in AI technologies. It contributes 

significantly to the evolving AI discourse, spotlighting LLMs' critical role in the AI 

landscape across various sectors. 

 

This study successfully leveraged Microsoft's open-source AutoGen framework to 

develop an LLM agent serving as an effective personal assistant. This agent proficiently 

performed various tasks, including calendar management, email handling, and task 

planning. Its ability to execute complex tasks initiated by user commands exemplifies 

the potential of LLMs in automating routine tasks. 

 

The assistant's skillful management of intricate tasks involving multiple functions 

demonstrates the potential of LLM Agents in automating tasks and engaging effectively 

with their environment. However, the study also reinforces the need for ongoing 

research and development to address AI technologies' uncertainties and biases. The 

insights derived from this research are pivotal in guiding the responsible and effective 

use of AI technologies. 
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Appendix. 

 

Code: 

import os 

from typing import Optional, List, Dict 

from pydantic import BaseModel 

import datetime 

import json 

import uuid 

 

config_list = autogen.config_list_from_json(env_or_file="OAI_CONFIG_LIST") 

planner = autogen.AssistantAgent( 

    name="planner",  

    llm_config={"config_list": config_list},  

    system_message="You are a helpful AI assistant. You suggest coding and reasoning steps for another AI 

assistant to accomplish a task. Do not suggest concrete code. For any action beyond writing code or reasoning, 

convert it to a step that can be implemented by writing code. For example, browsing the web can be 

implemented by writing code that reads and prints the content of a web page. Finally, inspect the execution 

result. If the plan is not good, suggest a better plan. If the execution is wrong, analyze the error and suggest a 

fix.",  

    ) 

planner_user = autogen.UserProxyAgent( 

    name="planner_user",  

    max_consecutive_auto_reply=0,  

    human_input_mode="TERMINATE",  

    code_execution_config={"use_docker": False},  

    ) 

 

def is_termination_msg(content) -> bool: 

    have_content = content.get("content", None) is not None 

    if have_content and "TERMINATE" in content["content"]: 

        return True 

    return False 

 

assistant = autogen.AssistantAgent( 

    name="assistant",  

    is_termination_msg=is_termination_msg,  

    llm_config={"temperature": 0, "timeout": 600,  "cache_seed": 42,  "config_list": config_list},  

    )   

user_proxy = autogen.UserProxyAgent( 

    name="user_proxy",  
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    human_input_mode="TERMINATE",  

    max_consecutive_auto_reply=10,  

    code_execution_config={"work_dir": "planning","use_docker": False,},  

    ) 

 

import os 

@user_proxy.register_for_execution() 

@assistant.register_for_llm( 

    name="ask_planner",  

    description="ask planner to: 1. get a plan for finishing a task, 2. verify the execution result of the plan and 

potentially suggest new plan. Takes in message (str): question to ask planner. Make sure the question include 

enough context, such as the code and the execution result. The planner does not know the conversation 

between you and the user, unless you share the conversation with the planner."  

    ) 

def ask_planner(message:str)->str: 

    planner_user.initiate_chat(planner, message=message) 

    return planner_user.last_message()["content"] 

 

@user_proxy.register_for_execution() 

@assistant.register_for_llm(name="add_event", description="Add an event to the calendar, returns the id of 

the event added") 

def add_event(title: str, description:str, start_time: datetime.datetime, end_time: datetime.datetime)-> str: 

    with open('events.json', 'w') as f: 

        json.dump({'cal':str(uuid.uuid4()),'title': title,'start_time': start_time,'end_time': end_time,'details': 

description,}, f) 

    return str(id) 

 

@user_proxy.register_for_execution() 

@assistant.register_for_llm(name="get_events", description="Takes in a start and end datetime and returns 

json of event between those times") 

def get_events(starting: datetime.datetime, ending:datetime.datetime)-> Dict: 

    with open('events.json', 'r') as f: 

        calendar = json.load(f) 

    sorted_events = sorted(calendar.items(), key=lambda x: x[1]['start_time'], reverse=False) 

    events_between = [] 

    for id, event in sorted_events: 

        if datetime.datetime.strptime(starting, '%Y-%m-%d %H:%M:%S') <= 

datetime.datetime.strptime(event['start_time'], "%Y-%m-%d %H:%M:%S") <= 

datetime.datetime.strptime(ending, '%Y-%m-%d %H:%M:%S'): 

            events_between.append(event) 
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    return json.dumps(events_between) 

 

@user_proxy.register_for_execution() 

@assistant.register_for_llm(name="get_emails", description="Returns json of emails in inbox") 

def get_emails()-> Dict: 

    with open('inbox.json', 'r') as f: 

        inbox = json.load(f) 

    return inbox 

 

@user_proxy.register_for_execution() 

@assistant.register_for_llm(name="draft_email", description="Returns json of a saved email draft") 

def draft_email(subject:str, body:str, recipients:str)-> Dict: 

    id = str(uuid.uuid4()) 

    with open('outbox.json', 'w') as f: 

        json.dump({'id':id,'subject': subject,'body': body,'recipients': recipients,}, f) 

    return {'id':id,'subject': subject,'body': body,'recipients': recipients,} 

 

@user_proxy.register_for_execution() 

@assistant.register_for_llm(name="add_todo", description="Takes in a task title, description, and due date; 

and returns the id of the task added") 

def draft_email(title:str, description:str, due_date:datetime.datetime, completed:bool)-> str: 

    id = str(uuid.uuid4()) 

    with open('taskList.json', 'w') as f: 

        json.dump({'id':id,'title': title,'description': description,'due_date': due_date,'completed':completed}, f) 

    return str(id) 

 

@user_proxy.register_for_execution() 

@assistant.register_for_llm(name="get_todos", description="Returns a dictionary of task list") 

def get_todos()-> Dict: 

    with open('taskList.json', 'r') as f: 

        taskList = json.load(f) 

    return taskList 

 

@user_proxy.register_for_execution() 

@assistant.register_for_llm(name="get_files", description="Returns a list of file names in my documents 

folder") 

def get_files()-> List: 

    file_list = os.listdir('/localFilePath/') 

    return file_list 
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@user_proxy.register_for_execution() 

@assistant.register_for_llm(name="read_in_file", description="Takes in file name (str) and returns str content 

of the file") 

def read_file(filename:str)-> str: 

    with open(os.path.join('/localFilePath/', filename), 'r') as file: 

        content = file.read() 

    return content 

 

user_proxy.initiate_chat(assistant, message="can you check my recent emails and draft responses accordingly 

and update calendar or todos accordingly") 
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